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Incentive Mechanism for Edge Computing-based
Blockchain: A Sequential Game Approach

Wenlong Guo, Zheng Chang, Senior Member, IEEE, Xijuan Guo, Peiliang Wu, Zhu Han, Fellow, IEEE

Abstract—Due to its distributed characteristics, the develop-
ment and deployment of the blockchain framework are able
to provide feasible solutions for a wide range of Internet of
Things (IoT) applications. While the IoT devices are usually
resource-limited, how to make sure the acquisition of compu-
tational resources and participation of the devices will be the
driving force to realize blockchain at the network edge. In
this work, an edge computing-based blockchain framework is
considered, where multiple edge service providers (ESPs) can
provide computational resources to the devices for mining. We
mainly focus on investigating the trading between the devices and
ESPs in the computational resource market, where ESPs act as
the sellers and devices act as the buyers. Accordingly, a sequential
game model is formulated and by exploring the sequential Nash
equilibrium (SE), the existence of the optimal solutions of selling
and buying strategies can be proved. Then, a deep Q-network-
based algorithm with modified experience replay update method
is applied to find the optimal strategies. Through theoretical
analysis and simulations, we demonstrate the effectiveness of the
proposed incentive mechanism on forming the blockchain via the
assistance of edge computing.

Index Terms—Blockchain; Mining; Edge computing; Incentive
mechanism;

I. INTRODUCTION

The emergence of IoT will be the driving force of the de-
velopment of the future information and communication tech-
nology (ICT) [1]. However, due to distributed and resource-
constrain natures of IoT, the security mechanism design is
critical for its wide deployment. Recently, the blockchain has
evolved from the original digital currency to extensive IoT ap-
plications due to its distributed, tamper-resistant, retrospective
and transparent features [2]. As a well-known decentralized
ledger-based framework, blockchain is able to provide secure
transactions and trust in a trustless network environment. The
node (or so called miner) in blockchain executes some com-
putation tasks to obtain an unverified block. The second one
is reporting/releasing. When one miner successfully addresses
the consensus protocol, it could report the result to blockchain
for verification. The miners will reach consensus when the
verification is correct and then obtain rewards caused by the
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computing for consensus process (or so called mining). As
we can see, the blockchain has its great potential to provide
a secure IoT platform, especially when facing large-scale
accesses.

Although blockchain has been widely adopted in many
applications, its application in mobile services is still limited.
Before adding or publishing to the blockchain, some complex
computation problems, e.g., PoW puzzle, are solved to secure
the integrity and validity of transactions. In this context, to
facilitate blockchain applications in future mobile IoT systems,
mobile edge computing can play a significant role [3]. Lever-
aging the computing capabilities of edge computing system,
the miners with insufficient hash power can rent computational
resources from Edge Service Providers (ESPs) [4]. Thus, how
to incentivize the miners to participate the blockchain process
and obtain the computational resources from ESP or per-
form computation offloading is of profound significance [3]–
[6]. Meanwhile, how to encourage multiple ESPs to provide
computational resources to the miners is also crucial. Such
observations motivate us to seek for game theoretic approaches
to explore the interactions between multiple ESPs and multiple
miners.

Recently, there are increasing interests on utilizing
blockchain incentive to design the blockchain system. There
are several works utilizing the mathematical methodology on
designing the incentive schemes for multiple players [?], [7]–
[14]. Jiao et al. [7] design an approximation algorithm and
study how to maximize the social welfare of blockchain net-
work. Xiong et al. [8] propose to investigate the optimal profits
of the ESPs and/or miners under different pricing strategies via
game theoretic approaches. Houy [9] suggests a two-miner
model to find the strategy of utilizing computation resource
and find the Nash Equilibrium (NE) in the blockchain. In
[10], Lewenberg et al. present a cooperative game model
to study the dynamic equilibrium problem that when the
miners choose to participate in the mining pool. Combining
the blockchain reputation and incentive mechanism, Avyukt
et al. in [11] adopt the game theoretical methods to formulate
the multi-buyer and multi-seller data marketplace, and realize
the credible evaluation of a higher-quality ecosystem. Liu
et al. in [12] propose a blockchain-based double auction
protocol, in which multiple buyers and sellers could quickly
optimize a balance market cleaning price, to ensure integrity,
efficiency and incentive. For P2P Energy Trading, Kumari
et al. in [13] formulate a blockchain-based scheme and Q-
learning algorithm to optimize the decision-making process to
improve system security, transaction latency and participant
rewards. The authors of [14] propose to achieve social welfare
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maximization by a truthful double auction mechanism, which
the incentive and fairness of the buyers and sellers could be
guarantee.

However, the current works rarely analyze the competitive
relationship like seller-seller, buyer-buyer and the dynamic
competition between multiple buyers and sellers in the edge
computing-based blockchain system. Motivated by the afore-
mentioned observations, in this paper, we aim at proposing
a novel incentive mechanism for an edge computing-based
blockchain, in order to find the optimal purchase and pricing
strategies for all the involved ESPs and miners. The main
contribution can be summarized as follows.

