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Abstract: Monodominant (one species dominates) or polidominant (multiple species dominate)
cyanobacterial blooms are pronounced in productive freshwater ecosystems and pose a potential
threat to the biota due to the synthesis of toxins. Seasonal changes in cyanobacteria species and
cyanometabolites composition were studied in two shallow temperate eutrophic lakes. Data on
cyanobacteria biomass and diversity of dominant species in the lakes were combined with chemical
and molecular analyses of fifteen potentially toxin-producing cyanobacteria species (248 isolates from
the lakes). Anatoxin-a, saxitoxin, microcystins and other non-ribosomal peptides formed the diverse
profiles in monodominant (Planktothrix agardhii) and polidominant (Aphanizomenon gracile, Limnothrix
spp. and Planktolyngbya limnetica) lakes. However, the harmfulness of the blooms depended on the
ability of the dominant species to synthesize cyanometabolites. It was confirmed that P. agardhii
produced a greater amount and diverse range of MCs and other NRPs. In the polidominant lake,
isolates of the co-dominant A. gracile, L. planctonica and P. limnetica synthesized no or only small
amounts of cyanometabolites. In general, the profile of cyanometabolites was greater in cyanobacteria
isolates than in environmental samples, indicating a high potential for toxic cyanobacteria bloom.

Keywords: microcystins; saxitoxin; anatoxin-a; non-ribosomal peptides; oligopeptides; Aphanizomenon
gracile; Microcystis; Planktothrix agardhii

1. Introduction

Cyanobacteria cause harmful blooms worldwide and their occurrence in aquatic
ecosystems is increasing in frequency and intensity due to climate change and anthro-
pogenic eutrophication [1,2]. Cyanobacteria usually form monodominant (one dominant
species) or polidominant (several dominant species) blooms, especially in sensitive aquatic
ecosystems such as shallow eutrophic lakes [3,4]. Some species may form a single dominant
perennial bloom, such as Planktothrix agardhii [5], while other species may dominate in the
community for a particular season or share dominance with other prevailing cyanobacterial
species. Thus, cyanobacteria species differ in their ability to persist in a bloom.

Blooms are usually caused by species of the genus Microcystis, Dolichospermum, Aph-
anizomenon sensu lato and Planktothrix in countries along the European continent [6].
These cyanobacteria not only induce blooms, but also synthesize a variety of different
cyanometabolites. Typically, up to 40–70% of blooms are reported as toxic [7,8]. Since toxins
are the major concern associated with cyanobacteria blooms, it is important to evaluate
how the pool of cyanometabolites differs between mono- and polidominant lakes. Bloom
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toxicity and cyanometabolites profile depend on a variety of factors: the composition of
cyanobacteria species and isolates, biomass, the percentage of toxic individuals in the
population [9], the ability to produce toxic cyanometabolites [6], the expression of genes
responsible for metabolite synthesis [10,11], and abiotic factors such as light, temperature
and nutrients. Therefore, seasonal and spatial changes in the composition of the dominant
cyanobacteria species and their biomass result in variation in the structure and quantity
of cyanotoxins in ecosystems [12]. Thirty years of studies assessing the occurrence and
production of cyanotoxins have not fully elucidated the causality of why, when and which
species produce toxins alone or in combination with other secondary metabolites [13].

The studies usually address the following topics: cyanometabolites in lakes (cyanotoxins
and/or non-ribosomal peptides (NRPs)) and cyanobacteria species dynamic (biomass and/or
diversity of bloom-forming dominant cyanobacteria) or cyanometabolites in cyanobacteria
isolates. Phytoplankton structure was not provided in a comprehensive survey of cyanotoxins
in 137 European lakes [14]; this information would be a valuable contribution to complete
profile of potential producers in the continent. Therefore, the joint efforts of a team of experts
to carry out a complex study on cyanobacteria and their metabolites, based on the analysis
of field samples, isolates of cyanobacteria from the same lakes, and chemical and molecular
analyses, are highly needed. Moreover, only the most common cyanotoxin microcystins (MCs)
is well documented in European freshwaters [15,16], although other known cyanotoxins such
as saxitoxin (STX), cylindrospermopsin (CYN) or anatoxin-a (ATX-a) have been detected and
a great diversity of their potential producers may also occur in freshwaters of the continent.
Moreover, the known cyanotoxins most likely represent only a small fraction of the bioactive
compounds produced by cyanobacteria. Therefore, the assessment of other NRPs, which are
also frequently detected in water bodies of different European countries, is equally impor-
tant [5,17–21]. Among the NRPs (except MCs), the most known compounds in cyanobacteria
are cyanopeptolins (CPs)-36%, microginins (MRs)-14%, aeruginosins (AERs)-13%, followed
by cryptophycins and anabaenopeptins (APs)-9% [22,23]. For a complete overview of the
main cyanobacteria producers and the spectrum of cyanometabolites in lakes, isolates and
cyanobacteria population studies are also crucial.

