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METRIC RECTIFIABILITY OF H-REGULAR SURFACES WITH HOLDER
CONTINUOUS HORIZONTAL NORMAL

DANIELA DI DONATO, KATRIN FASSLER, AND TUOMAS ORPONEN

ABSTRACT. Two definitions for the rectfiability of hypersurfaces in Heisenberg groups
H" have been proposed: one based on H-regular surfaces, and the other on Lipschitz
images of subsets of codimension-1 vertical subgroups. The equivalence between these
notions remains an open problem. Recent partial results are due to Cole-Pauls, Bigolin-
Vittone, and Antonelli-Le Donne.

This paper makes progress in one direction: the metric Lipschitz rectifiability of H-
regular surfaces. We prove that H-regular surfaces in H" with a-Holder continuous hor-
izontal normal, o > 0, are metric bilipschitz rectifiable. This improves on the work by
Antonelli-Le Donne, where the same conclusion was obtained for C*°-surfaces.

In H', we prove a slightly stronger result: every codimension-1 intrinsic Lipschitz
graph with an € of extra regularity in the vertical direction is metric bilipschitz rectifiable.
All the proofs in the paper are based on a new general criterion for finding bilipschitz
maps between "big pieces” of metric spaces.
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1. INTRODUCTION

This paper concerns the relationship between two notions of codimension-1 rectifiability
in the Heisenberg group (H", dy) = (R*"*!, ., d), where "-" is the group product

2n

(T1,. .., Top, 1) - (m’l,...,xén, <Z T; —l—mz,t—i-t +3 Zx xnﬂ xn+,m> c R?" x R,
=1 i=1

and dy is the Korényi distance du(p,q) := |¢7! - p| (with |(z,t)| := /|=|* + 16t2 for

(z,t) € R*™ x R). Metric notions in H", notably Hausdorff measures, are defined using
the metric di. Metric notions in R™ are defined using the standard Euclidean distance.

In R™, the notion of rectifiability can be defined in two equivalent ways. For 0 < m <
n, an H™ measurable set £ — R" is called m-rectifiable if H™ almost all of E can be
covered by either

(1) countably many Lipschitz m-images, or
(2) countably many Lipschitz m-graphs.

Here, a Lipschitz m-image means a Lipschitz image of R, while a Lipschitz m-graph means
a set of the form {v + A(v) : v € V}, where V < R”" is an m-dimensional subspace,
and A: V — V't is a Lipschitz map. The equivalence of "Lipschitz image rectifiability"
and "Lipschitz graph rectifiability" is well-known. In particular, Lipschitz m-graphs are
trivially Lipschitz m-images, since v — v + A(v) is Lipschitz whenever A is.

We then discuss the analogues of these notions in H". Recall first that (H", d) is a
metric space of Hausdorff dimension 2n + 2. A common notion of codimension-1 recti-
fiability (see [20, Definition 4.33]) is intrinsic Lipschitz graph (iLG) rectifiability: an H*"+!
measurable set E < H" is called iLG rectifiable if > *! almost all of E can be covered
by countably many iLGs over vertical subgroups of codimension 1. Here, vertical subgroups
refer to codimension-1 subspaces of R2n+l containing the t-axis, cf. Section 3, while iLGs
were introduced by Franchi, Serapioni, and Serra Cassano [19] in 2006. They are natural
H" counterparts of Lipschitz graphs in R", see Definition 1.2.

The notion of Lipschitz image (LI) rectifiability in H"™ was first studied by Pauls [24] in
2004. An H?"*! measurable set E = H" is called LI rectifiable if H?"*! almost all of E
can be covered by countably many Lipschitz images of closed subsets of codimension-1
vertical subgroups. All of these subgroups (for n > 1 fixed) are isometrically isomorphic
to each other. If n = 1, they are further isometrically isomorphic to the parabolic plane

M= (R%,+,]-[), where [(y,1)] = /y"+ 1682,

and if n > 2, they are isometrically isomorphic to (H" ™! x R, n-1,g, | - ||) with

((z,t),s) ‘H—1xR ((Z/7t/)78/) = ((Z + 2 it +t 4 % 2 Zz n—1+41 Zzl'zn—1+i))73 + Sl) (11)

and

[((2,), 8)] = V/I(2, 8)[* + 16¢.
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So, E is LI rectifiable if and only if H2n+1 almost all of E can be covered by countably
many Lipschitz images of closed subsets of IT (if n = 1) or H"~! x R (if n > 2). The metric
induced by | - || in IT is denoted d;, and in H" ! x R by dgn—1,p.

The connection between iLG and LI rectifiability in H" is poorly understood. It is
neither known if (a) LIs of vertical subgroups are iLG rectifiable, nor if (b) iLGs are LI
rectifiable. It may appear surprising that question (b) is open: after all, to show that
Lipschitz m-graphs in R™ are Lipschitz m-images, one only needed to observe that the
graph map v — v+ A(v) is Lipschitz whenever A is. In H", this argument fails completely.
We will discuss the matter further in a moment.