• We consider a multi-ESPs and multi-miners scenario.
In the considered system, to encourage the devices to
participate the mining process and ESPs to provide the
computational resources, we aim to explore the relations
and interactions between these two parties.

• We mainly focus on investigating the trading process
between the devices and ESPs in the computational
resource market, where ESPs and miners can act as the
sellers and buyers, respectively. Accordingly, a sequential
game model is formulated. Then we have proved the ex-
istence and uniqueness of the NE, and applied backward
induction to find the global optimal solution.

• To optimize strategies, a deep Q-network-based algorithm
with modified experience replay update is applied to find
the optimal strategies. The proposed mechanisms can help
both parties obtain the best utilities in a dynamic manner
and essentially stimulate the development of blockchain
system. Numerical results demonstrate the effectiveness
of the proposed incentive mechanism.

The rest of this paper is organized as follows. The designed
system model is introduced in Sec. II. Then Sec. IV formulates
the sequential equilibrium problem. Sec. V proposes an deep
reinforcement learning-based algorithm to to obtain optimal
solution. In Sec. VI, simulation study is conducted with
detailed discussions. Finally, Sec. VII concludes the work.

II. SYSTEM MODEL

A. System Assumptions

We consider an edge computing-assisted blockchain sys-
tem with M ESPs and N miners. Each ESP can provide
homogeneous computational resource services to all the min-
ers. Miners pay for the computational resources, in form of
offloading the computing tasks of PoW puzzle to the ESPs.
On blockchain, once the clients publish the verified requests,
miners can offload the computing tasks to all the ESPs through
dedicated channels via the wireless connection, then ESPs can
obtain returns by providing recourse. Each ESP can provide
computational services to multiple miners at the same time,
and so do miners. As shown in Fig. 1, consensus mechanism
makes it necessary for the miners to immediately handle the
PoW puzzles.

We assume that prices set of computational resource of ESP

j is pj =
[
pj1, ..., p

j
i , ..., p

j
N

]T
, where pji is the price of ESP

j for miner i. We assume pji ∈
[
pmin, pmax

]
where pmin and
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Fig. 1: System Model

pmax are the minimum and maximum prices, respectively. The
set of prices of computational resource of all the ESPs is
P =

{
p1, ...,pj , ...pM

}
. The set of strategies (the amounts

of purchasing) of all the miners is S = {s1, ..., si, ..., sN},
where si is the purchase strategy of miner i. We assume
si ∈ [smin, smax], where smin and smax are the minimum
and maximum purchase quantity, respectively. Meanwhile, The
computational capability or hash power proportion of miner i
is αi, which is expressed as:

αi =
si∑

i∈N

s−i
. (1)

In this work, we assume the communications between the
ESP and miners are perfect, and we did not consider the
problem during the transmission process, caused by channel
variation or spectrum usage. In practice, when the size of
offloaded task is small, the transmission will not be the
bottleneck due to the relatively sufficient communication and
computing resources owned by the ESP. Thus, we mainly
focus on the trading interaction between sellers (i.e., ESPs) and
buyers (i.e., miners), to study the optimal strategy to enable
MEC-based blockchain.

B. Mining Process and Consensus Mechanism

The solution of PoW puzzle is considered as a stochastic
process following the Poisson distribution [19] with parameter
λ. Then the probability of successfully solving the problem µi

is defined as

µi = αie
−λti , (2)

where the computing delay ti is related to the transactions or
block size of each block πb. Then we have ti = ςiπb where ςi
is a constant parameter for miner i. where −i means all the
remaining miners except i.

C. Degree of Satisfaction

For miner i, the amount of purchased computational re-
sources depends on its cost and the degree of satisfaction
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(DoS) obtained through the mining process. For miner i, we
have following definition of DoS D(si):

D (si) = log2 (1 + µi) . (3)

For (3), the logarithmic function satisfies the constraint of
0 ≤ D (si) ≤ 1, where it’s the possibility of obtaining profits.
In addition. the logarithmic function of the DoS is convex
and it can indicate that DoS of the miner increases as the
proportion of computational resources increases, and there
must exist a maximum value that optimizes the satisfaction
of miners [20].

III. RESOURCE TRADING MARKET

First, we formulate the resource trading between the ESPs
and miners as a sequential game in Sec. III-A and then present
the corresponding game model among the ESPs and miners.

A. Sequential Game Formulation

For service provisioning, a two-stage game model is for-
mulated. Once the strategies in the previous stages were
determined, the players (either ESPs or miners) in the later
stage can select the corresponding strategies. Then, the trades
between multiple ESPs and miners are considered as sequen-
tial decision-making problem, where the players can make
successive observations before the final decision is made. In
this work, we mainly focus on the trading interaction between
sellers/ESPs and buyers/ miners.

