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Abstract
Generalized linear latent variable models (GLLVMs) are a class of methods for analyzing multi-response data which has
gained considerable popularity in recent years, e.g., in the analysis of multivariate abundance data in ecology. One of the main
features of GLLVMs is their capacity to handle a variety of responses types, such as (overdispersed) counts, binomial and
(semi-)continuous responses, and proportions data. On the other hand, the inclusion of unobserved latent variables poses a
major computational challenge, as the resulting marginal likelihood function involves an intractable integral for non-normally
distributed responses. This has spurred research into a number of approximation methods to overcome this integral, with
a recent and particularly computationally scalable one being that of variational approximations (VA). However, research
into the use of VA for GLLVMs has been hampered by the fact that fully closed-form variational lower bounds have only
been obtained for certain combinations of response distributions and link functions. In this article, we propose an extended
variational approximations (EVA) approach which widens the set of VA-applicable GLLVMs dramatically. EVA draws
inspiration from the underlying idea behind the Laplace approximation: by replacing the complete-data likelihood function
with its second order Taylor approximation about the mean of the variational distribution, we can obtain a fully closed-form
approximation to the marginal likelihood of the GLLVM for any response type and link function. Through simulation studies
and an application to a species community of testate amoebae, we demonstrate how EVA results in a “universal” approach to
fitting GLLVMs, which remains competitive in terms of estimation and inferential performance relative to both standard VA
(where any intractable integrals are either overcome through reparametrization or quadrature) and a Laplace approximation
approach, while being computationally more scalable than both methods in practice.

Keywords Generalized linear latent variable models · Laplace approximation · Multi-response data · Multivariate abundance
data · Ordination · Variational approximations

1 Introduction

In many scientific disciplines, there is a growing need to pro-
cess and analyze multi-response or multivariate data, with a
crucial element being the need to take into account the under-
lying structural relationships between the response variables
themselves. A prime example of this comes from community
ecology, where researchers analyze multivariate abundance
data to establish relationships between interacting plant and
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animal species and the various processes driving their joint
distributions (Warton et al. 2015, 2016; Nabe-Nielsen et al.
2017; Ovaskainen et al. 2017; Ovaskainen and Abrego 2020;
Wagner et al. 2020). Multivariate data can naturally be rep-
resented as an n × m matrix Y , where element yi j denotes
the observation of response j = 1, . . . ,m recorded at obser-
vational unit i = 1, . . . , n. The types of responses can vary
widely, for instance in ecology we may record binary ’pres-
ence/absence’ responses, overdispersed (and occasionally
underdispersed) counts, semi-continuous data, e.g., biomass
which is non-negative and has a spike at zero, and proportions
data between zero and one. With such a variety of response
types, it is important that a statistical modeling approach
be able to handle these, and account for their associated
mean-variance relationships. Discrete and semi-continuous
responses usually have variances that are strongly related to
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their mean, e.g., the variance is a quadratic or power function
of themean. Ignoring this relationship canyield tomisleading
inferential results and confounding location and dispersion
effects in ordination (Warton and Hui 2017).

Over the past two decades, generalized linear latent vari-
able models (GLLVMs, Skrondal and Rabe-Hesketh 2004)
have emerged as a powerful class of methods for analyz-
ingmultivariate data capable of handling the aforementioned
variety of response types through an appropriate distribu-
tional assumption (Warton et al. 2015; Ovaskainen and
Abrego 2020). In GLLVMs, the mean response is mod-
eled as a function of a set of underlying latent variable
values or scores ui = (ui1, . . . , uip)ᵀ, along with any mea-
sured predictors as appropriate. By including only a small
number p � m of latent variables, GLLVMs offer a par-
simonious way of modeling between-response correlations,
which are not accounted for by the predictors, through rank-
reduction. Furthermore, the latent variables themselves may
posses some interpretation, e.g., as unobserved measure of
traits such as a person’s intelligence or anxiety in psychol-
ogy (Moustaki and Knott 2000), and as a set ordination axes
describing different sites by their species composition in
ecology (Hui et al. 2015; Damgaard et al. 2020; van der Veen
et al. 2021).

Although it is a powerful approach, in practice fit-
ting GLLVMs remains a computationally burdensome task.
Focusing on likelihood-based estimation, the missing latent
variables need to be integrated out, and this results in a
marginal likelihood function which lacks a tractable solution
except in special cases such as normally distributed responses
with the identity link function. This computational challenge
has spurred research into several approximation schemes to
overcome the integral, with popular ones being variations of
the Expectation-Maximization algorithm (Wei and Tanner
1990), Laplace approximations (LA) and quadrature meth-
ods (Huber et al. 2004; Bianconcini and Cagnone 2012; Niku
et al. 2017), and more recently variational approximations
(VA, Hui et al. 2017; Niku et al. 2019a; Zeng et al. 2021)
which we focus on in this article. For fitting GLLVMs, VA
has been shown to be computationally more efficient and
scalable than LA and quadrature, and in some situations can
also be more stable (Niku et al. 2019a). On the other hand,
unlike LA and other approaches such as Bayesian Markov
Chain Monte Carlo (MCMC) sampling, the application of
VA to GLLVMs has been hampered by its relative lack of
generalizability. That is, although VA can in principle be
applied to any type of GLLVMs (and mathematically, VA
does not require a fully closed-formed approximation), the
resulting approximation may nevertheless be of little prac-
tical use. That is, for computational efficiency we desire a
fully or very close to fully closed-form approximation to the
marginal likelihood for as many forms of GLLVMs as possi-
ble. As an example, consider the case of Bernoulli distributed

responses. We require using a probit link function in order to
obtain a fully closed-formvariational lower bound, otherwise
for the canonical logit or other links such as complemen-
tary log-log link, additional approximations may need to be
taken (Ormerod and Wand 2012; Hui et al. 2017). For other
response types such as GLLVMs with the Tweedie distribu-
tion, no attempt has been made to apply VA (at least to our
knowledge) because little simplifications can be made that
facilitate a closed-form and thus a computationally scalable
approximation.

To address the above issue, we propose an extended
variational approximation (EVA) that allows for fast and
practically universal fitting of GLLVMs. EVA is inspired by
the underlying idea of LA: by replacing the complete-data
log-likelihood function with a second-order Taylor series
expansion about the mean of the variational distribution,
we can obtain a closed-form variational lower bound of the
marginal log-likelihood forany combination of response type
and link function. We demonstrate how this approach allows
VA to be applied to many more types of GLLVMs which are
commonly used in community ecology (say), thus greatly
extending its practical applicability. Furthermore, as with
the standard VA method, we can adapt well-known tools
to perform statistical inference with EVA, such as using
the observed information matrix for constructing confidence
intervals and hypothesis tests, model selection and residual
analysis techniques, and ordination and prediction coupled
with associated uncertainty quantification. An extensive sim-
ulation study and an application to data set of testate amoebae
counts recorded at peatland sites across Finland demonstrates
how EVA leads to a general approach for fitting GLLVMs.
Furthermore, these studies show that EVA is competitive
both in estimation and inferential performance, when com-
pared to standard VA (where intractable integrals are either
overcome through reparametrization or quadrature) and LA
approaches. Additionally, EVA is typically more computa-
tionally scalable than LA.

