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Abstract
In this paper we discuss the convergence of distances associated to converging struc-
tures of Lipschitz vector fields and continuously varying norms on a smooth manifold.
We prove that, under a mild controllability assumption on the limit vector-fields structure,
the distances associated to equi-Lipschitz vector-fields structures that converge uniformly
on compact subsets, and to norms that converge uniformly on compact subsets, converge
locally uniformly to the limit Carnot-Carathéodory distance. In the case in which the limit
distance is boundedly compact, we show that the convergence of the distances is uniform on
compact sets. We show an example in which the limit distance is not boundedly compact and
the convergence is not uniform on compact sets. We discuss several examples in which our
convergence result can be applied. Among them, we prove a subFinsler Mitchell’s Theorem
with continuously varying norms, and a general convergence result for Carnot-Carathéodory
distances associated to subspaces and norms on the Lie algebra of a connected Lie group.
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1 Introduction

This paper deals with the following general problem. Let M be a smooth manifold endowed
with a family of vector fields and a continuously varying norm on the tangent spaces. Let
us consider the length distance associated to the trajectories that infinitesimally follow such
a family. What are the weakest notion of convergence and the most general assumptions
on the family of vector fields and the norm that ensure the uniform convergence of the
associated length distances?

Such a question is natural while studying metric geometry. For example, fixed a con-
tinuously varying norm on the tangents, a sub-Finsler distance on a manifold is defined as
the length distance associated to a bracket-generating family of smooth vector fields. It is
a classical fact that a sub-Finsler distance can be approximated from below by increasing
sequences of Finsler distances, see, e.g., [15, 16]. Nevertheless, understanding whether a
specific approximation of the vector fields (and, possibly, of the norm) gives rise to the con-
vergence of the associated length distances seems not to have been deeply studied in the
literature. A by-product of our study goes in this direction, since it gives an effective tool
to approximate subFinsler distances with Finsler distances in a controlled way. We refer the
reader to the examples discussed in Theorem 4.5 and Theorem 1.6, which are consequences
of the main Theorem 1.4 below.

A remarkable situation in which the convergence of the distances associated to converg-
ing subFinsler structures emerge is while studying asymptotic or tangent cones of subFinsler
structures, see the celebrated works of Mitchell and Bellaiche [6, 18] (and the account in
[9, 13]), and the work of Pansu [20]. We refer the reader to the examples discussed in
Proposition 4.1, and Theorem 1.5 below.

We now introduce the language that we will adopt in the paper.
Let us fix from now on a finite-dimensional Banach space E, and a smooth manifold M .

We shall consider bundle maps M×E → T M; however, the theory can be easily generalized
to bundle maps B → T M given a Banach bundle B on M , as done for sub-Riemannian
manifolds in [3, Lemma 3.26 and Corollary 3.27].

A Lipschitz-vector-field structure f : M → E
∗⊗T M on M modelled by E is a Lipschitz

choice, for every point p ∈ M , of a linear map between E and TpM , see Definition 2.3.
We say that a sequence of Lipschitz-vector-field structures {fn}n∈N converges to a

Lipschitz-vector-field structure f∞ if, on every compact subset of M , {fn}n∈N is an equi-
Lipschitz family that converges to f∞ uniformly, see Definition 2.2 for details. Attached to
a Lipschitz-vector-field structure f we have the notion of an End-point map, as follows.

Definition 1.1 (End-point map) Let E be a finite-dimensional Banach space, and M be a
smooth manifold. Let f be a Lipschitz-vector-field structure on M modelled by E, and let
u ∈ L∞([0, 1];E). For o ∈ M , we define the End-point map

Endfo [u] := End(o,f, u) := γ (1),

where γ : [0, 1] → M is the solution of the Cauchy problem{
γ ′(t) = f|γ (t)[u(t)],
γ (0) = o,

(1)

whenever it exists. Notice that γ (t) = Endfo (tu) for every t ∈ [0, 1] whenever the End-point
map is well-defined.
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Let f be a Lipschitz-vector-field structure on M modelled by E. We say that N : M ×
E → R is a continuously varying norm on M × E if N is continuous, and N(p, ·) is a
norm on E for every p ∈ M . We aim now at describing how a couple (f, N) gives rise to a
distance on M .

First, we define the energy and the length functionals working on the space
L∞([0, 1];E), which we sometimes call space of controls. We stress that in our approach
the energy and the length are not defined at the level of the curves, but instead on the controls
that define them. In particular, if o ∈ M , u ∈ L∞([0, 1];E), (o,f, u) is in the domain of
the End-point map, see Definition 1.1, and N is a continuously varying norm on M ×E, we
define the length � (resp., the energy J) associated to (o,f, u, N) to be

∫ 1
0 N(γ (t), u(t)) dt

(resp., esssupt∈[0,1]N(γ (t), u(t))), where γ (t) := Endfo (tu). Given the notion of energy,
we can define the distance as follows.

Definition 1.2 (CC distance) Let E be a finite-dimensional Banach space, and M be
a smooth manifold. Let f be a Lipschitz-vector-field structure on M modelled by E,
and let N : M × E → [0,+∞) be a continuously varying norm. We define the
Carnot-Carathéodory distance, or CC distance, between p and q as follows

d(f,N)(p, q) := inf{J(p,f, u, N) : Endfp(u) = q}, (2)

where J(p,f, u, N) is the above defined energy associated to (p,f, u, N).

In Lemma 3.5 we shall show that a constant-speed reparametrization of a curve always
exists, hence we can also equivalently take the infimum of the lengths in (2). We remark that,
without any further hypotheses on the couple (f, N), it might happen that d(f,N)(p, q) =
+∞ for some points p, q ∈ M .

In Corollary 3.19, we shall show that, if f is a Lipschitz-vector-field structure on M

modelled by E, and N : M ×E → [0, +∞) is a continuously varying norm, then, for every
p, q ∈ M , we have also

d(f,N)(p, q) = inf

{∫ 1

0
|γ ′(t)|(f,N) dt : γ : [0, 1] → M absolutely continuous,

with γ (0) = p, γ (1) = q

}
,

where

|v|(f,N) := inf{N(p, u) : u ∈ E, f(p, u) = v}, for p ∈ M and v ∈ TpM . (3)

This means that the definition of the distance d(f,N) working with the controls, i.e., the one
given in (2), is equivalent to the definition of the distance as the infimum of the lengths
evaluated with respect to the natural sub-Finsler metric associated to (f, N), i.e., (3).

We now aim at understanding which kind of convergence is expected from the sequence
of distances {d(fn,Nn)}n∈N when we have that the sequence {(fn,Nn)}n∈N converges. The
key hypothesis in order to have the local uniform convergence of the distances is a kind of
essential non-holonomicity of the limit vector-fields structure f∞, which we next introduce.

First of all we introduce the notion of essentially open map. We say that a continu-
ous map f : M → N between two topological manifolds of the same dimension k is
essentially open at p ∈ M at scale U if U is a neighborhood of p homeomorphic to the
k-dimensional Euclidean ball, with ∂U homeomorphic to the sphere S

k−1, and there exists
V a neighborhood of f (p) homeomorphic to the k-dimensional Euclidean ball, such that
f (∂U) ⊂ V \ f (p) and the map f : ∂U → V \ f (p) induces a nonconstant map between
the (k − 1)-homology groups, see Definition 2.10.
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Notice that the definition of essential openness at p ∈ M does depend on the scale
U 	 p. Notice also that if the map induced between the local homology of p and f (p) is
not trivial, i.e., f� : Hk(M,M \ {p}) → Hk(N,N \ f (p)) is nonzero, then f is essentially
open at p ∈ M at every sufficiently small neighborhood U of p. Essential opennes at a
point p at scale U does not imply openness at p, but only that f (p) is in the interior of
f (U), cf. Remark 2.11. Still a local homeomorphism at p is indeed essentially open at p at
some scale U 	 p.

Then we are ready to give the following definition. We recall that we denote by �t
X the

flow at time t of a vector field X on the smooth manifold M , whenever it exists.

Definition 1.3 (Essentially non-holonomic) Let M be a smooth manifold of dimension m

and let F be a family of Lipschitz vector fields on M . We say that F is essentially non-
holonomic if for every T > 0 and every o ∈ M , there are X1, . . . , Xm ∈ F and t̂ ∈ R

m

with |t̂ | < T such that there exists a neighborhood �t̂ ⊆ B(0, T ) ⊆ R
m of t̂ for which the

map

φ(t1, . . . , tm) := �
tm
Xm

◦ · · · ◦ �
t1
X1

(o),

is defined on �t̂ and, when restricted to �t̂ , is an essentially open map at t̂ in a neighborhood
of it.

A Lipschitz-vector-field structure f on M modelled by a finite-dimensional Banach
space E is said to be essentially non-holonomic if there is a basis (e1, . . . , er ) of E such that
F = {f(·, e1), . . . ,f(·, er )} is essentially non-holonomic.

Let us explain the definition above. Equivalently, a set F of Lipschitz vector fields on a
smooth manifold Mm is essentially non-holonomic at a point p ∈ M whenever there exists
a sequence of points pn ∈ M that converges to p such that pn is connected to p with the
concatenation, starting at p, of line flows of m vector fields in F for times (t1, . . . , tm),
and moreover such concatenation is essentially open around (t1, . . . , tm). We stress that the
latter notion is weaker than the bracket-generating condition in the case the vector fields are
smooth, cf. Proposition 2.12.

We are now ready to give the main theorem of the paper. The following theorem is proved
at the end of Section 3.5.

Theorem 1.4 Let M be a smooth manifold, and let E be a finite-dimensional Banach space.
Let f̂ be an essentially non-holonomic Lipschitz-vector-field structure modelled by E, and
let N̂ : M × E → [0, +∞) be a continuously varying norm. Then the following hold.

(i) if M is connected, then d
(f̂,N̂)

(p, q) < ∞ for every p, q ∈ M;
(ii) d

(f̂,N̂)
induces the manifold topology on M;

(iii) Let {fn}n∈N be a sequence of Lipschitz-vector-field structures on M modelled by
E, and let {Nn}n∈N be a sequence of continuously varying norms on M × E.
Let us assume that fn → f̂ in the sense of Lipschitz-vector-field structures (see
Definition 2.2), and Nn → N̂ uniformly on compact subsets of M × E.

Then d(fn,Nn) → d
(f̂,N̂)

locally uniformly on M , i.e., every o ∈ M has a
neighborhood U such that d(fn,Nn) → d

(f̂,N̂)
uniformly on U × U as n → +∞.

(iv) If in the hypotheses of item (iii) we additionally have that d
(f̂,N̂)

is a boundedly
compact (or equivalently complete) distance, we conclude that

lim
n→+∞ d(fn,Nn) = d

(f̂,N̂)
,
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uniformly on compact subsets of M × M . Moreover, for every x ∈ M , we have
(M, d(fn,Nn), x) → (M, d

(f̂,N̂)
, x) in the pointed Gromov–Hausdorff topology as

n → +∞.

Let us comment on the latter statements. The first item is a Chow-Rashevskii type result
for Lipschitz vector fields that satisfy the essentially non-holonomic condition. It implies
in particular the classical Chow-Rashevskii theorem, [3]. The item (i) is readily obtained
since the fact that two sufficiently near points can be connected by a finite-length curve
is guaranteed by Definition 1.3. Item (ii) requires the essentially non-holonomic condition.
Indeed, for an arbitrary couple (f, N), one only has that the topology induced by (f, N) is
finer than the topology of the manifold, see Lemma 3.8 and the discussion after it. Item (iii)
is the main convergence result, and it only holds locally around every point. When one adds
the hypothesis that the limit distance is boundedly compact, the uniform convergence on
compact sets can be obtained, as stated in item (iv). Without the hypothesis on the boundedly
compactness of the limit distance, the convergence result might be false, see the example in
Remark 3.24. Let us further notice that item (iv) of Theorem 1.4 generalizes [12, Theorem
3.4].

Let us now describe the main steps of the proof of the Theorem 1.4. The first nontrivial
achievement to obtain the proof is that, when f̂ is essentially non-holonomic, the topology
of M is finer than the topology induced by d

(f̂,N̂)
; and thus equal taking into account that the

other inclusion, i.e., the one in Lemma 3.8, holds in general. The nontrivial inclusion follows
from the fact that when f̂ is essentially non-holonomic, the End-point map associated to f̂ is
open, see Theorem 2.13, and Lemma 3.21. Such an opennes property is a direct by-product
of the essentially non-holonomic condition, see Remark 2.11.

The latter described opennes property is stable along a sequence {fn}n∈N of Lipschitz-
vector-field structures that converge to f̂, and this is the key point to obtain item (iii). Such
a stability is the content of Theorem 2.13. Its proof builds on the top of the joint continuity
of the End-point map in the three variables o ∈ M , f a Lipschitz-vector-field structure on
M modelled by E, and u ∈ L∞([0, 1],E) (with the weak* topology), see Theorem 2.5 and
Proposition 2.9, and on the topological Lemma B.1 proved with the aid of degree theory,
which tells us that continuous functions that are near to an essentially open function are
uniformly surjective.

To conclude the proof of item (iii) one exploits the latter stability property to prove that,
on compact sets, the topology of M is uniformly finer than the topologies induced by the
distances d(fn,Nn), see Lemma 3.21. This directly implies that the functions {d(fn,Nn)}n∈N
are equicontinuous on compact sets, see Proposition 3.22. To end the proof of item (iii)
one then finally uses the previous equicontinuity together with the fact that d

(f̂,N̂)
is locally

obtained as a relaxation of d(fn,Nn), see Proposition 3.20.
Item (iv) is then proved by exploiting item (iii) and the general metric result in

Lemma 3.25 according to which one can pass from the local uniform convergence to the
uniform converge on compact sets in a very general setting under mild assumptions, i.e., the
metric spaces are length spaces and the limit distance is boundedly compact.

In Appendix C we offer a shorter proof of Theorem 1.4(iv) assuming that the vector-
fields structures are smooth. In this case we can argue directly by using Gronwall’s
Lemma A.1, and the quantitative open-mapping type result in Lemma B.3, which does not
need degree theory since we have enough regularity of the flow maps.

Let us now discuss some corollaries of the general convergence result in Theorem 1.4.
In Section 4 we list some examples in which a direct application of Theorem 1.4 gives
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nontrivial consequences. We record here a couple of them. The first is Mitchell’s Theorem
for subFinsler manifolds with continuously varying norms.

Let us give some preliminary notation and definitions. Let Mm be a smooth manifold of
dimension m ∈ N, and let X := {X1, . . . , Xk} be a bracket-generating family of smooth
vector fields on M . Let E := R

k , and let N : M ×E → [0,+∞) be a continuously varying
norm. For every p ∈ M and v ∈ TpM , let | · |X ,N be the sub-Finsler metric defined as
follows

|v|X ,N := inf

{
N(p, u) : u ∈ E,

k∑
i=1

uiXi(p) = v

}
. (4)

The subFinsler distance between p, q ∈ M is

d(X ,N)(p, q) := inf

{∫ 1

0
|γ ′(t)|X ,N dt : γ : [0, 1] → M is AC, γ (0) = p, γ (1) = q

}
.

(5)
We recall that the definition of a regular point can be found, e.g., in [13, Definition 2.4].
The following theorem is proved at the end of Section 4.2.

Theorem 1.5 (Mitchell’s Theorem for subFinsler manifolds with continuously varying
norm) Let Mm,X , N be as above. Let us fix o ∈ M . There exists a bracket-generating
family of polynomial vector fields X̂ := {X̂1, . . . , X̂k} on Rm such that the following holds.

Let No be the continuously varying norm on R
m × E such that No(p, ·) ≡ N(o, ·) for

every p ∈ R
m. Let | · |X̂ ,No

be the subFinsler metric on TR
m defined as in (4), and let

d
(X̂ ,No)

be the subFinsler distance on R
m, defined as in (5), by using the subFinsler metric

| · |X̂ ,No
.

Then, the Gromov–Hausdorff tangent of (M, d(X ,N)) at o ∈ M is isometric to
(Rm, d

(X̂ ,No)
, 0). Moreover, (Rm, d

(X̂ ,No)
) is isometric to a quotient of a subFinsler Carnot

group by one of its closed subgroups. If o is regular, (Rm, d
(X̂ ,No)

) is isometric to a
subFinsler Carnot group.

We remark that the construction of X̂ , which is usually called the homogeneous nilpotent
approximation of X at o, can be made explicitly with respect to X , compare with [13,
Section 2.1], and does not depend on N . This algebraic approximation X̂ is clear from [1,
13, 21]; we will focus on the metric consequences of considering N and its associated
distance.

Giving for granted the construction of privileged coordinates, for which we give pre-
cise references in Section 4.2, the proof of the Theorem 1.5 is a direct consequence of the
application of Theorem 1.4(iv), see Section 4.2.

The last consequence we want to discuss is in the setting of Lie groups. We introduce
some notation. Let G be a connected Lie group, and g its Lie algebra. Given a vector sub-
space H ⊆ g of g, and a norm b on H, we associate to (H, b) a left-invariant subFinsler
structure (D, b) as follows

Dp := dLp(H), bp(X) := b((dLp)−1X), ∀p ∈ G,∀X ∈ TpG, (6)
where Lp(q) := p · q for p, q ∈ G.

To each (H, b), one attaches the (possibly infinite-valued) distance between p, q ∈ G as

d(H,b)(p, q) := inf
{ ∫ b

a
bγ (t)(γ

′(t)) : γ : [a, b] → G AC, γ (a) = p, γ (b) = q,

γ ′(t) ∈ Dγ (t) for a.e. t ∈ [a, b]
}

.
(7)
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Notice that if H is a bracket-generating vector subspace of g, the sub-Finsler structure
(G,D, b) satisfies the bracket-generating condition and thus d(H,b) is finite-valued. Let us
denote by Grg(k) the Grassmannian of k-planes endowed with the usual topology of the
Grassmannian of a vector space. The proof of the following result is at the end of Section 4.3
and it is an immediate consequence of Theorem 1.4(iv).

Theorem 1.6 (Convergence of distances on Lie groups) Let G be a connected Lie group
with Lie algebra g, and letH ⊆ g be a bracket-generating vector subspace of dimension k.

Let {Hn}n∈N be a sequence of k-dimensional vector subspaces of g that converges in
the topology of Grg(k) to H, and let {bn}n∈N be a sequence of norms on g that converges
uniformly on compact sets to a norm b on g. Then, being d(Hn,bn) and d(H,b) the distances
defined as in (7), we have

d(Hn,bn) → d(H,b), uniformly on compact subsets of G × G.

Moreover, for any p ∈ G, (G, d(Hn,bn), p) → (G, d(H,b), p) in the pointed Gromov–
Hausdorff topology as n → +∞.

We briefly describe the structure of the paper and we refer the reader to the introductions
of the sections for more details.

In Section 2 we introduce the main notation and definitions of the paper, we study the
continuity property of the End-point map, the notion of essentially open map and essentially
non-holonomic set of vector fields, and we finally prove the open property of the End-point
map associated to an essentially non-holonomic structure.

In Section 3 we define and study the length, the energy and the
Carnot-Carathéodory distance associated to a Lipschitz-vector-field structure and a contin-
uously varying norm. We thus study how the distances behave under taking limit of the
corresponding structures, and we prove the main Theorem 1.4.

In Section 4 we discuss some examples in which Theorem 1.4 applies, namely the
fact that the asymptotic cone of the Riemannian Heisenberg group is the subRiemannian
Heisenberg group; the subFinsler Mitchell’s Theorem with continuously varying norms; a
general convergence result for Carnot-Carathéodory distances on connected Lie groups; and
a general convergence result for Carnot-Carathéodory distances on manifolds.

In the Appendix we give a self-contained proof of a version of the Gronwall Lemma,
we prove some ancillary lemmas about open maps, and we finally give a shorter and more
direct proof of Theorem 1.4(iv) in the case in which the vector fields are smooth.

2 The End-point map for Lipschitz-vector-field Structures

In this section we introduce the notion of Lipschitz-vector-field structure on a smooth
manifold modelled by a finite-dimensional Banach space, see Definition 2.1 and Defini-
tion 2.3. We give the definitions of the convergence of Lipschitz-vector-field structures, see
Definition 2.2.