Correspondingly, we formulate the trading between the
ESPs and miners as a sequential game G with incomplete
dynamic information. The competition among the miners
is modeled by non-cooperative game GM and competition
among the ESPs is defined as multi-oligopoly Cournot game
GE . Sequential game is a model for making decisions along
time slots based on the sequential rationality assumption.
That is, all players dynamically adjust their strategies to find
optimized decisions based on the current observations.

B. Mining Competition Among Multiple Miners

Blockchain players can be rewarded by participating the
mining. The computational resource acquisition process of
the miners is modelled as a non-cooperative game, where the
players are miners and the strategies are the purchasing amount
from ESPs for solving the PoW puzzle. The utility of the miner
consists of profit and cost functions. The profit E(si) can be
defined as follows:

• The profit function E(si) is a combination of fixed reward
Rf and performance reward Rp, which is

E (si) = µi (Rf +Rp) . (4)

• The fixed reward Rf is the constant reward for computing
a newly generated block. The fixed reward of blockchain
can be regarded as an attenuation function of which the
half-life is T . That is

Rf = Rmax
f

(
1

2

) tc
T

, (5)

where Rmax
f is the constant reward from genesis block

and tc is the time point when miners start mining.
• The performance reward Rp is related to the volume of

transactions contained within the generated block, e.g.,
the size of each block. We have following definition:

Rp = rπb, (6)

where r is an evaluation factor and πb is the size of block.
• The participant reward Rε,i depends on the degree of

participation in the computing process while the new
block is generated, i.e.,

Rε,i = εαi, (7)

where ε is an evaluation factor.
• The purchase expenditure cEi is paid to the ESP for

computational resource, i.e.,

cEi = pjisi. (8)

The computational cost ci,M is the consumption gener-
ated during the calculation process.

For miner i, the total profit comes from mining process and
the cost is related to the purchase of computational resources.
With the above definitions, the utility of miner i is given as

UM
i (S,P) = E (si)+Rε,i−cEi −ci,M . (9)

C. Market Competition Among Multiple ESPs

As mentioned above, the competition via multiple ESPs
is formulated as a multi-oligopoly Cournot game. Multiple
ESPs acting as the sellers select the pricing strategies at the
same time, and they cannot observe each others’ strategies and
utilities. Based on the DoS of miners and cost cjE , the utility
function of the ESP j can be defined as follows:

UE
j (S,P) =

N∑
i=1

pjisiD(si)− c
j
E . (10)

IV. SEQUENTIAL GAME ANALYSIS

In this part, the objectives of both stages are formulated
in Sec. IV-A. The sequential game is then transformed into a
static game by Harsanyi transformation in Sec. IV-B, and the
existence and uniqueness of the Stackelberg equilibrium (SE)
of two-stage static game are discussed in two separated cases
in Sec. IV-C and Sec. IV-D.

A. Problem Formulation

In the formulated game, multiple miners need to compete for
the resources and the optimal utility in a non-cooperative man-
ner. The miners cannot observe the each others’ information
(e.g., purchasing demand and the probability of successfully
mining) and the strategies of all miners are executed at the
same time. Thus, the sub-game of miners is considered as
a static game with incomplete information. In this stage, the
optimization problem (P1) is formulated as
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P1 : max
S

UM
i (S,P) ,

s.t. D (si) ∈ [0, 1],
(11)

The competition among the ESPs is modeled as a multi-
oligopoly Cournot game. The ESPs cannot obtain each other’s
information and the sub-game of ESPs is also a static game
with incomplete information. In this stage, the sub-game of
the ESP aims at addressing the following problem, i.e.

P2 : max
P

UE
j (S,P) ,

s.t. D (si) ∈ [0, 1],
(12)

Based on the presented Sequential game model, a two-stage
iterative method is required to reach a SE. This two-stage
update will iterate until the conditions in Definition 1 are
satisfied.

Definition 1. Let S∗ be a solution for P1 and P∗ denotes
a solution for P2, Then, the point (S∗,P∗) is a Sequential
equilibrium for the game if for any (S,P) the following
conditions are fulfilled:

UE
j (S∗,P∗) ≥ UE

j (S,P) ,
UM
i (S∗,P∗) ≥ UM

i (S,P) .

In the considered two-stage game, the miners choose their
purchasing strategies after observing the information of all
the ESPs. The miners inevitably purchase the resources that
can optimize their own utilities, and the ESPs will accordingly
adjust their pricing strategies to reach equilibrium in a dynamic
manner. The overall game is considered as a sequential game
with incomplete information. As mentioned, ESPs may tend
to obtain the miners’ private information to complete the
formulated game. Based on the historical interaction records
(e.g., incentive, consumption and probability) in the computing
resource trading market, ESPs can predict the private infor-
mation and formulate the next-step strategies. In addition,
the communication between the ESPs and miners can also
contains some of the information which could accelerate the
decision-making process.