The rest of this article is structured as follows: Sect. 2 pro-
vides an overview of GLLVMand the standard VA approach.
Section3 introduces the extended variational approxima-
tion (EVA) approach. Section4 presents derivations of the
approximated log-likelihoods using EVA for several com-
monly applied types of GLLVMs. Section5 demonstrates
the competitive performance as well as computational effi-
ciency of EVA through a set of distinct numerical studies,
while Sect. 6 illustrates an application of EVA to a data set
of testate amoebae counts across Finland. Finally, potential
avenues of future research for EVA are discussed in Sect. 7.
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2 Generalized linear latent variable models

Let μi j = E(yi j |ui ) denote the conditional mean for
response j = 1, . . . ,m at observational unit i = 1, . . . , n,
given the vector of latent variables ui . We assume that
n observational units are independent of each other. The
GLLVM is characterized by the mean model

g(μi j ) = ηi j = αi + β0 j + xᵀ
i β j + uᵀ

i λ j , (1)

where g(·) is a known link function, xi = (xi1, . . . , xiq)ᵀ

denotes a q-vector of the observed predictors for unit i ,
and β j = (β j1, . . . , β jq)

ᵀ are the corresponding response-
specific regression coefficients. As an aside, note that μi j is
defined conditionally on xi as well as on ui , although for
ease of notation the former is suppressed. Next, β0 j denotes
the response-specific intercept, while αi is an optional unit-
specific parameter that can be treated either as a fixed or
random effect. In ecology,Warton et al. (2015) among others
suggested including αi to account for known differences in
sampling intensity (say) across sites. If needed, model selec-
tion tools can also be used to decide if αi should be treated
as fixed or random effect (Warton et al. 2015; Niku et al.
2019a). The p-vector λ j = (λ j1, . . . , λ j p)

ᵀ denotes a set of
response-specific loadings which quantify the relationship
between the mean response and the latent variables.

Turning to the latent variables, in (1), it is common to
assume that the ui ’s are independent vectors from a standard
multivariate normal distribution, ui ∼ Np(0, I p), where I p
denotes a p × p identity matrix. Here the zero mean fixes
the location and the unit variance fixes the scale of latent
variables to ensure parameter identifiability (Chapter 5, Skro-
ndal and Rabe-Hesketh 2004). Furthermore, if we consider
the m × p loading matrix formed by stacking the λ j ’s as
row vectors, which we denote as Λ = [λ1 . . . λm]ᵀ, then to
ensure that the parameters are identifiable it is common to
constrain the upper triangular component ofΛ to zero and the
diagonal elements to be positive. This ensures that the load-
ing matrix is not rotation invariant (Niku et al. 2017). Note
such constraints do not restrict the flexibility of the GLLVM:
specifically, the latent variable component uᵀ

i λ j in equation
(1) accounts for any residual correlation not accounted for
by the covariates xi , such that the residualm×m covariance
matrix on the linear predictor scale is given by Σ = ΛΛᵀ.
We thus see that GLLVMmodels the covariance between the
responses via rank-reduction, and the choice of the number
of latent variables p can vary depending on the aim of the
GLLVM, e.g., Warton et al. (2015) considered p = 1, 2, 3
for the purposes of ordination, while Tobler et al. (2019)
suggested larger values if the goal is to make inference on
the β j ’s while accounting for residual correlation between
species.

To complete the formulation of GLLVMs, we assume
that the responses (yi1, . . . , yim)ᵀ are conditionally inde-
pendent given the vector of latent variables ui . Specifically,
let Ψ = (αᵀ,φᵀ,β

ᵀ
0 ,β

ᵀ
1 , . . . ,β

ᵀ
m, vec(Λ)ᵀ)ᵀ denote the

vector of all model parameters in the GLLVM, where
α = (α1, . . . , αn)

ᵀ, β0 = (β01, . . . , β0m)ᵀ, and φ =
(φ1, . . . , φm)ᵀ denotes a vector of nuisance parameters
which are also used to characterize the conditional distri-
bution of the responses. These may be known a-priori or
may need to be estimated. Let u = (uᵀ

1 , . . . , uᵀ
n )ᵀ denote

the full np-vector of the latent variables. Then the complete-
data likelihood function for a GLLVM is defined as

L(Ψ ; u) =
n∏

i=1

⎛

⎝
m∏

j=1

f (yi j |ui ,Ψ )

⎞

⎠ f (ui )

= f ( y|u,Ψ ) f (u), (2)

where f (yi j |ui ,Ψ ) denotes the conditional distribution of
yi j and f (ui ) = Np(0, I p). As discussed previously, one
of the main strengths of GLLVM is the capacity to handle a
wide variety of response types, and this is done by selecting
an appropriate form for f (yi j |ui ,Ψ ); see Sect. 4 for some
examples of particular relevance in ecology. Also, while we
have assumed that all the yi j ’s follow the same distributional
form, this need not be the case and the developments of EVA
below can be straightforwardly extended to the case where
the m responses are of different types (e.g., Sammel et al.
1997).

Based on (2), we obtain the marginal likelihood function
by integrating over the random latent variables L(Ψ ) =∫

f ( y|u,Ψ ) f (u)du. Maximum likelihood estimates are
then calculated as argmaxΨ log L(Ψ ). However, optimizing
the marginal likelihood function presents a major computa-
tional challenge, as the integral does not possess a closed
form except for special cases such as when the yi j ’s are
normally distributed and g(·) is set to the identity link. To
overcome this, a variety of approximation approaches have
been proposed as reviewed in Sect. 1. One of the most recent
approaches, which we focus on in this article, is that of vari-
ational approximations.

2.1 Variational approximations

Variational approximations (VA) refers to a general class
of methods that originated in the machine learning liter-
ature, and were subsequently popularized in statistics by
Ormerod and Wand (2010) and Blei et al. (2017) among
others. Most of the research into VA has been that of
variational Bayes, i.e., approximating the joint posterior dis-
tribution of all parameters. However, in this article we focus
on likelihood-based estimation and approximations of the
marginal log-likelihood function instead. VA was proposed
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for likelihood-based estimation of generalized linear mixed
models initially by Ormerod andWand (2012), and has since
been studied and applied in various mixed models settings
(Siew and Nott 2014; Lee andWand 2016; Nolan et al. 2020)
and semiparametric regression including generalized addi-
tive models (Luts et al. 2014; Hui et al. 2018b). For GLLVM
specifically, VA was first proposed by Hui et al. (2017), and
has since been further studied by Niku et al. (2019a), van der
Veen et al. (2021), and Zeng et al. (2021), among others. Note
however that many of these developments have focused on a
limited number of response types and link functions.