The purpose of this paper is to make progress in question (b). In brief, we will show
intrinsic C1“-graphs in H" are LI rectifiable for any a > 0. In H!, we can say something
a little better. For precise statements, see Theorems 1.6, 1.7, and 1.11. Before formulating
these new results in detail, we define our objects of study more carefully, and describe
some previous work on the topic.

Definition 1.2. An intrinsic graph over the vertical subgroup W = {1 = 0} in H" is a set of
the form

S ={w-p(w):we W}, (1.3)

where p: W — V =: {(21,0,...,0) : 1 € R} is an arbitrary function. The graph S
determines ¢ uniquely. Further, S is an intrinsic L-Lipschitz graph (L-iLG) over W if it
satisfies a cone condition of the form

Sn(p-Cla)={p}, peS 0<a<L L

Here C(a) := {ge H" : |mw(p)|| < a|nmv(p)|}, and mw: H* — W and 7y : H" — V are the
vertical and horizontal projections induced by the splitting H" = W - V. If § < H" is an
(L-)iLG, the function ¢ is called an (L-)intrinsic Lipschitz function.

Now, viewing (1.3), it is clear that an iLG S < H" has a "canonical" parametrisation by
the graph map ®: W — S, defined by ®(w) := w - ¢(w). However:

o p: (W,dy) — (V,dy) is not always a Lipschitz function, and
e the graph map ®: (W, dy) — (S, dn) is "almost never" Lipschitz.

Regarding the first point, [19, Example 3.3] suggests that ¢(0, z9,t) = (1 +/2,0,0) is an
intrinsic Lipschitz function in H', which is not a Lipschitz function. For the second point,
consider the constant function (0, z2,t) = (1,0,0). Then the graph map

(I)(O,x%t) = (O’ant) ’ (LO,O) = (1,$2, - %)

parametrises the vertical plane S = W' = {z; = 1} c H!, a prototypical iLG. However,
® is not Lipschitz on any open subset of W, because the only rectifiable curves on W, W’
are the horizontal lines contained on W, W’, and ® sends the horizontal lines on W to
non-horizontal lines on W’ (by right translations).

In spite of these difficulties, the graph map is sometimes useful for Lipschitz parametris-
ing iLGs: if an iLG S = H! has enough a priori regularity, then ® can precomposed with
something known as the characteristic straightening map W: II — W in such a way that
® o U: II — S is locally Lipschitz — or even bilipschitz. The following theorem is due
to Cole and Pauls [12] from 2006 (the addition of the letters "bi" is due to Bigolin and
Vittone [7] from 2010):
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Theorem 1.4 (Cole-Pauls, Bigolin-Vittone). Every non-characteristic point on a Euclidean C*
surface S < H! has a neighbourhood which is the bilipschitz image of an open subset of T1.

Both proofs reduce the problem to intrinsic Lipschitz graphs S = ®(W) < H!, and
the Euclidean C''-smoothness of S then translates to properties of the intrinsic Lipschitz
function p: W — V. The essential hypothesis is that ¢ is a Euclidean C*-function, al-
though it might suffice that ¢ is Euclidean Lipschitz, viewed as a function R? — R. The
characteristic straightening map only plays a small (and rather implicit) role in this pa-
per, see Lemma 4.10. So, we refer to the "Outline of proofs" section in [6], or the proof of
[7, Theorem 3.1] for more details. In brief, the regularity of ¢ is, in Theorem 1.4, required
to control the regularity of ¥, and if ¢ fails to be Lipschitz R? — R, the map ¥ does not
appear to be useable for the Lipschitz parametrisation problem.

In fact, Bigolin and Vittone in [7] show that Theorem 1.4 can fail without the C'!-
regularity assumption. For 3 < a < 1, they consider the intrinsic Lipschitz function

—ift >0,

@(0,562,75) = { 1o

0,29.8) € W, 15
0, ift <0, (0,22,%) € (1.5)

and its intrinsic graph S = ®(W), which fails to be Euclidean C'-regular in any neigh-
bourhood of the line {(0, z2,0) : 22 € R}. They show that no Lipschitz map from an open
subset of II to a neighbourhood of 0 € I" can have a Lipschitz inverse.

The example (1.5) is a good prelude to the results of this paper. The main novelties
will be to

(a) say something about the LI rectifiability of iLGs below the critical C'!-regularity
of ¢ (in particular, our results apply to the example in (1.5) for 1 < a < 1),

(b) consider the problem in higher Heisenberg groups, where the technique via the
characteristic straightening map does not seem to be easily available.

Here is the first main result:

Theorem 1.6. Let a > 0, and let S < H" be the intrinsic graph of a globally defined but
compactly supported intrinsic CL*~function. Then S has big pieces of bilipschitz images of the
parabolic plane (1L, dpy) if n = 1, or of (H" ™ x R, dgn—14g) if n = 2. In particular, S is LI
rectifiable.

The following corollary is easier to read:

Theorem 1.7. Let S < H" bea Cﬁ’a—surface. Then S is LI rectifiable.