The aim of the study was to assess differences in the composition of cyanobacteria
and cyanometabolites in mono- and polidominant shallow eutrophic temperate lakes
based on field data and cyanobacteria isolates from the studied lakes, focusing on the
species responsible for the synthesis of the toxic compounds that determine the profile of
cyanometabolites in aquatic ecosystems.

2. Materials and Methods
2.1. Study Area

The study was conducted in two shallow eutrophic temperate lakes: Širvys and Jieznas
located in the eastern part of Lithuania. The catchment area of Lake Jieznas is dominated by
agricultural land, while Lake Širvys is surrounded almost equally by natural biotopes and
agriculture (Table 1). Lake Širvys is classified as problematic lake with frequent blooms,
while Lake Jieznas is designated as a lake in critical condition with perennial blooms [24].
The lakes are used for recreational purposes and fishing.

Table 1. Morphometric characteristics of the studied lakes and land use of their catchment area.

Morphometric Data Širvys Jieznas

Coordinates 54◦59′16.27′′,
25◦12′54.13′′

54◦35′33.67′′,
24◦10′48.95′′

Altitude (m) 125.8 95.8
Max depth (m) 4.5 4.4

Mean depth (m) 1.4 2.8
Catchment area consisted of (%) *:

Natural biotopes 47.4 4.0
Agriculture 48.3 83.6

Villages 4.3 12.4
*—The data was provided from Balevičius et al. [24].
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2.2. Sampling, Physicochemical Data and Phytoplankton Analysis

Sampling was conducted from May to October in Lake Širvys (2014–2015) and Lake
Jieznas (2015). Water samples were collected from the surface layer in the deepest part of
the lakes using a Ruttner sampler. Water temperature, pH, conductivity, and dissolved
oxygen were measured in situ using a F/Set-3 portable multiline meter with selective
electrodes. Secchi depth was measured using a Secchi disc. Chlorophyll-a (chl-a) was
measured using a fluorometer AlgaeLabAnalyser (bbe Moldaenke GmbH, Schwentinental,
Germany). Total nitrogen (TN) and total phosphorus (TP) were determined according to
standard methods (LST ENISO 10304; LST EN ISO 14911).

Surface water samples (1 l volume) were analysed to assess cyanobacteria bloom
dynamics and seasonal succession. Samples for analysis were preserved with 4% (v/v)
formaldehyde solution. Species identification and counting were performed in a Na-
geotte chamber using a light microscope. At least 600 counting units per sample were
estimated [25]. Biomass was calculated using geometric shape formulas described in Olrik
et al. [26] and Olenina et al. [25]. Identification of cyanobacteria species was based on
morphology according to Komárek and Anagnostidis [27,28], Komárek [29].

2.3. Isolation and Maintenance of Cyanobacterial Isolates

Isolates of the predominant potentially toxic cyanobacterial species (15 species,
248 isolates) were isolated from the studied lakes Širvys and Jieznas to determine var-
ious cyanometabolites. Monocultures were isolated by the micropipette washing method
from the surface water samples collected with a 20 µm mesh plankton net. Cultures
were maintained in modified MWC medium [30] at 20 ◦C, 30 µmol m−2 s−1 cool white
fluorescent illumination, and day-night ratio of 12:12. Isolates were identified based on
morphology according to Komárek and Anagnostidis [27,28], Komárek [29]. The isolates
were deposited in the culture collection of algae and cyanobacteria of the Nature Research
Centre (Lithuania).