After the discussion of the basic definitions, we are going to prove the first main theorem
of this section, see Theorem 2.5, which says that the domain of the End-point map associated
to a Lipschitz-vector-field structure is open and the End-point map is continuous. The proof
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of Theorem 2.5 heavily relies on Proposition 2.9, according to which the curves satisfying
the Cauchy system (1) starting from a converging sequence (on,fn, un) ∈ M × Lip	(E∗ ⊗
T M) × L∞([0, 1];E) uniformly converge. The latter result relies on a general convergence
criterion for flow lines of (not necessarily smooth) vector fields, see Propostion 2.6.

In Section 2.3 we introduce the notion of essentially open map between two topological
manifolds of the same dimension, see Definition 2.10. We recall that such a notion is used to
give the notion of essentially non-holonomic distribution of vector fields, see Definition 1.3.

In Section 2.4 we finally show the second main result of this section. Namely, we
show that whenever a Lipschitz-vector-field structure f̂ modelled by E is essentially non-
holonomic, the End-point map of f̂ enjoys a uniform openness property, see Theorem 2.13
for further details. Such a uniform openness result, which follows both from the continu-
ity result proved in Theorem 2.5, and from the ancillary Lemma B.1, strongly requires the
essentially non-holonomicity property. Eventually, the latter uniform openness result will
be of key importance in proving Lemma 3.21, which is one of the main steps to prove the
main result of the next section, see Theorem 1.4(iv). We refer the reader to the introduction
of the next section for further details.

2.1 Lipschitz-vector-field Structures on aManifold

In this subsection we study basic facts about Lipschitz-vector-field structures.

Definition 2.1 (Uniformly locally Lipschitz sections Lip	) Let M be a smooth manifold
and E → M a vector bundle. We say that a family X of sections of E is uniformly locally
Lipschitz if for every p ∈ M there exist a coordinate neighborhood of p that trivializes E

and a constant L > 0 so that every element of X is L-Lipschitz in this trivialization. We
denote by Lip	(E) the collection of all locally Lipschitz sections of E, i.e., sections X so
that the singleton {X} is uniformly locally Lipschitz.

It is a direct consequence of the definition that a family X of sections is uniformly locally
Lipschitz if and only if it is uniformly Lipschitz on compact sets on every trivialization of E.

Definition 2.2 (Sequential topology on uniformly locally Lipschitz sections) We define a
sequential topology on Lip	(E) as follows. We say that a sequence
{Xn}n∈N ⊂ Lip	(E) converges to X∞ ∈ Lip	(E) if and only if {Xn}n∈N is uniformly
locally Lipschitz and Xn → X uniformly on compact subsets of M , that is, if every p ∈ M

has a coordinate neighborhood that trivializes E on which Xn converge to X uniformly on
compact sets.

Definition 2.3 (Lipschitz-vector-field structure) Let E be a finite-dimensional Banach
space and M a smooth manifold. We denote by E

∗ ⊗ T M the vector bundle on M whose
fibers are E∗ ⊗ TpM . A section f of E∗ ⊗ T M is a choice, for each p ∈ M , of a linear map
f|p : E → TpM . An element f ∈ Lip	(E∗ ⊗ T M) will be called a Lipschitz-vector-field
structure on M modelled by E.

The definition of the Banach spaces Lp([0, 1];E) does not depend on the choice of a
Banach norm on E. The predual of L∞([0, 1];E) is L1([0, 1];E∗) with pairing

〈v|u〉 :=
∫ 1

0
〈v(t)|u(t)〉 dt,
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for u : [0, 1] → E and v : [0, 1] → E
∗. So, a sequence {un}n∈N ⊂ L∞([0, 1];E)

weakly* converges to u∞ ∈ L∞([0, 1];E) if for every v ∈ L1([0, 1];E∗) it verifies
limn→∞〈v|un〉 = 〈v|u∞〉.

We denote by DEnd ⊂ M×Lip	(E∗⊗T M)×L∞([0, 1];E) the domain of the End-point
map, as defined in Definition 1.1.

Remark 2.4 (Concatenation of flows of vector fields) Let X1, . . . , X� be locally Lipschitz
vector fields on M . Take E = R

� with the standard Euclidean norm, and with the canonical
basis {e1, . . . , e�}, and define f ∈ Lip	(E∗ ⊗ T M) by extending linearly

fp(ei) := Xi(p), for all p ∈ M and i ∈ 1, . . . , �.

The Cauchy system in (1), for any u : [0, 1] → R
�, becomes{

γ ′(t) =∑�
i=1 ui(t)Xi(γ (t)),

γ (0) = o.

Fix j ∈ N, (t1, . . . , tj ) ∈ R
j and ei1 , . . . , eij ∈ {e1, . . . , e�}. If we define the controls

u(t1,...,tj )(s) := T

j∑
k=1

χ[∑k−1
i=1 |ti |

T
,

∑k
i=1 |ti |

T

](s) sgn(tk) eik ,

where T :=∑j

i=1 |ti |, and

v(t1,...,tj )(s) := j

j∑
k=1

χ[ k−1
j

, k
j

](s)tkeik ,

we have that

γ(o,f,u(t1,...,tj ))(1) = γ(o,f,v(t1,...,tj ))(1) = �
tj
Xij

◦ . . . �
t1
Xi1

(o), (8)

whenever one of the terms exists. We recall that �t
X(o) is the flow line at time t of the vector

field X starting at o.

2.2 Continuity of the End-point Map

In this section we shall prove the following continuity theorem for the End-point map. On
DEnd ⊂ M × Lip	(E∗ ⊗ T M) × L∞([0, 1];E) we consider the topology that is the prod-
uct of the manifold topology on M , the sequential topology defined in Definition 2.2 on
Lip	(E∗ ⊗ T M), and the weak* topology on L∞([0, 1];E).

Theorem 2.5 Let M be a smooth manifold and let E be a finite-dimensional Banach space.
Then the domain DEnd of the End-point map is open and the function End : DEnd → M is
continuous.

Moreover, given (ô, f̂, û) ∈ DEnd, and given a weak*-compact neighborhood U of û

such that (ô, f̂, u) ∈ DEnd for every u ∈ U , we have that that the limit

lim
(o,f)→(ô,f̂)

Endfo = Endf̂
ô

(9)

is uniform on U .

Inspired by [17, Proposition 3.6], we prove the following ancillary proposition.
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Proposition 2.6 Let M ⊂ R
N be a closed subset and for n ∈ N ∪ {∞} let Xn : [0, 1] ×

M → R
N be measurable (thought as non-autonomous vector-fields) such that there are

R,L ≥ 0 with ‖Xn‖L∞ ≤ R and there exists a full measure subset T ⊂ [0, 1] such that
|Xn(t, p) − Xn(t, q)| ≤ L|p − q| for all p, q ∈ M , and for all t ∈ T . For each n, let
γn : [0, 1] → M be an integral curve of Xn. Suppose that γn(0) → γ∞(0) and that, for
every t ∈ [0, 1],

lim
n→∞

∫ t

0
Xn(s, γ∞(s)) ds =

∫ t

0
X∞(s, γ∞(s)) ds. (10)

Then γn → γ∞ uniformly.

Proof The family of curves γn is equibounded and equicontinuous with values in R
N . By

Ascoli-Arzelà, {γn}n is precompact. Let ξ : [0, 1] → M be a limit curve. We will show that
ξ = γ∞, thus proving that the whole sequence γn uniformly converge to γ∞.

For each n, define on := γn(0) and

ηn(t) := on +
∫ t

0
Xn(s, γ∞(s)) ds.

By the assumption (10), ηn(t) → γ∞(t) for every t ∈ [0, 1].
Next,

|γn(t) − γ∞(t)| ≤ |on − o∞| +
∫ t

0
|Xn(s, γn(s)) − Xn(s, γ∞(s))| ds

+
∣∣∣∣
∫ t

0
(Xn(s, γ∞(s)) − X∞(s, γ∞(s))) ds

∣∣∣∣
≤ 2|on − o∞| + L

∫ t

0
|γn(s) − γ∞(s)| ds + |ηn(t) − γ∞(t)|.

Letting n → ∞, we obtain, for every t ∈ [0, 1],

|ξ(t) − γ∞(t)| ≤ L

∫ t

0
|ξ(s) − γ∞(s)| ds.

Starting with ‖ξ − γ∞‖ ≤ C and iterating this inequality, we get ξ = γ∞. The latter
implication is actually an instance of the Gronwall inequality f ′ ≤ Lf .

Remark 2.7 Suppose that the hypothesis of Proposition 2.6 except (10) are satisfied. We
claim that, if Xn → X∞ pointwise a.e. on [0, 1] × M , then (10) is satisfied on every curve
γ . Indeed, first, for a.e. t ∈ [0, 1], we have that Xn(t, ·) → X∞(t, ·) almost everywhere
on M . Since Xn are uniformly Lipschitz and bounded in the spatial variable, for a.e. t ∈
[0, 1], actually the convergence Xn(t, ·) → X∞(t, ·) is uniform on compact subsets of M .
Therefore, since γ ([0, 1]) is compact, for almost every s ∈ [0, 1], limn→∞ Xn(s, γ (s)) =
X∞(s, γ (s)). Since Xn are uniformly bounded, by the Lebesgue dominated convergence
theorem, we can exchange the limit and the integral in the left-hand side of (10).

Lemma 2.8 Let E1 and E2 be two finite-dimensional Banach spaces. Suppose that
{un}n∈N ⊂ L∞([0, 1];E1) is a sequence weakly* converging to u∞ and that As : E1 → E2
is a continuous family of linear maps, with s ∈ [0, 1]. Then vn(s) := As[un(s)] is a
sequence in L∞([0, 1];E2) weakly* converging to v∞.
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Proof We denote by 〈·|·〉 the pairing of a Banach space with its dual space. We need to show
that, for every α ∈ L1([0, 1];E∗

2),

lim
n→∞〈α|vn〉 = 〈α|v∞〉. (11)

Since A is continuous in s, the operator norm of the adjoint operators A∗
s is bounded uni-

formly in s ∈ [0, 1], by R say. Hence
∫ 1

0 ‖A∗
s α(s)‖ ds ≤ R‖α‖L1 < ∞, that is, A∗α : s �→

A∗
s α(s) is an element of L1([0, 1];E∗

1). We conclude that, for every α ∈ L1([0, 1];E∗
2),

lim
n→∞〈α|vn〉 = lim

n→∞

∫ 1

0
〈α(s)|As[un(s)]〉 ds = lim

n→∞

∫ 1

0
〈A∗

s α(s)|un(s)〉 ds

= lim
n→∞〈A∗α|un〉 = 〈A∗α|u∞〉 = 〈α|Au∞〉,

hence (11) indeed holds for every α ∈ L1([0, 1];E∗
2).

The next proposition will be at the core of the proof of Theorem 2.5.

Proposition 2.9 Let {(on,fn, un)}n∈N ⊂ M × Lip	(E∗ ⊗ T M) × L∞([0, 1];E) be a
sequence converging to (o∞,f∞, u∞) ∈ DEnd. Then the following hold:

(1) There is N ∈ N such that {(on,fn, un)}n≥N ⊂ DEnd, that is, for every n ≥ N the
Cauchy system (1) has an integral curve γ(on,fn,un) defined on [0, 1];

(2) The sequence of integral curves γ(on,fn,un) uniformly converge to γ(o∞,f∞,u∞).

Proof The convergence in the assumptions means that on → o∞ in M , un → u∞ weakly*
in L∞([0, 1];E), fn → f∞ uniformly on compact sets of every trivialization of E∗ ⊗ T M ,
and {fn}n is uniformly locally Lipschitz on compact sets of every trivialization of E∗⊗T M .
For n ∈ N ∪ {∞}, denote by γn : [0, Tn) → M the maximal integral curve of the Cauchy
system (1) with control un and initial point on. Notice that γn can be extended to Tn if and
only if Tn = 1, if and only if γn([0, Tn)) is contained in a compact subset of M .

Let ρ be a complete Riemannian metric on M and let ι : M ↪→ R
N be a Riemannian

isometric embedding. The ρ-length of curves in M is thus equal to their Euclidean length in
R

N . We denote by dρ and diamρ the Riemannian distance and the corresponding diameter
on M defined by ρ. Notice that, for every r ≥ 0 and p ∈ M , the closed ρ-ball of radius r

and center p in M , B̄ρ(p, r), is a compact subset of RN .
By means of the isometric embedding ι, we interpret the sections fn ∈ Lip	(E∗ ⊗ T M)

as locally uniformly Lipschitz maps fn : M → E
∗ ⊗ R

N . We will denote by ‖fn(p)‖ the
operator norm of the linear map fn(p) : E → R

N .
Let D = diamρ(γ∞([0, 1])), H = sup{‖fn(p)‖ : n ∈ N, p ∈ B̄ρ(o∞, 4D)} < ∞, and

R = supn ‖un‖L∞ < ∞.
We claim that, for every t̂ ∈ [0, 1], if there is N such that t̂ < Tn for every n ≥ N and

if γn(t̂) → γ∞(t̂), then there is N̂ ≥ N such that, for all n ≥ N̂ , the curve γn is defined on
[t̂ , t̂ + D

RH
] ∩ [0, 1] and γn([0, t̂ + D

RH
] ∩ [0, 1]) ⊂ B̄ρ(o∞, 4D) for all n ≥ N̂ .

To prove the claim, first notice that there is N̂ ∈ N such that γn(t̂) ∈ B̄(o∞, 2D) for all
n ≥ N̂ . Next, for almost every s ∈ [0, 1] with γn(s) ∈ B̄ρ(o∞, 4D), we have

|γ ′
n(s)| = |fn(γn(s))un(s)| ≤ ‖fn(γn(s))‖|un(s)| ≤ HR, (12)

and so, if γn(r) ∈ B̄ρ(o∞, 4D) for all r ∈ [t̂ , s], then

|γn(s) − γ∞(t̂)| ≤ |γn(s) − γn(t̂)| + |γn(t̂) − γ∞(t̂)| ≤ HR|s − t̂ | + 2D. (13)
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Now, fix n > N̂ and define

ŝ = min

{
t̂ + D

HR
, inf{r ≥ t̂ : γn(r) ∈ ∂B̄ρ(o∞, 4D)}, Tn

}
.

If ŝ = Tn, then γn([0, Tn)) ⊂ B̄ρ(o∞, 4D), which is compact, and thus Tn = 1 and γn is
defined on [0, 1]. Suppose ŝ < Tn. From (13), we obtain |γn(ŝ) − γ∞(t̂)| ≤ 3D and thus
we deduce that ŝ = t̂ + D

HR
. We conclude that γn is defined on [0, ŝ] = [0, t̂ + D

HR
] ∩ [0, 1]

and that γn([t̂ , ŝ]) ⊂ B̄ρ(o∞, 4D) for all n ≥ N̂ .
Since D

HR
is a fixed positive quantity, the above claim readily implies the first part of the

lemma. For the second part of the proof, we assume that γn is defined on [0, 1] for all n.
We claim that, for every t̂ ∈ [0, 1], if γn(t̂) → γ∞(t̂), then γn|[t̂ ,t̂+ D

RH
] uniformly

converge to γ∞|[t̂ ,t̂+ D
RH

].
To prove the latter claim, notice that from the previous claim we have that there is N̂ ≥ N

such that, for all n ≥ N̂ , γn([0, t̂ + D
RH

] ∩ [0, 1]) ⊂ B̄ρ(o∞, 4D). We next apply Proposi-
tion 2.6, whose hypotheses must be met. Define the vector fields Xn : [0, 1] × M → T M ,
Xn(t, p) = fn|p[un(t)]. Since B̄ρ(o∞, 4D) is compact, there is L so that fn is L-Lipschitz
on B̄ρ(o∞, 4D) for all n ∈ N. Thus, if p, q ∈ B̄ρ(o∞, 4D), then

|Xn(t, p) − Xn(t, q)| ≤ ‖fn(p) − fn(q)‖‖un‖L∞ ≤ LR|p − q|.
If γ : [0, 1] → M is a continuous curve, then∫ t

0
Xn(s, γ (s)) ds = ∫ t

0f∞|γ (s)[un(s)] ds + ∫ t

0fn|γ (s)[un(s)] − f∞|γ (s)[un(s)] ds,

where

lim
n→∞

∣∣∣∣
∫ t

0
fn|γ (s)[un(s)] − f∞|γ (s)[un(s)] ds

∣∣∣∣ ≤ lim
n→∞ ‖fn − f∞‖L∞Rt, = 0

and vn(s) := f∞|γ (s)[un(s)] weakly* converge to v∞(s) := f∞|γ (s)[u∞(s)] by
Lemma 2.8. Since v �→ ∫ t

0 v(s) ds is a continuous linear operator from L∞([0, 1];RN) to
R

N , we then have

lim
n→∞

∫ t

0
f∞|γ (s)[un(s)] ds =

∫ t

0
f∞|γ (s)[u∞(s)] ds.

We have thus shown that the non-autonomous vector fields Xn satisfy all conditions in
Proposition 2.6 on B̄ρ(o∞, 4D). Since γn([t̂ , t̂ + D

HR
]) ⊂ B̄ρ(o∞, 4D) for all n ≥ N̂ and

γn(t̂) → γ∞(t̂), Proposition 2.6 ensures that γn|[t̂ ,t̂+ D
RH

] uniformly converge to γ∞|[t̂ ,t̂+ D
RH

].
The claim is proven.

Finally, since the constant D
RH

does not depend on t̂ , we can subdivide [0, 1] into intervals
of length less than D

RH
and apply the above claim iteratively to each interval, concluding the

proof of the proposition.

Proof of Theorem 2.5 Proposition 2.9.(1) implies that DEnd is open, while Proposi-
tion 2.9.(2) implies that End is continuous. The uniform limit (9) is a direct consequence
of the continuity of End simultaneously in the three variables (o,f, u), and a standard
compactness argument.
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2.3 Essentially Non-holonomic Lipschitz Distributions

In this section we discuss the notions of essentially open maps and essentially non-
holonomic distributions of vector fields.

Definition 2.10 (Essentially open map) A continuous map f : M → N between topolog-
ical manifolds of the same dimension k is said to be essentially open at p ∈ M at scale U

if

(1) U is a neighborhood of p such that U is homeomorphic to the Euclidean k-dimensional
ball, and ∂U is homeomorphic to the (k − 1)-dimensional Euclidean sphere S

k−1;
(2) there exists a neighborhood V of f (p) such that V is homeomorphic to the Euclidean

k-dimensional ball;
(3) f (∂U) ⊆ V \ f (p);
(4) The induced group homomorphism f∗ : Hk−1(∂U) ∼= Z → Hk−1(V \ f (p)) ∼= Z is

not constant.

Remark 2.11 We claim that if a map f is essentially open at p, then f (p) is contained in
the interior of f (U). Indeed, up to homeomorphism, f induces by restriction a map f :
B(0, r1) ⊆ R

k → B(0, r2) ⊆ R
k , for some radii r1, r2, such that f (0) = 0, f (∂B(0, r1)) ⊆

B(0, r2) \ {0}, and such that f |∂B(0,r1) : ∂B(0, r1) → B(0, r2) \ {0} induces a non-constant
group homomorphism between the (k − 1)-th homology groups. Hence, arguing as in the
first few lines of the proof of Lemma B.2, the map f̃ : Sk−1 → S

k−1 defined as

f̃ (x) := f (r1x)

|f (r1x)| ,

has nonzero degree. Then we can apply Lemma B.1 with the constant sequence fn := f to
obtain that f (0) is contained in the interior of f (B(0, r1)).

We notice that by virtue of Lemma B.1, the essential openness at a point p at some scale,
implies a surjectivity property at p which is stable with respect to uniform convergence.
This stability is of crucial importance in Definition 1.3. Indeed, if we naı̈vely only require
that φ in Definition 1.3 is open at t̂ , it is not possible to prove the uniform openness in
Theorem 2.13, because the property of being open is not stable under uniform convergence.
For example, consider the functions ft (x) := tx defined on [0, 1] and let t → 0.

We show in the next proposition that the condition of essential non-holonomicity (as in
Definition 1.3) is a weakening of the bracket-generating condition for smooth vector fields.