Remark 1.8. A first version of the present paper, by the third author, contained Theorems
1.6 and 1.7 in H!. After that version appeared on the arXiv, Antonelli and Le Donne
proved in [2], building on [22], that every C* hypersurface S in H", n > 2, is rectifiable
by bilipschitz images of subsets of H" ! x R.

The result of Antonelli-Le Donne follows from Theorem 1.7 (or rather, the bilipschitz
version stated in Theorem 3.28): the C® regularity of S, and a result of Balogh [5], imply
that %" *1 almost every point on S has an open neighbourhood U such that S n U is
given as the level set of a C® function f : U — R with nonvanishing horizontal gradient
Vuf. Using that f is Euclidean C*® (or even Euclidean C?), one concludes that f satisfies
condition (3.4) in Definition 3.2, possibly on a slightly smaller open set. Thus, outside
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an H?*"*! null set, S is locally a C[éfa surface, and it follows from Theorem 3.28 that S is
rectifiable by bilipschitz images of compact subsets of H" 1 x R.

The notions of regularity appearing in the theorems above will be formally introduced
in Section 3. In brief, a Cﬁ’a—surface is an H-regular surface whose horizontal normal is a-
Holder continuous (in the metric dy). Then, roughly speaking, an intrinsic C1*“~function

is a function W — V whose intrinsic graph ®(W) is a Cj;“-surface, but this is a little
inaccurate; see Definition 3.6 and Remark 3.7 for more precision.
The next example points out that Theorem 1.7 applies to the function in (1.5):

Example 1.9. The horizontal normal of the intrinsic graph of the function ¢ from (1.5) is

1 Cor t2a71

VH(‘I)(O,CC2,t)) = <\/1+ (CatQQ 1 \/1 C $20— 1

where ¢, = af(1 — a)?, and vg(®(0,z2,t)) = (—1,0) for zo € R, t < 0. This follows by
combining the expression for the intrinsic gradient of  on [7, p. 166] with a known relation-
ship between the horizontal normal of ®(W) and the intrinsic gradient of o, see the references
around (3.13). With the explicit expression in hand, let us show that the horizontal normal map
vi: (®(W),dy) — Stis (2a — 1)/a-Hélder. First, observe by calculating derivatives that the
functions f,g: R — R defined by f(r) := —1/vV1+r2and g(r) := r/v/1 + r? are (globally)
Lipschitz. Consequently, for (0, xz2,s), (0,2%,t) € W, we have

Vet (®(0, 22, 5)) — via(@(0, 25, 1)| S £ (cas™ ) = fleat®* )] + lg(cas™ ) — g(cat™ )|
< Cop |S2a71 o t2a71|‘

> ro e R, t >0,

Next, noting that (2cc — 1) /o € (0,1] for 1 < o < 1, we have
s20 0 — 2071 5 — 20D/ S (@0, 22, ), B0, 7, 1)) 7V,

as claimed. It follows that ®(W) satisfies the assumptions of Theorem 1.7, which are made precise
in Definition 3.2 (see also Remark 3.5).

The next definition explains the rest of the terminology in Theorem 1.6:

Definition 1.10 (BPGBI). Fix n € N and set (G,dg) = (Il,dp) if n = 1, and (G,dg) =
(H"! x R,dgn-1,g) if n > 2. Let E = H" be closed and (2n + 1)-regular. Then, E has
big pieces of G bilipschitz images (BPGBI) if there exist constants L > 1 and # > 0 such that
the following holds: for every p € E and 0 < r < diamp(F), there exists a compact set
K < B(0,r) c G and an L-bilipschitz map f: K — H" such that

HH(F(K) A [E n B(p,r)]) = 6r2"+

So, up to some technical assumptions, Theorem 1.6 states that intrinsic C 170‘—graphs in
H" are uniformly rectifiable by (G, dg), in the spirit of David and Semmes [13]. We next
formulate a stronger result in H!. Informally, the point is that we can relax C' 170‘—regularity
to Lipschitz regularity in the "horizontal" directions, but we still need to assume an ¢ of
additional a priori regularity in the vertical direction. To motivate the definition, we note
that intrinsic C1*-functions are locally Euclidean (1 + «)/2 Hélder continuous along
vertical lines by [10, Proposition 4.2]. In H!, it turns out that this property of extra vertical
Holder reqularity alone implies the conclusion of Theorem 1.6.
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Theorem 1.11. Let S < H! be the intrinsic graph of a globally defined but compactly supported
intrinsic Lipschitz function with extra vertical Holder reqularity, see Definition 4.1. Then S has
big pieces of bilipschitz images of the parabolic plane (11, dy). In particular, S is LI rectifiable.

The "extra vertical Holder regularity" is often weaker than intrinsic C'1®-regularity:
for example, intrinsic Lipschitz functions of the form ¢(0,y,t) = ¢(y), with ¢: R — R
Lipschitz, are not necessarily intrinsic C La but they are very smooth along vertical lines.