2.4. Chemical Analysis of Cyanometabolites

Cyanometabolites were analysed in cyanobacterial material from the surface wa-
ter layer of the lakes and in isolates. Lakes’ water (150–350 mL) was filtered through
GF/F filters, cyanobacterial cultures were concentrated by centrifugation at 8000 rpm for
6–12 min and freeze-dried. MCs and other NRPs, ATX-a and CYN were extracted using
75% methanol in MiliQ water. STX was extracted with a mixture of 4 mM ammonium
formate buffer (pH 3.5) and acetonitrile (95:5, v/v) at a ratio of 2:3. All samples were
vortexed for 5 min and held in a bath sonicator (Sonorex, Bandelin, Berlin, Germany) for
5 min. The filters of the field samples were homogenized for 1 min with an ultrasonic
homogeniser HD 2070 Sonopuls (Bandelin, Berlin, Germany) before bath sonication. The
extracts were centrifuged at 10,000 rpm for 20 min, and the supernatant was transferred to
chromatography vials. Analysis was performed using LC-MS/MS (QTRAP5500, Applied
Biosystems, Siex; Concorde, ON, Canada) equipped with a turbo ion spray ionization,
operating in positive mode using the information–dependent acquisition method (IDA)
for the detection of MCs and other NRPs [5]. Quantitative analysis of cyanotoxins was
performed by multiple reaction monitoring (MRM) using standards. Quantification of MCs
was performed according to Khomutovska et al. [31] and STX was described in Karosienė
et al. [32]. Data were analysed using Analyst QS® 1.5.1 software.

2.5. Evaluation of the Copy Number of the Microcystin (mcyE) Gene in Field Samples (qPCR)

Phytoplankton biomass collected from the water surface of Lake Širvys was concen-
trated on GF/F filters and stored at−70 ◦C. DNA was extracted using the PowerWater®DNA
Isolation Kit according to the manufacturer’s protocol and stored at −20 ◦C. Quantification
of copy number of the mcyE gene was performed by quantitative real–time PCR (qPCR).
The PCR reaction mix had a total volume of 25 µL, and contained 5 µL of DNA, 1.25 µL of
each primer (300 nM), and 12.5 µL of the ready–to–use reaction mix prepared according
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to the manufacturer’s instructions. The forward primer mcyE-F2 described in Vaitomaa
et al. [33] and the reverse primer mcyE-plaR3 by Rantala et al. [34] were used. PCR was per-
formed in a 96-well skirted PCR plate (4titude) using a device Bio-Rad CFX96. PCR protocol
was performed according to Rantala et al. [35] with minor modifications: preincubation at
95 ◦C, 3 min, denaturation 40 cycles 95 ◦C, 10 s and annealing at 59 ◦C, 45 s, melting curve
analysis 95 ◦C, 15 s, 58 ◦C, 30 s, 95 ◦C, 5 s. Each environmental sample was run in triplicate,
also negative and positive controls, external standard dilutions were performed.

2.6. Molecular Analysis of Cyanobacterial Isolates

Genes analysis: mcyE and anaC. Isolates of Planktothrix agardhii and Dolichospermum
spp. at exponential phase were centrifuged at 8000 rpm for 6–12 min and freezed at−70 ◦C.
DNA was extracted using the E.Z.N.A SP Plant DNA Kit for isolates according to the
manufacturer’s instructions. To verify that the samples contained sufficient cyanobacterial
DNA, primers CYA359F, CYA781R(a), and CYA781R(b) were used for analysis according
to the PCR protocol described in Nübel et al. [36] with minor modifications: 94 ◦C, 3 min;
35 × (94 ◦C, 30 s; 56 ◦C, 30 s; 72 ◦C, 1 min); 72 ◦C, 10 min. The specific primers (described
in Vaitomaa et al. [33] and Rantala et al. [34]) were used for the detection of mcyE in
P. agardhii isolates and anaC gene in Dolichospermum spp. isolates (according to Rantala-
Ylinen et al. [37]). The amplified products were separated on a 1% TAE agarose gel.
Conventional PCR was used to determine whether the isolate had the gene responsible
for cyanotoxin production (band present) or whether the product was absent (no band).
Negative and positive controls were also performed each time.

2.7. Statistical Analysis

The relationship between P. agardhii–specific mcyE gene copy number and the total
concentration of MCs was evaluated using the Pearson correlation coefficient. Statistical
analysis was performed using Statistica 7.0.

3. Results
3.1. Environmental Variables in the Studied Lakes

The studied lakes were assigned to the eutrophic water body type with high total
phosphorus, nitrogen and chl-a concentrations and low water transparency in summer
(Table 2). The surface water temperature during the study period was similar in both
lakes (from 16.8 to 17.6 ◦C), with an average of 21.0–21.5 ◦C in summer. Secchi depth was
up to 2.4 times higher in Lake Širvys compared to Lake Jieznas. However, average total
nutrient and chl-a concentrations were up to 1.8 times higher in Lake Jieznas compared to
Lake Širvys.

Table 2. Physicochemical, biological variables and trophic status of the lakes Širvys and Jieznas
during the study period. The data are presented as average ± SD.