The primary aim of variational approximation is to
develop a so-called variational lower bound to the marginal
log-likelihood function, also known as the VA log-likelihood
function. In the context of GLLVMs, this is developed as

log L(Ψ ) = log

(∫
f ( y|u,Ψ ) f (u) du

)

≥
∫

q(u) log

{
f ( y|u,Ψ ) f (u)

q(u)

}
du

� �(Ψ |q), (3)

where q(u) denotes the density of the assumed variational
distribution of the latent variables u, and equality holds if
and only if q(u) = f (u| y,Ψ ), i.e., the conditional distribu-
tion of the latent variables given the data. We refer readers
to Ormerod and Wand (2010) and references therein for a
more detailed explanation of (3). In general, �(Ψ |q) does
not posses a tractable form, and so in VA we typically fur-
ther assume that the variational distribution belongs to some
parametric family of distributions {q(u|ξ) : ξ ∈ Ξ} for a
set of variational parameters ξ . For GLLVMs in particular,
and given the form of the complete-data likelihood function
in (2), Hui et al. (2017) among others employed a mean-
field assumption and set q(u|ξ) = ∏n

i=1 qi (ui |ξ i ) where
qi (ui |ξ i ) = Np(ai , Ai ). That is, the variational distribution
of the latent variables for unit i is assumed to be multivari-
ate normal distribution with mean vector ai and covariance
matrix Ai . Hui et al. (2017) in fact showed that this choice
of q(·) was optimal in a Kullback–Leibler divergence sense,
among the family of multivariate normal distributions; see
also Wang and Blei (2019) for more details on the choice of
optimal variational distributions. Applying this form of the
variational distribution to (3), we obtain

�(Ψ , ξ |q) =
∫

q(u|ξ) log f ( y|u,Ψ ) du

+
∫

q(u|ξ) log

{
f (u)

q(u|ξ)

}
du

=
∫

q(u|ξ) log f ( y|u,Ψ ) du

+ 1

2

n∑

i=1

{
log det(Ai ) − aᵀ

i ai − Tr(Ai )
}
, (4)

where the last line follows from well-known formulas relat-
ing to the entropy of a multivariate normal distribution, and
constants with respect to the model and variational parame-
ters are omitted. By treating (4) as the new objective function
and solving

(Ψ̂ , ξ̂) = argmax
Ψ ,ξ

�(Ψ , ξ |q),

we obtain VA estimates of both the model parameters Ψ̂

and the variational parameters ξ̂ . Indeed, once the GLLVM
is fitted using VA, the estimated variational distributional
distributions q̂i (ui ) = Np(âi , Âi ) are then an approximation
of f (u| y,Ψ ).

As an approach, VA (and variational Bayes) has been
shown in many contexts to provide a strong balance between
estimation accuracy andcomputational efficiency/scalability;
seeOrmerod andWand (2010) andNiku et al. (2019a) among
manyothers for a variety of simulations, aswell as the asymp-
totic theory of Hall et al. (2011) and Wang and Blei (2019)
and references therein. On the other hand, to facilitate this
computational efficiency, we ideally require a closed-form
expression for the first term on the right hand side of (4). In
general though, this is not guaranteed, and so the develop-
ment of VA for GLLVMs has so far been limited to selected
response distributions and/or link functions, restricting the
wider applicability of the approach.

3 Extended variational approximations

As reviewed above, one drawback of the standard VA
approach for GLLVMs is that the exact formulation of
the variational lower bound in (4) depends heavily on the
assumed distribution for the responses f (yi j |ui ,Ψ ) and
the associated link function g(·). A fully tractable form is
not always available, even with some of the more popular
response-link combinations. A prime example is the case
of Bernoulli distributed responses, where the probit link
function is known to lead to fully closed-form variational
lower bound, but the canonical logit link or the complemen-
tary log-log link do not (and has led to various additional
approximations beingmade, e.g., Blei andLafferty 2007;Hui
et al. 2018b). Another example is GLLVMwith Tweedie dis-
tributed responses, where to our knowledge VA does not lead
to a fully-closed form approximation with the commonly-
used log link function. This means alternate approaches such
as LA have to be used instead in such settings (Niku et al.
2017).
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To overcome the above issues and further broaden the
applicability of VA as computationally efficient approach to
fitting GLLVMs, we propose an approach called extended
variational approximation or EVA. Themethod is similar that
of delta method variational inference as proposed by Wang
and Blei (2013), although to our knowledge this article is the
first to apply it for GLLVMs. The idea of EVA is similar to
and indeed inspired by that of theLA.Specifically,we replace
the complete-data log-likelihood function log L(Ψ ; u) by
its second-order Taylor expansion with respect to the latent
variables u. In the case of GLLVMs, because the latent
variables are assumed to be normally distributed, then we
need only perform the expansion on the log-density of the
responses log f ( y|u,Ψ ). Importantly, in EVA this expan-
sion is taken around the mean of the variational distribution,
i.e., a = (aᵀ

1 , . . . , aᵀ
n )ᵀ, which serves as a natural center

point of the approximation.

log f ( y|u,Ψ )

≈ log f ( y|a,Ψ ) + (u − a)ᵀ
∂ log f ( y|u,Ψ )

∂u

∣∣∣∣
u=a

+ 1

2
(u − a)ᵀH(a,Ψ )(u − a),

where H(a,Ψ ) = ∂2 log f ( y|u,Ψ )/∂u∂uᵀ∣∣
u=a. By sub-

stituting the above expansion into (4) and noting that
∫
(u −

a)ᵀ ∂ log f ( y|u,Ψ )/∂u
∣∣
u=aq(u|ξ) du = 0 as

Eq(u)(u) = a, we obtain the EVA log-likelihood for
GLLVMs,

�(Ψ , ξ)

≈
∫ {

log f ( y|a,Ψ ) + (u − a)ᵀ
∂ log f ( y|u,Ψ )

∂u

∣∣∣∣
u=a

+ 1

2
(u − a)ᵀ H(a,Ψ ) (u − a)

}
q(u|ξ)du

+ 1

2

n∑

i=1

{
log det(Ai ) − aᵀ

i ai − Tr(Ai )
}

=
n∑

i=1

{ m∑

j=1

log f (yi j |ai ,Ψ ) + 1

2
Tr(H i (ai ,Ψ )Ai )

}

+ 1

2

n∑

i=1

{
log det(Ai ) − aᵀ

i ai − Tr(Ai )
}

� �EVA(Ψ , ξ), (5)

where

H i (ai ,Ψ ) = ∂2
m∑

j=1

log f (yi j |ui ,Ψ )/∂ui∂u
ᵀ
i

∣∣
ui=ai

.

Likelihood-based EVA estimates for both model and varia-
tional parameters are obtained by maximizing (5),

(Ψ̂ EVA, ξ̂EVA) = argmax
Ψ ,ξ

�EVA(Ψ , ξ). Importantly, there

are no integrals in �EVA(Ψ , ξ), meaning its maximization
can be done using generic optimization approaches (say).
This allows EVA to be applied to all response types and link
functions of GLLVMs (assuming an appropriate form for the
conditional distribution of the former), and in Sect. 4 we will
provide some examples of applying EVA to common types
of GLLVMs seen in ecology among other disciplines. At the
same time, EVA inherits the computational efficiency and
scalability of the standard VA approach, as will be seen in
the simulation studies in Sect. 5.

3.1 Inference and ordination

Similar to the standard VA method for GLLVMs (e.g., Hui
et al. 2017), we can adapt many of the existing likelihood-
based approaches to statistical inference for EVA.We discuss
some of these in this section.