Proposition 2.12 Every bracket-generating family of smooth vector fields is essentially
non-holonomic.

Proof Let F ⊂ 	(T M) be a bracket-generating family of smooth vector fields. Due to
[3, Lemma 3.33], cf. also [2, Section 5.4], we have that for every T > 0 and every o ∈ M ,
there are X1, . . . , Xm ∈ F such that the map

φ(t1, . . . , tm) := �
tm
Xm

◦ · · · ◦ �
t1
X1

(o)

is a topological embedding into M from an open subset U of Rm contained in the set {t ∈
R

m : |t |1 < T }. Then an application of Lemma B.2 gives the sought conclusion.
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2.4 Uniform Openness of the End-point Map

In this final part of Section 2, we prove that whenever a Lipschitz-vector-field structure f̂ is
essentially non-holonomic, and a point o ∈ M is given, then the End-point map Endfo (·) is
open at 0 uniformly as f varies in a neighborhood of f̂.

Theorem 2.13 Let f̂ ∈ Lip	(E∗ ⊗ T M) be essentially non-holonomic, let o ∈ M , and
R > 0. Then there are neighborhoods F of f̂ and U of o such that

f ∈ F ⇒ U ⊂ Endfo (BL∞(0, R)).

Proof Let m be the dimension of the manifold M . Arguing by contradiction, suppose that
there are fn → f̂ and pn → o such that pn /∈ Endfn

o (BL∞(0, R)).
Let e1, . . . , er be a basis of E as in Definition 1.3. Given σ : {1, . . . , m} → {1, . . . , r}

and f ∈ Lip	(E∗ ⊗ T M), define, for every j = 1, . . . , m,

X
σ,f
j (p) = f(p, eσ(j)),

and, for every (s1, . . . , sm, t1, . . . , tm) ∈ R
2m, let us define

ψσ,f(s1, . . . , sm, t1, . . . , tm) := �
s1

−X
σ,f
1

◦ · · · ◦ �
sm

−X
σ,f
m

◦ �
tm

X
σ,f
m

◦ · · · ◦ �
t1

X
σ,f
1

(o),

whenever it exists. Notice that

ψσ,f(s1, . . . , sm, t1, . . . , tm) = Endfo (u(s1, . . . , sm, t1, . . . , tm))

where, for every t ∈ [0, 1],

u(s1, . . . , sm, t1, . . . , tm)(t)=2m

⎛
⎝ m∑

j=1

tj eσ(j)χ(
j−1
2m

,
j

2m
)
(t)−

m∑
j=1

sj eσ(j)χ(
2m−j

2m
,

2m−j+1
2m

)
(t)

⎞
⎠,

and there is C > 0 such that ‖u(s1, . . . , sm, t1, . . . , tm)‖L∞ ≤ C
∑

j (|tj | + |sj |).
Since f̂ is essentially non-holonomic, there are t̂ ∈ R

m, a neighborhood � of t̂ , and σ

such that 2C|t |1 < R for all t ∈ �, and f̂ = ψσ,f̂(t̂ , ·) restricted to � is essentially open at
t̂ . We recall that by definition |(t1, . . . , tm)|1 :=∑m

i=1 |ti |, for every (t1, . . . , tm) ∈ R
m.

Now, the maps fn = ψσ,fn (t̂ , ·) are continuous on � and converge uniformly to f̂ , by
Theorem 2.5. By reasoning as at the beginning of Remark 2.11, we have that at some scale
around t̂ , f̂ satisfies the hypothesis on the degree required to apply Lemma B.1. Hence,
using Lemma B.1, there is an open neighborhood U of o such that U ⊂ fn(�) for large
n. Since fn(�) ⊂ Endfn

o (BL∞(0, R)), we reach a contradiction with pn → o and pn /∈
Endfn

o (BL∞(0, R)).

3 Sub-Finsler Distances for Lipschitz-vector-field Structures

In this section we shall fix a smooth manifold M and a Banach space E. In M we shall fix
a Lipschitz-vector-field structure f modelled by E, as in Definition 2.3.
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In Section 3.2, given a continuously varying norm N on M × E, we are going to define
the energy and the length functionals associated to controls u ∈ L∞([0, 1];E), we prove
that they are lower semicontinuous, see Proposition 3.4, and we prove that every curve has
a constant speed reparametrization, see Lemma 3.5.

In Section 3.3, we define the distance d(f,N)(p, q) between p, q ∈ M to be the infimum
of the energy (equivalently the length) of a control that gives rise to a curve that connects
the two points, see Definition 3.6. We then prove the local existence of geodesics, see
Proposition 3.9, and in Proposition 3.10 we give a criterion, ultimately based on the growth
of (f, N), to show that (M, d(f,N)) is a complete, boundedly compact, geodesic metric
space. We prove that the topology generated by d(f,N) is larger than the topology of M , see
Lemma 3.8. We shall then show that they are equal if f is essentially non-holonomic, see
Theorem 1.4(ii).

In Section 3.4 we shall address the problem of linking the definition of the distance
given in Section 3.2 with the Lagrangian one given directly on the curves. In particular,
having a couple (f, N) on M , one can define a sub-Finsler metric on T M , see (32). We
show that a curve γ : [0, 1] → M is d(f,N)-Lipschitz if and only if γ ′ has a bounded sub-
Finsler metric as in (32), see Lemma 3.16. As a consequence, on d(f,N)-Lipschitz curves,
the length associated to d(f,N) coincides with the one associated to the sub-Finsler metric,
see Proposition 3.17. We thus conclude that the distance d(f,N)(p, q) is the infimum of the
sub-Finsler lengths of the curves connecting the points p, q, see Corollary 3.19.

In Section 3.5 we finally investigate what happens when we take the limit of CC dis-
tances. We first prove a relaxation result which tells us that when (fn, Nn) → (f∞, N∞)

the distance d(f∞,N∞) on compact sets can be recovered as the relaxation of the distances
d(fn,Nn), see Lemma 3.20. Hence we prove that when (fn,Nn) → (f∞, N∞) and f∞ is
essentially non-holonomic, then {d(fn,Nn)}n∈N are equi-continuous functions on compact
sets, see Lemma 3.21 and Proposition 3.22. The equi-continuity together with the relaxation
property allows us to show that if (fn,Nn) → (f∞, N∞), and f∞ is essentially non-
holonomic, then d(fn,Nn) converges to d(f∞,N∞) locally uniformly, see Theorem 1.4(iii).
Finally, when (M, d(f∞,N∞)) is boundedly compact, the local uniform convergence can be
upgraded to a uniform convergence on compact sets by means of the metric Lemma 3.25, see
Theorem 1.4(iv). The boundedly compact hypothesis is necessary to obtain such a uniform
convergence on compact sets, see the example in Remark 3.24.

The results shown in Sections 3.2, 3.3, and 3.4 are the analogues of classical
results in Control Theory and sub-Riemannian Geometry in the setting of Lipschitz-
vector-fields structures. For example, for the semicontinuity of the length functional
one could see [3, Section 3.3]; for the existence of a constant-speed reparametriza-
tion, see [3, Section 3.1.1]; for the local existence of geodesics, see the beginning
of [3, Section 3.3], and for the study of complete Carnot-Carathéodory distances see
[3, Section 3.3.1]; for the comparison between Lipschitz curves and admissible curves,
and for the existence of a measurable minimal control, which we address in Lemma 3.16,
see [3, Section 3.3.2 and Section 3.5], respectively. Finally, we stress that the implication
(ii)⇒(iv) of Lemma 3.16, which is based on the measurable selection Lemma 3.15, is the
analogue in our setting of Filippov’s Theorem in Control Theory, see [7, Theorem 3.1.1].

3.1 Continuous Norms Along a Segment

In this section we give a preliminary and technical discussion about norms depending on a
parameter that we will later use.
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Let N : [0, 1] × E → [0,∞) be a continuous function so that, for every t ∈ [0, 1], the
restriction Nt := N(t, ·) is a norm on the finite-dimensional vector space E. We define, for
a measurable u : [0, 1] → E,

‖u‖N,1 :=
∫ 1

0
Nt(u(t)) dt,

‖u‖N,∞ := esssup
t∈[0,1]

Nt(u(t)).

Notice that, since N is continuous, ‖u‖N,1 is a Banach norm on L1([0, 1];E) and ‖u‖N,∞
is a Banach norm on L∞([0, 1];E), and both are bi-Lipschitz equivalent to the standard
Banach norms on those spaces.

If ‖ · ‖ is a Banach norm on a vector space, we denote by ‖ · ‖∗ its Banach dual norm
on the dual space. With this convention in mind, we denote by N∗ the continuous function
[0, 1] × E

∗ → [0, ∞) that, for each t ∈ [0, 1], gives the norm N∗
t on E

∗ dual to Nt , i.e.,

N∗
t (w) = sup {〈w|u〉 : u ∈ E, Nt (u) ≤ 1} .

Remark 3.1 Recall the following consequence of Hahn–Banach Theorem, cfr. [8, Corollary
1.4]: if (V , ‖ · ‖) is a Banach space, then, for every u ∈ V ,

‖u‖ = max{〈w|u〉 : w ∈ V ∗, ‖w‖∗ ≤ 1}.

Lemma 3.2 Let N : [0, 1] × E → [0, ∞) be a continuous function so that, for every
t ∈ [0, 1], the restriction Nt := N(t, ·) is a norm. Then

‖ · ‖N∗,∞ = ‖ · ‖∗
N,1 on L∞([0, 1];E∗) and

‖ · ‖N,∞ = ‖ · ‖∗
N∗,1 on L∞([0, 1];E),

(14)

and
‖ · ‖N∗,1 = ‖ · ‖∗

N,∞ on L1([0, 1];E∗) and
‖ · ‖N,1 = ‖ · ‖∗

N∗,∞ on L1([0, 1];E).
(15)

In particular, if u : [0, 1] → E, then

‖u‖N,1 = max
{〈w|u〉 : w ∈ L∞([0, 1];E∗), ‖w‖N∗,∞ ≤ 1

}
, (16)

‖u‖N,∞ = sup
{
〈w|u〉 : w ∈ L1([0, 1];E∗), ‖w‖N∗,1 ≤ 1

}
. (17)

Moreover, if w ∈ L∞([0, 1];E∗) is an argument of the maximum of (16), then, for almost
every t ∈ [0, 1], N∗

t (w(t)) = 1 and 〈w(t)|u(t)〉 = Nt(u(t)).

Notice that (14) is a pair of genuine identities of norms, because L∞([0, 1];E∗) is the
dual space of L1([0, 1];E) and L∞([0, 1];E) is the dual space of L1([0, 1];E∗). The sec-
ond pair of identities (15) is understood via the standard embedding of a Banach space into
its bi-dual, because L1 is not reflexive, i.e., the dual of L∞([0, 1];E∗) (resp. L∞([0, 1];E))
is not L1([0, 1];E) (resp. L1([0, 1];E∗)).

The fact that ‖u‖N,1 is a maximum is an application of Remark 3.1. On the contrary,
‖u‖N,∞ is only a supremum and we can see this phenomenon with E = R and N1 ≡ | · |:
indeed, on the one hand, u(x) := x is an element of L∞([0, 1];R) and esssupx |u(x)| = 1;

on the other hand, there is no function w ∈ L1([0, 1];R) so that
∫ 1

0 |w(x)| dx ≤ 1 and∫ 1
0 xw(x) dx = 1. One can show the latter claim from the fact that it would hold

1 =
∫ 1

0
xw(x) dx ≤

∫ 1

0
|w(x)| dx ≤ 1,
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from which it would follow that
∫ 1

0 xw(x) dx = ∫ 1
0 |w(x)| dx. Writing w as the difference

between its positive and negative part, one gets a cotradiction.

Proof of Lemma 3.2 Notice that in both (14) and (15), the two identities are equivalent
because E has finite dimension.

Let us now prove the second identity in (14). Fix u ∈ L∞([0, 1];E). Up to choosing a
representative, we can assume u is defined on the whole [0, 1]. Notice that, by definition of
dual norm,

‖u‖∗
N∗,1 = sup{〈w|u〉 : w ∈ L1([0, 1];E∗), ‖w‖N∗,1 ≤ 1},

where 〈w|u〉 := ∫ 1
0 〈w(t)|u(t)〉 dt . Moreover, for every w ∈ L1([0, 1];E∗), we have that∫ 1

0
〈w(t)|u(t)〉 dt ≤

∫ 1

0
Nt(u(t))N∗

t (w(t)) dt ≤ esssup
t∈[0,1]

Nt(u(t))

∫ 1

0
N∗

t (w(t)) dt

Hence we get ‖u‖∗
N∗,1 ≤ ‖u‖N,∞.

In order to show that ‖u‖∗
N∗,1 ≥ ‖u‖N,∞, it is sufficient to prove that, for every ε > 0,

there exists wε ∈ L1([0, 1];E∗) such that ‖wε‖N∗,1 ≤ 1 + ε and 〈wε|u〉 ≥ ‖u‖N,∞ − 2ε,
and taking ε → 0. So, for 0 < ε < 1/2, define

Bε := {s ∈ [0, 1] : Ns(u(s)) ≥ ‖u‖N,∞ − ε
}
,

and notice that L 1(Bε) > 0. Let {wj }j∈N be a dense subset of E∗ and define

Aε,j := {t ∈ Bε : N∗
t (wj ) ≤ 1 + ε and 〈wj |u(t)〉 ≥ Nt(u(t)) − ε

}
,

and notice that Bε =⋃j∈N Aε,j . Finally, define wε : [0, 1] → E
∗ by

wε(t) := 1

L 1(Bε)

∞∑
j=1

χ
Aε,j \⋃j−1

i=1 Aε,i
(t) · wj .

From how wε is defined, we obtain that N∗
t (wε(t)) ≤ (1 + ε)/(L 1(Bε)) for every t ∈ Bε

and wε(t) = 0 for every t ∈ [0, 1] \ Bε . Hence ‖wε‖N∗,1 = ∫ 1
0 N∗

t (wε(t)) dt ≤ 1 + ε. We
conclude that ∫ 1

0
〈wε(t)|u(t)〉 dt ≥

∫
Bε

Nt (u(t)) − ε

L 1(Bε)
dt ≥ ‖u‖N,∞ − 2ε.

Next, we prove the second identity in (15): Fix u ∈ L1([0, 1];E) and notice that

‖u‖∗
N∗,∞ = sup

{〈w|u〉 : w ∈ L∞([0, 1];E∗), ‖w‖N∗,∞ ≤ 1
}

.

Since
〈w|u〉 ≤ ‖w‖N∗,∞ · ‖u‖N,1, (18)

then ‖u‖N,1 ≥ ‖u‖∗
N∗,∞. For the opposite inequality, it is sufficient to prove that, for every

ε > 0 there exists wε ∈ L∞([0, 1];E∗) with ‖wε‖N∗,∞ ≤ 1 + ε and 〈wε|u〉 ≥ ‖u‖N,1 − ε,
and then taking ε → 0. Indeed, let {wj }j∈N be a dense subset of E∗ and, for ε > 0 and each
j ∈ N, define the sets

Aε,j := {t ∈ [0, 1] : N∗
t (wj ) ≤ 1 + ε and 〈wj |u(t)〉 ≥ Nt(u(t)) − ε

}
,

and the function wε ∈ L∞([0, 1];E∗),

wε(t) =
∞∑

j=1

χ
Aε,j \⋃j−1

i=1 Aε,i
(t) · wj .
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Then we have [0, 1] =⋃j∈N Aε,j , ‖wε‖N∗,∞ ≤ 1 + ε and

∫ 1

0
〈wε(t)|u(t)〉 dt ≥

∫ 1

0
Nt(u(t)) dt − ε.

Both suprema in (16) and (17) are a direct consequence of the previous identities. The fact
that the supremum in (16) is attained, is an application of Remark 3.1, since we know that
the dual space of (L1([0, 1];E), ‖ · ‖N,1) is (L∞([0, 1];E∗), ‖ · ‖N∗,1), thanks to the first
identity in (14).

To prove the last statement of the lemma, let w be an argument of the maximum in (16).
First, we claim that N∗

t (w(t)) = 1 for almost every t ∈ [0, 1]. If this were not the case, then
there would be a set A ⊂ [0, 1] with positive measure such that N∗

t (w(t)) ≤ λ < 1, for some
λ > 0 and all t ∈ A. Define w̃(t) := χ[0,1]\A(t)w(t) + χA(t)w(t)/λ. Then ‖w̃‖N∗,∞ ≤ 1
and 〈w̃(t)|u(t)〉 > 〈w(t)|u(t)〉 for t ∈ A, in contradiction to the maximality of w.

Finally on the one hand from (18) we consequently have 〈w(t)|u(t)〉 ≤ Nt(u(t)) for
almost every t ∈ [0, 1]. On the other hand, by maximality of w we have∫ 1

0
〈w(t)|u(t)〉 dt =

∫ 1

0
Nt(u(t)) dt .

Consequently 〈w(t)|u(t)〉 = Nt(u(t)) for almost every t ∈ [0, 1].

3.2 Energy and Length

As in Section 2, we are in the setting where M is a smooth manifold and E is a finite-
dimensional Banach space. Let N be the space of all continuously varying norms on M×E;
that is N ∈ N if N is a continuous function N : M × E → [0, +∞) that is a norm on
fibers. We endow N with the topology of uniform convergence on compact sets. We now
define the energy and the lengths associated to controls, i.e., elements of L∞([0, 1];E), and
we study some of their basic properties.

Definition 3.3 (Energy and length) Let (o,f, u) ∈ DEnd and γ (t) := Endfo (tu) for every
t ∈ [0, 1]. We define the energy

J(o,f, u, N) := esssup
t∈[0,1]

N(γ (t), u(t)),

and the length

�(o,f, u,N) :=
∫ 1

0
N(γ (t), u(t)) dt .

For the next result, we recall that DEnd is the domain of the End-point map.

Proposition 3.4 (Semi-continuity of energy and length) Both functions J and � from
DEnd × N to R are lower-semicontinuous. In other words, if (on,fn, un,Nn) →
(o∞,f∞, u∞, N∞) in DEnd × N , then

J(o∞,f∞, u∞, N∞) ≤ lim inf
n→∞ J(on,fn, un,Nn),

�(o∞,f∞, u∞, N∞) ≤ lim inf
n→∞ �(on,fn, un, Nn).

(19)
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Proof Let (on,fn, un,Nn) ∈ DEnd × N be a sequence converging to

(o∞,f∞, u∞, N∞) ∈ DEnd × N .

Let us show that u �→ esssupt∈[0,1]N∞(γ∞(t), u(t)) is lower-semicontinuous with respect
to the weak* convergence. Notice that the previous one is a Banach norm on L∞([0, 1];E).
In particular, it is the dual norm of the norm defined on L1([0, 1];E∗) via

v →
∫ 1

0
N∗∞(γ∞(t), v(t)) dt,

see Lemma 3.2. Since the weak* convergence on L∞([0, 1];E) does not depend on the
choice of biLipschitz equivalent Banach norms on the predual L1([0, 1];E∗), and since
every dual norm is weakly* lower-semicontinuous, we get the sought claim.

Let us now prove the first inequality in (19). Notice that, for every n ∈ N and t ∈ [0, 1]
we have

Nn(γn(t), un(t)) ≥ N∞(γ∞(t), un(t)) − |Nn(γn(t), un(t)) − N∞(γ∞(t), un(t))| , (20)

where, for j ∈ N ∪ {∞}, and t ∈ [0, 1], γj (t) := End
fj
oj

[tuj ]. As a consequence
of Proposition 2.9 we have that γn(t) → γ∞(t) uniformly on [0, 1]. Hence, the func-
tions (t, v) �→ Nn(γn(t), v) converge uniformly on compact subsets of [0, 1] × E to
(t, v) �→ N∞(γ∞(t), v), and since the un are uniformly bounded, the second term in the
lower bound (20) goes to 0 as n → ∞, uniformly in t .

The first inequality in (19) thus follows from the following computation

lim inf
n→∞ J(on,fn, un, Nn)

≥ lim inf
n→∞ esssup

t∈[0,1]
(N∞(γ∞(t), un(t)) +

− |Nn(γn(t), un(t)) − N∞(γ∞(t), un(t))|)
= lim inf

n→∞ esssup
t∈[0,1]

N∞(γ∞(t), un(t))

≥ J(o∞,f∞, u∞, N∞).