B. The Harsanyi Transformation

For the formulated sequential game with incomplete infor-
mation, we choose to add a virtual player Ω to transform
the dynamic game into a two-step static game [15]. After Ω
chooses the participants who will formulate the strategies in
the next step, the dynamic game is transformed into a two-
stage static game. Backward induction method is then used
to gradually reverse from the later stage of decision-making
to the previous stage. That is, the study of sub-game NE of
the previous stage will have to add the later equilibrium as
the basis. When the sub-game in each stage reaches NE, the
game will turn into the SE, i.e., the global optimal solution of
formulated problem.

In the following, two decision-making scenarios are dis-
cussed separately: ESP-first-select case and miner-first-select
case, based on which set of players act first in the second

step of Harsanyi Transformation. Next, we turn each of cases
into a two-stage decision-making problem, and study the SE
of these two cases, respectively.

C. ESP-first-select (EFS) Case

In this part, we study the case that ESPs first set the price.
Thus, in the first stage, the ESPs first set the price, and the
miners purchase the resources from the ESPs in the second
stage. In the following, backward induction method is used to
solve the optimization problem through reverse deduction.

1) Game of Miners in EFS: The utility function of miner
i obtaining computational resources from ESP j can be
expressed as follows:

UM
i = e−λtiαi (Rf +Rp)+εαi−pjisi − ci,M . (13)

Take the first and second derivatives of UM
i with respect to

si, respectively, we obtain that:


∂UM

i

∂si
= e−λti ∂αi

∂si
(Rf +Rp) + ε∂αi

∂si
− pji ,

∂2UM
i

∂s2i
=

(
e−λti (Rf +Rp) + ε

)
∂2αi

∂s2i
.

(14)

The first and second derivatives of αi with respect to si is
given as: 

∂αi

∂si
=

∑
i∈N

s−i( ∑
i∈N

si

)2 , i ∈ N,

∂2αi

∂si2
= −2

∑
i∈N

s−i( ∑
i∈N

si

)3 .

(15)

Then, we are able to find UM
i is convex with respect to s∗i .

Accordingly, there must be at least one s∗i which enables to
optimize the utility of miner i while the condition of ∂UM

i

∂si
= 0

can be satisfied.
Next, the fixed point method is used to explore the existence

of NE and we can obtain the following two theorems.

Theorem 1. In the formulated sequential game G, there exists
fixed point(s).

Proof. Obviously, S and P are all non-empty sets. Because
the domain of S and P all contain upper bounds, so S and
P belong to the sub-non-empty compact spaces of Euclidean
space ℜ. In addition, the utility function is a strictly convex
function. We can also see that the solution set are convex
set. Moreover, it can be easily obtained that the function is
continuous. Above all, the strategy sets of this game are non-
empty convex and compact sets, and the utility functions are
continuous.

Then the utility function of miners could be a continuous
mapping in the total sets of strategy and utility. According to
the definition of Brower’s fixed point theorem [16], the utility
function must have a fixed point, i.e., there is a s0 in S which
enables s0 = U (s0). The proof is now completed.

Theorem 2. The defined utility functions have the fixed points.
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Proof. The strategy set of the game GM is an non-empty
convex and compact set, and the utility function is continuous.
Therefore, the defined utility function must have the fixed
points. Due to the limitation of the space and detailed proof
can be found in [16], we omit here.

Assume that e−λti (Rf +Rp) = Φ, we can obtain

Φ
∂αi

∂si
+ ε

∂αi

∂si
− pji = 0. (16)

Due to the fact

si =
∑
i∈N

si −
∑
i∈N

s−i, (17)

and we have

s∗i =

√√√√ (Φ + ε) ·
∑
i∈N

s−i

pji
−

∑
i∈N

s−i. (18)

To this end, the optimal purchasing strategy for miner i
which maximizes the utility is expressed as follows

s∗i =
(N − 1)∑
i∈N

pj
i

Φ+ε

− pji
Φ+ ε

 (N − 1)∑
i∈N

pj
i

Φ+ε


2

. (19)

Then we will study the uniqueness of the NE. In non-
cooperative game problems, the sequential equilibrium solu-
tion problem (SEP) and the variational inequality (VI) problem
have some common similarities. Thus, the problem of refining
NE can be transformed into the VI problem [17]. Based on the
uniqueness of the NE in the formulated miners’ sub-game with
non-empty convex compact set of strategy, there are mainly
two methods to construct the VI problem.

2) Game of ESPs in EFS : Based on the above definitions,
the utility of ESP j obtained from serving miner i is:

UE
j = pjisiD (si)− cjE . (20)

After we get the optimal purchasing strategy which maxi-
mizes the utility of miners, the best pricing strategy for ESP
can be applied in a similar manner in the first stage. After
substituting (3) and (19) into (20), one can arrive

UE
j =pjs∗iD (s∗i )− c

j
E (21)

Then, with some calculations, conclusions can be easily
obtained that the UE

j is also a convex function with respect to

pj while
∂2UE

j

∂(pj
i)

2 < 0. The optimal pricing strategy
(
pj
)∗

that

makes ESP maximize the profits while the condition
∂UE

j

∂pj = 0
can be satisfy.