First, after fitting we can calculate approximate standard
errors for the estimates of the model parameters based on the
observed information matrix. That is, we first calculate

I(Ψ̂ EVA, ξ̂EVA) = − ∂2�EVA(Ψ , ξ)

∂(Ψ , ξ)∂(Ψ , ξ)T

∣∣∣∣
Ψ =Ψ̂ EVA, ξ=ξ̂EVA

.

Then the relevant sub-block of I(Ψ̂ EVA, ξ̂EVA)−1 corre-
sponding to the model parameters, denoted here as
I(Ψ̂ EVA, ξ̂EVA)−1

Ψ , leads to approximate standard errors for

Ψ̂ EVA. Wald-based confidence intervals and corresponding
hypothesis tests for the model parameters can then be con-
structed. Alternatively, likelihood-ratio tests and correspond-
ing confidence intervals can also be developed based on the
(maximized value of the) EVA log-likelihood �EVA(Ψ , ξ).

One very popular application of GLLVMs, particularly in
ecology, is that of model-based ordination. Briefly, ordina-
tion refers to a class of dimension-reduction methods which
aim to visualize the main patterns between different sites
in terms of their species composition on a low-dimensional
space, e.g., in the form of a scatterplot (Legendre and Legen-
dre 2012). For EVA, we can use the estimated mean vectors
of the variational distribution, âi , i = 1, . . . , n, as point
predictions of the latent variables ui , and these can be plot-
ted as a means of model-based unconstrained or residual
ordination (Warton et al. 2015; van der Veen et al. 2021).
Similar to Hui et al. (2017), âi from EVA can be regarded as
variational version of the empirical Bayes predictor andmax-
imum a-posteriori predictor (MAP) of the latent variable. A
biplot can also be constructed by including the estimated (and
scaled) loadings λ̂ j , j = 1, . . . ,m, on the same ordination
plot. Next, regarding uncertainty quantification, note that the
estimated covariance matrices Âi , i = 1, . . . , n, provide an
estimate of the posterior covariance of the latent variables,
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and can be thus used to obtain prediction regions for the
latent variables. However, these tend to underestimate the
true covariance as they fail to account for the uncertainty of
the estimated parameters (Booth and Hobert 1998; Zheng
and Cadigan 2021). To overcome this, we can develop a
variational analogue of conditional mean squared errors of
prediction (CMSEP, Booth and Hobert 1998). Specifically,
we can approximate the CMSEP as

CMSEP(âi ;Ψ , yi ) = E
{
(âi − ui )(âi − ui )ᵀ| yi

}

≈ Âi + Q̂ I(Ψ̂ EVA, ξ̂EVA)−1
Ψ Q̂

ᵀ

where Q̂ = Q(Ψ̂ EVA, ξ̂EVA) and

Q(Ψ , ξ) =
(

∂2�EVA(Ψ , ξ)

∂ai∂a
ᵀ
i

)−1 (
∂2�EVA(Ψ , ξ)

∂ai∂Ψ ᵀ

)
.

Prediction regions can then be constructed for the latent vari-
ables usingCMSEP(âi ;Ψ , yi ) as the approximate standard
error. Another option for obtaining the prediction regions
would be to apply bootstrap procedures, as illustrated inDang
and Maestrini (2021).

Finally, using the EVA estimates we can also perform
residual analysis to assess whether there are major viola-
tions in the assumptions underlying the GLLVM, in much
the same way as with other common regression models. For
instance, we can calculate Dunn-Smyth residuals (Dunn and
Smyth 1996) to construct residual diagnostic plots such as
residual versus fitted values and normal quantile-quantile
plots, where these residuals are defined as rq,i j = Φ−1(ci j ),
with ci j = zi j Fi j (yi j ) + (1− zi j )F

−
i j (yi j ), and Fi j denoting

the cumulative distribution function of the response variable,
F−
i j denoting the limit as Fi j is approached from the nega-

tive side, and zi j denoting a random variable generated from
the standard uniform distribution. If the underlying assump-
tions of the GLLVM are reasonably well satisfied, then the
Dunn-Smyth residuals should follow a standard normal dis-
tribution.

The above describes only some of the various statistical
inferences and applications that a practitioner may wish to
draw from a GLLVM. There are many others possible, e.g.,
model selection using information criteria or regularization
methods (Hui et al. 2018a; van der Veen et al. 2021), and the
main point we wish to highlight is that all of these tools are
adaptable to the setting where EVA is used to fit GLLVMs.
Indeed, by adapting such tools and studying their theoreti-
cal properties in avenues of future research, it will further
strengthen the universality of EVA as an approach to estima-
tion and inference for GLLVMs.

We conclude this section with a short note regarding com-
putation. We implemented EVA using a combination of R
and in C++ via the package TMB (Kristensen et al. 2016).

That is, the (negative) EVA log-likelihood for the relevant
GLLVM was first written in C++, after which it is compiled
by TMB, which employs automatic differentiation, to produce
R functions to calculate the negative log-likelihood, the score,
and potentially the Hessian matrix. We then pass these to a
generic optimization procedure such asoptim to optimize the
EVA log-likelihood and calculate the observed information
matrix. The CMSEP can be calculated in a similar manner.
The full implementation of EVA is available as part of the
package gllvm (Niku et al. 2019b, 2021). As starting values
for EVA, we use the proposal in Section 3.2 in Niku et al.
(2019a).

4 EVA for some common types of GLLVMs

In this section, we present specific forms of the EVA log-
likelihood for combinations of responsedistributions and link
functions commonly used with GLLVMs, especially in the
context of community ecology. We begin by formulating the
EVA log-likelihoods where the responses yi j are assumed to
come from the one-parameter exponential family of distri-
butions. All proofs are provided in “Appendix A”.

Theorem 1 For the GLLVM with mean model given by (1),
let the conditional distribution of the responses be part of the
exponential family,
f (yi j |ui ,Ψ ) = exp

{
h j (yi j )b j (μi j ) − c j (μi j ) + d j (yi j )

}

for known functions h j (·), b j (·), c j (·) and d j (·). If b j (·)
and c j (·) as well as the link function g(·) are at least twice
continuously differentiable with g′(μi j ) �= 0, then the EVA
log-likelihood in (5) takes the closed-form

�EVA(Ψ , ξ) =
n∑

i=1

m∑

j=1

log f (yi j |ai ,Ψ )

+ 1

2

n∑

i=1

{
log det(Ai ) − aᵀ

i ai − Tr(Ai )
}

+ 1

2

n∑

i=1

m∑

j=1

{
h j (yi j )b′′

j (μ̃i j ) − c′′
j (μ̃i j )

(g′(μ̃i j ))2
λ

ᵀ
j Aiλ j

}

− 1

2

n∑

i=1

m∑

j=1

{
h j (yi j )b′

j (μ̃i j ) − c′
j (μ̃i j )

(
g′(μ̃i j )

)3
/g′′(μ̃i j )

λ
ᵀ
j Aiλ j

}
,

where μ̃i j = g−1(η̃i j ) = g−1(αi +β0 j + xᵀ
i β j + aᵀ

i λ j ).

When the canonical link is used, the last two terms in the
EVA log-likelihood can be further simplified as follows.

