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Artificial Intelligence and Computational
Science

Pekka Neittaanmäki and Sergey Repin

Abstract In this note, we discuss the interaction between two ways of scientific
analysis. The first (classical) way is known as Mathematical Modeling (MM). It is
based on a model created by humans and presented in mathematical terms. Scientific
Computing (SC) is an important tool of MM developed to quantitatively analyze the
model. Artificial Intelligence (AI) forms a new way of scientific analysis. AI systems
arise as results of a different process. Here, we take a sequence of correct input-output
data, performMachine Learning (ML) and get a model (hidden in a network). In this
process, computational methods are used to create a network type model. We briefly
discuss special methods used for this purpose (such as evolutionary algorithms), give
a concise overview of results related to applications of AI in computer simulation of
real life problems, and discuss several open problems.

Key words: scientific computations, machine learning, artificial intelligence, evo-
lutionary algorithms

1 Classical Method of Scientific Knowledge

The scientific approach that currently dominates in science and technology is the
result of a long evolution of human knowledge. It has a long history dating back
to antiquity. At the core of this approach is what in modern terminology is called
model. First models were very simple. They were intuitively motivated and verified
in simple physical experiments (as, e.g., those done in Pisa by Galileo Galilei). The
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means of elementary mathematics were quite enough to formalise such models and
their verification was done by direct comparison with experimental data.

As the science developed the corresponding mathematical models became more
and more complex. Being initially algebraic, they later start using differential and
integral calculus. Nowadays, mathematical models are typically formed by systems
that include partial differential equations coupled with integral and algebraic equa-
tions and other relations. Mathematical models often give good quantitative results
that are useful for analysis and forecasting, but getting then is impossible without
serious computations based on powerful computers, correct approximation meth-
ods, adaptive numerical algorithms, and error control. Therefore, the complexity
of mathematical models have generated a new scientific direction, computational
science, which is also called scientific computing (SC). It is an essential part of
the classical scientific method focused on a computational model and analysis of
numerical results. We can define it as follows:

Scientific computing is a multidisciplinary field that uses advanced computing
capabilities to understand and solve complex mathematical problems.

Currently, SC is a huge scientific field, which includes a wide range of sub-
directions. Among the most important we mention:

• Computer simulation methods for various mathematical models;
• Optimization and optimization control;
• Analysis of inverse problems;
• Signal analysis;
• Data-analysis and decision-making support;
• Logistics and combinatoric problems;
• Verification and validation of computer programs;
• Computational finance;
• Computational biology;
• Computational science in engineering.
• Big data and cloud resource management

It should be outlined that using mathematical models and scientific computations
leads to several difficult problems related to the reliability of the results. In the
recent decades, new methods have been developed to control errors that occur when
replacing a continual mathematical model by a discrete model and errors arising
in the process of computations (see, e.g., Neittaanmäki and Repin [13], Mali et al.
[12] and references cited therein). For well-verified mathematical models and clearly
defined data this method of scientific analysis is quite suitable.

SC is an essential part of the classical way of scientific analysis schematically
presented in Fig. 1. Human is at the center of the scheme. A researcher (or a team of
researchers) creates a Mathematical Model formulated in terms of a specially con-
structed virtual world of notion and symbols called Mathematics. Humans perform
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Fig. 1 Mathematical modeling

measurements/observations and develop computational methods for the mathemati-
calmodel.Also, they compare results obtained in physical and numerical experiments
and modify the model if it is required. In the classical scheme (Fig. 1), computer
simulation methods play an important but subsidiary role, while the most crucial part
related to the model is completely in hands of humans. The figure depicts one cycle
of a repeatable process, which starts with an original mathematical model based
on certain theoretical analysis. Certainly, the model can be specified and modified,
but this is exclusively a matter of the researcher. After the model has passed the
necessary verification, it can be used independently so that Mathematical Model and
Computations replace the Experiment.

The scientific method has been using for many centuries and will undoubtedly be
successfully used further. If we talk about complex and highly intellectual problems,
then at present and in the near future no competitors are foreseen for this modus
operandi. Nevertheless, there are many other important and interesting tasks for the
study (and use) of which a different approach can be applied.