Similarly, to prove that � is lower-semicontinuous, we need, in addition to (20), to prove
that u �→ ∫ 1

0 N∞(γ∞(s), u(s)) ds is lower-semicontinuous on L∞([0, 1];E) (endowed with
the weak* topology).

Let S∗(t) = {v ∈ E
∗ : N∗∞(γ∞(t), v) = 1}, so that, for almost every t ∈ [0, 1], we have

N∞(γ∞(t), u∞(t)) = sup
v∈S∗(t)

〈v|u∞(t)〉.

Moreover, if we set S∗ = {v ∈ L∞([0, 1];E∗) : v(t) ∈ S
∗(t) for almost every t ∈ [0, 1]},

then, by Lemma 3.2, for every u ∈ L1([0, 1];E) there is v ∈ S
∗ such that 〈v(t)|u(t)〉 =

N∞(γ∞(t), u(t)) for a.e. t ∈ [0, 1]. Therefore, for every u ∈ L1([0, 1];E),

∫ 1

0
N∞(γ∞(t), u(t)) dt = max

v∈S∗

∫ 1

0
〈v(t)|u(t)〉 dt .
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We can finally conclude, by using the fact that since un, u∞ ∈ L∞([0, 1];E) we have a
fortiori that un, u∞ ∈ L1([0, 1];E), with the following chain of inequalities∫ 1

0
N∞(γ∞(t), u∞(t)) dt = max

v∈S∗

∫ 1

0
〈v(t)|u∞(t)〉 dt

= max
v∈S∗ lim inf

n→∞

∫ 1

0
〈v(t)|un(t)〉 dt

≤ max
v∈S∗ lim inf

n→∞ max
w∈S∗

∫ 1

0
〈w(t)|un(t)〉 dt

= lim inf
n→∞ max

w∈S∗

∫ 1

0
〈w(t)|un(t)〉 dt

= lim inf
n→∞

∫ 1

0
N∞(γ∞(t), un(t)) dt .

With an abuse of language, we say that a curve γ has constant N -speed or simply
constant speed if γ = γ(o,f,u) with t �→ N(γ (t), u(t)) almost everywhere constant for
t ∈ [0, 1]. That a curve γ has constant speed, really depends on all the data (o,f, u, N).

Lemma 3.5 (Constant speed reparametrization) If (o,f, u,N) ∈ DEnd × N , then there
exists v ∈ L∞([0, 1],E) such that (o,f, v) ∈ DEnd, γ(o,f,u) is a reparametrization of
γ(o,f,v) =: γ , and

N(γ (t), v(t)) = J(o,f, v, N) = �(o,f, v, N) = �(o,f, u, N), (21)

for almost every t ∈ [0, 1]. In particular, γ has constant speed and J(o,f, v, N) ≤
J(o,f, u, N).

Proof Let us assume that � := �(o,f, u, N) �= 0, otherwise the result is trivial. Define

ψ(t) := 1

�

∫ t

0
N(η(s), u(s)) ds,

where η := γ(o,f,u). Notice that ψ : [0, 1] → [0, 1] is a Lipschitz function with ψ(0) =
0, ψ(1) = 1 and ψ ′ ≥ 0. Since ψ is Lipschitz, the image set E := ψ({t : ψ ′(t) =
0 or ψ ′(t) does not exist}) has measure zero by the area formula. Notice that for every s ∈
[0, 1] \ E there exists a unique t ∈ [0, 1] such that ψ(t) = s, and thus the formula

v(s) = u(t)

ψ ′(t)
, (22)

defines a measurable function v : [0, 1] → E. Moreover

N(η(t), v(s)) = N(η(t), u(t))

ψ ′(t)
= �, (23)

and then, since N(η(·), ·) is a continuous family of norms, we get that v ∈ L∞([0, 1];E).
Furthermore, notice that from (22) it follows γ(o,f,u)(t) = γ(o,f,v)(ψ(t)). Therefore, for
every s ∈ [0, 1] \ E, we have N(γ (s), v(s)) = �. Finally, since N(γ (·), v(·)) is constant,
then it is equal to both the energy and the length of the curve γ .
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3.3 Carnot-Carathéodory Distances

In this section we define the Carnot-Carathéodory distance, CC distance for brevity, asso-
ciated to (f, N) and we investigate some of its properties. We use the notation Lip	 from
Section 2.1, and N from Section 3.2.

Definition 3.6 (CC distance) Given f ∈ Lip	(E∗ ⊗ T M) and N ∈ N , we define the
Carnot-Carathéodory distance, or CC distance,

d(f,N)(p, q) := inf{J(p,f, u,N) : u ∈ L∞([0, 1];E), Endfp(u) = q}. (24)

It is immediate from Lemma 3.5 that

d(f,N)(p, q) = inf{�(p,f, u, N) : u ∈ L∞([0, 1];E), Endfp(u) = q}. (25)

We will denote the open d(f,N)-ball of radius r and center p by B(f,N)(p, r). Moreover,
if M ′ ⊂ M is open, we denote by d(f,N)|M ′ the distance defined by restricting (f, N) to
M ′. In particular, the infimum defining d(f,N)|M ′ is taken over the family of controls whose
integral curves lie in M ′. Thus, d(f,N)|M ′(p, q) ≥ d(f,N)(p, q) for every p, q ∈ M ′.

Lemma 3.7 Let |||·||| be a norm on E, and define on L∞([0, 1];E) the Banach norm

|||u|||∞ = esssup
t∈[0,1]

|||u(t)|||.

Let ρ be a complete Riemannian metric on M , which induces a norm | · |ρ on T M .
Let K ⊂ Lip	(E∗ ⊗ T M), K ⊂ M , and K ⊂ N be compact sets, and R > 0. Then

there exists L ≥ 1 such that

1/L|||v||| ≤ N(p, v) ≤ L|||v|||,
|f(p)[v]|ρ ≤ L|||v|||, ∀p ∈ B̄ρ(K,R), f ∈ K, N ∈ K, v ∈ E. (26)

Moreover, the following hold for every f ∈ K, p ∈ K , u ∈ L∞([0, 1];E) and N ∈ K:

(a) if |||u|||∞ < R
L
, then (p,f, u) ∈ DEnd and γ(p,f,u)(t) ∈ Bρ(K,R) for every t ∈ [0, 1];

(b) if (p,f, u) ∈ DEnd and �(p,f, u, N) < R/L2, then γ(p,f,u)(t) ∈ Bρ(K,R) for every
t ∈ [0, 1];

(c) if (p,f, u) ∈ DEnd and γ(p,f,u)(t) ∈ B̄ρ(K,R) for every t ∈ [0, 1], then
ρ(p, Endfp(u)) ≤ L|||u|||∞ ≤ L2J(p,f, u,N) ≤ L3|||u|||∞; (27)

(d) if q ∈ M is such that d(f,N)(p, q) < R

L2 , then

1

L2
ρ(p, q) ≤ d(f,N)(p, q) = d(f,N)|Bρ(K,R)(p, q). (28)

Proof The existence of L that satisfies (26) is a consequence of the compactness of
B̄ρ(K,R) × K × K, and the continuity of f and N .

Let p ∈ K , f ∈ K, u ∈ L∞([0, 1];E) and γ : [0, t0] → M be a solution of{
γ ′(t) = f(γ (t))[u(t)],
γ (0) = p,

(29)
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for some t0 > 0. Then, for every a, b ∈ [0, t0] with γ ([a, b]) ⊂ Bρ(K,R), we have∫ b

a

|γ ′(s)|ρ ds ≤ L

∫ b

a

|||u(s)||| ds ≤ L|||u|||∞|b − a|. (30)

It follows that, if |||u|||∞ < R
L

, then γ can be extended, as solution to (29), to a curve
γ : [0, 1] → Bρ(K,R), i.e., part (a) holds.

Similarly, we infer part (b) from the estimate∫ b

a

|γ ′(s)|ρ ds ≤ L

∫ b

a

|||u(s)||| ds ≤ L2
∫ b

a

N(γ (s), u(s)) ds ≤ L2�(p,f, u,N), (31)

that holds whenever γ ([a, b]) ⊆ Bρ(K,R).
The first inequality in (27) follows from (30). The other two estimates in (27) are

obtained from the first line of (26), and also part (c) is proven.
For part (d), we see from (25) and item (b) that, if d(f,N)(p, q) < R/L2, then the infi-

mum in (25) can be taken on curves laying in B̄ρ(K,R). This shows the equality in (28);
the first inequality in (28) is then a direct consequence of (24) and item (c).

Lemma 3.8 Let f ∈ Lip	(E∗ ⊗ T M) an N ∈ N . Denote by τM the manifold topology of
M and by τ(f,N) the topology of (M, d(f,N)). Then τM ⊂ τ(f,N).

Proof Let U ∈ τM and p̂ ∈ U . We need to show that there is r > 0 such that B(f,N)(p̂, r) ⊂
U . Fix a complete Riemannian metric ρ on M and let L ≥ 1 be a constant that satisfies (26)
for R = 1, K = {p̂}. By part (d) of Lemma 3.7, if d(f,N)(p̂, q) < 1/L2, then ρ(p̂, q) ≤
L2d(f,N)(p̂, q). Let ε > 0 be such that Bρ(p̂, ε) ⊂ U and fix 0 < r < min{1/L2, ε/L2}.
If q ∈ B(f,N)(p̂, r), then d(f,N)(p̂, q) < 1/L2 and thus ρ(p̂, q) ≤ L2d(f,N)(p̂, q) < ε.
Therefore, B(f,N)(p̂, r) ⊂ Bρ(p̂, ε) ⊂ U .

In the setting of the above Lemma 3.8, the two topologies may not be equal. As an
example, consider a structure f defined by a constant line field on R

2: the integral lines of
such a structure are open sets in τ(f,N) but not in the standard topology of R2. We will later
show that the two topologies do agree under an essentially non-holomic condition on f, see
Theorem 1.4.

Proposition 3.9 (Local existence of geodesics) Let K ⊂ Lip	(E∗ ⊗ T M), K ⊂ M and
K ⊂ N be compact sets. Then there is a constantC > 0 so that, for every f ∈ K, everyN ∈
K, every p ∈ K , and every q ∈ M with d(f,N)(p, q) ≤ C, there exists u ∈ L∞([0, 1],E)

of constant N -speed such that Endfp(u) = q and

J(p,f, u,N) = �(p,f, u, N) = d(f,N)(p, q).

In particular, the curve γ(p,f,u) : [0, 1] → (M, d(f,N)) is a homothetic embedding, i.e., a
d(f,N)-length minimizing curve.

In the setting of Lemma 3.7, we can take C = R

L2 , for R,L > 0 satisfying (26).

Proof In the setting of Lemma 3.7, fix R > 0 and the corresponding L > 0 and set C :=
R

L2 . Let f ∈ K, N ∈ K, p ∈ K and q ∈ M with df(p, q) ≤ C. By Lemma 3.7.(d), there

exists a sequence un ∈ L∞([0, 1],E) such that Endfp(un) = q, limn→∞ J(p,f, un,N) =
d(f,N)(p, q), and γ(p,f,un)(t) ∈ Bρ(K,R) for all t ∈ [0, 1] and all n.
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From Lemma 3.7.(c), |||un|||∞ is uniformly bounded in n. Therefore, up to passing to a
subsequence, un weakly* converge to some u∞ ∈ L∞([0, 1],E), with

|||u∞|||∞ ≤ lim inf
n→∞ |||un|||∞ ≤ lim inf

n→∞ LJ(p,f, un, N) = Ld(f,N)(p, q) <
R

L
.

By Lemma 3.7.(a), we thus have (p,f, u∞) ∈ DEnd. Finally, From Theorem 2.5 we get
Endfp(u∞) = q, while from Proposition 3.4 we get

J(p,f, u∞, N) ≤ lim
n→∞J(p,f, un,N) = d(f,N)(p, q),

and thus d(f,N)(p, q) = J(p,f, u∞, N).
We claim that N(γ (t), u∞(t)) is constant for almost every t ∈ [0, 1]. Indeed, if not,

we have that �(p,f, u∞, N) < J(p,f, u∞, N). Moreover, since we have (24), (25), and
the trivial inequality � ≤ J, we get that on controls that realize the distance one has
� = J, which gives the sought contradiction. Therefore, from the minimality, we get
N(γ (t), u∞(t)) = d(f,N)(p, q) for almost every t ∈ [0, 1]. Notice that, for curves of
constant speed, energy and length are equal.

Finally, the claim that γ = γ(p,f,u) : [0, 1] → (M, d(f,N)) is a homothetic embedding,
i.e., that for every s, t ∈ [0, 1]

d(f,N) (γ (s), γ (t)) = d(f,N)(γ (0), γ (1)) · |t − s|,
is a direct consequence of the minimality of u and the fact that t �→ N(γ (t), u(t)) =
d(f,N)(γ (0), γ (1)) for a.e. t ∈ [0, 1].

Proposition 3.10 Let f ∈ Lip	(E∗⊗T M) andN ∈ N . Suppose that there exist a complete
Riemannian metric ρ, a norm |||·||| on E and L > 0 so that (26) holds for every R > 0
and every compact set K ⊆ M . Then (M, d(f,N)) is a complete and geodesic metric space,
whose closed bounded sets are compact. However, d(f,N) may take value ∞ and be not
continuous with respect to the manifold topology.

Proof By Lemma 3.7.(d), the bound (28) holds for every p, q ∈ M . Therefore, a d(f,N)-
closed set is also ρ-closed, and a d(f,N)-bounded set is also ρ-bounded. In particular, a
d(f,N)-closed and d(f,N)-bounded set is compact. Hence closed bounded sets in (M, d(f,N))

are compact, and thus d(f,N)-Cauchy sequences converge. Proposition 3.9 readily implies
that (M, d(f,N)) is a geodesic space.

Remark 3.11 We know that for every R > 0 there are L
(1)
R > 0 and L

(2)
R > 0 so that the two

conditions in (26) hold, with two independent constants. One can modify Proposition 3.10
by requiring that the growth of L

(1)
R and L

(2)
R as R → ∞ are slow enough, although not

bounded. However, we don’t need such a finer analysis.

3.4 CC Distances and Sub-Finsler Lengths of Curves

We use the notation Lip	 from Section 2.1, and N from Section 3.2. In this section we
prove that the distance d(f,N) is obtained as the infimum of the length of curves, where the
length element is the natural sub-Finsler structure on T M associated to (f, N), see (32).

For f ∈ Lip	(E∗ ⊗ T M) and N ∈ N , define

|v|(f,N) := inf{N(p, u) : u ∈ E, f(p, u) = v}, (32)

for p ∈ M and v ∈ TpM . Notice that |v|(f,N) < ∞ if and only if v ∈ f(p,E).
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Lemma 3.12 Let f ∈ Lip	(E∗ ⊗ T M) and N ∈ N . If γ : [0, 1] → (M, d(f,N)) is
Lipschitz, then γ : [0, 1] → M is absolutely continuous and there exists u ∈ L∞([0, 1];E)

such that γ ′(t) = f(γ (t), u(t)) for a.e. t ∈ [0, 1].
Proof By Lemma 3.8, γ : [0, 1] → M is continuous, hence γ ([0, 1]) is compact. We fix
a complete Riemannian metric ρ on M and apply (28) with K = γ ([0, 1]), and R = 1,
obtaining that the curve γ : [0, 1] → (M, ρ) is locally Lipschitz and thus an absolutely
continuous curve in the manifold M .

Without losing in generality, we can assume that γ is 1-Lipschitz, that is, for every t, s ∈
[0, 1],

d(f,N)(γ (s), γ (t)) ≤ |t − s|. (33)

By Proposition 3.9 (with K = {f}, K = γ ([0, 1]) and K = {N}), for every n ∈ N large
enough and 0 ≤ j ≤ 2n − 1 integer, there is a control u

(n)
j ∈ L∞([0, 1];E) such that

the corresponding integral curve γ
(n)
j : [0, 1] → M starting from γ

(n)
j (0) = γ (

j
2n ) is a

geodesic parametrized with constant speed, with end point γ
(n)
j (1) = γ (

j+1
2n ), and, by also

exploiting (33),

esssup
t∈[0,1]

N(γ
(n)
j (t), u

(n)
j (t)) = d(f,N)

(
γ

(
j

2n

)
, γ

(
j + 1

2n

))
≤ 1/2n.

Thus, from Lemma 3.7.(b) and (c), we obtain that there exists L such that, for n large

enough,
∣∣∣∣∣∣∣∣∣u(n)

j

∣∣∣∣∣∣∣∣∣∞ ≤ L/2n (here |||·|||∞ is a reference norm as in Lemma 3.7). Define

u(n)(t) := 2n

2n−1∑
j=0

u
(n)
j (2n(t − j/2n)),

where we mean that u
(n)
j ≡ 0 outside [0, 1] for every n ∈ N and 0 ≤ j ≤ 2n − 1. Hence

u(n) ∈ L∞([0, 1];E), (γ (0),f, u(n)) ∈ DEnd, and
∣∣∣∣∣∣u(n)

∣∣∣∣∣∣∞ ≤ L. Since the controls u(n)

are uniformly bounded in n, there is a subsequence {u(nk)}k that weakly* converges to some
u(∞).

We claim that u(∞) is a control for γ . Let γn be the integral curve of u(n) with starting
point γn(0) = γ (0). Notice that γn is the reparametrization on [0, 1] of the concatenation
of the γ

(n)
j for j from 0 to 2n − 1. In particular, γn(

j
2n ) = γ (

j
2n ) for all n and j .

For every n̂ large enough and every ĵ < 2n̂, there exist ε
n̂,ĵ

> 0 for which the control

u(∞) can be integrated on the interval
[

ĵ

2n̂
,

ĵ

2n̂
+ ε

n̂,ĵ

]
. Namely, there exists a curve

η
n̂,ĵ

:
[

ĵ

2n̂
,

ĵ

2n̂
+ ε

n̂,ĵ

]
→ M

that has control u(∞) and starting point η
n̂,ĵ

(
ĵ

2n̂
) = γ (

ĵ

2n̂
). By Proposition 2.9 (and by taking

an affine reparametrization), the restrictions

γnk
|[ ĵ

2n̂
,

ĵ

2n̂
+ε

n̂,ĵ

]
uniformly converge to η

n̂,ĵ
on compact subsets. By continuity of η

n̂,ĵ
, and by the previous

convergence, it follows that η
n̂,ĵ

(t) = γ (t) for all t in the respective domains, and thus γ is

an integral curve of u(∞).
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In the rest of this section we will not need the following Lemma 3.13, since it will be
enough to use Lemma 3.12. We decided to keep this result here for an independent interest
because the proof is different and because it says something more precise, that is, that γ is
tangent to the image of f exactly at all points of differentiability of γ .

Lemma 3.13 Let f ∈ Lip	(E∗ ⊗ T M) and N ∈ N . If γ : [0, 1] → (M, d(f,N)) is
Lipschitz, then γ is absolutely continuous and γ ′(t) ∈ f(γ (t),E) for every t ∈ [0, 1] where
γ is differentiable.

Proof Let L be the Lipschitz constant of γ . By Lemma 3.8, γ : [0, 1] → M is continuous,
hence γ ([0, 1]) is compact. Hence, by (28) applied with K = γ ([0, 1]), and R = 1, for a
complete Riemannian metric ρ, the curve γ : [0, 1] → (M, ρ) is locally Lipschitz and thus
an absolutely continuous curve in the manifold M . Let t0 be a point of differentiability for
γ , define Z := γ ′(t0) and, arguing by contradiction, suppose that Z /∈ f(γ (t0),E).

We choose coordinates (x1, . . . , xn) so that γ (t0) = 0, Z = ∂n, and

f(γ (t0),E) ⊂ span{∂1, . . . , ∂n−1}.
For v ∈ R

n, we write vn for the last coordinate of v.
Using the fact that f ∈ Lip	(E∗ ⊗ T M), that N is continuous, and that f(0, v)n = 0 for

every v ∈ E, we deduce that there are r > 0 and C > 0 such that, for every p ∈ R
n with

|p| ≤ r and every v ∈ E,
|f(p, v)n| ≤ C|p|N(p, v).