Variable
Širvys Jieznas

20152014 2015

Water temperature, ◦C 17.6 ± 5.5 16.8 ± 5.2 16.9 ± 5.3
Secchi depth, m 1.15 ± 0.60 1.30 ± 0.70 0.55 ± 0.10

pH 8.3 ± 0.3 8.3 ± 0.3 8.3 ± 0.2
Conductivity, µS cm−1 444.1 ± 7.2 445.4 ± 8.5 441.7 ± 10.6

Dissolved oxygen, mg L−1 10.4 ± 2.0 10.5 ± 2.8 10.9 ± 1.5
TP, mg P L−1 0.034 ± 0.012 0.035 ± 0.017 0.059 ± 0.026

TN, mg N L−1 1.25 ± 0.2 1.23 ± 0.3 1.84 ± 0.3
Chlorophyll-a, µg L−1 35.8 ± 17.0 34.5 ± 15.8 61.4 ± 11.2

Trophic status * eutrophic eutrophic eutrophic
*—trophic state was assessed according to the general trophic classification of Wetzel [38] (modified from Vollen-
weider [39].
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3.2. Seasonal Variation of the Cyanobacteria Community in Mono- and Polidominant
Temperate Lakes

The studied lakes differed significantly in the structure of the dominant cyanobacteria
species. In the monodominant Lake Širvys, the potentially hepatotoxic P. agardhii was the
single dominant species in the phytoplankton during the two years studied, accounting
for up to 28.1 mg L−1 biomass, with the highest values recorded in autumn (up to 97%
of the total biomass of cyanobacteria) (Figure 1). The polidominant Lake Jieznas was
dominated by the potentially neurotoxins producing Aphanizomenon gracile in August (up
to 12.7 mg L−1, 45% of the total cyanobacterial biomass). Limnothrix planctonica and L. redekei
prevailed in May–June (up to 12.3 mg L−1) and Planktolyngbya limnetica in September (up
to 4.8 mg L−1). The dominant species in one lake were also present in another studied lake
but accounted for only a small portion of the biomass. Furthermore, 14 others potential
cyanotoxin producers, mainly species from Microcystis, Dolichospermum, Aphanizomenon,
Raphidiopsis, Woronichinia genera, were detected with negligible biomass (Figure 1).

Figure 1. Seasonal variation in the biomass of potentially toxin-producing cyanobacteria species in
the studied lakes.

3.3. Diversity and Amount of Cyanometabolites in Studied Lakes

The same groups of cyanometabolites were found in the studied mono- and polidominant
lakes: MCs, STX, ATX-a and other NRPs; however, they varied in diversity and quantities.
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Seasonal Variation of Cyanometabolites in Lakes

MCs and other NRPs. In the monodominant Lake Širvys, MCs were detected through-
out the study period from May to October, with the highest concentrations occurring in
autumn (10.76–16.74 µg L−1) (Figure 2). In polidominant Lake Jieznas, MCs values were
rather low and were detected in June–September (0.15–0.96 µg L−1). Three microcystin vari-
ants MC-LR, MC-YR, MC-RR were common and present in both lakes. MC-RR dominated
in the polidominant lake comprising 77.7 ± 6.3%, followed by MC-LR with 19.0 ± 2.3% of
the total concentration of MC in June–September. Meanwhile, dmMC-RR and dmMC-LR
were detected only in the monodominant lake, where dmMC-RR was the dominant vari-
ant contributing an average of 87.2 ± 21.6% and frequently exceeding 95%, followed by
dmMC-LR with 6.4 ± 8.6% of the total MCs concentration in the summer–autumn months.

Figure 2. The variation of intracellular cyanometabolites in the field samples of Širvys (monodomi-
nant) and Jieznas (polidominant) lakes.

NRPs concentration was 3.1 times higher in the monodominant Lake Širvys than in the
polidominant Lake Jieznas during June–October. The peak concentrations (3.42–4.35 × 109

area L−1) were detected in the monodominant lake in autumn. In the polidominant lake,
the two peaks (1.13 × 109 and 1.25 × 109 area L−1) were found in July and September,
respectively (Figure 2). In the monodominant lake, the dynamics of MCs and NRPs
coincided, and the concentration increased from spring to autumn, with the highest values
in September and October and stable structure of the detected cyanometabolites groups.
The dominant group of oligopeptides was APs followed by AERs and comprised 76.6% and
30.3% of the total amount of NRPs, respectively. In contrast, the dynamics and structural
trends of MCs and other NRPs differed in the polidominant lake. In May, only CPs were
present. APs dominated in July and AERs in August, and accounted for 91.1% and 58.7%,



Int. J. Environ. Res. Public Health 2022, 19, 15341 7 of 15

respectively. In autumn months (September–October), the group of AERs dominated with
52.4% and 66.8%, respectively, the other part consisted of APs.