Corollary 1 If the link function is taken to be the canonical
link function, i.e., g ≡ b, then the EVA log-likelihood reduces
to
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�EVA(Ψ , ξ) =
n∑

i=1

m∑

j=1

log f (yi j |ai , Ψ )

+ 1

2

n∑

i=1

{
log det(Ai ) − aᵀ

i ai − Tr(Ai )
}

+ 1

2

n∑

i=1

m∑

j=1

{
b′′
j (μ̃i j )c′

j (μ̃i j ) − b′
j (μ̃i j )c′′

j (μ̃i j )

(b′
j (μ̃i j ))3

λ
ᵀ
j Aiλ j

}
.

From Theorem 1, we see that EVA shares the same
term log det(Ai ) − aᵀ

i ai − Tr(Ai ) as the standard VA log-
likelihood for GLLVMs (Hui et al. 2017; Niku et al. 2019a),
but also involves computation of a Hessian term based on
the conditional distribution of the response (Huber et al.
2004). As can be seen from Theorem 1 and Corollary 1,
this Hessian term reduces to a sum of nm scalar terms for
responses with conditional distributions part of the expo-
nential family. Calculation of this sum, together with the
terms log det(Ai ), constitute the leading factors for the
(asymptotic) computational complexity of the evaluation of
�EVA(Ψ , ξ), meaning the EVA log-likelihood has complexity
of order O(np3 + nmp2).

4.1 Overdispersed counts

Multivariate count data are one of the most common appli-
cations for GLLVMs, with a starting choice often being
to assume that counts follow a Poisson distribution with
the canonical log link. However, in many settings such as
community ecology and microbiome data analysis, the Pois-
son model is often inappropriate due to the prevalence of
overdispersion. Therefore, a popular alternative is to con-
sider negative binomial GLLVMs with the log link, where

f (yi j |ui ,Ψ ) = Γ (yi j + φ−1
j )

Γ (φ−1
j )yi j !

{
φ jμi j

}yi j
{
φ jμi j + 1

}yi j+φ−1
j

and φ j > 0 is the response-specific overdispersion param-
eter. The mean-variance relationship is quadratic in form,
Var(yi j ) = μi j + φ jμ

2
i j , making it suitable for handling

some degree of overdispersion.
Previously, Hui et al. (2017) considered negative bino-

mial GLLVMs using the standard VA approach, but had to
reparametrize thenegative binomial distribution as aPoisson-
Gamma mixture in order to derive closed-form variational
lower bound (see also Zeng et al. 2021). With EVA however
this is not necessary, and we can explicitly use the form pre-
sented above as follows. For fixed φ j , the negative binomial
distribution is part of the exponential family. Therefore we
can apply Theorem 1 to straightforwardly show that EVA

log-likelihood takes the following closed form for negative
binomial GLLVMs:

�EVA(Ψ , ξ) =
n∑

i=1

m∑

j=1

{
logΓ

(
yi j + 1

φ j

)
− logΓ

(
1

φ j

)

− 1

φ j
log(φ j ) + yi j η̃i j −

(
yi j + 1

φ j

)
log

(
μ̃i j + 1

φ j

) }

−
n∑

i=1

m∑

j=1

{
μ̃i j (1 + φ j yi j )

2(1 + φ j μ̃i j )2
λ

ᵀ
j Aiλ j

}

+ 1

2

n∑

i=1

{
log det(Ai ) − aᵀ

i ai − Tr(Ai )
}
,

where μ̃i j = exp(η̃i j ) = exp(αi + β0 j + xᵀ
i β j + aᵀ

i λ j ). In
practice, the dispersion parameters φ j are estimated as a part
of the modeling process.

4.2 Binary responses

For binary responses, e.g., presence-absence data in ecology,
we can assume that yi j follows a Bernoulli distribution, i.e.,
f (yi j |ui ,Ψ ) = μ

yi j
i j {1 − μi j }1−yi j . The Bernoulli distribu-

tion belongs to the exponential family meaning we can apply
Theorem 1 to obtain the EVA log-likelihood irrespective of
the link function assumed. Below, we discuss two of themost
commonly used links used.

BernoulliGLLVMswith the canonical logit link, logit(μi j ) =
log{μi j/(1−μi j )} = ηi j , presents a good example of a situ-
ation where the standard VA approach fails to provide a fully
closed-form approximation of the log-likelihood function.
Further approximations are required in order to produce a
tractable form (e.g., Blei andLafferty 2007;Hui et al. 2018b).
By contrast, for EVA we can directly apply Corollary 1 and
obtain the following closed-form EVA log-likelihood func-
tion for binary GLLVMs with the logit link:

�EV A(Ψ , ξ) =
n∑

i=1

m∑

j=1

[
yi j η̃i j − log{1 + exp(η̃i j )}

]

−
n∑

i=1

m∑

j=1

{
exp(η̃i j )

2{1 + exp(η̃i j )}2 λ
ᵀ
j Aiλ j

}

+ 1

2

n∑

i=1

{
log det(Ai ) − aᵀ

i ai − Tr(Ai )
}
,

where η̃i j = αi + β0 j + xᵀ
i β j + aᵀ

i λ j .
On the other hand, to circumvent the above issues with

using the logit link, Ormerod and Wand (2010) instead con-
sidered binary GLLVMs using the probit link Φ−1(μi j ) =
ηi j , where Φ is the cumulative distribution function of the
standard normal distribution. Ormerod and Wand (2010)
and Hui et al. (2017) showed that standard VA in con-
junction with using the probit link can yield a fully-closed
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form approximation based on augmenting the complete-data
likelihood function with an intermediate standard normal
random variable and employing the dichotomization trick.
By contrast, with EVA binary GLLVMs using the probit link
function also follow directly from applying Theorem 1. This
leads to the following closed-form EVA log-likelihood func-
tion:

�EV A(Ψ , ξ)

=
n∑

i=1

m∑

j=1

{
(yi j log

(
μ̃i j

) + (1 − yi j ) log
(
1 − μ̃i j

)}

+ 1

2

n∑

i=1

m∑

j=1

φ(η̃i j )
2

(
2μ̃i j yi j − yi j − μ̃2

i j

μ̃2
i j (1 − μ̃i j )2

)
λ

ᵀ
j Aiλ j

+ 1

2

n∑

i=1

m∑

j=1

φ′(η̃i j )
(

yi j − μ̃i j

μ̃i j (1 − μ̃i j )

)
λ

ᵀ
j Aiλ j

+ 1

2

n∑

i=1

{
log det(Ai ) − aᵀ

i ai − Tr(Ai )
}
,

where φ(η̃i j ) and φ′(η̃i j ) denote the density function of the
standard normal distribution and its first derivative, respec-
tively, evaluated at η̃i j = αi + β0 j + xᵀ

i β j + aᵀ
i λ j .

The above results extend straightforwardly to the case of
binomial responseswithmore than one trial. Also, usingThe-
orem1EVAcan be easily adapted to other link functions such
as the complementary log-log link.