2 Genetic Algorithms

Classical methods of scientific analysis (including mathematics, physics, and other
natural sciences) emerged in the process of technological development, which can
be viewed as a unique way of adaptation invented by humans. All other Earth species
use different adaptation methods focused on a strongly limited amount of problems
essential for survival and expansion. Nervous systems of lower animals are networks
trained to effectively address these basic issues: nutrition and reproduction. Despite
a relatively small size, they cope with the tasks quite effectively.
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It is not surprising that the idea of transferring the technology developed by life-
forms to manufactured objects came to many scientists and engineers. A science
called bionics (or biomimetics) studies possible applications of "technological so-
lutions" encompassed in biological objects to various engineering problems (see,
e.g., Ball [1]). A form of this idea in application to computational sciences is as
follows: Combine methods of computational mathematics with principles of natural
selection.

First works in this direction have appeared in the mid 60s. They were mostly
concerned with relatively simple optimization problems solved by the so–called
evolutionary algorithms (EA) (also called genetic algorithms). These methods use
selection principles analogous to those regulate successful evolution of spices (see,
e.g., Beyer et al. [3], Schwefel [19], Fogel et al. [7], Holland [9]). A genetic algorithm
operates with "populations" and generates a new population by modification of the
current population and selection of those "individuals" that are most acceptable with
respect to a certain selection principle. Each successive population is considered a
"new generation". The selection principle is defined such that only the "individuals"
that satisfy it can be considered as solutions of the problem studied. Hence, the core
of this method is an artificial system of competitors, which consists of mathematical
objects.

There are many different modifications of genetic algorithms that differ in how
a "generation" is changed (from simple stochastic disturbance to crossbreeding of
most successful individuals) and how a new set of individuals is formed. One of
the first areas of application was the problem of minimizing functions, where the
criterion for selection is the value of this function. Despite the large number of
different studies of a complete theory of evolutionary algorithms has not yet been
created. In the majority of cases, the algorithms are purely heuristic and the results
related to convergence and its rate are very rare. Moreover, EA are rather slow and
cannot compete with well-known deterministic algorithms (if for the corresponding
optimization problem such an algorithm is applicable).

Sometimes, EA are considered as a special class of probabilistic optimization
methods, which is worth trying only if no other method can be used. This viewpoint
seems to be too limited. There is no doubt that EA have a much wider scope than
optimization. From a mathematical point of view, they are closer to discrete dynam-
ical systems and have some typical features, e.g., a sequence of "populations" may
not converge to the desired solution (as in a deterministic algorithm) but fluctuates
around it. The latter behavior is typical for a dynamic system at the vicinity of an
attractor.

Invention of EA have made an important step towards AI technologies because
they solve complicated problems of very different origin without using deep math-
ematical models. Not being very effective for well-studied classes of optimization
problems, they form a basis for new methods commonly used in machine learning
of networks.
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3 AI and New Methods of Scientific Analysis

A strict and commonly accepted definition of artificial intelligence (AI) does not
yet exist. Sometimes it is understood that AI arises in systems that are able to find
acceptable solutions to complex problems in conditions of incomplete information.
Such type problems arise in the recognition of images, classification of objects, de-
cision making, and many other areas. The ability to analyze and solve such problems
determines the cognitive properties of the system. Therefore, sometimes the question
of the presence or absence of AP in a a system is associated with the level of its
cognitive abilities. Biological systems often have a high level of recognition in areas
where it is essential for survival.

Artificial neural networks (ANN) are inspired by ideas of biomimetics. (These
issues are examined in depth and in detail in Kriesel [10], Sutton and Barto [20]).
However, the question of where the border between intelligent and non-intelligent
systems lies remains open. If we talk about technical systems, then we can offer the
following feature, which allows us to select a systemwith AI: it is impossible (or very
difficult) to establishwhy such a systemgave a concrete answer.Moreover, oftenwhen
reprocessing exactly the same initial data, the system can give a somewhat different
answer. Computing systems without intellectual properties have completely different
properties: they act according to completely defined rules and always produce the
same result for the same input data.

Inmodern literature,methods for creating artificial systemswith some intelligence
(in the above sense) are called machine learning (ML). Image recognition and
inverse problems were the first classes of real life problems where these methods
have demonstrated high efficiency (see, e.g., Bubba et al. [4], Kutyniok et al. [11]
and the references cited in these publications). Recently, similar approaches have
been used as new tools of scientific computing and mathematical modelling, in
particular, for getting approximations of differential equations (see E et al. [6], He
et al. [8], Regazzoni et al. [15], Raissi and Karniadakis [14], Rudd and Ferrari [16],
Ruthotto and Haber [17], Trehan and Durlofsky [22], Wu et al. [23]), quantitative
analysis of energy type mathematical models in mechanics (Samaniego et al. [18], E
and Yu [5], Teichert et al. [21]), automatic differentiation (Baydin et al. [2]), and
optimization of a robotic system (Zohdi [24]).