Theorem 1.11 can be used to give alternative proofs for the LI rectifiability of Euclidean
c! hypersurfaces in H! (originally due to Cole-Pauls [12]) and of the n = 1 case of Theo-
rem 1.6 (originally due to the third author). Intrinsic graphs that satisfy the assumptions
of Theorem 1.11 are examples of sets on which the 3-dimensional Heisenberg Riesz trans-
form is L?-bounded, see [16]. The essential property of such graphs used here is that they
can be well approximated by Lipschitz flags (Definition 4.8), and that Lipschitz flags can
be bilipschitz parametrised using the characteristic straightening map of Cole-Pauls and
Bigolin-Vittone. No counterparts for these properties are known in higher dimensions.

We close this section with a few questions:

Questions. Areall intrinsic Lipschitz graphs in H™ LI rectifiable? If so, do they have big pieces of
Lipschitz images of G, or BPGBI? In the converse direction: Are (bi-)Lipschitz images of vertical
subgroups in H" iLG rectifiable?

1.1. Bilipschitz maps between big pieces of metric spaces. As mentioned above Theo-
rem 1.6, adapting the techniques of Cole-Pauls and Bigolin-Vittone seems difficult with-
out something close to C'!-regularity, or if n > 2. Instead, Theorems 1.6 and 1.11 will
follow from an application of a general result concerning metric spaces, Theorem 1.14
below. We now formulate the abstract hypotheses of that theorem.

Let (G,dg) and (M, dys) be metric spaces. Assume the following "local correspon-
dence" between G and M, for constants « > 0, L > 1, A > 1, and for some zy € G and
po € M fixed. For every x € Bg(xo,1), p € By(po, 1) and n € N U {0} there exists a map
ir_,: G— Mwithi?_, (z)= psuch that

L7t da(y, 2)—A27" ) < dy (i, (y), in,,(2)) < Ldg(y, 2)+A27"0F) 1y 2 e B(w(,121‘;))-
Moreover, if n > 0, z,y € Bg(xo,1) and p,q € Bp(po,1) with dg(z,y) < 27" and
in_p(y) = q, then
A (i, (2), 05k (2)) < A27"0F) e Bz, 27™). (1.13)

These assumptions are reminiscent of [14, (1.6)-(1.9)]. See also [8, Appendix 1] for
related results. The assumption (1.12) postulates that the maps i};_, , are bilipschitz con-
tinuous at the scale 27", up to an error which is much smaller than 27". The assumption
(1.13) is "compatibility condition™: it states that the maps i7;_,, and ZZ:%] nearly coincide
at scale 27", again up to an error which is much smaller than 27". The a priori condition
"-n

in_,(y) = ¢" above (1.13) is a technically convenient way of assuming that p and ¢ are

close to each other on M: indeed it follows from the hypotheses, including (1.12), that

du(p,q) = dur (i, (2), i3, (y)) < Ldg (w,y) + A27"0F) <y 27m,

The assumptions (1.12)-(1.13) are designed to enable the construction of bilipschitz
maps from subsets of G to M, at least if G is complete and doubling:
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Theorem 1.14. Assume that (G,dq) is a complete metric space with diamg(G) = 1 and
equipped with a nontrivial doubling measure p, and (M, dy) is complete. Assume that the
conditions (1.12)-(1.13) hold for some o > 0, L > 1, and A > 1. Then, there exists a constant
d > 0, a compact set K < B(xo, 1) with p(K) > éu(B(xo, 1)) and a 2L-bilipschitz embedding
F: K — M with F(K) < B(po, 1). The constant § > 0 only depends on the doubling constant
of (G,dg, 1), and the constants o, L, and A in (1.12)-(1.13).

The plan of the paper is to prove Theorem 1.14 in Section 2 and Appendix A, and then
apply it to prove Theorem 1.6 for H", n > 1, in Section 3. In Section 4 we prove Theorem
1.11, which yields as a corollary the case n = 1 of Theorem 1.6. Theorem 1.7 is "morally"
a direct corollary of Theorem 1.6: by the implicit function theorem of Franchi, Serapioni,
and Serra Cassano [18, Theorem 6.5], a C;*-surface is locally parametrisable by an intrin-
sic Ch-function over some vertical subgroup W < H". However, the parametrisation
may only be defined on a strict subset of W, and fail to literally satisfy the assumptions
of Theorem 1.6. As far as we know, there is no extension theorem for intrinsic C'*-
functions available. To bypass the issue, Appendix B contains a proposition saying that
every point on a C[éfa—surface has a neighbourhood which is contained on the intrinsic
graph of a globally defined, compactly supported intrinsic Clho3 function. With this
proposition in hand, Theorem 1.7 is indeed a corollary of Theorem 1.6.

1.2. Notations. For A, B > 0, we write A < B if there is a constant C' > 0 such that
A < UB. If we want to specify that the value of C is allowed to depend on an auxiliary
parameter h, we will write A <y, B.

1.3. Acknowledgements. K.F. and T.O. would like to thank Enrico Le Donne and Séver-
ine Rigot for many fruitful discussions on the topic of the paper. We are also grateful
to Davide Vittone for tips on proving Proposition B.1, which was needed to reduce The-
orem 1.7 to Theorem 1.6, and to Damian Dabrowski for pointing out the reference [4].
D.D.D. would like to thank Enrico Le Donne and Raul Serapioni for important sugges-
tions on the subject. Finally, we thank the anonymous referees for a careful reading of
the manuscript, and for making many useful suggestions.