To this end, the following observations can be made: there
must exist an unique α∗

i which makes the Hessian matrix to
be negative definite. That is, the optimization of EFS is true.
Through backward induction method, we can also find the
existence of an unique strategy combination (i.e. SE) (S∗,P∗)
which optimizes the problem P1 and P2.

D. Miner-first-select (MFS) Case

In this case, rational miners first select the purchasing
strategy based on the observations. Then ESPs select the
pricing strategy accordingly. Here we also utilize backward
induction and first study the second stage of this game.

1) Game of ESPs in MFS: In the second stage of MFS, the
ESP select a pricing strategy. The considered homogeneous
ESPs (with the same strategy space) simultaneously choose
their strategies in the Cournot game. To maximize utilities,
miners inevitably expect much more computational resources
with lower prices. Obviously, the increase in the amount of
computational resources provided by multiple ESPs will have
an negative impact on selling prices.

Let qj be the strategy of ESP j for selecting the pro-
vided quantity, where the set of quantity strategy is Θ =(
q1, .., qj , ..., qM

)
and qj ∈ [qmin, qmax], where qmin and qmax

are the minimum and maximum quantities, respectively. We
assume that the seller decides the resource quantity strategy
at time t+ 1 based on the profits of moment t, that is

qj (t+ 1) = qj (t) + ϑqj (t)
∂UE,Θ

j

∂qj
, (22)

where ϑ is a positive value of the relative adjusting speed of
qj , and the presentation of UE

j is given in (24).
Let’s consider a Cournot duopoly game where a twice differ-

entiable and quadratic non-linearity inverse demand function
[21] can be denoted as follows:

pj = p
(
QE

)
= aB − bB

(
QE

)2
, (23)

where aB and bB are positive constants of demand function,

QE =
M∑
j=1

qj is the total quantity ESPs provided. Also we

have QE =
N∑
i=1

si .

For simplification, we now redefine the utility function of
ESP through the economic method, and ignore the impact of
D (si) from miner i. Thus the utility of ESP j would be:

UE
j =

(
pj − cjE

)
qj =

(
aB − bB

(
QE

)2 − cjE) qj , (24)

Take the first derivative of UE
j with respect to qj and we

have:

∂UE,Θ
j

∂qj
= −2qjQE ∂Q

E

∂qj
+
(
aB − bB

(
QE

)2 − cjE) . (25)

Once the condition
∂UE

j

∂qj = 0 was true, the optimal selling
strategy for ESP j can be denoted as

(
qj
)∗

= f
(
pj
)
.

Thus, the optimal quantity of ESP j was obtained by

(
qj
)∗

= argmax
q(j)

[(
aB − bB

(
QE

)2 − cjE) qj] . (26)

Then, the optimization problem P2 can be transformed into
P2’ under the condition of ignoring DoS for ESP, that is
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P2’ : max
S,×

UE,Θ
j ,

s.t. C1 :D (si) ∈ [0, 1] .
(27)

Therefore, we define the Lagrange function of P2’ as:

L
(
qj , ζi

)
=

(
aB − bB

(
QE

)2
− cjE

)
qj −

N∑
i=1

ζi (D (si)− 1), (28)

where ζi > 0 is Lagrange multiplier corresponding to con-
straint C1. After the KKT condition can be obtained,the
Lagrange method to solve the optimal problem to find the
optimal (qj)∗ and then (pj)∗. Due to the space limitation, we
omit it here.

Based on the mentioned fixed points theorem and the
strategy qj (t+ 1) at slot t + 1, the dynamic equation of
the ESPs could be expressed by mapping function from the
previous time slot:

q1 (t+ 1) = q1 (t) + ϑq1 (t)
∂UE

1

∂q1 ,

...

qM (t+ 1) = qM (t) + ϑqM (t)
∂UE

M

∂qM
.

(29)

We consider study the eigenvalues of the Jacobian matrix of
the aforementioned mapping function to research the stability
of the NE.

J =


∂q1(t+1)
∂q1(t)

∂q1(t+1)
∂q2 ... ∂q1(t+1)

∂qM

... ... ...
∂qM (t+1)
∂q1(t)

∂qM (t+1)
∂q2(t) ... ∂qM (t+1)

∂qM (t)

 . (30)

Through two typical cases, i.e., the selection of adaptive
strategies adjustment strategies, the stability of the NE could
be verified and the necessary conditions to be satisfied.

Case 1: when there are two ESPs and both ESPs adjust the
quantity according to the income at the previous time slot. That
is, when (22) is satisfied, the Jacobian matrix is as follows:

J1 =

[
J1,1 J1,2
J1,3 J1,4

]
, (31)

where



J1,1 =(q1)2ϑ−2− bB − 4ϑ+ (q2)2ϑ−2− bB

+ q1q2−2ϑbB + ϑ−2− 2bB + ϑaB − cjE + 1,

J1,2 =2−2− bBq2 − 2bBq1,

J1,3 =2−2− bBq1 − 2bBq2,

J1,4 =(q2)2ϑ−2− bB − 4ϑ+ (q1)2ϑ−2− bB

+ q1q2−2ϑbB + ϑ−2− 2bB + ϑaB − cjE + 1.