4.3 Semi-continuous responses

One type of semi-continuous responses frequently encoun-
tered in community ecology is biomass. Based on recording
the total weight of a species at a site, biomass data are non-
negative and continuous, usually with a large spike at zero
as many species may only be detected at a small number of
sites. To model such responses, the Tweedie distribution is
often used (Foster and Bravington 2013) which, for a power
parameter 1 < ν < 2, can also be parameterized as a com-
pound Poisson-Gamma distribution. Its log-density can be
written piecewise as follows:

log f (yi j |ui ,Ψ ) = − μ2−ν
i j

φ j (2 − ν)
,

when yi j = 0, and

log f (yi j |ui ,Ψ )

= logW (yi j , φ j , ν) + 1

φ j

(
yi jμ

1−ν
i j

1 − ν
− μ2−ν

i j

2 − ν

)

− log(yi j ),

when yi j > 0. Here, W (yi j , φ j , ν) is a generalized Bessel
function whose evaluation involves an infinite sum and needs
to be evaluated numerically, for example using the method
described in Dunn and Smyth (2005). The Tweedie distribu-
tion admits a power-form mean-variance relationship that is
appropriate for biomass data, i.e., Var(yi j |ui ,Ψ ) = φ jμ

ν
i j ,

where φ j > 0 is a response-specific dispersion parameter,
and the power parameter is also usually assumed to be com-
mon across responses (Foster and Bravington 2013). A log
link function is commonly used with the Tweedie distribu-
tion.

To our knowledge, applying standard VA to Tweedie
GLLVMs produces no closed-form approximation to the
marginal log-likelihood, and as a result limited implemen-
tation has taken place, with practitioners instead relying on
other approaches such as the LA. By contrast, it is straight-
forward to apply EVA to the Tweedie GLLVMs with the log
link: the second order derivative of log f (yi j |ui ,Ψ ) with
respect to ui is straightforward to calculate, after which we
can substitute these into (5) to produce a closed-form EVA
log-likelihood function. We provide details of these deriva-
tions in “Appendix A”.

4.4 Proportions data

Finally, we consider proportion or percentage data lying in
the open unit interval (0, 1). In the context of ecology, these
responses may represent the percent cover of plant species at
a site (Damgaard and Irvine 2019). Another example comes
from social statistics, where we may consider the propor-
tion of household income that is spent on food (Ferrari and
Cribari-Neto 2004). A common choice for analyzing such
multivariate proportions data is to use a beta distributed
GLLVM, where the log-density of the beta distribution con-
ditional on the latent variables is written as

log f (yi j |ui ,Ψ )

= logΓ (φ j ) − logΓ (μi jφ j ) − logΓ
{
(1 − μi j )φ j

}+
(μi jφ j − 1) log(yi j ) + {

(1 − μi j )φ j − 1
}
log(1 − yi j ),

with φ j > 0 denoting a response-specific dispersion param-
eter, and the correspondingmean-variance relationship given
by Var(yi j |ui ,Ψ ) = μi j (1 − μi j )/(1 + φ j ).

As is the case with the Tweedie distribution, implement-
ing the standard VA approach to a beta GLLVM fails to admit
a closed-form approximation to the marginal log-likelihood.
On the other hand, and if we assume the logit link func-
tion (say), then EVA can be straightforwardly applied by
calculating the second order derivative of log f (yi j |ui ,Ψ )

with respect to ui , and substituting it into (5) to produce a
closed-form EVA log-likelihood function; see “Appendix A”
for details.
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We conclude this section by pointing out that the above
only covers a select set of response distributions and link
functions which may be used as part of fitting GLLVMs to
multivariate data, motivated strongly by applications in com-
munity ecology. Importantly, it serves to demonstrate that
EVA offers a potentially more universal approach to vari-
ational estimation and inference for GLLVMs, and future
computational research will look to expand the implemen-
tation of EVA even more, e.g., zero-inflated and hurdle type
distributions, and cases where the m responses are of differ-
ent types.

5 Simulation studies

We conduct an extensive simulation study to evaluate the
performance and computational efficiency of EVA for esti-
mation and inference in GLLVMs, compared to other
likelihood-based methods. In particular, we compared EVA
against the standard VA method (when this is available) and
the LA method, both of which are already available in the
package gllvm (Niku et al. 2019b). Additionally, for some of
the simulation settings we included a version of VA which
employs Gauss-Hermite quadrature (Davis and Rabinowitz
2007) to overcome any intractable integrals, whichwe denote
as VA-GH, and an alternative Bayesian MCMC sampling
approach based on the R package boral (Hui 2016). The
simulation setups below were adapted from those previously
proposed by Niku et al. (2019a).

Two main simulation settings were considered, with the
intention of covering both the scenarios where m � n, i.e.,
when the number of sites is much larger than the number
of species, and those where m 
 n, i.e., when the num-
ber of species is much larger than the number of sites.
In the first setting, we generated multivariate data with
four possible response types (overdispersed counts, binary,
semi-continuous, and proportional data) based on GLLVMs
fitted to the testate amoebae data (Daza Secco et al. 2018)
considered in Sect. 6. The true GLLVMs included two envi-
ronmental predictors from the testate amoebae data, and we
simulated multivariate data such that the number of obser-
vational units n increased incrementally while the number
of responses m remain fixed (consistent with the ratio m/n
being relatively small in this dataset).More details and results
of this setting are presented in Sects. 5.1 and 5.2 below.

In the second simulation setting, we generated multivari-
ate data again with the above four possible response types,
but this time based on GLLVMs fitted to a dataset containing
species of birds recorded across Borneo (Cleary et al. 2005).
Unlike in the first simulation setting, here we increased the
number of responses m while keeping the number of obser-
vational units n fixed; this was consistent with the original
data itself, where the ratio m/n was relatively large. We pro-

vide details of the simulation design as well the results in
“Appendix B”, and include an overall summary of the results
in Sect. 5.1 below.

To assess performance, all methods were compared in
terms of: (1) the empirical bias and the empirical root mean
squared error (RMSE) of the regression coefficients and the
dispersion parameters (if appropriate), where the averaging is
across both the number of simulated datasets aswell as across
the m responses; (2) the corresponding empirical coverage
probability of 95%Wald confidence interval (CI), again aver-
aged across both the number of simulated datasets as well as
across the m responses; (3) the Procrustes error between the
predicted and true n× pmatrices of latent variables, and sim-
ilarly between the estimated and truem× p loadingmatrices.
The Procrustes error is a commonly used measure of eval-
uating the accuracy of ordinations (Peres-Neto and Jackson
2001); (4) average computation time in seconds. All of the
compared likelihood-based methods used similar stating val-
ues, and were implemented in a similar fashion via the TMB
package.

5.1 Setting 1

Multivariate data were simulated from GLLVMs fitted to
the testate amoebae data detailed in Sect. 6 as follows. The
original testate amoebae data consisted of count records
of m = 48 species at n = 263 sites across Finland. All
GLLVMs fitted to the data included q = 2 environmental
covariates (water pH and temperature) and p = 2 latent vari-
ables. No row effects αi were included. Using the parameter
estimates from these GLLVMs as the true parameter values,
we then simulated datasets with differing numbers of obser-
vational units n while keeping the number of responses fixed
to the original size, i.e., m = 48. This was accomplished
by randomly subsampling rows from the original data and
the predicted matrix latent variables. We varied the number
of units as n = 50, 120, 190 and 260, noting that the full
dataset contained 263 sites. We simulated 1000 datasets for
each value of n.