2. PROOF OF THE MAIN THEOREM FOR METRIC SPACES

The proof of Theorem 1.14 is inspired by the recent work of Le Donne and Young [22]
on the Carnot rectifiability of sub-Riemannian manifolds.

Before starting the proof of Theorem 1.14 in earnest, we need to introduce some termi-
nology. Assume for a moment that ny > 0, and there exist families {D,, },>n, of subsets
of G, known as cubes, with the following properties:

(i) Each D, consists of a finite number of disjoint non-empty compact sets, and in
particular card D,,, = 1.
(ii) For n > ng, each cube @) € D,, is contained in a unique cube Q € D,,_1, called the
parent of Q). For Q) € D,,_; fixed, write ch(Q) := {Q € D,, : Q= Q}.

(iii) diamg(Q) < 27" forall Q € D,,.

(iv) There are constants ¢, 7 > 0 such thatif n > 0 and Q1, Q5 € D,, are distinct, then

de(Q1,Q2) = T2~ (1+an,
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An (€, ng, 7)-Cantor set is any set of the form

ke k=0 Yo

nzno nzno QeDy,
where the families D,,, ng > 0, satisfy properties (i)-(iv).

Definition 2.1. A metric measure space (X, d, 1) admits fat Cantor sets if for all e > 0 and
ng = 0, there exist constants 6 = §(ng) > 0, and 7 = 7(¢) > 0 such that the following
holds. For all x € X, there exists an (€, ng, 7)-Cantor set K < B(z,1) with p(K) >

p(B(z,1)).

We will only use the assumption that (G, dg, i) is doubling and complete to ensure
that it admits fat Cantor sets.

Proposition 2.2. Every doubling and complete metric measure space (X, d, u) of diameter > 1
admits fat Cantor sets. In other words, for every ¢ > 0 and ng > 0, the constants 6(ng) > 0
and 7(€) > 0 can be found as in Definition 2.1. They are also allowed to depend on the doubling
constant of (X, d, ).

The proof of the proposition above is essentially contained in [22, Section 4.1], but
since the statement is not explicitly given in [22], we repeat the details in Appendix A.
What follows next is a proof of Theorem 1.14, assuming Proposition 2.2. Fix zp € G and
po € M. Let € := a/2 (where a > 0 is the parameter appearing in (1.12)-(1.13)), let ng = 0
be a large integer to be determined later, and let X' < B(x, 1) be an (¢, ng, 7)-Cantor set
associated to families of cubes {D,,},>n,, as in (i)-(iv). For each @ € D,, n = ny, pick a
centre cg € Q. Set Dy,y—1 := {G}and K,,_1 := G.

Themap F': K — M will be defined as the limit of certain intermediate maps F, : K,, —
M forn > ng — 1. Set F,,j—1 = po. To proceed, assume that n > ng, and the map
F,—1: K,—1 — M has already been defined. Then, fix Q,,—1 € D,,—1, and set

Fn|Q = Z‘ZQHFn_l(CQ)‘Q7 Q € Ch(Qn—l) - Dn

The next lemma shows, in particular, that if z € K, then the sequence (F),(z))nen is
Cauchy in (M, dys). Hence F(z) := lim,,_,, F},(x) exists by the completeness of (M, dxy).

Lemma 2.3. If ng > 1 is large enough (depending on A and the constant L in (1.12)), the
following holds for all w € K and n > ny:

dar (Fp(w), Fy1 (w)) < A27"0F), (2.4)

Proof. For w € K, let ¢,,(w) be the centre of Q,,(w), where Q,,(w) is the unique cube in D,
containing w. One can infer (2.4) from the compatibility condition (1.13) in the following
way:
dM(Fn (w)7 Fn+1 (w)) = dM (i?n(w)HFn_l(Cn(w)) (w)7 2‘27:.11 (w)—Fn(cn+1(w)) (w)) < A27n(a+1) .
To check that the assumptions of (1.13) are really in force, use the notational substitutions
q = Fp(chi1(w)), p:= F_1(cn(w)), x :=cp(w),y := cpr1(w), and z:=w.
Then, note that dg(x,y) < diamg(Qn(x)) < 27" by (iii), z € B(z,2™") again by (iii), and

q = Fn(cns1(w)) = i¢ w)— 5y (o (w)) (Cnr1(w)) = iz, (1) (2.5)
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by definition. This shows that the assumptions of (1.13) are valid, except for one small
issue: is it clear that p,q € B(po,1)? For n = ng, simply p = F,,_1(cp,(w)) = po. Also,
using (2.5) and (1.12), we find that

(g, p) = da (i, (y), 10, (2)) < Ldg(z,y) + A27"(1F) <) 427,

Recalling the definitions of p, g, and using the estimate above repeatedly shows that
max{ds (p,po),dr(q,po)} S A27™ for all n > ny. In particular, p, g € B(po, 1) if ng > 1
is large enough, depending on A and the constant L in (1.12). The proof of the lemma is
complete. O