In the studied lakes, these common APs (A, B, F and Oscillamide Y) and AERs (aerugi-
nosamide) were found (Figure 3). In the monodominant Lake Širvys, the greatest diversity
of APs and AERs groups was detected from June to October. The most frequent oligopep-
tides in the monodominant lake were APs (A, B, F, Oscyllamide Y), AERs (aeruginosamide,
AER 610, 658) occurred from June to October, and the highest concentrations of AP A and
AP B (maximum 1.10× 109 and 1.32× 109 area L−1, respectively) were found from Septem-
ber to October. However, the diversity of NRPs in the polidominant Lake Jieznas was much
lower. The most diverse profile of the APs group was found in July and September and
consisted almost entirely of common oligopeptides. In both lakes, specific oligopeptides
were mostly found only once or for a short period of time, except for AP G, AER 610,
AER 658 and AER 716 in the monodominant lake (Figure 3).

Figure 3. Profile of non-ribosomal peptides (NRPs) in the water samples of Širvys (monodominant)
and Jieznas (polidominant) lakes.

Neurotoxins. Among this group, STX dominated in the polidominant Lake Jieznas,
while ATX-a predominated in the monodominant Lake Širvys. Anatoxin-a was detected in
both lakes from June to September. The average ATX-a concentration was 9.7 times higher
in the monodominant lake than in the polidominant lake during the summer–autumn. The
maximum values were detected in both lakes in July–August, reaching 0.97 µg L−1 and
0.04 µg L−1, respectively (Figure 2). The average STX concentration was 4.9 times higher
in the polidominant lake than in the monodominant lake summer–autumn months. In
one case, a maximum concentration of 1.00 µg L−1 was found in the monodominant lake
(August 2014), while the other values were negligible. In contrast, STX was detected in the
polidominant lake from July to September with a similar peak concentration of 1.06 µg L−1

(Figure 2). Cylindrospermopsin was not detected in environmental samples or isolates.
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3.4. Cyanometabolites in Isolates of Cyanobacteria

A total of 248 isolates isolated from two studied lakes and belonging to 15 cyanobacte-
ria species were analysed for the presence of cyanotoxins and other NRPs (Tables S1–S3).

Producers in Chroococcales and Oscillatoriales. All five Microcystis viridis isolates
produced the highest amount of MCs on average of 0.93 ± 0.36 µg mg−1 MCs in freeze-
dried biomass, followed by one of the six M. aeruginosa isolates (0.41 µg mg−1 freeze-dried
biomass) and negligible concentrations in two of three isolates of M. flos-aquae (Table S1).
Five M. wessenbergii isolates tested did not produce MCs. M. flos-aquae was distinguished
by producing only MC-RR. Isolates of both M. aeruginosa and M. viridis species were
characterized by dominating MC-LR with an average of 55.6% and 56.9% and prevailed
by MC-YR (26.6% and 23.6%), also followed by MC-RR (14.5%, 9.3%) and dmMC-LR
(3.4% and 10.2%), respectively. The great variety of MCs was detected in M. aeruginosa
and M. viridis, while the lowest was in M. flos-aquae. The average MCs concentration of
0.99 ± 0.57 µg mg−1 freeze-dried biomass in seven of eight Planktothrix agardhii isolates
coincided with total MCs amount found in Microcystis viridis isolates. The profile of MCs in
P. agardhii isolates was characterized by the dominant dmMC-RR variant, which accounted
for 60.3% on average (up to 93.5%), followed by dmMC-LR (23.0%), MC-RR (14.4%) and
MC-YR (2.3%) (Table S2).