Datasets with four possible response types were gener-
ated, following Sects. 4.1, 4.2, 4.3, 4.4.

1. Overdispersed counts simulated fromanegative binomial
GLLVMwith log link functionfitted to the original testate
amoebae data using the standard VA approach. For each
simulated dataset, we then compared negative binomial
GLLVMs fitted using EVA to those fitted using standard
VA,LA,VA-GHandMCMC.ForVA-GH,we used either
5 or 9 quadrature points. ForMCMC, we used the default
values from the boral package.

2. Binary responses simulated from Bernoulli GLLVMs fit-
ted to a presence-absence version of the original testate
amoebae data (formed by setting all positive counts to
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one). These binary GLLVMs used either a probit link
(fitted using the standard VA approach) or the logit
link (fitted using the LA approach). For each simulated
dataset, we then compared binary GLLVMs fitted using
EVA to those fitted with standard VA or LA. Standard
VA was excluded from the simulations involving a logit
link binary GLLVM, as per the discussion in Sect. 4.2. In
place of VA, comparisons involving the logit link used
VA-GH with either 5 or 9 quadrature points.

3. Semi-continuous responses simulated from a Tweedie
GLLVM with log link fitted to the original testate amoe-
bae count data (after square root transform of the counts),
using the LA approach. For each simulated dataset, we
then compared Tweedie GLLVMs fitted using EVA to
those fitted using LA. Standard VA was again excluded
this setting, as per the discussion in Sect. 4.3.

4. Proportions data simulated from a betaGLLVMusing the
logit link.As true parameter values for this truemodel,we
used the parameters of the binary GLLVMwith logit link
fitted to the presence-absence version of the original tes-
tate amoebae data discussed above. Additionally, the true
values of the response-specific dispersion parameters φ j

were drawn independently from the uniform distribution
Unif(1, 3). For each simulated dataset, we then compared
beta GLLVMs fitted using EVA to those fitted using LA.
Standard VA was again excluded this setting, as per the
discussion in Sect. 4.4.

5.2 Simulation results

We discuss simulation results for each of the four response
types separately, purposefully placing greater emphasis
on the cases of negative binomial responses and binary
responses using the logit link seeing as they are possibly
the two commonly applied version of GLLVMs in commu-
nity ecology (Warton et al. 2015; Stoklosa et al. 2022), and
also since these were the two settings where we compared
the largest number of methods for estimating GLLVMs.

First, for multivariate overdispersed counts, we observed
that EVA andVAwere clearly the fastest among the sixmeth-
ods (Fig. 1a), with MCMC understandably taking by far the
longest to finish, on average. Interestingly, LA took around
the same time as VA-GH using five quadrature points. Turn-
ing to mean empirical bias and RMSE for the regression
coefficients of pH (Fig. 2a,b), we observe that EVA, LA and
VA-GH tended to performmore similarly to each other. How-
ever, it must be noted that on two of the smallest sample
sizes, there was unsurprisingly a large of uncertainty in the
estimates of the mean biases, as can be seen from the sizes
of the error bars representing empirical standard errors. The
differences in biases and RMSE appear to even out across all
of the methods as sample size increased. Finally, there was
relatively little difference between the sixmethods compared

in terms of empirical coverage probability for the effect of
pH (Fig. 2c), although MCMC tended to be more conserva-
tive than its likelihood-based counterparts. The full results
including those for the response-specific intercepts β0 j and
dispersion parameters φ j can be found in “Appendix B”, not-
ing in themain textwe focusedonpresenting the performance
of the coefficients relating to one of the two environmental
predictors, namely pH. In practice, the environmental effects
are generally of most interest. As shown in the tables in
“Appendix B.1”, the overall trends observed for the regres-
sion coefficients above also carry over to the Procrustes error
of the loadings and predicted latent values.

Next, for the binary GLLVM with logit link, the compu-
tation times are presented in Fig. 1b. Again, EVAwas clearly
the fastest of all the methods. LA exhibited large variabil-
ity in its computation times, but was generally on par with
or slightly faster than VA-GH with five quadrature points.
In terms of empirical bias and RMSE, EVA generally per-
formed much closer to VA-GH than LA, the latter of which
seemed to struggle on all but the largest sample size (Fig. 3a,
3b). Figure3c presents the empirical coverage probabilities
for the coefficients of pH, indicating that both EVA and LA
tended to undercover a small amount. Similar trends could
be drawn from the comparisons of EVA, LA and VA in the
binary probit link case, with EVA and VA performing fairly
evenly across all metrics and sample sizes, while LA exhib-
ited higher errors for small sample sizes. For the complete
summaries for both the logit and probit cases, we refer to the
corresponding tables in “Appendix B.1”.

Finally, turning to semi-continuous data with Tweedie
GLLVMs and proportions data with beta GLLVMs, noting
that standard VA is again not available for these two response
types, the performance of EVA and LA in both cases were
fairly similar across allmetrics and across the four values of n
considered (see the corresponding tables in “AppendixB.1”).
EVAwas substantially faster and scaled computationally bet-
ter than LA.

Overall, the results from simulation setting 1 demonstrate
that in terms of estimation and inferential accuracy, the per-
formance of EVA for GLLVMs was competitive or better
than that of LA, and was similar to that of standard VA or VA
coupled with Gauss-Hermite for larger number of observa-
tional units n. EVA was the most computationally efficient
method of all the ones compared, in pretty much every sit-
uation. Given its more universal applicability, this suggests
that EVA may be the most suitable choice in scenarios par-
ticularly when standard VA (or MCMC sampling) cannot be
applied due to computational burden.

Results from simulation setting 2, which are provided as
part of “Appendix B”, are largely consistent with these con-
clusions, with the only one notable difference being that, with
fixed n and increasing number of responsesm, the differences
in computational times between the three methods are even
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Fig. 1 Computation times from the testate amoebae data based simulation studies involving: a) negative binomial GLLVMs, and b) binary logit
link GLLVMs, with a fix number of species (m = 48). Here, ’GH5’ and ’GH9’ stand for the VA-GH method with 5 and 9 quadrature points,
respectively

more dramatic, with both EVA and standard VA gaining even
greater computational efficiency compared to LA.

6 Application to testate amoebae data

We illustrate an application of EVA by using it to fit a neg-
ative binomial GLLVM (using the log link function) to a
multivariate abundance dataset of testate amoebae available
from Daza Secco et al. (2018). The data consisted of counts
from m = 48 testate amoebae species measured on n = 248
peatland sites spread throughout Finland. In addition towater
pH and temperature, the dataset also contained a factor vari-
able on the type of land use for each site (forestry, natural and
restored). Note we used this dataset previously as the basis
for simulation setting 1 in Sect. 5.1.