As an immediate corollary, one deduces the useful estimate
dpr(Fp(x), F(z)) S A27"0F9)  pe K, n > ng. (2.6)

It remains to prove that F' is 2L-bilipschitz on K if the index ny € N was chosen large
enough, depending on the parameters o > 0, L > 1 and A > 1. Fix z,y € K arbitrary
with z # y, and let Q € D, n > ng, be the smallest cube with x,y € @ (thus z,y lie in
distinct cubes in D,, ). Write ¢ := cg € Q. Then, using properties (iii)-(iv) of the cubes
Dy,

max{dg(z,c),dg(y,¢)} <27 and 72" "HDO+) < do(z,y) <277 (2.7)

Also, by definition,
Fn(l') = Z‘Z*)Fn_l(c) (I’) and Fn(y) = Z‘Z*)Fn_l(c) (y)7
since z,y € (). We deduce from (1.12) (using (2.7)) that

da (Fn(2), Fn(y)) = dv(ip g, (o) (@) tesp, (0(Y) 2 L7 dg(x,y) — A27"0+9) - (2.8)
We also have the upper bound analogous to (2.8),

At (Fo(2), Fu(y)) < Ldg(z,y) + A27"07),

n(l+a)

Recalling that € = a/2 and 7 = 7(¢), the error term A2~ is smaller than

L717_27(n+1)(1+6)/4 < LildG(ﬂT, y)/4
for n = ny, if np € N was chosen large enough, depending on A, L and «. Thus,

,13dg($,y) 5dg($,y)
4

L < dM(Fn(x),Fn(y)) S L———. (29)

4
Finally, if no > 0is large enough, depending again on «, L and A, one sees from (2.6)-(2.7)

that

max{dy (F(z), F(2)), da (F(y), Fu(y))} < L—ldG(;U?y).

It then follows by combining (2.9), (2.10), and the triangle inequality that

(2.10)

L—lw < du(F(x), F(y) < L2dg(,y),

as desired. The proof of Theorem 1.14 is complete, except for the claim F(K) < B(po, 1).
Pickze K c @, < B(ch0 ,27™0), and write, using (1.12),

dnr(po, Fry () = dM(iZgnO - (chO),i?gno o () < Ldg(chO,x)+A2—no < (L+A)27",

Further, it follows from (2.6) that dys(F(x), Fy,(z)) S A27™0. So, if ng = 2 was chosen
large enough, depending on A and L, one has F(z) € B(po, 3). Finally, since diamg(K) <
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27" < L for ng large enough depending on L, and F is 2L-Lipschitz, one has F(K) <

B(F(z),3) = B(po, 1). The proof of Theorem 1.14 is complete.

3. GRAPHS AND SURFACES WITH HOLDER-CONTINUOUS HORIZONTAL NORMALS

Throughout this section, we use coordinates (x1,...,%2,,t) on H" as defined at the
beginning of Section 1. In these coordinates, a frame for the left invariant vector fields on
H" is given by

Xi = 0p, — =50, Xpyi=0ppy, + 50, fori=1,...,n, and T = q, (3.1)
which yields the nontrivial commutator relations
[Xi7Xn+i]:T7 izl,...,n.
The horizontal gradient of a function f : U < H" — R is

Vuf = (Xif,..., Xonf).

A wvertical subgroup W of codimension 1 in H" is, in the above coordinate system, a 2n-
dimensional subspace of R?"! containing the t-axis. Given such a subgroup W, we
denote by V its Euclidean orthogonal complement. We recall that 7y : H" — W is the
vertical projection to W, and 7y : H" — V is the horizontal projection to V, induced by the
splitting H = W - V, see [19, Proposition 2.2]. In particular,

p = mw(p) - mv(p), forallpeH".

3.1. Definitions and preliminaries. A Cﬁ’a—surface is locally a non-critical level set of a
C]éfa-function f: H" — R. Here is the precise definition:

Definition 3.2 (Cﬁ’a—surfaces). Let S — H" be an H-regular surface in the sense of Franchi,
Serapioni, and Serra Cassano [18, Definition 6.1]: for every p € S, there exists an open
ball B(p,r) and a function f € Cf;(B(p,r)) such that Vi f(p) # 0, and

SnB(p,r)={qe B(p,r): f(q) = 0}. (3.3)

For 0 < o < 1, the set S is called a Cﬁ’a—surface if one can choose f so that there exists a
constant H = H), > 1 such that

\Vuf(q1) — Vuf(g)| < Hdu(q,¢2)7, q1,92€ Sn B(p,r). (3.4)

Remark 3.5. If S n B(p,r) = B(p,r) n {f = 0}, as above, then [18, Theorem 6.5] states
that, after making r > 0 possibly a little smaller, the inward-pointing horizontal normal
of E = {f < 0} is given by the expression

Vi f(q)

ve(q) = —m, g€ S n B(p,r).

Clearly, if f satisfies (3.4), then this choice of horizontal normal is (locally) a-Holder
continuous as a map (9, dy) — %" 1.