The profile of other NRPs was more diverse among Microcystis spp. than in the
P. agardhii isolates. M. aeruginosa and M. viridis mainly synthesized CPs (average 72.2% and
75.0%, respectively), followed by APs (17.8%) and AERs (25.0%), respectively (Table S1).
However, in M. flos-aquae isolates, AERs dominated at 66.7%, while APs (20.3%) prevailed.
NRPs were detected in all six P. agardhii isolates tested (Table S2). In contrast to Microcystis
spp., on average APs dominated and accounted for 70.6% (three isolates produced only
APs), AERs prevailed at 17.3%, followed by CPs with 12.1% in P. agardhii isolates. At
the same time M. aeruginosa (1 isolate), M. flos-aquae (1 isolate) and P. agardhii (4 isolates)
synthesized APs oligopeptides commonly detected in environmental samples, such as
A, B, F, Oscillamide Y. In addition, aeruginosamide was detected in one M. flos-aquae
isolate. In P. agardhii isolates, the group of APs was detected in all isolates and showed
the highest internal diversity of APs and AERs. Although the profiles of NRPs varied
among P. agardhii isolates, oligopeptides that could be synthesized by several isolates were
frequently detected. Limnothrix planctonica and Planktolyngbya limnetica did not synthesize
MCs and other NRPs.

Producer in Nostocales. In total, nineteen isolates of Aphanizomenon gracile (10 isolates),
Cuspidothrix issatschenkoi (5 isolates), Anabaenopsis cf. elenkinii, (2 isolates) and Dolichosper-
mum crassum (2 isolates) were screened for NRPs. However, only three isolates of A. gracile
were able to synthesize oligopeptides (Table S3). On average, APs dominated and ac-
counted for 86.8% of the total NRPs, which was also characterized by the greatest variety in
the isolates, followed by MRs with 8.3% and CPs with 4.9%. The isolates produced common
oligopeptides such as AP A (2 isolates), AP B (3 isolates), AP F (3 isolates), which were iden-
tified in M. aeruginosa, M. flos-aquae and P. agardhii. These isolates were also characterized
by specific oligopeptides. Single oligopeptides belonging to the group CPs and MRs were
present, but the group of AERs was not detected. Cyanotoxins and/or other NRPs were not
found in the isolates of Anabaenopsis cf. elenkinii, Cuspidothrix issatschenkoi, Dolichospermum
crassum, D. lemmermannii, Raphidiopsis mediterranea, Sphaerospermopsis aphanizomenoides.

3.5. Planktothrix agardhii mcyE Gene in Isolates and Environmental Samples from the
Monodominant Lake

The qPCR analysis showed that the highest copy number 26 × 109 L−1 of the mcyE
gene specific for Planktothrix was detected in the field samples in September and coincided
with the highest biomass of P. agardhii and MCs concentration (Figure 4A). A strong
correlation was observed between P. agardhii-specific mcyE gene copy number and total
MCs concentration in field samples (r = 0.85, p < 0.05). Additionally, P. agardhii isolates
analysis using conventional PCR revealed that 95.1% of the 82 isolates examined contained
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mcyE synthetase gene (Table S2). The percentage of toxic isolates increased slightly toward
the summer–autumn months (Figure 4B).
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4. Discussion
4.1. Structure and Biomass of Cyanobacteria in Mono- and Polidominant Shallow Eutrophic Lakes

Cyanobacteria dominated over other algal groups in the phytoplankton of the studied
lakes. According to WHO [40] guidelines for monitoring and management of cyanobacteria
in recreational waters, cyanobacteria biomass in the monodominant Lake Širvys reached
alert level 1 (4–8 mg L−1) since July, while in the polidominant Lake Jieznas it exceeded alert
level 1 already in May. The maximum total biomass of cyanobacteria in the studied lakes
was similar, but the species composition and dynamics of cyanobacteria varied between
the two lakes (Figure 1). The predominant filamentous cyanobacteria species from the
genera Aphanizomenon, Planktothrix, Limnothrix and Planktolyngbya are characteristic to
nutrient–rich lakes [41] and were dominant in the studied lakes.

In the monodominant lake, Planktothrix agardhii outcompeted other harmful cyanobac-
teria throughout the vegetation season. This species accounted for a significant amount of
the biomass in summer and autumn (up to 17.4 mg L−1 and 28.1 mg L−1, respectively) and
accounted for 93.3% of the total cyanobacteria biomass (Figure 1). In European eutrophic
freshwaters, P. agardhii formed the highest biomass with up to 54–70 mg L−1 (45–100% of
total phytoplankton biomass [5,42]), and even 600 mg L−1 in autumn [43]. This species is
characterized by recurrent dominance in shallow eutrophic and hypertrophic lakes [44,45].