By definition of d(f,N), for every t there is ut ∈ L∞([0, 1];E) such that Endf0 (ut ) = γ (t)

and J(0,f, ut , N) ≤ 2d(f,N)(0, γ (t)). Let σ t : [0, 1] → M be the curves with control ut

and starting point 0.
We claim that σ t uniformly converge to the constant curve σ t0 ≡ 0 as t → t0. Indeed,

since γ is Lipschitz, then, as t → t0, d(f,N)(0, γ (t)) → 0 and thus J(0,f, ut , N) → 0.
By Lemma 3.7.(d) (with K = {0} in there) for |t − t0| small enough, we have σ t ([0, 1]) ⊂
Bρ(0, r). Therefore, ut → 0 in L∞([0, 1];E) as t → t0. By Proposition 2.9, the curves σ t

uniformly converge to the constant curve σ t0 ≡ 0 as t → t0.
Since γ ′(t0) = ∂n then γn(t) ≥ |t−t0|

2 for |t − t0| small enough. So, we can make the
following estimates for |t − t0| small enough

|t − t0|
2

≤ γn(t) = σ t
n(1)

≤
∫ 1

0
|σ̇ t

n(s)| ds =
∫ 1

0
|f(σ t (s), ut (s))n| ds

≤ C

∫ 1

0
|σ t (s)|N(σ t (s), ut (s)) ds

≤ CJ(0,f, ut , N)

∫ 1

0
|σ t (s)| ds

≤ 2Cd(f,N)(0, γ (t))

∫ 1

0
|σ t (s)| ds

≤ 2CL|t − t0|
∫ 1

0
|σ t (s)| ds

Hence,
∫ 1

0 |σ t (s)| ds ≥ 1
4CL

> 0 for t close to t0, which is in contradiction with the uniform
convergence of σ t to 0.
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Lemma 3.14 (Borel right inverse) Let (X, d) be a locally compact, complete, separable
metric space, Y a topological space and f : X → Y a surjective continuous function. Then
there is a Borel function g : Y → X such that f (g(y)) = y for all y ∈ Y .

Proof Let ζ : N → X be a function such that ζ(N) is dense in X and define Zn =
ζ({0, 1, . . . , n}). For every n ∈ N, we define a function gn : Y → Zn ⊂ X iteratively
as follows: g0(y) = ζ(0) for every y ∈ Y ; if gn is given, define gn+1(y) := gn(y),
unless there exists x ∈ Zn+1 ∩ B(gn(y), 2d(gn(y), f −1(y))) such that d(x, f −1(y)) <
1
4d(gn(y), f −1(y)), in which case we set gn+1(y) := x. Notice that, since Zn is finite, gn

is well defined and Borel.
By construction, we have that for every y ∈ Y the following holds

gk(y) ∈ B(gn(y), 4d(gn(y), f −1(y))) ∀k > n, (34)

and, since
⋃

n∈N Zn is dense in X, we have limn→∞ d(gn(y), f −1(y)) = 0. There-
fore, taking into account (34), every y ∈ Y gives a Cauchy sequence {gn(y)}n with
limn→∞ d(gn(y), f −1(y)) = 0. Since X is complete, we can define

g(y) := lim
n→∞ gn(y).

As g is the pointwise limit of a sequence of Borel functions, g is also Borel. Moreover,
d(g(y), f −1(y)) = 0, i.e., there is a sequence xj ∈ f −1(y) converging to g(y). Hence, by
the continuity of f , we have f (g(y)) = limj→∞ f (xi) = y.

Lemma 3.15 Let E1 and E2 be finite-dimensional Banach spaces, N : [0, 1] × E1 →
[0, +∞) a continuous function that is a norm on E1 for each t ∈ [0, 1] and π : [0, 1] ×
E1 → E2 a continuous function that is a linear map E1 → E2 for each t ∈ [0, 1]. If
v : [0, 1] → E2 is a measurable (resp., Borel) function such that v(t) ∈ π(t,E1) for almost
every t ∈ [0, 1], then there exists a measurable (resp., Borel) function u : [0, 1] → E1
such that, for almost every t ∈ [0, 1], π(t, u(t)) = v(t) and N(t, u(t)) = inf{N(t,w) :
π(t, w) = v(t)}.

Proof Let
Z := {(t, π(t, w)) : t ∈ [0, 1], w ∈ E1} ⊂ [0, 1] × E2,

and S : Z → [0,∞) defined as S(t, v) := min{N(t,w) : π(t, w) = v}. Notice that S

is semi-continuous, in particular Borel. Indeed, if (tk, vk) ∈ Z converge to (t∞, v∞), then
there are wk ∈ E1 with π(tk, wk) = vk and N(tk, wk) = S(tk, vk). If S(tk, vk) is uni-
formly bounded in k, then, up to passing to a subsequence, wk → w∞ with π(t∞, w∞) =
limk→∞ π(tk, wk) = v∞ and S(t∞, v∞) ≤ N(t∞, w∞) = limk→∞ N(tk, wk) =
limk→∞ S(tk, vk). So,

S(t∞, v∞) ≤ lim inf
(t,v)→(t∞,v∞)

S(t, v).

Define f : [0, 1] × E1 → [0, 1] × E2 × [0, +∞) as f (t, w) = (t, π(t, w),N(t, w)). We
apply Lemma 3.14 with X = [0, 1] × E1 and Y = f (X), obtaining a Borel function g :
Y → X with f (g(y)) = y for all y ∈ Y . Notice that g(t, v, λ) = (t, w) with π(t, w) = v

and N(t, w) = λ.
Now, let v : [0, 1] → E2 be a Borel function with v(t) ∈ π(t,E1) for almost every

t ∈ [0, 1]. Define v̄(t) := (t, v(t), S(t, v(t))), which is a Borel function [0, 1] → Y . Then
ū(t) := g(v̄(t)) is also a Borel function of the form ū(t) = (t, u(t)), with u : [0, 1] → E1
Borel such that π(t, u(t)) = v(t) and N(t, u(t)) = S(t, v(t)).

If v is only measurable, then there is a Borel function v′ that is equal to v almost
everywhere, and so we can apply the proposition from the Borel setting.
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Lemma 3.16 Let f ∈ Lip	(E∗ ⊗ T M), N ∈ N and γ : [0, 1] → M . The following
statements are equivalent

(i) γ : [0, 1] → (M, d(f,N)) is Lipschitz;
(ii) γ is absolutely continuous and esssupt∈[0,1]|γ ′(t)|(f,N) < ∞;

(iii) there is u ∈ L∞([0, 1];E) such that γ = γ(γ (0),f,u), and |γ ′(t)|(f,N) = N(γ (t), u(t))

for almost every t ∈ [0, 1];
(iv) there is u ∈ L∞([0, 1];E) such that γ = γ(γ (0),f,u).

Proof The implication (i) ⇒ (iv) is proven in Lemma 3.12. The implication (iv) ⇒ (i) is
a direct consequence of the definition of d(f,N).

The implication (iv) ⇒ (ii) comes from the definition of | · |(f,N). The implication
(ii) ⇒ (iii) is a consequence of Lemma 3.15. The implication (iii) ⇒ (iv) is trivial.

Notice that the statement (iv) in Lemma 3.16 does not depend on N : that a curve is
Lipschitz does not depend on the particular norm we choose.

This fact is in accordance with all norms on E being bi-Lipschitz equivalent, which gives
that d(f,N1) and d(f,N1) are bi-Lipschitz equivalent on compact sets, for every two choices
of N1, N2 ∈ N .

We thus say that a curve γ : [a, b] → M is f-Lipschitz if, up to an affine
reparametrization, statement (iv) in Lemma 3.16 holds.

We can define the length of f-Lipschitz curves in three ways, which we will show being
equivalent.

Proposition 3.17 Let f ∈ Lip	(E∗ ⊗ T M) and N ∈ N . For every f-Lipschitz curve
γ : [a, b] → M the following three quantities are equal:

L1(γ ) = sup

⎧⎨
⎩

k∑
j=1

d(f,N)(γ (tj ), γ (tj+1)) : a = t1 ≤ t2 ≤ · · · ≤ tk ≤ tk+1 = b

⎫⎬
⎭ ,

L2(γ ) =
∫ b

a

|γ ′(t)|(f,N) dt,

L3(γ ) = inf
{
�(f, γ (0), u,N) : u∈L∞([0, 1];E) s.t. [t �→γ (a + t (b−a))]=γ(γ (0),f,u)

}
.

Moreover, the infimum in the definition of L3(γ ) is a minimum.

Proof Notice that all three quantities Lj (γ ) are invariant under affine reparametrizations of
γ , so we may assume a = 0, and b = 1.

The quantities L2(γ ) and L3(γ ) are equal by Lemma 3.16, which also shows that the
infimum in the definition of L3(γ ) is a minimum.

Let us now show that L1(γ ) = L2(γ ). Let us first show that L1(γ ) ≤ L2(γ ).
Since γ : [0, 1] → (M, d(f,N)) is Lipschitz, we have that its metric derivate

|γ ′(t)| := lim
ε→0

d(f,N)(γ (t + ε), γ (t))

|ε| ,

exists for almost every t ∈ (0, 1), and L1(γ ) = ∫ 1
0 |γ ′(t)| dt , see [5, Theorem 4.1.1]. By

Lemma 3.16(iii) we have that there is u ∈ L∞([0, 1];E) such that γ = γ(γ (0),f,u), and
|γ ′(t)|(f,N) = N(γ (t), u(t)) for almost every t ∈ [0, 1]. Let us now fix t0 ∈ (0, 1) a point
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at which the metric derivative |γ ′(t0)| exists and t �→ |γ ′(t)|(f,N) has a Lebesgue point at
t0. Hence, by definition of d(f,N), we have that for every ε > 0 small enough

d(f,N)(γ (t0 + ε), γ (t0))

ε
≤ 1

ε

∫ t0+ε

t0

N(γ (s), u(s)) ds = 1

ε

∫ t0+ε

t0

|γ ′(s)|(f,N) ds.

Hence, taking ε → 0 in the previous inequality, we get that

|γ ′(t0)| ≤ |γ ′(t0)|(f,N).

Thus we conclude that |γ ′(t)| ≤ |γ ′(t)|(f,N) for almost every t ∈ [0, 1]. Integrating the
previous inequality between 0 and 1 we thus get L1(γ ) ≤ L2(γ ), which is the sought claim.

Let us now show L1(γ ) ≥ L2(γ ). Let us argue similarly as in the last part of the proof
of Lemma 3.12. Let us assume without loss of generality that γ : [0, 1] → (M, d(f,N)) is
1-Lipschitz. By Proposition 3.9, for every n ∈ N large enough and 0 ≤ j ≤ 2n − 1 integer,
there is a control u

(n)
j ∈ L∞([0, 1];E) such that the corresponding integral curve γ

(n)
j :

[0, 1] → M starting from γ
(n)
j (0) = γ (

j
2n ) is a geodesic parametrized with constant speed

(see Lemma 3.5), with end point γ
(n)
j (1) = γ (

j+1
2n ), and, by the fact that γ is 1-Lipschitz,

the following holds for almost every t ∈ [0, 1],

N(γ
(n)
j (t), u

(n)
j (t)) = d(f,N)

(
γ

(
j

2n

)
, γ

(
j + 1

2n

))
≤ 1/2n.

Thus, from Lemma 3.7.(b) and (c), we obtain that there exists L such that, for n large

enough,
∣∣∣∣∣∣∣∣∣u(n)

j

∣∣∣∣∣∣∣∣∣∞ ≤ L/2n (here |||·|||∞ is a reference norm as in Lemma 3.7). Define

u(n)(t) := 2n
2n−1∑
j=0

u
(n)
j (2n(t − j/2n)),

where we mean that u
(n)
j ≡ 0 outside [0, 1] for every n ∈ N and 0 ≤ j ≤ 2n − 1.

Hence u(n) ∈ L∞([0, 1];E), (γ (0),f, u(n)) ∈ DEnd, and
∣∣∣∣∣∣u(n)

∣∣∣∣∣∣∞ ≤ L. Notice that u(n)

is a control associated to the curve γ (n) which is the reparametrization on [0, 1] of the
concatenation of all the curves γ

(n)
j for 0 ≤ j ≤ 2n−1. Since the controls u(n) are uniformly

bounded in n, there is a subsequence {u(nk)}k that weakly* converges to some u(∞). In the
proof of Lemma 3.12 we showed that u(∞) is a control for γ . Let us rename nk = n.

Let us now fix ε > 0. Since u(n) weakly* converges to u(∞), by Proposition 3.4 we get
that

�(γ (0),f, u(∞), N) ≤ lim inf
n→+∞ �(γ (n)(0),f, u(n), N).

Hence, from the previous inequality, we have, up to subsequences and for n large enough,

∫ 1

0
N(γ (t), u(∞)(t)) dt ≤

∫ 1

0
N(γ (n)(t), u(n)(t)) dt + ε.
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Hence, using that u(∞) is a control for γ , the previous inequality, the fact that γ
(n)
j are

geodesics parametrized with constant speed, we have, for n large enough,∫ 1

0
|γ ′(t)|(f,N) dt ≤

∫ 1

0
N(γ (t), u(∞)(t)) d ≤

∫ 1

0
N(γ (n)(t), u(n)(t)) dt + ε

=
2n−1∑
j=0

∫ 1

0
N(γ

(n)
j (t), u

(n)
j (t)) dt + ε

=
2n−1∑
j=0

d(f,N)

(
γ

(
j

2n

)
, γ

(
j + 1

2n

))
+ ε

≤ L1(γ ) + ε,

where in the last inequality we have used the definition of the length L1(γ ). Taking ε → 0
in the previous inequality we get L1(γ ) ≥ L2(γ ), which is the sought inequality.

Thus we finally get that L1(γ ) = L2(γ ), and the proof is concluded.

Corollary 3.18 Let f ∈ Lip	(E∗ ⊗ T M) and N ∈ N . The metric derivative of a Lipschitz
curve γ : [a, b] → (M, d(f,N)) (cfr. [5]) is t �→ |γ ′(t)|(f,N).

Proof It is a direct consequence of Proposition 3.17, according to which L1 = L2, and
[5, Theorem 4.1.1].

Corollary 3.19 If f ∈ Lip	(E∗ ⊗ T M) and N ∈ N , then, for every p, q ∈ M ,

d(f,N)(p, q) = inf

{∫ b

a

|γ ′(t)|(f,N) dt : γ : [a, b] → M absolutely continuous,
with γ (a) = p, γ (b) = q

}

Proof It is a direct consequence of Proposition 3.17, according to which L1 = L2, and
[10, Proposition 2.4.1.].

3.5 Limits of CC Distances

We use the notation Lip	 from Section 2.1, and N from Section 3.2. In this section we
investigate what happens when one takes the limit of Carnot-Carathéodory distances asso-
ciated to (f, N). We prove a relaxation property of the limit distance, and finally the main
theorem of this section, i.e., Theorem 1.4.

Proposition 3.20 If fn → f∞ in Lip	(E∗ ⊗ T M), Nn → N∞ inN , and p, q ∈ M , then

d(f∞,N∞)(p, q) ≥ inf
{

lim inf
n→∞ d(fn,Nn)(pn, qn) : pn → p, qn → q

}
. (35)

Moreover, if K ⊂ M is a compact set, there exists C > 0 such that whenever p ∈ K and
q ∈ M with d(f∞,N∞)(p, q) ≤ C, one has that

d(f∞,N∞)(p, q) = inf
{

lim inf
n→∞ d(fn,Nn)(pn, qn) : pn → p, qn → q

}
. (36)

In the setting of Lemma 3.7, we can take C = R

L2 , for R,L > 0 satisfying (26) on the

compact set B̄ρ(K, 1) in place of K and with K = {fn}n ∪ {f∞}, K = {Nn}n ∪ {N∞}.
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Proof Let us first prove (35). If d(f∞,N∞)(p, q) = ∞, there is nothing to prove, so
we assume d(f∞,N∞)(p, q) < ∞. Fix ε > 0. Then there is u ∈ L∞([0, 1];E) such
that Endf∞

p (u) = q and J(p,f∞, u, N∞) ≤ d(f∞,N∞)(p, q) + ε. Let pn ≡ p and

qn = Endfn
p (u) that exists for n big enough thanks to Proposition 2.9(1). By Theorem 2.5,

qn → q, and moreover, by the definition of the distance, d(fn,Nn)(p, qn) ≤ J(p,fn, u, Nn).
Let γn be the curve γn(t) := Endfn

p (tu). By Proposition 2.9, γn → γ∞ uniformly. Hence,
by possibly passing to subsequences,

limn→∞ J(p,fn, u,Nn) = limn→∞ esssup{Nn(γn(t), u(t)) : t ∈ [0, 1]}
= esssup{N∞(γ∞(t), u(t)) : t ∈ [0, 1]} = J(p,f∞, u, N∞).

We conclude that lim infn→∞ d(fn,Nn)(p, qn) ≤ J(p,f∞, u, N∞) ≤ d(f∞,N∞)(p, q) + ε.
Since ε can be taken arbitrarily small, we get the sought claim.

Let us now prove (36). In the notation of Lemma 3.7, take K := {fn}n∈N ∪ {f∞},
K := {Nn}n∈N ∪ {N∞}, and R > 0. Let L be the constant of Lemma 3.7 associated to these
choices on the compact set B̄ρ(K, 1) in place of K , and set C := R/L2.

Suppose by contradiction that (36) is not true. Hence, since (35) always holds, there exist
p ∈ K , q ∈ M with d(f∞,N∞)(p, q) ≤ R/L2, pn → p, qn → q such that, up to passing to
subsequences,

d(f∞,N∞)(p, q) > lim
n→∞ d(fn,Nn)(pn, qn). (37)

Hence, for n large enough, we have d(fn,Nn)(pn, qn) < R/L2, and pn ∈ B̄ρ(K, 1), since
pn → p ∈ K .

Therefore, by applying Lemma 3.7(d), thanks to the choice of the compact B̄ρ(K, 1),
we know that we can take, for n large enough, un ∈ L∞([0, 1];E) such that γ(pn,fn,un) ⊆
B̄ρ(K,R + 1) and

J (pn,fn, un,Nn) ≤ d(fn,Nn)(pn, qn) + 1/n.

Therefore, by using (27), we have that

|||un|||∞ ≤ L(R/L2 + 1/n),

for n large enough. Henceforth, up to subsequences, un → u∞ weakly*. From Theorem 2.5
we get Endf∞

p (u∞) = q, while from Proposition 3.4 we get

d(f∞,N∞)(p, q)≤J(p,f∞, u∞, N∞)≤ lim inf
n→∞ J(pn,fn, un, Nn)≤ lim inf

n→∞ d(fn,Nn)(pn, qn).

We obtained a contradiction with (37).

Lemma 3.21 Let fn → f∞ in Lip	(E∗ ⊗ T M), Nn → N∞ in N , and K ⊂ M be a
compact set. Assume that f∞ is essentially non-holonomic and fix a complete Riemannian
metric ρ on M .

Then, for every ε > 0 there exist δ > 0 and n0 ∈ N such that, for all n ≥ n0 (also
n = ∞) and all p ∈ K ,

Bρ(p, δ) ⊂ B(fn,Nn)(p, ε).

Proof First, we claim that for every p̂ ∈ K there are n1 ∈ N and a neighborhood U of p̂

such that, for all n ≥ n1,

U ⊂ B(fn,Nn)(p̂, ε/2). (38)
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To prove the claim, we use Lemma 3.7 with R = 1 and the compact sets K , {fn}n∈N ∪
{f∞}, and {Nn}n∈N ∪ {N∞}. Let L be as in Lemma 3.7. Define the set

U =
{
u ∈ L∞([0, 1];E) : |||u|||∞ ≤ min

(
ε

2L
,

1

L

)}
,

where |||·|||∞ is as in Lemma 3.7. By Theorem 2.13, there are n1 ∈ N and a neighborhood U

of p̂ so that U ⊂ Endfn

p̂
(U), for all n > n1. By Lemma 3.7(a) and Lemma 3.7(c), for every

n > n1 and every u ∈ U , we have d(fn,Nn)(p̂, Endfn

p̂
(u)) ≤ J(p̂,fn, u, Nn) ≤ L|||u|||∞ ≤

ε/2, that is,
U ⊂ Endfn

p̂
(U) ⊂ B(fn,Nn)(p̂, ε/2).