Here, the principal scheme of data processing and generation of a "model" differs
essentially from the scheme in Fig. 1. In essence, human participation is limited to
three things. They are:

1. network structure and its size, i.e., the researcher defines a certain class of models
among which a suitable model must be found (e.g., in many cases the class of
deep neural networks (DNN) having multiple layers of neurones is used);

2. the quality criterion used for comparing the actual (correct) output data with the
data generated by a network. Typically, the quality criterion is a version of the
least squares principle (see, e.g., Bubba et al. [4], He et al. [8], Sutton and Barto
[20]);
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Fig. 2 Network modeling

3. the adaptation or optimization algorithm used in the iterative procedure of net-
work changing (methods of nonlinear programming and structural optimisation
are often used as the basic tools).

In the case of supervised machine learning method, we also need a sufficiently wide
set of actual data that can be used in the teaching process. Therefore, an important
component of this technology is the formation of such a set.

The scheme in Fig. 2 presents one cycle of the learning process: generator of
input data. Usually the learning process occurs fully automatically without human
intervention. As the result, we obtain a network, which structure and weights are
adapted to solve a particular problem. Thus, machine learning creates a model
presented in terms of the network structure.

A comparison of Figs 1 and 2 shows the fundamental differences between the
two methods of analysis. The main idea of the Mathematical Modelling (and its part
Scientific Computing) is: Correct mathematical model supplied with a proper com-
putationalmethod provides the required information about a process or phenomenon.
The main concept of ML is rather different: Using a sufficiently representative set of
correct input–output data create a network type model of a process or phenomenon.
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4 Open Problems and Development Prospect

AI methods are at the very beginning of their development and a unified theory
of them is yet to be created. We believe that such a theory will appear on the
crossroad of the discrete mathematics, group theory, representation theory, and
computational mathematics. Below we briefly discuss three open problems, which
have a fundamental meaning for understanding of what is AI and how to create AI
systems. To the best of our knowledge they are not solved. New results related to the
problems could form a basis of the forthcoming theory of AI.

Problem of Teaching
The learning process is usually related to the optimization of a non-linear functional
(set of functionals) having large dimension. Usually this functional is nonconvex
and has a complex structure with numerous local extrema and stationary points.
Therefore, known minimization algorithms (based on additional assumptions such
as, e.g., convexity or unimodality) may be not enough efficient and we do not know
how to guarantee that the teaching process used is indeed efficient and generates a
network with the structure close to the best possible (among other networks of the
same size).

Selection of a Suitable Class of Networks
One of the major tasks to be solved first of all is to set the structure and size of
the network, which we are going to train. The problem is how to adjust topological
structure/parameters of a network to the complexity of the problem in question. It
would be nice to have some quantitative a priori criteria able to define the amount
of layers and neurones depending on the amount of output parameters, variability of
the data, and desired accuracy.

Why a Neural Network Model Works?
If a network has a simple structure and consists of a small amount of elements, then
it is usually possible to understand why it is functioning correctly. However, simple
networks can match only simple problems. Future development of AI technologies
will inevitably lead to very complicated networks that will be created for analysis
of serious scientific (technological, medical, social) problems. It is quite probable
that some advanced AI systems will work more effectively than standard methods
of mathematical modelling. In this case, scientists will be interested to understand
why a particular AI system works better than their models. To answer this question
it is necessary to "decode" the information encompassed in the "black box" structure
and translate it into notions and terms available for humans. This problem does not
attract much attention now, but may become one of the fundamental problems in the
close future. We must admit that there is no guarantee that it will always be solvable.
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5 Conclusions

Machine learning uses various methods of scientific computing, but as technical
appliances only. In principle, "learning" and generation of an intellectual system
can be performed without SC (as, e.g., in the world of nature). Therefore, AI is
principally not reducible to scientific computing and cannot be viewed as its part. At
the same time, the development of AP methods cannot in any way lead to the fading
of interest in classical methods of computational mathematics.

Newly emerging methods of scientific analysis will use certain combination of
the classical mathematical modelling (for the parts related to well-defined and well-
studied subproblems) and artificial neural networks trained to simulate processes or
effects where there is no complete information or suitable theory. Therefore, compli-
cations of AI networks will stimulate the interest to certain classes of computational
methods. Moreover, they will generate new interesting problems for mathematical
and numerical analysis. We believe that hybridised AI-SC technologies (combining
the giant scientific potential of applied mathematics with huge potential of genetic
algorithms and machine learning methods) will shortly form the mainstream of the
technological development.
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