Cyanobacteria assemblage in the polidominant lake was characterized by the dynamics
of a few predominant species that prevailed over different period (Figure 1). The peak
cyanobacterial biomass was observed in August when A. gracile was the dominant species
(Figure 1). Limnothrix spp. dominated in May–June and prevailed in July–August, while
Planktolyngbya limnetica prevailed in August and dominated in September. According to
Komárek [29], A. gracile is a frequent species, but rarely forms blooms in temperate regions
of the Northern Hemisphere. In European lakes, A. gracile was the dominant species
and formed a similar biomass of up to 15 mg L−1 [12,46]. The highest values were up to
33 mg L−1 (max 80% of total phytoplankton biomass; [47]). A similar prevailing species
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composition (Aphanizomenon gracile, Planktolyngbya limnetica, Limnothrix redekei) was also
characteristic to the shallow eutrophic lake in Poland [48]. The dominant A. gracile may
also coexist with the species P. agardhii and Microcystis aeruginosa in various complexes [49].

4.2. Cyanometabolite Producers

Toxin production varies spatially and temporally during bloom [50], depending on the
ability of bloom-forming cyanobacteria to produce cyanometabolites. Therefore, it is critical
to identify toxin-producing cyanobacterial species to predict cyanotoxin diversity and
concentration in the water body. Fifteen potentially toxic species and a total of 248 isolates
isolated from the studied lakes were analysed for the presence of cyanometabolites to
explain their seasonal variation in environmental samples.

Microcystins accounted for a significant portion of the cyanotoxins identified in the
monodominant Lake Širvys. Analysis of Planktothrix agardhii isolates and environmental
samples revealed that this dominant species was solely responsible for the production of
MCs and the other NRPs. 95.1% of the over than eighty P. agardhii isolates possessed a gene
responsible for the production of MCs. The seasonal dynamics of P. agardhii mcyE synthetase
gene copy number in the environmental samples also corresponded to the biomass of the
species and MCs concentration (Figure 4A). A high positive correlation between P. agardhii
biomass and total MCs concentration in other European lakes was observed [5,12,51]. This
is also consistent with the data of Kurmayer et al. [52] and Yéprémian et al. [43], where
88% and 52% of toxic P. agardhii isolates were detected, respectively. Briand et al. [10] also
confirmed a significant correlation between P. agardhii mcyA copy number and MC values.
The proportion of prevailing dmMC-RR (average 87.2%) and dmMC-LR (average 6.4%) in
the studied monodominant lake was similar to the proportion of MCs variants detected in
P. agardhii isolates from the same water body (60% of dmMC-RR and 23% of dmMC-LR).
Consistent with the results of Schwarzenberger et al. [53], P. agardhii isolates contained
higher dmMC-RR concentrations (up to 40-fold) compared to dmMC-LR. P. agardhii is
a well-documented producer of various cyanometabolites (MC-RR, MC-YR, dmMC-RR,
dmMC-LR, MC-LR, Asp3 MC-LR, APs B and F) [53–55].

Janssen [22] highlighted that MCs typically occur together with other bioactive NRPs
and never alone. In the current study, the production of MCs was associated with a higher
relative amount of NRPs. The relative proportion of other NRPs was similar in environmen-
tal samples and P. agardhii isolates; for example, APs comprised 70.6% in samples and 76.7%
in isolates, whereas AERs consisted of 17.3% and 30.3%, respectively. Anabaenopeptins are
frequently detected in lakes dominated by P. agardhii (e.g., Grabowska et al. [5]). Schwarzen-
berger et al. [53] also found that P. agardhii produced other NRPs in addition to MCs, with
predominant AERs (70%), APs (up to 21.6%) and planktocyclins (50.5%) varying among
isolates. In general, our analysis confirmed the high potential of P. agardhii to be toxic
and to synthesize a wide range of MCs variants and other oligopeptides. Compared to
Planktothrix, Microcystis species generally found to have a greater variety of NRPs [56,57].

The total average concentration of cyanotoxins was 9.5 times higher in the mon-
odominant lake than in the polidominant lake (Table 3). Moreover, MCs prevailed over
neurotoxins in the monodominant lakes, whereas MCs and neurotoxins formed similar
concentrations in the polidominant lake. NRPs were detected only in Aphanizomenon gracile
from the three dominant species in the lake; the co-dominant Planktolyngbya limnetica and
Limnothrix spp. were not producers of cyanometabolites. The peak biomass of A. gracile
coincided with the highest STX concentration in the environmental samples, suggesting
that this species is a possible toxin producer (Figures 2 and 3). According to Karosienė
et al. [32], the species was confirmed as a producer of STX in the studied lakes. Only
11 of 63 A. gracile isolates tested (17.5%) were able to produce STX with concentrations
ranging from 0.54 × 10−4 to 4.67 × 10−4 µg mg−1 freeze-dried biomass [32]. The current
study revealed evident differences in the ability to synthesize cyanotoxins between species.
Hepatotoxin producer P. agardhii had a higher ability to produce MCs (average concen-
tration 0.99 µg mg L−1 freeze-dried biomass) and included a relatively higher number of
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toxic isolates (95.1%) compared to the saxitoxin producer A. gracile [32]. Similarly, Casero
et al. [58] also detected a low ability and capacity of A. gracile to synthesize STX (11.1% of
STX synthesizing isolates at a concentration of 0.17–0.42 µg equivalent STX mg−1 DW).