We began by fitting a negative binomial GLLVM using
EVA assuming p = 2 latent variables, with no covariates
or row effects included, as a means of model-based uncon-
strained ordination. In unconstrained ordination the effects
of environmental covariates are carried out by the latent vari-
ables, leading to distinct clusters when the scores are plotted.
Thus, the aim here was to assess whether the sites tended
to cluster according to land usage, as based on their pre-
dicted latent variable scores i.e., the âi ’s. For comparison,

we also fitted the same GLLVM using standard VA to assess
if inferences drawn between the two methods of estimation
differed. The top row of Fig. 4 presents the resulting uncon-
strained ordination plots using both standard VA (left panel)
and EVA (right panel). The ordinations of the sites given by
the two methods matched each other well, and there is evi-
dence that the sites are clustered according to their land use
type. On the other hand, there was much less uncertainty in
the prediction regions resulting from standard VA compared
to EVA.

Based on the above unconstrained ordination results, we
proceeded to fit a negative binomial GLLVM but this time
including water pH, temperature, and land use type (as a
factor with dummy variables) as covariates. The resulting
residual ordination plots, which may be interpreted as a
visualization of residual covariation between species after
accounting for the measured covariates, are presented in the
bottom row of Fig. 4. Not surprisingly, after controlling for
the land use, the sites exhibit a much more random pat-
tern (using both EVA and standard VA), and on the whole
are more closely clustered together compared to the uncon-
strained ordination plot. The prediction regions produced by
EVAare again noticeably bigger than those produced by stan-
dard VA.
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Fig. 2 Results from the testate
amoebae data based simulation
study involving the negative
binomial GLLVMs with a fix
number of species (m = 48): a)
the mean biases, b) RMSEs, and
c) CI coverages for estimates of
the effects of pH. The error bars
denote the empirical standard
error. Here, ’GH5’ and ’GH9’
stand for the VA-GH method
with 5 and 9 quadrature points,
respectively. A trimming factor
of 2% was used in the
calculation of the biases and
RMSEs

By examining the definition of CMSEP in Sect. 3.1, one
may hypothesize that the larger prediction regions resulting
from EVA may be at least partially a consequence of the
elements of the estimated variational covariance matrices Âi

being larger. In “AppendixC”,weprovide some resultswhich
substantiate this idea, namely the traces of the variational
covariance matrices from EVA are often greater than those
produced by standard VA. These larger traces and larger pre-
dictions regions as a whole are not overly surprising, since

EVA uses a Taylor approximation rather than the exact form
of conditional distribution of the responses.

On the other hand,whenwe examine the amount of covari-
ation within and between species that is explained by the
covariates, as quantified by calculating the relative change
in the trace of the estimated residual covariance matrix
Σ̂ = Λ̂Λ̂

ᵀ
, we observe that, according to GLLVMs fit-

ted using EVA, water pH and temperature together explain
only 15.5% of the covariation in the model, but when land
usage was also included this rose to 39.9%. For models fit-
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Fig. 3 Results from the testate
amoebae data based simulation
study involving the binary logit
GLLVMs with a fix number of
species (m = 48): a) the mean
biases, b) RMSEs, and c) CI
coverages for estimates of the
effects of pH. The error bars
denote the empirical standard
error. Here, ’GH5’ and ’GH9’
stand for the VA-GH method
with 5 and 9 quadrature points,
respectively. A trimming factor
of 2% was used in the
calculation of the biases and
RMSEs

ted using standard VA, these percentages were 15.8% and
38.7%, respectively. The fact that these percentages were
very similar between models fitted using EVA and models
fitted using standard VA offers some reassurance of the infer-
ences and conclusions obtained by the former. This result is
further supported when we examine plots of the estimated
regression coefficients and corresponding 95% Wald inter-
vals from both fits. These plots for pH, temperature and land
usage are presented in “Appendix C”, fromwhich we see that
the conclusions produced by EVA and VA are practically an

exact match, with the list of covariate effects deemed statis-
tically significant differing by only a handful of coefficients.

7 Discussion

In this article,we have proposed extended variational approx-
imations (EVA) for fast and universal fitting of GLLVMs.
EVA builds on the ongoing research into variational approx-
imations for GLLVMs, but broadens it to allow for any

123



   26 Page 14 of 16 Statistics and Computing            (2023) 33:26 

Fig. 4 Model-based unconstrained ordination (top row) and residual
ordination (bottom row) of the sites in the testate amoebae data, along
with 95% CMSEP-based prediction regions. The ordinations are con-
structed based on fitting negative binomial GLLVMs using standard
VA (left column) and EVA (right column), where in the top row no
covariates are included while in the bottom row the covariates water
pH, temperature, and land use were included. The sites are colored and
marked according to their type of land use

combination of (parametric) response distribution and link
function to be used. Based on extensive simulation studies,
the performance accuracy of EVA lies somewhere between
the standard method of VA (and VA using Gauss-Hermite
quadrature) and the more established method of Laplace
approximation (LA). This, combined with its computational
efficiency and scalability suggests that EVA presents an
exciting and fruitful avenue of further research into com-
putationally efficient estimation and inference for GLLVMs
as a whole. Indeed, the EVA approach is potentially more
straightforward to derive and implement for more advanced
types of GLLVMs such as those involving temporally or spa-
tially dependent latent variables (Ovaskainen et al. 2017),
detection probabilities (Tobler et al. 2019), and GLLVMs
coupled with sparse regularization penalties for variable
selection (Hui et al. 2018a). One particularly important
avenue of future use for EVA is as a computationally efficient
way to fit mixed-response GLLVMs, when the columns of

Y correspond to different types of response variables, and
research is currently being done to implement this as part of
the gllvm package.

Another interesting topic for future research is the appli-
cation of EVA to high-dimensional data settings using, for
example, parallel computation techniques along the lines of
Tran et al. (2016) or stochastic inference andmini-batching as
reviewed in Zhang et al. (2018). The form of EVA (and VA)
for the common GLLVMs should readily allow the appli-
cation of mini-batching in terms of the observational units
(subindex i). Moreover, procedures could also be developed
for mini-batching the subindex j in a way that respects the
inter-response correlation structures inherent in abundace
data, leading into a doubly stochastic variational inference
framework for GLLVMs.

From a theoretical standpoint, the development of EVA
leaves considerable avenues for modifications and general-
izations, most notably the exact use of the Taylor approx-
imation for the conditional distribution of the response,
log f ( y|u,Ψ ). For instance, Wang and Blei (2013) previ-
ously explored a variant where the Taylor approximation is
taken to be the point which maximizes log f ( y|u,Ψ ) with
respect to the latent variables u. This choice leads to yet
another methodwhich the authors called Laplace variational
inference. Yet another choice is to center the Taylor approx-
imation around the mean of the variational distribution from
the previous iterative step of the optimization algorithm,
although according to the authors this approach often did
not lead to desirable results in terms of model convergence.
Notice that none of these methods rely on a unique mode of
the likelihood: we simply expand around a point that facil-
itates convenient computation. To our knowledge, Laplace
variational inference has not been considered for GLLVMs,
and its performance in comparison to EVA as well as its large
sample behavior will be left as an avenue for future research.
In addition, the effect of using higher order Taylor expan-
sions could be explored, along with developing general large
sample properties for EVA for GLLVMs. Finally, the fact
that in EVA we underestimate the latent variable posterior
covariances even more than in standard VA requires careful
consideration. The potential use of bootstrap-based methods
to overcome this issue, as suggested in Dang and Maestrini
(2021), will be considered in future.
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