(32)

The eigenvalues can be obtained as follows:

(λ1,1, λ1,2) =
−2 ±

√
(J1,1 + J1,4)

2 − 4 (J1,1J1,4 − J1,2J1,3) (J1,1 + J1,4)

4 (J1,1J1,4 − J1,2J1,3) (J1,1 + J1,4)
.

(33)

Substituting (32) into (33), for given q1 and q2, we can see
that the stability of NE is relevant to ϑ since aB and bB are
only coefficient constraints.

Case 2: when there are two ESPs, if one of them is a
strategic choice to adjust based on the observations of the
previous slot, and the other is an adaptive adjustment, that
is,

q1 (t+ 1) = q1 (t) + ϑq1 (t) ∂u1

∂q1 ,

q2 (t+ 1) = (1− β) q2 (t) + βq1 (t) ,
(34)

where β is the adjustment speed.
Similarly, the Jacobian matrix can be defined as

J2 =

[
J2,1 J2,2
J2,3 J2,4

]
, (35)

where 
J2,1 = J1,1,
J2,2 = ϑq1

(
2 (−2− bB) q2 − 2bBq

1
)
,

J2,3 = β,

J2,4 = ∂q2(t+1)
∂q2(t) = 1− β.

(36)

Similarly, conclusion can be easily drew that he stability of
NE is related to the speed of adjustment ϑ, β. When the NE is
stable, the utility of the ESPs cannot be increased by altering
the quantity or price.

The combined analysis of Case 1 and Case 2 shows
that when ESPs select the quantity of computing resources,
no matter what kind of strategy is using, as long as the
appropriate adjustment speed is selected, the optimal sale

strategy q∗ =
[(
q1
)∗
,
(
q2
)∗
, ...,

(
qM

)∗]T
can be achieved and

the stability can be guaranteed.
Based on (23), when ESP j selects the optimal quantity(
qj
)∗

, the optimal pricing scheme could be obtained as
follows.

(
pj
)∗

= aBE − bBE

((
QE

)∗)2

. (37)

The selection of adaptive strategies adjustment strategies,
the stability of the NE could be verified and the necessary
conditions to be satisfied. When ESPs select the quantity
of computing resources, no matter what kind of strategy is
using, as long as the appropriate adjustment speed is selected,

the optimal sale strategy q∗ =
[(
q1
)∗
, ...,

(
qM

)∗]T
can be

achieved and the stability can be guaranteed.
2) Game of the miners in MSF: Based on the idea of

backward induction, after observing the pricing strategy of
ESPs, miners choose the purchasing strategy. Thus, the utility
of miner i at this time slot is:

UM
i = e−λtiαi (Rf,i +Rv,i) + εαi

−
(
aBE − bBE

((
QE

)∗)2
)
si−ci,M .

(38)

The proof of the existence and uniqueness of NE is similar
to above analysis. The existence of NE can be determined by
the fixed point theorem, and the uniqueness can be proved
by Hessian matrix, which we omit it here due to the space
limitation.
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E. Summary

To study the timer-shaft-based incentive optimization prob-
lem, the incentive mechanism under two cases are separately
studied. Then, the existence and uniqueness of the SE of these
two cases are studied through backward induction. We are able
to find there are SEs for the formulated games which enable
the optimal utility.

V. PROPOSED SOLUTION

As we can see, over a certain amount of time slots, the
optimization problem needs to obtain the complete information
about the future time slots to reach the optimal solution for the
next time slot, which means that absence of prior information
may degrade its achievable performance. Therefore, we intend
to utilize the Reinforcement Learning (RL)-based algorithm to
obtain solution without aforementioned prior knowledge.

A. RL Framework Formulation

In our considered system, the agent is the network controller,
and the environment consists of all the entities in the network.
In each time slot l the agent chooses an action al from
the action space, which decides the resource trading. The
agent obtains a reward or punishment from the environment
after applying an action. This scheme aims at maximizing
the cumulative received rewards within interactions. The RL
problem comprises of a single or multiple agents and an
environment. Based on a chosen policy, the agent can take
actions to interact with the environment. Briefly, there are three
elements in the RL framework: action a, state s and reward
r. The state space, action space and reward of the DRL-based
framework at time slot l are defined in the following.

1) State: We define the state space Ψ =
(ψl ∈ Ψ, l = 1, 2, ...) is a set of the following factors:
the degree of satisfaction, the probability of successfully
reward, computational capability, etc, which is the observation
of the current environment at time slot l.

2) Action: We consider the action space of agent i is
A = {al ∈ A, l = 1, 2, ...}, where is strategy of the blockchain
players (i.e., S and P ) at time slot l.