Second, by the compactness of K , we obtain that there are p̂1, . . . , p̂k ∈ K , open neigh-
borhoods Uj of p̂j with K ⊂ ⋃

j Uj , and n0 ∈ N, such that, for all n > n0 and all
j ,

Uj ⊂ B(fn,Nn)(p̂j , ε/2).

Next, on the one hand, there is δ > 0 such that for every p ∈ K there is j with Bρ(p, δ) ⊂
Uj . On the other hand, if p ∈ B(f,N)(p̂j , ε/2), then B(f,N)(p̂j , ε/2) ⊂ B(f,N)(p, ε).

We conclude that, if n > n0, then for every p ∈ K there is j such that

Bρ(p, δ) ⊂ Uj ⊂ B(fn,Nn)(p̂j , ε/2) ⊂ B(fn,Nn)(p, ε),

which concludes the proof.

Proposition 3.22 Let fn → f∞ in Lip	(E∗ ⊗ T M), Nn → N∞ in N , and K ⊂ M be a
compact set. Assume that f∞ is essentially non-holonomic and fix a complete Riemannian
metric ρ on M .

Then for every ε > 0 there are n0 ∈ N and δ > 0 so that for every n > n0 and
p, p′, q, q ′ ∈ K

ρ(p, p′) + ρ(q, q ′) < δ ⇒ ∣∣d(fn,Nn)(p, q) − d(fn,Nn)(p
′, q ′)

∣∣ ≤ ε (39)

Proof We define

βk(s) := sup{d(fn,Nn)(p, q) : p, q ∈ K, n ≥ k, ρ(p, q) ≤ s}.
Lemma 3.21 immediately implies that, for every ε, there are δ > 0 and n0 such that, for
every s ∈ [0, δ], we have βn0(s) < ε/2. Now, if p, p′, q, q ′ ∈ K , ρ(p, p′) + ρ(q, q ′) < δ

and n ≥ n0, then∣∣d(fn,Nn)(p, q) − d(fn,Nn)(p
′, q ′)

∣∣ ≤ d(fn,Nn)(p, p′) + d(fn,Nn)(q, q ′)
≤ 2βn0(δ) ≤ ε.

Corollary 3.23 If f̂ is essentially non-holonomic and N̂ ∈ N , then, for every p, q ∈ M ,

lim sup
(f,N)→(f̂,N̂)

d(f,N)(p, q) ≤ d
(f̂,N̂)

(p, q).

Proof The proof of this corollary is a slight modification of the proof of (35), where we
now have that d(fn,Nn)(qn, q) → 0 by Proposition 3.22.

We are now ready to prove the main result of the paper, namely Theorem 1.4.
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Proof of Theorem 1.4 In order to prove item (i), we define for p ∈ M

U(p) = {q ∈ M : d
(f̂,N̂)

(p, q) < ∞}.
Notice that, if U(p) ∩ U(q) �= ∅ then U(p) = U(q). Therefore, {U(p)}p∈M is a partition
of M . Moreover, by Lemma 3.21 applied to the constant sequence (f̂, N̂) and the compact
set {p}, p is always in the interior of U(p). Now, if p′ ∈ U(p) then p′ is in the interior
of U(p′) = U(p) and thus we proved that U(p) is open for every p ∈ M . Since M is
connected, we conclude that U(p) = M .

The proof of item (ii) has two parts and uses an auxiliary complete Riemannian dis-
tance ρ on M . First, if U ⊂ M is d

(f̂,N̂)
-open and p ∈ U , then there is ε > 0 so that

B
(f̂,N̂)

(p, ε) ⊂ U . By Lemma 3.21 applied to the constant sequence (f̂, N̂) and the com-
pact set {p}, there is δ > 0 such that Bρ(p, δ) ⊂ B

(f̂,N̂)
(p, ε). Since p is an arbitrary point

in U , we have proven that U is ρ-open. The fact that a d
(f̂,N̂)

-open set is also a ρ-open set
is a direct consequence of Lemma 3.8.

Item (iii) is proven as follows. We show that every o ∈ M has a compact neighborhood U

so that d(fn,Nn) → d
(f̂,N̂)

pointwise on U ×U . By Proposition 3.22, {d(fn,Nn)}n∈N∪{d
(f̂,N̂)

}
is an equicontinuous family of functions U × U → R, hence pointwise convergence would
imply the uniform convergence on U × U .

Let us show the pointwise convergence. Let r > 0 so that B̄
(f̂,N̂)

(o, r) is compact. This
can be done thank to the item (ii) that we previously proved. By Proposition 3.20 there is
C > 0 so that for every p ∈ B̄

(f̂,N̂)
(o, r) and q ∈ M with d

(f̂,N̂)
(p, q) ≤ C, one has (36).

We may assume r < C/2, that is, that (36) holds for every p, q ∈ B̄
(f̂,N̂)

(o, r). So, let

p, q ∈ B̄
(f̂,N̂)

(o, r) and pn → p and qn → q so that

d
(f̂,N̂)

(p, q) = lim
n→∞ d(fn,Nn)(pn, qn).

Then

lim sup
n→∞

∣∣∣d(f̂,N̂)
(p, q) − d(fn,Nn)(p, q)

∣∣∣
≤ lim sup

n→∞

∣∣∣d(f̂,N̂)
(p, q) − d(fn,Nn)(pn, qn)

∣∣∣+ ∣∣d(fn,Nn)(pn, qn) − d(fn,Nn)(p, q)
∣∣

= lim sup
n→∞

∣∣d(fn,Nn)(pn, qn) − d(fn,Nn)(p, q)
∣∣ .

We need to show that the previous limit is zero. Let ε > 0. By Proposition 3.22, there
are n0 > 0 and δ > 0 so that, if n > n0, we have ρ(pn, p) + ρ(qn, q) < δ, and then∣∣d(fn,Nn)(pn, qn) − d(fn,Nn)(p, q)

∣∣ < ε. This shows that the limit is zero.
Item (iv) is a consequence of item (iii) together with the forthcoming metric Lemma 3.25.

Remark 3.24 (About the completeness assumption in Theorem 1.4(iv)) In this remark we
show that the assumption of the completeness of d

(f̂,N̂)
in Theorem 1.4(d) is necessary in

order to have the uniform convergence lim
(f,N)→(f̂,N̂)

d(f,N) = d
(f̂,N̂)

on compact subsets.
In the following example we show that one may not even have pointwise convergence. Thus
Corollary 3.23 cannot be improved in general.

Let us fix M := R× (−1, 1) ⊆ R
2 and p := (−2; 0), q := (2; 0). Let us take, for every

n ∈ N, a smooth function gn : R2 → [1,+∞) such that{
gn = 1 outside [−2, 2] × (−1 + 1/(4n), 1 − 1/(4n))

gn = 10 inside [−1, 1] × (−1 + 1/(2n), 1 − 1/(2n)).
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Let dn be the Riemannian distance associated to the Riemannian tensor gn( dx ⊗ dx + dy ⊗
dy) on M . We can take gn such that we have gn → g∞ uniformly on compact subsets of
M , where g∞ is a smooth function with g∞ = 10 inside [−1, 1] × (−1, 1). Let d∞ the
Riemannian distance associated to the Riemannian tensor g∞( dx ⊗ dx + dy ⊗ dy) on M .
We have that dn → d∞ locally uniformly on M , i.e., every p ∈ M has a neighborhoof U

such that dn → d∞ uniformly on U × U . Nevertheless, dn does not converge uniformly to
d∞ on compact subsets of M . Indeed, we have that dn(p, q) ≤ 6, while d∞(p, q) ≥ 10.

Lemma 3.25 Let � be endowed with a sequential topology. Let X be a set. For t ∈ �, let
dt be a length metric on X. Assume that for some t0 ∈ � we have that (X, dt0) is boundedly
compact. Assume that for every point x ∈ X and every sequence tn → t0 there exists a
dt0 -neighborhood U of x such that

sup
(p,q)∈U×U

|dtn(p, q) − dt0(p, q)| → 0, (40)

as n → +∞. Hence for every dt0 -compact set K we have

sup
(p,q)∈K×K

|dtn(p, q) − dt0(p, q)| → 0, for every sequence tn → t0. (41)

Moreover,we have that, for every x ∈ X, and for every sequence tn → t0,

(X, dtn , x) → (X, dt0 , x), (42)

in the pointed Gromov–Hausdorff sense.

Proof Let us first prove (41). Fix K a dt0 -compact set. Let D := diamdt0
K and let

K ′ := Bdt0
(K,D + 3) be the closed (D + 3)-tubular neighborhood of K . Since (X, dt0) is

boundedly compact, K ′ is compact.
Suppose by contradiction that (41) does not hold for some sequence tn → t0. Hence, up

to passing to subsequences, we have that for some 0 < ε < 1 and every n ∈ N the following
holds

sup
(p,q)∈K×K

|dtn(p, q) − dt0(p, q)| ≥ 2ε. (43)

For every s ∈ K ′ there exists Us a dt0 -neighborhood of s such that (40) holds for
the sequence {tn}n∈N. Since K ′ is compact, we can extract a finite covering of K ′ from
{Us}s∈K ′ . Hence there exists m ∈ N and s1, . . . , sm ∈ K ′ such that

K ′ ⊆ Us1 ∪ · · · ∪ Usm .

For the sake of simplicity we rename Usi =: Ui for every i = 1, . . . , m. Let us take N big
enough such that for every n ≥ N and every i = 1, . . . , m we have

sup
(p,q)∈Ui×Ui

|dtn(p, q) − dt0(p, q)| ≤ ε

2m
. (44)

We now aim at showing that for every p, q ∈ K and every n ≥ N we have

dtn(p, q) ≤ dt0(p, q) + ε. (45)

Since dt0 is a length distance, given p, q ∈ K , there exists a curve γ : [0, 1] → X such that

Ldt0
(γ ) ≤ dt0(p, q) + ε/2. (46)

For every α ∈ [0, 1] we have that

dt0(p, γ (α)) ≤ Ldt0
(γ ) ≤ dt0(p, q) + ε/2 ≤ D + 1/2,
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and hence γ ⊆ int(K ′). We now aim at finding on γ a finite number i, with i ≤ m, of points
p = p1, p2, . . . , pi = q such that for every j = 1, . . . , i − 1 we have that that pj , pj+1
are in the same Ukj

, for some kj ∈ {1, . . . , m}. We define such a sequence inductively.

First, since p ∈ K , there exists a k1 ∈ {1, . . . , m} such that p ∈ Uk1 . Let us suppose that
the sequence p = p1, . . . , p� has been defined for some � ∈ N, in such a way that

(i) for every j = 1, . . . , �, there exist kj ∈ {1, . . . , m} that are pairwise distinct such
that

(ii) pj , pj+1 ∈ Ukj
for every j = 1, . . . , � − 1, and

(iii) p� ∈ Uk�
.

Hence define
α�+1 := max{α : γ (α) ∈ Uk�

}, p�+1 := γ (α�+1). (47)

Obviously we have p�+1 ∈ Uk�
. If α�+1 = 1 the process ends and q = p�+1 ∈ Uk�+1

with k�+1 distinct from every k1, . . . , k� by the inductive definition of the α’s. If not, we
now show that p�+1 ∈ Uk�+1 for some k�+1 ∈ {1, . . . , m} different from every k1, . . . , k�.
This is true since for every η > 0 small enough we have that γ (α + η) ∈ K ′ and hence
γ (α + η) ∈ Ukη , where kη ∈ {1, . . . , m}. Since kη ranges in a finite set, there exists k�+1 ∈
{1, . . . , m} such that γ (α + ηj ) ∈ Uk�+1 for a sequence ηj → 0. Moreover k�+1 has to
be different from every k1, . . . , k�, since it is inductively defined by means of (47). This
eventually proves that, after at most m steps, we end the process at q, since also q ∈ Uki

for
some ki ∈ {1, . . . , m}. Hence the claim is shown.

Hence we now want to obtain (45). Fix p, q ∈ K , n ≥ N , and take the chain of points
p = p1, . . . , pi = q previously defined. Hence

dtn(p, q) ≤
i−1∑
�=1

dtn(p�, p�+1) ≤
i−1∑
�=1

dt0(p�, p�+1) + ε/2

≤ Ldt0
(γ ) + ε/2 ≤ dt0(p, q) + ε. (48)

where the first inequality is an application of the triangle inequality; the second inequality
comes from (44), the fact that p�, p�+1 ∈ Uk�

for some k� ∈ {1, . . . , m}, and the fact
that i ≤ m; the third inequality comes from the definition of length; and the fourth is a
consequence of (46).

With a slight variation of the previous argument, we now aim at showing that for every
p, q ∈ K and every n ≥ N we have

dt0(p, q) ≤ dtn(p, q) + ε. (49)

Given p, q ∈ K and n ≥ N , since dtn is a length distance, there exists a curve γtn : [0, 1] →
X such that

Ldtn
(γtn ) ≤ dtn(p, q) + ε/2. (50)

We do not know a priori if γtn ⊆ K ′, but nevertheless we may argue as before, paying
attention to one more detail. Again, we aim at finding on γtn a finite number i, with i ≤ m,
of points p = p1, p2, . . . , pi = q such that for every j = 1, . . . , i − 1 we have that that
pj , pj+1 are in the same Ukj

, for some kj ∈ {1, . . . , m}. We proceed by induction.

Since p ∈ K , there exists a k1 ∈ {1, . . . , m} such that p ∈ Uk1 . Let us suppose that the
sequence p = p1, . . . , p� has been defined for some � ∈ N, in such a way that items (i),
(ii), and (iii) above hold. Hence define

α�+1 := max{α : γtn(α) ∈ Uk�
}, p�+1 := γtn(α�+1). (51)



Lipschitz Carnot-Carathéodory Structures and their Limits

Clearly p�+1 ∈ Uk�
. We now first show that p�+1 ∈ int(K ′). Indeed

dt0(p, p�+1) ≤
�∑

k=1

dt0(pk, pk+1) ≤
�∑

k=1

dtn(pk, pk+1) + ε/2

≤ Ldtn
(γtn |[p,p�+1]) + ε/2 ≤ Ldtn

(γtn) + ε/2

≤ dtn(p, q) + ε ≤ dt0(p, q) + 2ε ≤ D + 2, (52)

where the first inequality is a consequence of the triangle inequality; the second is a con-
sequence of (44) and the fact that the chain of points has cardinality not greater than m;
the third inequality is a consequence of the definition of length; the fifth is a consequence
of (50); and the sixth is a consequence of (45). Now, arguing exactly as before, we can show
that p�+1 ∈ Uk�+1 with k�+1 ∈ {1, . . . , m} different from all k1, . . . , k�.

Now to obtain (49) one argues exactly as before. Namely, for p, q ∈ K , and n ≥ N we
fix a chain of points p = p1, . . . , pi = q inductively constructed as above, and we repeat
the estimate (48) exchanging the roles of dtn and dt0 . Hence, (45) and (49) give the sought
contradiction with (43), thus proving (41).

Taking into account the definition of pointed Gromov–Hausdorff convergence, see [10,
page 272], to prove (42) it is sufficient to use (41) and that, if we fix x ∈ X, we have that,
for every tn → t0 and for every R,

lim sup
n→+∞

diamdt0
Bdtn

(x, R) < +∞.

The previous inequality is a direct consequence of a slight variation of the second argument
above. Indeed, arguing as before, one can show that for every sequence tn → 0 and every
R > 0 there exists N sufficiently big such that for every n ≥ N we have

B̄dtn
(x, R) ⊆ B̄dt0

(x, R + 1).

4 Examples

In this section we discuss several examples in which we can apply our main convergence
result Theorem 1.4.

In Section 4.1 we use Theorem 1.4 to directly prove that the asymptotic cone of the Rie-
mannian Heisenberg group is the sub-Riemannian Heisenberg group, see Proposition 4.1.
The same reasoning can be easily generalized to arbitrary Carnot groups.

In Section 4.2 we state and prove Mitchell’s Theorem in the sub-Finsler cathegory for
a continuously varying norm on the manifold, see Theorem 1.5. We give for granted the
construction of privileged coordinates and of the nilpotent approximation, for which we
refer the reader to standard and well-established references, see [6], [13, Section 2.1], [3,
Sections 10.4-10.5-10.6], or the recent [19]. Hence we exploit Theorem 1.4 to directly prove
the final convergence part of Mitchell’s Theorem in such a general setting.

In Section 4.3 we use Theorem 1.4 to directly prove Theorem 1.6. Namely, we prove
that on a connected Lie group the CC distances associated to bracket-generating sub-spaces
and norms that converge are uniformly convergent on compact subsets. The latter result has
been used in the very recent [14].
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In Section 4.4 we record a general approximation theorem for sub-Finsler distances asso-
ciated to converging vector fields on a manifold. Notice that Theorem 4.5 can be used to
produce Finsler approximation of sub-Finsler manifolds.

4.1 Asymptotic cone of the Riemannian Heisenberg Group

The first application we discuss is the well-known fact that the asymptotic cone of the
Riemannian Heisenberg group is the sub-Riemannian Heisenberg group.

Using exponential coordinates of the first kind, we identify the first Heisenberg group
H

1 with the manifold R
3 endowed with left-invariant frame

X = ∂x − y

2
∂z, Y = ∂y + x

2
∂z, Z = ∂z.

Let 〈·, ·〉 be the left-invariant Riemannian tensor on H
1 that makes the above frame orthonor-

mal, and dR the corresponding distance. Let dsR be the sub-Riemannian distance defined
by X, Y , namely

dsR(p, q) := inf
γ (0)=p,γ (1)=q

{∫ 1

0

√
a1(t)2+a2(t)2 dt : γ ′(t)=a1(t)X1|γ (t)+a2(t)X2|γ (t)

}
,

for every p, q ∈ M , where the infimum is taken over absolutely continuous curves γ .

Proposition 4.1 The asymptotic cone of (H1, dR) is (H1, dsR).

Proof Define E = R
3, ‖·‖ the Euclidean norm on E and, for ε ∈ R, fε ∈ Lip	(E∗ ⊗TH

1)

to be

fε(p)(v) = v1X|p + v2Y |p + εv3Z|p.

Let dε := d(fε ,‖·‖). Then, , we have that d1 = dR and d0 = dsR . Since f0 is totally non-
holonomic, see Proposition 2.12, we obtain from Theorem 1.4(iv) that dε → d0 as ε → 0,
uniformly on compact subsets of H1 × H

1.
What is only left to show is that (H1, dε) is isometric to (H1, εdR). Notice that εdR is the

Riemannian distance defined by the orthonormal frame (X/ε, Y/ε, Z/ε). Notice also that
the map δε(x, y, z) := (εx, εy, ε2z) satisfies

(δε)∗X/ε = X = fε(·)(1, 0, 0),

(δε)∗Y/ε = Y = fε(·)(0, 1, 0),

(δε)∗Z/ε = εZ = fε(·)(0, 0, 1).

It follows that δε : (H1, εdR) → (H1, dε) is an isometry.

Remark 4.2 Mutatis mutandis the statement of Proposition 4.1 works, with the same proof,
for arbitrary Carnot groups. Actually, with some additional work, one could also recover
the well-known fact that the asymptotic cone of a sub-Finsler nilpotent Lie group is a sub-
Finsler Carnot group.

4.2 Tangents to Sub-Finsler Manifolds

In this section we discuss the celebrated Mitchell’s Theorem. We take for granted the exis-
tence of a system of privileged coordinates, for which we refer the reader, e.g., to the
complete discussion in [13, Section 2.1]. We stress that, up to the authors’ knowledge, this
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is the first time that such a theorem is stated in the generality of sub-Finsler cathegory. Stan-
dard references for the sub-Riemannian Mitchell’s Theorem are [13, Theorem 2.5], [6, 18],
and [2, Sections 10-4-10.5-10.6]. Our aim, here, is to give a complete and detailed proof of
the final convergence part of the proof.

Hereafter we follow the terminology of Jean’s book [13, Section 2.1]. We fix a smooth
manifold Mm of dimension m ∈ N, k ∈ N, and k smooth vector fields X1, . . . , Xk . We say
that the family X := {X1, . . . , Xk} is a non-holonomic system if it is bracket-generating.
Notice that we do not assume that the rank of X is constant.