Conversely, if S < H" is an H-regular surface with a-Holder continuous v, if p is an
arbitrary pointin S, and r > 0 is small enough, we claim that there exists f € Cf(B(p, 7))
so that (3.3) and (3.4) hold. Not every function f which satisfies (3.3) necessarily ful-
fills (3.4), cf. the related Remark 3.7 below. In order to find f which satisfies simultane-
ously the two conditions, it is convenient to write S locally as an intrinsic graph. First,
by assumption there exists i € {1,...,2n} so that the component v%, does not vanish on
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S n B(p,r) for small enough > 0. Without loss of generality, we may assume thati = 1
and yfg < 0on S n B(p,r). Then, the implicit function theorem of Franchi, Serapioni,
and Serra Cassano [18, Theorem 6.5], combined with [1, Theorem 1.2], implies that for
small enough r > 0, the set S n B(p,r) can be written as intrinsic graph in X;-direction
of a function ¢ whose intrinsic gradient V¥ (in the sense of Definition 3.9) exists and
is a continuous R*"~!-valued function. This allows us to express locally the horizontal
normal vg in a convenient form, cf. (3.13). Using this expression, it is easy to see that
a-Holder continuity of v implies a-Holder continuity of [V¥¢] o myw|g~p(p,r) for r small
enough, cf. (3.14). Then

flxy, ... xon,t) i=21 — @ (mw(z1, ..., Ton,t)) =21 — ¢ (0,302, e Top, T+ %xlxnﬂ)

has the properties (3.3) and (3.4). To see this, use [1, Proposition 2.22] for the expression
of Vp f in terms of V¥, and note that X7 f = 1.

A case of particular interest in this paper are intrinsic graphs S < H" that also happen
to be Cjy*-surfaces. Specifically, consider the following definition:

Definition 3.6 (Intrinsic C1“~functions and intrinsic C'1®-graphs). Let
W :={(0,z2,...,2o,1) : (z2,...,Ton,t) € R?"}

and V := {(21,0...,0) : z; € R} = R. Let U < W be open, and let ¢: U — V be
continuous. Write ®(w) := w - p(w) for the graph map of . We say that ¢ is an intrinsic
Ch—function on U, denoted ¢ € Cy*(U) if

(i S:=®({U)cH"isa C%fa-surface in the sense of Definition 3.2, and
(ii) the horizontal normal vy = (v, ..., 3"): S — R?" of the subgraph

{fw-v:v<pw)}
satisfies v;(p) < O forallpe S.

The intrinsic graph S of any intrinsic C1*-function is an intrinsic C1*-graph.

Remark 3.7. The conditions (i)-(ii) are C'1®-versions of the conditions appearing in [1,
Theorem 1.2(i)]. Condition (ii) is not as odd as it looks: a similar hypothesis would also be
required to characterise C'1'!-functions f: R — R via the properties of I'(f) := {(z, f(z)) :
z € R}. To see this, consider f: R — R given by f(z) = sgn(z)+/[z]. Then T'(f)isa C'1!-
surface as a subset of R?, because I'( f) can also be written as T'(f) = {(sgn(y)y?,y) : y €
R}, where y — sgn(y)y? € C1(R). Nonetheless, f ¢ C11(R).

A previous notion of intrinsic C1*~functions and graphs in H! already exists, see [10,
Definition 2.16] or (3.11) below, and it looks different than Definition 3.6. The connection
needs to be clarified immediately, because a result concerning intrinsic C1-“~functions in
the sense of [10], namely [10, Proposition 4.2], will be used also in this paper. Definition
2.16 in [10] was stated for H!, but it can be extended in an obvious way to higher di-
mensional Heisenberg groups, and this version appears in Proposition 3.10. The precise
formulation requires the notion of intrinsic differentiability.

Definition 3.8. A function ¢ : W — V is intrinsically differentiable at the point wy € W if
there exists a map L : W — V whose intrinsic graph {w - L(w) : w € W} is a vertical
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subgroup and which satisfies

o JE@) o )]

Jw|—0 |w]

=0, weW.

Here p = ®(w), and 7)) : W — V is the unique function W — V whose intrinsic graph
isp~!- ®(W) (see (3.19) for a formula).

For equivalent definitions, see [25, Proposition 4.76]. If ¢ is intrinsically differentiable
at wp, then there is a unique map L : W — V with the properties stated in Definition
3.8. This map is called the intrinsic differential of ¢ at wp and it is denoted by d¥¢(wy).
Moreover, there is a unique vector V¥ (wg) € R**~1, such that

d?p(wo)(w) = (VF¥p(wo), m(w)), weW,
where (-, -) denotes the scalar product in R, and
(0,29, ..., Lo, t) = (T2,...,Tap).

Definition 3.9. If ¢ : W — V is intrinsically differentiable at wy € W, its intrinsic gradient
at wy is the vector V¥¢(wy). The components of V¥p(wy) are denotes as follows:

V#p(wo) = (D3 (wo), - .., D3 p(wp)).