3) Reward: After executing the chosen action, the agent
will obtain a reward in certain state in each time slot. As
the target of the RL is to obtain reward maximization, the
defined reward needs to be positively related to the objective
function. For the considered problem, we define reward as
the utility functions (i.e. objective function of P1 or P2 ). In
the simulations, as iterative scheme is used for finding the
optimum, we use objective function of P2 as the reward.

B. Proposed DQN-based Solution

DQN uses a neural network (NN) Q(ψ, a; θ) to represent Q-
function, where θ is the weights of the NN. By updating θ
at each iteration, the Q-network is trained to approximate the
real Q-values. When it is applied to Q-learning, NN improve
the performance of flexibility at the cost of stability [22]. In
this context, DNN is proven to be a robust learning with better

performance [23]. Comparing with the Q-learning, there are
following major improvements in the DQN.

The hierarchical layers of convolution filters in the DNN
can be used to exploit the local spatial correlations. By such,
the high-level features of input data are extracted. The second
one is that experience replay can store its experience tuple
e(l) = (ψl, al, rl, ψl+1) at time slot l into a replay memory O.
The relay can randomly sample batches Ô from the memory
to train the DNN. Such a process enables DQN to learn from
different past experience rather than from the current one. In
addition, while using one network for estimating the Q-values,
the target Q-values that compute the loss of each action in the
training process can be generated by a second network. Such
a procedure is able to make the DQN stable.

DQNs are optimized by minimizing

L(θ) = E[yl −Q(ψl, al; θ))
2], (39)

where yl is the target Q-value, and it can be expressed as

yl = r(ψl, al) + ξmax
al+1

Q∗(ψl+1, al+1; θ
−). (40)

θ− is a target network parameter that is frozen for some
iterations when the online network −Q(ψ, a; θ) is updated by
gradient descent. Specially, the network controller chooses al
at time slot l, obtains reward rl and goes to the next state
ψl+1. Accordingly, an experience replay memory O is used
to store the vector (ψl, al, rl, sl+1).

C. Modified Experience Replay Update Method

We consider to randomly select two historical sequences
in the experience pool and remove the empirical value with
a larger number of Niche (i.e., the distance is greater than a
predetermined value, similar to the concept of variance), and
then put the current sampling result into the experience replay.
Accordingly, we propose a new experience replay update
algorithm, which is mainly used for secondary update of the
weights after initialization.

As shown in Algorithm 1, action al is first selected ran-
domly based on the probability 1−ε of the ε-greedy strategy at
time slot l. Then, based on state ψl and immediate reward rl, a
new sequence combination (ψl, al, rl, sl+1) will be generated
when the latest state sl+1 is obtained. Next, randomly select
two sequence combinations and replace the greater number of
niche by the new sequence. Then, randomly sample a mini-
batch in the experience replay, gradually approach the target
Q-value through (40), and update the key parameters of the
current Q-network according to the loss function (39). Once it
gradually converges, the iterative process will be interrupted
and the optimal action a∗ = arg max

al+1∈A
Q (ψl+1, al+1; θ) will

be the output.
Based on the improved experience replay update method,

the presented DQN algorithm can achieve a rapid convergence
with the help of experience replay sampling. Thus, the players
in edge computing-based blockchain system can quickly find
the optimal participation strategy based on the information set
to achieve the optimal utility.
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Algorithm 1 Modified Experience Replay Update Method for
DQN

1: Input: A, Ψ, θ
2: Output: Optimal strategy a∗ = argmax

a′∈A
Q (ψl+1, al+1; θ)

3: Initialize Q (ψl, al) in the prioritized replay memory D
with the size of ND

4: Initialize the main Q-network with input pairs
(ψl, al, rl, ψl+1) and the target Q (ψl+1, al+1)

5: Initialize the parameters of online Q-network to measure
the loss value

6: Repeat
7: while ∀ψ and a, s.t. Q (ψ, a) not converge do
8: Step 1: At the beginning of decision episode l, ran-

domly select the action al with probability ε according
to ε-greedy policy.

9: Step 2: Execute action al, received instant reward signal
rl and the new state s′ .

10: Step 3: Generate the sequence (ψl, al, rl, ψ
′).

11: Step 4:
12: if (ψ, a, r, ψ′)

Niche
cl

< (ψ, a, r, ψ′)
Niche
dl

13: (ψ, a, r, ψ′)dl
← (ψl, al, rl, ψl+1)

14: else (ψ, a, r, ψ′)cl ← (ψl, al, rl, ψl+1)
15: Step 5: Randomly sample a mini-batch of the state

sequence (ψl′ , al′ , rl′ , ψ
′) from D

16: Step 6: Calculate the target Q-value by (40) and loss
function

17: Step 7: Randomly generate new weight ω′

18: end while

VI. PERFORMANCE EVALUATION

In this section, we conduct numerical simulation of the
designed edge computing-based blockchain incentive mecha-
nism. For the value of some key parameters, we refer to [7]. In
detail, we set the following parameters to: Rmax

f =50, T=107,
r=105, ε=10−6, λ= 1

600 , η= 10−2, ci,M= 10−3, cjE= 10−4, ξ=
e− 1 and ε= 5× 10−2.