Let us fix E := R
k , with canonical basis {e1, . . . , ek}, and let us fix N : M × E →

[0, +∞) a continuously varying family of norms on E. Attached to the previously defined
non-holonomic system X and to N there is a notion of a sub-Finsler metric | · |X ,N , see (4).
In the specific case in which N(p, ·) is the standard Euclidean norm for every p ∈ M ,
the previous sub-Finsler metric is exactly the one considered in Jean’s book [13, Equation
(1.4)].

The sub-Finsler metric |·|(X ,N) gives rise to a length distance d(X ,N), see (5) and compare
with [13, Definition 1.3]. Notice that, by definition, and by exploiting Lemma 3.7(d) and
Theorem 1.4(ii), we get that any two distances d(X ,N1) and d(X ,N2) are locally bi-Lipschitz
equivalent. As a consequence we stress that the notion of non-holonomic order of a smooth
function/vector field at a point p ∈ M , see [13, Section 2.1], can be equivalently given by
using any of such distances.

We define the Lipschitz-vector-field structure on M modelled by R
k

f̃1(p)(ei) := Xi |p, (53)

for every p ∈ M , and i = 1, . . . , k. The distance d(̃f1,N) as in Definition 3.6, coincides with
the length distance induced by | · |X ,N as above, by virtue of Corollary 3.19.

Proof of Theorem 1.5 Let o ∈ M be as in the statement. There exists a neighborhood U ⊆
Mm of o and a neighborhood V ⊆ R

m of 0 such that (x1, . . . , xm) : U → V is a system
of privileged coordinates, see [13, Definition 2.5] and [13, pages 22-23]. Hereafter we will
identify U ⊆ M with V ⊆ R

m by means of the coordinates (x1, . . . , xm).
Being wi the weights defined as in [13, page 20], for 0 < ε ≤ 1 we define the

diffeomorphism δε : δ−1
ε V → V as follows

δε(x1, . . . , xm) := (εw1x1, . . . , ε
wj xj , . . . , ε

wmxm).

Let us define, for every ε > 0, every i = 1, . . . , k, and every p ∈ δ−1
ε V ⊆ R

m, the
Lipschitz-vector-fields structure

fε(p)(ei) := ε(Dδε|p)−1[Xi |δεp]. (54)

Notice that δ−1
ε V invades Rm as ε → 0.

Notice, moreover, that when ε = 1 we are defining, by means of (54), the Lipschitz-
vector-field structure f̃1 restricted to U , namely f1 = (̃f1)|U , cf. (53). In addition, as a
consequence of Lemma 3.7(d), we can find U ′ � U sufficiently small such that

(U ′, d(f1,N)) is isometric to (U ′, d(̃f1,N)). (55)

Let {X̂1, . . . , X̂k} be the homogeneous nilpotent approximation of {X1, . . . , Xk} at o asso-
ciated to the coordinates (x1, . . . , xm), see [13, Definition 2.7]. Notice that, for every
i = 1, . . . , k, X̂i are polynomial vector fields on R

m. Let us define, for every p ∈ R
m, and

every i = 1, . . . , k, the Lipschitz-vector-fields structure

f0(p)(ei) := X̂i |p.
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Notice that the family {X̂1, . . . , X̂k} is a bracket-generating family of vector fields on R
m,

cf. [13, Lemma 2.1, (i)], and hence f0 is essentially non-holonomic, see Proposition 2.12.
Moreover, by the definitions of homogeneous nilpotent approximation, of fε , and of the

maps δε the following holds: for every ε > 0, fε is a Lipschitz-vector-field structure defined
on δ−1

ε V modelled by R
k , and

fε → f0, as ε → 0,

in the sense of Definition 2.2.
Let us now define, for every 0 < ε ≤ 1, Nε : δ−1

ε V × E → [0,+∞) as

Nε(p, v) := N(δεp, v), (56)

for every p ∈ δ−1
ε V , and v ∈ E. We stress that N1 ≡ N on V ×E. It is readily seen that Nε

converge, as ε → 0, uniformly on compact subsets of Rm ×E to N0 : Rm ×E → [0, +∞]
defined as

N0(p, v) := N(o, v),

for every p ∈ R
m and v ∈ E.

In case o is a regular point then the metric space (Rm, d(f0,N0)) is isometric to a sub-
Finsler Carnot group, cf. [13, Lemma 2.3]. In the general case, (Rm, d(f0,N0)) is isometric
to a quotient of a sub-Finsler Carnot group by one of its closed subgroups, cf. [13, Theorem
2.6]. In any of such alternatives, we have that (Rm, d(f0,N0)) is boundedly compact since it
is a locally compact, homogeneous, length space.

Hence, an application of Theorem 1.4(iv) gives that

d(fε,Nε) →ε→0 d(f0,N0), (57)

uniformly on compact subsets of Rm × R
m. Notice that the structures fε are not defined

on the entire R
m, but just on δ−1

ε V . Anyway, we can still apply Theorem 1.4 since for
every compact set K ⊆ R

m × R
m there exists ε0 such that K ⊆ δ−1

ε V × δ−1
ε V for every

ε < ε0. Moreover, as a consequence of the last part of the proof of Lemma 3.25, one also

has that, for any R > 0, there exists ε0 small enough such that B
d(fε ,Nε)

R (0) are contained
in a common compact set of Rm for every ε < ε0; and moreover the Gromov–Hausdorff

distance between B
d(fε ,Nε)

R (0) and B
d(f0,N0)

R (0) converges to 0 as ε → 0, cf. (57).
We now claim that for every ε and every p, q ∈ δ−1

ε V , the following equality holds

d(fε,Nε)(p, q) = ε−1d(f1,N1)(δεp, δεq). (58)

Indeed, let us fix ε > 0, and let us take p, q ∈ δ−1
ε V . For every curve γ : [0, 1] → R

m,
whose image is contained in δ−1

ε V , and such that{
γ ′(t) = fε(γ (t), u(t))

γ (0) = p,
(59)

for almost every t ∈ [0, 1], we let γε := δε ◦ γ . We notice that γε has support contained in
V and, from the definition of fε , we have{

γ ′
ε(t) = f1(γε(t), εu(t)), for almost every t ∈ [0, 1],

γε(0) = δεp.
(60)

Since we have that γε ⊆ V , by taking into account the previous computation, the definition
of the norms Nε , see (56), and the definition of the distance, see (24), we finally get (58) for
every p, q ∈ δ−1

ε V .
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The latter reasoning implies that for every R > 0 there exists ε0 small enough such that
for every ε < ε0 one has(

B
d(fε ,Nε)

R (0), d(fε,Nε)

)
is isometric to

(
B

ε−1d(f1,N)

R (0), ε−1d(f1,N1)

)
, (61)

and the isometry is given by δε .
Thus, the latter, together with the convergence in (57), and (55), directly implies that

the Gromov–Hausdorff tangent of (M, d(̃f1,N)) at o is R
n equipped with the sub-Finsler

distance induced by the vector fields X̂1, . . . , X̂k and the norm N(o, ·), which is what we
wanted.

Remark 4.3 We stress that our convergence result Theorem 1.4 holds in the Lipschitz cate-
gory, provided the essentially non-holonomicity of the limit. Hence, whenever one has some
analogues of privileged coordinates while dealing with less regular vector fields, the proof
of Theorem 1.5 is very likely to be adapted.

4.3 Left-invariant CC Distances on Lie Groups

Let G be a connected Lie group, and let g be its Lie algebra. Given a vector subspace H ⊆ g

of g, and a norm b on H, we associate to (H, b) a left-invariant sub-Finsler structure (D, b)

as in (6). Moreover, we define d(H,b) as in (7).
Let us denote by k the dimension of H. Choose a basis {v1, . . . , vk} of H and define

Xi to be the left-invariant extension of vi , for every i = 1, . . . , k. Let E := R
k with the

canonical basis {e1, . . . , ek}. Define a Lipschitz-vector-field structure f modelled by R
k as

fp(ei) := Xi(p), for all p ∈ G, and i = 1, . . . , k.

Define the continuously varying norm N : G × E → R as

N(p,w) := b

(
k∑

i=1

wivi

)
, for all p ∈ G, and w =

k∑
i=1

wiei ∈ E.

By virtue of Corollary 3.19 we deduce that

d(f,N)(p, q) = d(H,b)(p, q), for all p, q ∈ G. (62)

We now give the proof of Theorem 1.6.

Proof of Theorem 1.6 Let us choose a bracket-generating basis {v1, . . . , vk} of H. By the
fact that Hn → H, we have that, for every n ∈ N, there exists a basis {vn

1 , . . . , vn
k } of

Hn such that vn
i → vi as n → +∞ for every i = 1, . . . , k. Let Xi be the left-invariant

extension of vi for every i = 1, . . . , k, and let Xn
i be the left-invariant extension of vn

i for
every i = 1, . . . , k, and every n ∈ N. Let us fix E := R

k with basis {e1, . . . , ek}.
For every n ∈ N, we define the Lipschitz-vector-field structure fn modelled by R

k as

(fn)p(ei) := Xn
i (p), for all p ∈ G, for all i = 1, . . . , k,

and the Lipschitz-vector-field structure f modelled by R
k as

fp(ei) := Xi(p), for all p ∈ G, for all i = 1, . . . , k.

By the convergence vn
i → vi in g, we have that fn → f in the sense of Definition 2.2.
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For every n ∈ N we define the continuously varying norm Nn : G × E as

Nn(p,w) := bn

(
k∑

i=1

wivi

)
, for all p ∈ G, and w =

k∑
i=1

wiei ∈ E,

and the continuously varying norm N as

N(p,w) := b

(
k∑

i=1

wivi

)
, for all p ∈ G, and w =

k∑
i=1

wiei ∈ E.

By the fact that bn → b uniformly on compact sets it follows that Nn → N uniformly on
compact sets.

Hence we showed that (fn, bn) → (f, b) as n → +∞. Let us finally check that
the remaining hypotheses of Theorem 1.4 are met. Indeed, f is essentially non-holonomic
due to Proposition 2.12. Moreover, (G, d(H,b)) is boundedly compact because, by homo-
geneity and Theorem 1.4(ii), there exists ε > 0 such that for every p ∈ G the closed
ball Bd(H,b) (p, ε) is compact. Hence an application of Theorem 1.4(iv), together with the
equality (62), gives the sought conclusions.

Remark 4.4 As a special case of Theorem 1.6, when bn ≡ b is a norm coming from a scalar
product, it follows that the Condition 3.9 conjectured in [14] is always true. Namely, the
diameter of a compact sub-Riemannian Lie group depends continuously on the choice of
bracket-generating left-invariant distribution.

4.4 Limit of Sub-Finsler Distances on aManifold

In this section we prove a general convergence result that is a consequence of Theorem 1.4.
The following result gives as a consequence a general tool to approximate a sub-Finsler dis-
tance with Finsler distances. In the particular case of Carnot groups, approximation results
like the following one had been previously discussed and considered, e.g., in [11, Theorem
2.12], and [4, Section 2.5].

Theorem 4.5 Let Mm be a smooth connected manifold of dimension m. Let k ∈ N. For
every λ ∈ [0, 1) consider X λ := {Xλ

1 , . . . , Xλ
k } a family of smooth vector-fields such that

(1) Xλ
i are locally equi-Lipschitz for every i = 1, . . . , k, and every λ ∈ [0, 1);

(2) Xλ
i → X0

i uniformly on compact sets as λ → 0, for every i = 1, . . . , k.

Let us assume that {X0
1, . . . , X

0
k} is a bracket-generating set of vector fields.

LetE := R
k with basis {e1, . . . , ek} and, for every λ ∈ [0, 1), letNλ : M×E → [0, +∞)

be a continuously varying norm. Assume that Nλ → N0 uniformly on compact sets. For
each λ, let | · |λ the sub-Finsler metric defined by

|v|λ = inf

⎧⎨
⎩Nλ

⎛
⎝p,

k∑
j=1

xj ej

⎞
⎠ : v =

k∑
j=1

xjX
λ
j (p)

⎫⎬
⎭

for every v ∈ TpM , and p ∈ M . Let dλ be the sub-Finsler distance associated to the sub-
Finsler metric | · |λ (cf. (5)). Hence, dλ → d0 locally uniformly on compact sets of M × M ,
as λ → 0.
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Moreover, if (M, d0) is a complete metric space, we have that dλ → d0 uniformly on
compact sets of M × M , as λ → 0, and for every p ∈ M , we have that (M, dλ, p) →
(M, d0, p) in the pointed Gromov–Hausdorff topology as λ → 0.

Proof For every λ ∈ [0, 1), let fλ ∈ Lip	(E∗ ⊗ T M) be defined as

fλ(p)(ei) := Xλ
i (p), for all p ∈ M , and for every i = 1, . . . , k.

From the hypotheses we get that (fλ, Nλ) → (f0, N0) as λ → 0, where the convergence of
the first components has to be intended in the sense of Definition 2.2, and the convergence of
the second components has to be intended in the uniform sense on compact sets. Moreover,
as a consequence of Corollary 3.19, we have that dλ = d(fλ,Nλ) for every λ ∈ [0, 1). Hence
the results follow from Theorem 1.4(iii) and Theorem 1.4(iv).

Appendix A: Gronwall Lemma

Lemma A.1 Let � ⊂ R
n, and X, Y : �×[0, T ] → R

n. Let ‖ ·‖ be the standard Euclidean
norm on R

n. Fix o ∈ �.
Suppose that there are E, K > 0 be such that for all p, q ∈ � and all t ∈ [0, T ]

‖X(p, t) − Y (q, t)‖ ≤ E + K‖p − q‖.

Let γ, η : [0, T ] → � be two absolutely continuous curves such that γ (0) = η(0) = o,
γ ′(t) = X(γ (t), t), and η′(t) = Y (η(t), t) for almost every t ∈ [0, T ].

Then

‖γ (t) − η(t)‖ ≤ E
eKt − 1

K
, ∀t ∈ [0, T ].

Proof Define f (t) := ‖γ (t) − η(t)‖. Notice that f : [0, T ] → R is absolutely continuous
and f (0) = 0. Moreover, for almost every t ∈ [0, T ] we have

2f (t)f ′(t) = d

dt
(f (t)2) =

= 2〈γ (t) − η(t), γ ′(t) − η′(t)〉 ≤ 2 · ‖γ (t) − η(t)‖ · ‖γ ′(t) − η′(t)‖ =
= 2f (t) · ‖γ ′(t) − η′(t)‖ ≤ 2f (t) · ‖X(γ (t), t) − Y (η(t), t)‖ ≤

≤ 2f (t) · (E + K‖γ (t) − η(t)‖) ≤ 2f (t) · (E + Kf (t)).

So, whenever f (t) �= 0 we have

f ′(t) ≤ E + Kf (t).

Let g(t) := e−Ktf (t). Then, whenever g(t) �= 0, i.e., whenever f (t) �= 0, we have

g′(t) = −Ke−Ktf (t) + e−Ktf ′(t) ≤ −Ke−Ktf (t) + e−Kt (E + Kf (t)) = e−KtE.

We claim

g(t) ≤
∫ t

0
e−KsE ds, (63)

for almost all t ∈ [0, T ]. Indeed, if g(t) = 0, then there is nothing to show because the
right-hand side is positive. If g(t) > 0 instead, since g is absolutely continuous, there is a
maximal t̂ < t such that g(t̂) = 0, and we have

g(t) = g(t̂) +
∫ t

t̂

g′(s) ds ≤
∫ t

t̂

e−KsE ds ≤
∫ t

0
e−KsE ds,
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and (63) is proved.
Finally we obtain

e−Ktf (t) = g(t) ≤
∫ t

0
e−KsE ds = E

K
(1 − e−Kt )

hence the thesis.

Appendix B: Lemma about openmappings

We recall a few facts about degree theory. The n-th homology group Hn(S
n) of the n-

dimensional sphere S
n is isomorphic to Z. If φ : Sn → S

n is continuous, then it induces a
group morphism φ∗ : Hn(S

n) → Hn(S
n) of the form φ∗(x) = ax for some a ∈ Z. This

coefficient a is called the degree of φ and it is denoted by deg(φ).

Lemma B.1 Let � ⊂ R
m be an open set containing 0. Let f∞ : � → R

m be a continuous
map with f∞(0) = 0. Suppose that there is r > 0 such thatB(0, r) � �, 0 /∈ f∞(∂B(0, r)),
and the map

φ : Sm−1 → S
m−1, φ(x) := f∞(rx)

|f∞(rx)|
has nonzero degree. Let fn : � → R

m be continuous functions that converge uniformly on
� to f∞.

Then there exist δ > 0 and N ∈ N such that for all n ≥ N , we have

B(0, δ) ⊂ fn(�).

Proof Let B := B(0, r) � � and, for every n ∈ N ∪ {∞}, define Sn := fn(∂B). Since
S∞ is compact and it does not contain 0 by assumption, we have that δ := d(S∞, 0) > 0.
Hence, there exists N ′ such that for n ≥ N ′ we have ‖fn − f∞‖L∞(�) ≤ δ/2. This means
that for every x ∈ ∂B and every n ≥ N ′, we have

|fn(x)| ≥ |f∞(x)| − |fn(x) − f∞(x)| ≥ δ − δ/2 = δ/2,

from which we deduce that d(Sn, 0) ≥ δ/2 for every n ≥ N ′. Hence, for every n ∈ N∪{∞}
such that also n ≥ N ′, we can define gn : ∂B → S

m−1 as

gn(x) := fn(x)

|fn(x)| .

From the hypothesis we have that gn → g∞ uniformly on ∂B. Hence, for some N ≥ N ′,
we have that, for every n ≥ N , the map

αn,t (x) := tgn(x) + (1 − t)g∞(x)

|tgn(x) + (1 − t)g∞(x)|
is a homotopy from αn,1 = gn to αn,0 = g∞ and thus deg(gn) = deg(g∞) = i(f∞, 0) �= 0.

Now we claim that
B(0, δ/2) ⊂ fn(B) ∀n ≥ N . (64)

Fix n ≥ N and suppose by contradiction that (64) is not true. Then there exists p ∈
B(0, δ/2) \ fn(B). For every 0 ≤ η ≤ 1 let us define φη : ∂B → S

m−1 as

φη(x) := fn(ηx) − p

|fn(ηx) − p| ,
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which is well defined since p /∈ fn(B). Clearly, as η varies from 0 to 1, the maps φη are an
homotopy between the constant map φ0 ≡ p/|p| and φ1: therefore, deg φ1 = 0. Moreover,
for every 0 ≤ η ≤ 1, we can define ψη : ∂B → S

m−1 as

ψη(x) := fn(x) − ηp

|fn(x) − ηp| .

Notice that ψη is well-defined because |fn(x)| ≥ δ/2 > η|p| for every 0 ≤ η ≤ 1 and for
every x ∈ ∂B. Since the maps ψη are an homotopy from ψ0 = gn to ψ1 = φ1, we obtain
deg gn = deg(φ1) = 0, which is in contradiction with the fact that deg(gn) �= 0 for every
n ≥ N . Therefore, (64) must be true, and it directly implies the assertion.

In order to apply the previous result, the following lemma gives a criterium to check the
hypothesis of Lemma B.1.

Lemma B.2 Let � ⊂ R
m be an open set containing 0, and let f : � → R

m a topological
embedding with f (0) = 0. Let r > 0 such that B(0, r) � � and define φ : Sm−1 → S

m−1

as

φ(x) = f (rx)

|f (rx)| .

Then deg(φ) ∈ {−1, 1}.

Proof The function φ is the composition

S
m−1 rx−→ � \ {0} f−→ f (�) \ {0} ↪→ R

m \ {0} x/|x|−→ S
m−1.

Notice that the maps x �→ rx and x �→ x
|x| are retracts of Rm to S

m−1, and thus they induce
isomorphisms between the homology groups. Since f is an embedding and f (0) = 0, also
f induces an isomorphism between the homology groups of �\{0} and those of f (�)\{0}.
Finally, since f (�) is open, every homology class of Rm has a representative inside f (�)

and thus the immersion f (�) ↪→ R
m defines a surjective morphism of the corresponding

homology groups.
We conclude that the induced group morphism φ∗ : Hn(S

m−1) → Hn(S
m−1) is a

surjective group morphism from Z to Z and thus deg(φ) ∈ {−1, 1}.