Table 3. Summarized data on cyanobacteria, cyanotoxins and other NRPs of mono- and polidomi-
nant lakes.

Variables Monodominant Lake Širvys Polidominant Lake Jieznas

Number of dominants 1 3

Number of species potential
cyanotoxins producers 14 14

Average (±SD) biomass of potential
cyanotoxins producers, mg L−1

Average (±SD) total concentration of
cyanotoxins, µg L−1

Average concentration of MCs, ATX,
STX, µg L−1

Average NRPs amount, area L−1

Isoforms of MCs detected in the
field samples dmMC-RR, MC-RR, MC-YR, dmMC-LR, MC-LR MC-RR, MC-YR, MC-LR

NRPs groups detected in field samples,
area L−1

Common NRPs APs (A, B, F, Oscillamide Y), AERs (aeruginosamide)

Specific NRPs APs (753, D, G, 916) APs (902), AERs (636)
AERs (658, 682, 692, 704, 716), CPs (996) CPs (850), MRs (658, FR3, 771)

Microcystis spp. isolates showed great potential to produce MCs and contributed to
toxic blooms in the studied polidominant lake. Especially MC-RR and MC-LR were found
in M. viridis (14.5% and 55.6%, respectively), M. flos-aquae (9.3% and 56.9%, respectively)
and 100% of MC-RR was determined in M. aeruginosa isolates. In contrast to our results,
Via-Ordorika et al. [59] found a low percentage (17%) of M. viridis colonies containing mcy
gene and MCs, whereas it was moderate for M. flos-aquae (50%) and high for M. aeruginosa
(72%). Microcystis spp. are associated with the production of more than one variant of MCs,
e.g., MC-LR, MC-RR, MC-YR, MC-D-Asp3-LR, MC-RR [60,61]. Planktothrix agardhii and
Microcystis are the best–known genera for their ability to produce MCs [62] with similar
maximum concentrations determined as high as 4–4.5 µg mg DW−1 [63,64]. Compared
to the Planktothrix–dominated lake, the amount of NRPs in the polidominant lake was
2.8 times lower and their profile varied significantly throughout the season, possibly
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reflecting changes in the cyanobacteria community. The study showed that of all the
dominants found in the polidominant lake, only non–STX–producing isolates of A. gracile
were capable of synthesizing NRPs. APs was dominant oligopeptide group, followed by
MRs and CPs.

5. Conclusions

The study revealed differences in the composition of the predominant cyanobacteria
species, but the total biomass of potential toxin producers was similar in the studied lakes.
Planktothrix agardhii displaced other harmful cyanobacteria and was the only dominant
species in Lake Širvys. In contrast, the potential cyanotoxins producers Aphanizomenon
gracile, Limnothrix spp. and Planktolyngbya limnetica co-dominated in Lake Jieznas at dif-
ferent period. Cyanometabolites of the same groups (MCs, other NRPs, ATX-a and STX)
were found in studied freshwaters; however, total concentration of cyanotoxins was up to
9.5 times higher and the amount of NRPs was up to 2.8 times higher in the monodominant
lake. The biomass of Planktothrix agardhii was up to 28.1 mg L−1, the species had over 95%
of the toxic individuals in the population and was basically responsible for the synthesis of
the predominant cyanometabolites (dmMC-RR, dmMC-LR, APs, and AERs), indicating an
increased risk for recreational activities in the monodominant lake. Only Aphanizomenon
gracile was able to synthesise cyanometabolites in the polidominant lake, while no toxic
compounds were detected in the co-dominant species Limnothrix planctonica and P. limnetica.
The non-dominant species Microcystis aeruginosa, M. flos-aquae, and M. viridis contributed to
the total amount of cyanometabolites, but in general the concentration of cyanotoxins did
not pose a risk to bathers in the polidominant lake. The greater diversity of cyanometabo-
lites detected in the cyanobacteria isolates than in the environmental samples suggests a
possible variation in the cyanometabolite profile.
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