Fig. 2 shows the relations between the number of transac-
tions in block πb and the formulated DoS. It can be found
that, when miners own fixed computational capability or hash
power proportion αi, the DoS increases as the size of block
increases. It is mainly because that the increase of number of
transactions in the block (i.e., the block size) directly makes
it more difficult to solve a new PoW puzzle. Then more
computational resource is needed for mining. For the case of
fixed number of transactions πb in the block, it is obvious
that the increase in αi directly leads to an increment of DoS.
Based on the definition, the DoS is mainly determined by the
probability of successfully mining, which is further affected
by the factors such as the number of transactions, time delay
and the proportion of hash power.

Fig. 3 illustrates the relations between the quantity of
computational resource qj provided by ESP and the utility
j UE

j . It can be found that when the block size πb is constant,
the increase of the quantity qj leads to the increase of the
utility of ESP j. Based on the definition of the utility, UE

j is
nonlinear w.r.t. qj . Then, the price of computational resource
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would decrease, which is determined by the inverse price-
demand function. Meanwhile, the utility of miners and the
DoS increase which leads to the incremental of the utility.
Also, it can be easily found that the bigger πb would make a
smaller utility U j

ESP for the case of fixed quantity qj . That is
due to fact that a larger number of transactions in block makes
the process of solving PoW puzzle harder, which decreases the
DoS of miners as well as the utility of ESP.

In Fig. 4, we plot the relationship between the resource
quantity qj and the utilities of ESP j and miner i. We can see
that the increase of qj makes UE

i become larger, but decrease
UM
i . The utilities of players have an intersection point, which

is the SE point. At the intersection point, the utilities of players
in blockchain reach a balance where neither of players can
change the strategy without performance loss. We can also find
from this figure that the utility must be optimized. For the case
of fixed quantity qj , the bigger hash power proportion αi is,
the greater utility of player will be. This is mainly because
the increase of αi would lead to the increased probability
of successfully mining µi and a better DoS. Furthermore,
based on the defined inverse price-demand function, the fixed
quantity qj makes a constant price of computational resource,
so the increase of αi shows the fact that miners (except miner
i) decrease the demand of service, then it will also increase
the DoS of miner i.

In Fig. 5, we plot the relation between the proportion of
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computational resource and the utility of ESP. It can be found
that the increase of hash power proportion αi leads to the
increase of UE

j . For the case of fixed αi, the bigger the
quantity qj , the higher utility will be. Moreover, UE

j would
be negative if the quantity qj are blow 200, where should be
the minimum amount provided by ESP j in this case.

As shown in Fig. 6, we can see that some factors, i.e., the
proportion of computational capability αi and the price of the
computational resources pj can affect the utility of miners
UM
i . In the figure, when the price remains the same, the

utility UM
i increases with the increment of αi. UM

i gradually
decreases with the increase of pj for the case of fixed αi. The
main reason is that the increase of αi and the decrease of pj

would lead to the increase of the probability of successfully
mining and the DoS, so as to bring a positive effect on the
expected reward for miner i. Further, with the change in αi

and pj , it can be easily observed that there must exist strategic
point(s) which enables to optimize the utility of miners.

Fig.7 implies the relations between the amounts of miners
participating in mining and system efficiency. Specifically, the
system efficiency is characterized by the number of trans-
actions contained in a single block in this paper. As for
the newly generated block, while the award of the certain
block and the average time of solving the PoW puzzle keep
constant, the larger amounts of miners will cause the amount
of transactions/data contained in the block to increase. In other
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words, the efficiency of the blockchain network increases as
the number of miners increases. Likewise, when the number
of miners remains unchanged, the efficiency of the system
improves as the award increases.

We evaluate the proposed experience replay update method
for DQN algorithm in Fig. 8. Through numerical simulation,
we characterize the reward performance for players of each
episode. With the increase of number of the episode, the
algorithm shows positive effects. Then the result obtained by
all blockchain participants converges to a relatively stable
value, which represents a good convergence performance.
For the modeled sequential decision problem, the proposed
algorithm can enable participants to obtain the optimal reward.
In addition, Fig. 8 also shows that the proposed scheme can
significantly reduce the number of target steps to achieve the
optimal strategy and utility.

VII. CONCLUSION

In this work, an edge computing-based blockchain frame-
work is considered, where multiple ESPs can offer computa-
tional resources to the devices for mining. We mainly focus on
investigating the trades between rational devices and ESPs in
the computational resource market, where ESPs can act as the
sellers and devices as the buyers. Accordingly, a sequential
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game model is formulated and by exploring the sequential
Nash equilibrium, the existence of optimal incentive solutions
can be proved. Then, a Deep Q-Network-based algorithm
with modified experience replay update method is applied to
find the optimal strategies. Through theoretical analysis and
simulations, we demonstrate the effectiveness of the proposed
incentive mechanism on forming the blockchain. In the future,
we will take transmission-related metric into the consideration
when designing the interactions between blockchain players.
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