The following lemma should be compared with [17, Proposition 3.5]. It gives a quantita-
tive open mapping theorem for C2 functions, where the bounds depend explictly on the first
and second derivatives of the function. A non-quantitative statement for C1 functions is in
[17, Proposition 3.5]. Even if its proof is rather standard, we record it here for the reader’s
convenience. We give the statement for an arbitrary Banach space, and later we will apply
it with B = R

k .

Lemma B.3 Let (B, ‖ · ‖) be a Banach space. For every �, L > 0 there exist C1 := 1/(2�)

and C2 := 1/(2�L) such that the following holds. Let f : B(x0, r) ⊂ B → B be a C2 map
such that

• The linear map Dfx0 is an isomorphism with ‖ (Dfx0

)−1 ‖ ≤ �,
• We have ‖(D2f )x‖ ≤ L for every x ∈ B(x0, r).

Hence
B(f (x0), C1ρ) ⊆ f (B(x0, ρ)), for all ρ ∈ (0, min{r, C2}). (65)
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Moreover, for every τ ∈ B(f (x0), C1ρ) there exists a unique σ ∈ B(x0, ρ) such that
τ = f (σ ).

Proof Let us denote for simplicity A := Dfx0 . Define, for x ∈ B(0, r),

f̃ (x) := A−1(f (x + x0) − f (x0)) − x.

Notice that f̃ (0) = 0, (Df̃ )0 = 0, and

(Df̃ )x = A−1((Df )x+x0 − A). (66)

Notice that, given ρ ≤ r , for every x ∈ B(0, ρ) we have

‖(Df )x+x0 − A‖ ≤ sup
x∈B(0,ρ)

‖(D2f )x+x0‖‖x‖ ≤ Lρ.

Since ‖A−1‖ ≤ �, the previous inequality together with (66) gives that for every x ∈
B(0, ρ), with ρ ≤ r , the following holds

‖(Df̃ )x‖ ≤ �Lρ.

The latter implies that for every x, z ∈ B(0, ρ), with ρ ≤ r , we have

‖f̃ (x) − f̃ (z)‖ ≤ �Lρ|x − z|.
Let us now prove (65). Fix ρ < min{1/(2�L), r}. Take an arbitrary y ∈ B(0, (1 − �Lρ)ρ).
Due to the previous inequality, the fact f̃ (0) = 0, and the triangle inequality, the function

x �→ −f̃ (x) + y

maps B(0, ρ) into B(0, ρ). Moreover, the latter function is a contraction, then it has a unique
fixed point. Namely, for every y ∈ B(0, (1 − �Lρ)ρ), there exists a unique x ∈ B(0, ρ)

such that
f (x + x0) = f (x0) + Ay

Now we claim that the set made by Ay’s, when y runs in B(0, (1 − �Lρ)ρ), contains the
ball B(0, (2�)−1ρ) . Indeed, if η ∈ B(0, (2�)−1ρ) we claim that we can take y = A−1η.
Indeed, A−1η ∈ B(0, (2�)−1ρ�), since ‖A−1‖ ≤ �, and 2−1ρ < (1 − �Lρ)ρ by how we
chose ρ.

Appendix C: A Shorter Proof of the Convergence Result for Smooth
Vector Fields

In this section we offer a shorter proof of Theorem 1.4 in the case in which the vector fields
are smooth. For the ease of notation, let us introduce the following terminology, useful
for the discussion of this section. Let us fix E := R

k , for k ∈ N, with canonical basis
{e1, . . . , ek}.

Let M be a smooth manifold. Let

f : M × E → T M,

be a smooth morphism of bundles. Notice that in particular we have that f(p, ·) : E → TpM

is a linear map for every p ∈ M , and moreover, for every i = 1, . . . , k, we have that f(·, ei)

is a smooth vector field. Let

N : M × E → [0, +∞),

be a continuous function such that N(p, ·) is a norm for every p ∈ M .
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Any couple (f, N) satisfying the two above conditions will be called CC-bundle struc-
ture, and it induces an energy function J, a length functional � and a distance d(f,N) as
discussed in Definition 3.3, and Definition 3.6.

Definition C.1 (Continuosuly varying CC-bundle structure) Let � be a compact space,
which will be called set of parameters. Let M be a smooth manifold endowed with a
Riemannian metric ρ. Endow T M with the bundle metric induced by ρ.

Let f : �×M×E → T M and N : �×M×E → [0, +∞) be such that for every λ ∈ �

we have that (fλ,Nλ) is a CC-bundle structure, where fλ := f(λ, ·, ·) and Nλ := N(λ, ·, ·).
We say that the family {(fλ,Nλ)}λ∈� is a continuously varying CC-bundle structure if

(1) In coordinates around every point p ∈ M , all the partial derivatives in q of Xi
λ(q) :=

fλ(q, ei) of order at most two are continuous in (λ, q), for every i = 1, . . . , k;
(2) N ∈ C0(� × M × E) and f ∈ C0(� × M × E);

From item (1) above we consequently have the following. For every compact K1 ⊆ M , and
every compact K2 ⊆ � × E there exists L such that for every (λ, v) ∈ K2 the vector field

K1 	 p �→ f(λ, p, v) ∈ T M (67)

is L-Lipschitz with respect to the Riemannian distances.

We now prove the following theorem, that is essentially a restatement of Theorem 1.4(iv)
for smooth vector fields.

Theorem C.2 Let � be a compact space, and let {(fλ,Nλ)}λ∈� be a continuously varying
CC-bundle structure on a smooth manifold M . Let dλ := d(fλ,Nλ) for λ ∈ �. Let λ0 ∈ �

be such that {f(λ0, M, ei)}i=1,...,k is bracket-generating, and assume that the metric space
(M, dλ0) is boundedly compact.

Then dλ → dλ0 uniformly on compact sets of M as λ → λ0.

We give a direct proof of the previous theorem using the following crucial lemma, that
contains some ideas already used in Lemma 3.21, and Proposition 3.22. We stress that
the proof given below is more direct because we are essentially able to bypass the use of
Theorem 2.5.

Lemma C.3 Let � be a compact space, and let {(fλ,Nλ)}λ∈� be a continuously varying
CC-bundle structure on a smooth manifold M . Let dλ := d(fλ,Nλ) for λ ∈ �. Assume
{f(λ0,M, ei)}i=1,...,k is bracket-generating for some λ0 ∈ �.

For every compact set K ⊆ M and every Riemannian metric ρ on M there exist a com-
pact neighborhood Iλ0 ⊆ � of λ0 and a continuous nondecreasing function β : (0,+∞) →
(0,+∞), with lims→0+ β(s) = 0, such that

dλ(p, q) ≤ β(ρ(p, q)), for all p, q ∈ K , and λ ∈ Iλ0 . (68)

Proof Fix such ρ and K . Let us denote, for λ ∈ � and p ∈ M ,

Xλ
i (p) := f(λ, p, ei),

where {e1, . . . , ek} is the standard basis of E = R
k .

We know that {Xλ0
i }ki=1 is a bracket-generating set of vector fields on M . Hence, there

exists a compact neighborhood I1 of λ0 such that {Xλ
i }ki=1 is a bracket-generating set of

vector fields on Bρ(K, 1).
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Claim 1. For every x ∈ K , for every λ′ ∈ I1, and for every ε > 0 there exist δ > 0 and a
compact neighborhood Iλ′ ⊆ I1 of λ′ such that

Bρ(x, δ) ⊆ Bdλ(x, ε), for all λ ∈ Iλ′ . (69)

Let us prove the claim. Let us fix x ∈ K and λ′ ∈ I1 from now on. Hence, since {Xλ′
i }ki=1

are bracket-generating on Bρ(K, 1), the following holds, due to [3, Lemma 3.33]. For every
0 < η < 1, there exist {i1, . . . , in} ⊆ {1, . . . , k} and t̂ := (t̂1, . . . , t̂n) such that n := dim M ,
|t̂ | < η, and

� : (t1, . . . , tn) �→ �
tn

Xλ′
in

◦ · · · ◦ �
t1

Xλ′
i1

(x),

has a regular point at t̂ . Hence the map

(t1, . . . , tn) �→ �
−t̂1

Xλ′
i1

◦ · · · ◦ �
−t̂n

Xλ′
in

◦ �
tn

Xλ′
in

◦ · · · ◦ �
t1

Xλ′
i1

(x),

has a regular point at t̂ and sends t̂ to x. Now, let ω := ω1 . . . ωD be a word of D letters such
that it contains as a subword every string of 2n elements chosen among {1, . . . , k}. Notice
now that the map

� : (λ, t1, . . . , tD) �→ �
tD

Xλ
iωD

◦ · · · ◦ �
t1

Xλ
iω1

(x), (70)

together with the maps DT �,D2
T � - where DT denotes the differential with respect to the

components in R
D - are continuous and well defined on I2 × B |·|1(0, ξ), where B |·|1(0, ξ)

is the ball in R
D with respect to the �1-norm | · |1 centered at 0 and with a sufficiently small

radius ξ , and I2 ⊆ I1 is a sufficiently small compact neighborhood of λ′. The last assertion
is a consequence of an iterated application of Gronwall’s Lemma (see Lemma A.1), and the
fact that we have the continuity property in Definition C.1(1).

Define the compact set K̃ := �(I2 × B(0, ξ)) in M . Hence, by continuity of the norm
N , there exists L > 0 such that

N(λ, p, v) ≤ L|v|1, for all λ ∈ I2, p ∈ K̃ , and v ∈ E. (71)

Let us now conclude the proof of the claim. Fix ε > 0. Let

ν := min{ξ/2, ε/(2DL)},
where ξ is defined above. Notice that, by what we noticed above, we have that there exists
t̃ ∈ R

D with |̃t |1 < ν such that �(λ′, ·) has a regular point at t̃ and �(λ′, t̃) = x. In addition
to this, �(λ, t) → �(λ′, t) as λ → λ′, uniformly when t ∈ B |·|1(0, ξ) ⊆ R

N , and the same
convergence holds with DT �,D2

T �. The last assertion is a consequence of the fact that the
maps �,DT �,D2

T � are continuous, and thus uniformly continuous on compact sets.
Since t̃ is a regular point for �(λ′, ·), we can find an n-dimensional subspace � of

R
D such that �(λ′, ·) restricted to B(̃t, ν) ∩ (̃t + �) is a local diffeomorphism around t̃ .

Moreover, there exists a neighborhood of λ′, which we call Iλ′ , such that the maps �(λ, ·),
restricted to B(̃t, ν)∩ (̃t +�), satisfy the bounds in the hypotheses of Lemma B.3 uniformly
on λ ∈ Iλ′ , and where t̃ here is the x0 there. Notice that the bounds of Lemma B.3 hold
uniformly on λ ∈ Iλ′ for some neighborhood Iλ′ of λ′, due to the continuity of DT �,D2

T �

discussed above.
Hence, by applying Lemma B.3, we have that there exists δ > 0 and Iλ′ a neighborhood

of λ′ such that
Bρ(x, δ) ⊆ �(λ, t̃ + B|·|1(0, ν)), for all λ ∈ Iλ′ .

Since t̃+B|·|1(0, ν) ⊆ B |·|1(0, ξ), we have that all the concatenation of the curves associated
to �(λ, t̃ + B(0, ν)) is in K . Since the estimate (71) holds, and since we also have t̃ +
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B|·|1(0, ν) ⊆ B |·|1(0, ε/(DL)), we get that the concatenation of the curves associated to
�(λ, t) (whose controls can be written explicitely as in (8)), for every t ∈ t̃ + B |·|1(0, ν)

has length ≤ ε for every λ ∈ Iλ′ . Hence the sought claim (69) holds.
From Claim 1 and a routine compatness argument, as already done at the end of

Lemma 3.21, we have that for every ε > 0 there exists δ > 0 such that for every x ∈ K and
every λ ∈ I1 we have

Bρ(x, δ) ⊆ Bdλ(x, ε). (72)

From (72) the proof of the lemma follows with the following argument. Let K̃ be a path-
connected compact set containing K . For instance, K̃ can be chosen to be a closed ρ-balls
of sufficiently large radius.

The inequality in (68) is trivially satisfied if we define β as

β(s) = sup{dλ(p, q) : p, q ∈ K̃, λ ∈ I1, ρ(p, q) ≤ s},
for every s ∈ (0,+∞).

From (72) we get that for every ε > 0 there is δ > 0 such that β(δ) < ε. In particular,
this implies lims→0+ β(s) = 0.

We also claim that sups>0 β(s) < ∞. Indeed, fix δ > 0 such that β(δ) ≤ 1, and let
B1, . . . , BN be a collection of ρ-balls of radius less than δ/2 that covers K̃ . Since K̃ is path-
connected, given p, q ∈ K̃ , there is a sequence p = p0, p1, . . . , pm = q with m ≤ 2N

such that for every i ∈ {0, . . . , m − 1} there is j ∈ {1, . . . , N} such that pi, pi+1 ∈ Bj .
Therefore, for every λ ∈ I1,

dλ(p, q) ≤
m−1∑
i=0

dλ(pi, pi+1) ≤ 2Nβ(δ) ≤ 2N .

Therefore, sups>0 β(s) ≤ 2n.

We now give the proof of Theorem C.2. The strategy is different with respect to the
proof of Theorem 1.4(iv). There, we first proved the local uniform convergence, relying
on the relaxation result in Proposition 3.20, and then we upgrade it to a uniform conver-
gence on compact sets thanks to Lemma 3.25. Here, instead, we directly obtain the uniform
convergence on compact sets by making a careful use of Gronwall’s Lemma A.1.

Proof of Theorem C.2 Let us fix a compact set K and a Riemannian metric ρ on M . We
embed M smoothly isometrically into some R

N , on which we denote with | · | the standard
norm. Notice that on every compact set of M , ρ and | · | are biLipschitz equivalent. Let us
fix 0 < ε < 1/2.

By continuity, there exists a constant C > 0 such that dλ0(p, q) ≤ C for every p, q ∈ K .
Let K ′ := Bλ0(K,C + 1) the closed tubular neighborhood of K of radius C + 1. Since
(M, dλ0) is boundedly compact, we deduce that K ′ is compact.

Let β be the function, and Iλ0 be the compact neighborhood of λ0, associated to K ′ given
by Lemma C.3. We have that, for some ϑ > 0, ρ(p, q) ≤ ϑ |p − q| for every p, q ∈ K ′.
Thus, up to renaming β, for every p, q ∈ K ′, and for every λ ∈ Iλ0 ,

dλ(p, q) ≤ β(|p − q|) ≤ β(diam|·|K ′).

Since N(λ, p, ·) is a norm for every λ ∈ Iλ0 and every p ∈ M , and since N is continuous,
we get that there exists a compact set K ′′ ⊆ E such that

if N(λ, x, v) ≤ β(diam|·|K ′) + 1 for some λ ∈ Iλ0 and x ∈ K ′, then v ∈ K ′′. (73)
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Moreover, by definition of continuously varying CC-structures, (67), we have that there
exists L > 0 such that for every λ ∈ Iλ0 and v ∈ K ′′ the map

K ′ 	 p �→ f(λ, p, v),

is L-lipschitz.
Because of continuity of the functions N and f we get that there exist 0 < δ1 < ε and a

compact neighborhood I ′
λ0

⊆ Iλ0 of λ0 with

|N(λ0, x, v) − N(λ, y, v)| < ε, for all λ ∈ I ′
λ0

, x ∈ K ′, v ∈ K ′′, y ∈ B |·|(x, δ1), (74)

and
|f(λ0, x, v) − f(λ, x, v)| < a, for all λ ∈ I ′

λ0
, x ∈ K ′, v ∈ K ′′, (75)

where a is chosen such that a eL−1
L

< δ1. We now prove the following claim.

Claim 1 For every λ ∈ I ′
λ0

and every p, q ∈ K , we have

dλ0(p, q) ≤ dλ(p, q) + 2ε + β(ε).

Fix p, q, λ as in the claim. Up to reparametrization, we can take a curve γλ connecting p

and q such that γ ′
λ = f(λ, γλ, uλ) and

N(λ, γλ(t), uλ(t)) ≤ dλ(p, q) + ε, for a.e. t ∈ [0, 1]. (76)

Let B := Bλ0(p, dλ0(p, q)). Notice that B ⊆ K ′. Define

t := max{t ∈ [0, 1] : γλ(s) ∈ B ∀s ∈ [0, t]}.
Denote q ′

λ := γλ(t) and notice that dλ0(p, q ′
λ) = dλ0(p, q). Moreover notice that

(γλ)|[p,q ′
λ] ⊆ K ′. Take now γλ,0 such that γ ′

λ,0 = f(λ0, γλ,0, uλ) and γλ,0(0) = p. Call
qλ := γλ,0(t). Notice that as a consequence of Gronwall’s Lemma, see Lemma A.1, up to
taking a slightly smaller neighborhood I ′

λ0
, the curve γλ,0 is defined up to time t . We will

use the same argument below.

We now want to estimate |qλ −q ′
λ|. From (76), (73), and the fact that γλ([0, t]) ⊆ K ′ we

get that uλ(t) ∈ K ′′ for a.e. t ∈ [0, t]. Hence we can estimate, for every x, y ∈ K ′ and a.e.
t ∈ [0, t],

|f(λ, x, uλ(t)) − f(λ0, y, uλ(t))| ≤ |f(λ, x, uλ(t)) − f(λ0, x, uλ(t))|
+|f(λ0, x, uλ(t)) − f(λ0, y, uλ(t))|

≤ a + L|x − y|. (77)

Hence Gronwall Lemma in A.1 applied on K ′ directly implies that

|γλ(t) − γλ,0(t)| ≤ a
eLt − 1

L
< δ1 < ε, for a.e. t ∈ [0, t], (78)

and moreover that (γλ,0)|[0,t] ⊆ K ′. Now let us conclude the estimate of Claim 1. We have

dλ0(p, q) = dλ0(p, q ′
λ) ≤ dλ0(p, qλ) + dλ0(qλ, q

′
λ)

≤ ∫ t

0 N(λ0, γλ,0(s), uλ(s)) ds + β(|qλ − q ′
λ|)

≤ ∫ t

0 N(λ, γλ(s), uλ(s)) ds + ε + β(ε)

≤ ∫ 1
0 N(λ, γλ(s), uλ(s)) ds + ε + β(ε)

≤ dλ(p, q) + 2ε + β(ε),

(79)

where we are using (78), (74), and (76). We thus obtained the sought claim.
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Claim 2 For every λ ∈ I ′
λ0

and every p, q ∈ K , we have

dλ(p, q) ≤ dλ0(p, q) + ε + β(ε).

Fix p, q, λ as in the claim. Up to reparametrization, for every 0 < ε < 1 we can take a
curve γ connecting p and q such that γ ′ = f(λ0, γ, u) and

N(λ0, γ (t), u(t)) ≤ dλ0(p, q) + ε, for a.e. t ∈ [0, 1]. (80)

Notice that γ ⊆ K ′. Take now γλ such that γ ′
λ = f (λ, γλ, u) and γλ(0) = p. Again,

as a consequence of Gronwall Lemma, the curve γλ is defined up to time t = 1. Call
qλ := γλ(1).

We now want to estimate |qλ − q|. Arguing verbatim as before we obtain

|γλ(t) − γ (t)| ≤ a
eLt − 1

L
< δ1 < ε, for a.e. t ∈ [0, 1], (81)

and moreover γλ ⊆ K ′. Now let us conclude the estimate of Claim 2. We have

dλ(p, q) ≤ dλ(p, qλ) + dλ(qλ, q)

≤ ∫ 1
0 N(λ, γλ(s), u(s)) ds + β(|qλ − q|)

≤ ∫ 1
0 N(λ0, γ (s), u(s)) ds + ε + β(ε)

≤ dλ0(p, q) + 2ε + β(ε),

(82)

where we are using (81), (74), and (80). Thus we obtained the sought claim.
From Claim 1 and Claim 2 jointly with the fact that β(ε) → 0 as ε → 0 we get the proof

of the Theorem.
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