More information about the functions DYy, i = 2,...,2n, will only be required once
we arrive at the proof of Proposition 3.29, so we postpone the detailed discussion. At
this point we just mention that the component D} ;¢ will play a distinguished role as
we consider intrinsic graphs in the X; direction, and [X;, X;] = Oforalli = 1,...,2n,
except fori =n + 1.

Proposition 3.10. Let 0 < o < 1 and ¢: W — V be a compactly supported function between

the subgroups W and V in H". Then ¢ € C];H’O‘(W) in the sense of Definition 3.6 if and only if ¢
is intrinsically differentiable, and the intrinsic gradient V¥ o satisfies

—1 _ —1 _
V" ol () = v o®T(0) < Hlw|®,  we W, pe B(W) (3.11)
for a constant H > 1.

Remark 3.12. Since [10, Definition 2.16] imposes "global" Holder continuity for V¥,
whereas the assumptions in Definition 3.6 are of local nature, the notions cannot be
equivalent without some a priori assumptions — as the compact support of ¢ in Proposi-
tion 3.10. We also remark that condition (3.11) implies that V¥ ¢ is continuous, as can be
deduced for instance from formula (3.15) below.

Proof of Proposition 3.10. Assume that ¢ € C[éfa(W) in the sense of Definition 3.6. Then, [1,
Theorem 1.2] states in particular that ¢ is intrinsically differentiable, the intrinsic gradient
V?p(w) exists forall w € W, and w — V?p(w) is continuous (see also [25, Theorem 4.95]).

Additionally, [1, Theorem 1.2] promises that the horizontal normal vy in Definition
3.6(ii) has the representation

_ -1 Vep(w) w
S (w TP VI \vww)\?) S Bl

Let us now argue that vy, above, is (globally) a-Holder continuous on S = ®(W). Re-
call that by the assumption that S is a C];H’O‘-surface, and Remark 3.5, for every p € §
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there exists some a-Holder continuous choice of a horizontal normal v, defined in a
neighbourhood S n U of p (note that there are two horizontal normals at every point
in S). However, it is easy to see that uﬁ must coincide on S n U with either vy or —vy
whenever S n U is connected (that is, the sign depends only on U). But since S is locally
connected, and since vg(p) = (—1,0,...,0) outside the compact set ®(spt¢) < S, one
infers that the horizontal normal vy in (3.13) is a-Ho6lder continuous on S.

Another remark: using again that spt ¢ is compact, V¥ ¢ is continuous and supported
in spt ¢, we see that L := ||[V¥¢| o) < o0. From (3.13) and the a-Holder continuity of
v on S = ®(W), it can easily be deduced that

0:(S,dg) >R, peLl(p) :=~/1+|Vep(mw(p))]

is a-Holder continuous with Holder constant bounded in terms of L and the a-Holder
constant of vg. Then

[e(p)vm(p) — €(p ) vu(p')| < €(p) lvu(p) — v (p')| + |€(p) — £(p")| So d(p,p)*  (3.14)

for p,p’ € S. Now we are quite well equipped to check that ¢ satisfies (3.11). To this end,
fix w e W and p € ®(W). Observe the explicit formula

(!

VA e w) = Vop(mw(p- w),  we W, pe B(W), (3.15)
proven in Lemma 3.22 below. Thus, starting from the left hand side of (3.11),

(i I (i N
IV o@D (w) = v oD (0)] = [VEp(mw (p - w)) — V(i (p)))]

= V¥ mn (B(mn(p - W) — Vo(ma())
" de @ w))p) (3.16)

The following formula is needed to make sense of the right hand side:
Lemma 3.17. For any p € H" and w € W, the following relation holds:
(mw(p- w) = p- ) (w). (3.18)
Here ®®") is the graph map of @ ).
Proof. The function eP )W - Vis explicitly given by

P (w) = wy (™) plrw(p - w)), (3.19)
where my(z1,...,z,,t) = 21 is the horizontal projection induced by the splitting H" =
W -V, see for instance [9, Lemma 4.7] (for n = 1). The map vy is a group homomorphism
H" — V with my(w) = 0 for all w = (0, za, ..., z2,,t) € W. Therefore,

(i (p-w)) =p- ¥ (w)

¢ mw(p-w) - p(mw(p-w) =p-[w-mv(p~") - o(aw(p - w))]

= awp-w)=p w-aylpt)=p w-[rv(p)]
= p-w=my(p w) mvp)=Twp- w) Tvip-w).

The last equation is true by the definition of the projections mw and 7y, so the proof is
complete. O
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We deduce that the right hand side of (3.16) equals, up to a multiplicative constant,

the term dH(¢(p71)(w), 0)*, which we will now further bound from above in order to
conclude the proof of the first implication in Proposition 3.10. To do so, we observe that
[1, Theorem 1.2] implies more than mere intrinsic differentiability of : it shows that ¢ is
uniformly intrinsically differentiable in the sense of [3, Definition 3.16]. Recalling that ¢ has
compact support, this implies that there exists a function ¢ = &g, : (0,0) — (0, 00) with
lim,_,pe(s) = 0 such that

7, )~V p(wo). I < e (I, ) [, 0),  p = Blwo) € BW), (y,1) € sptp? ).
Then there is a constant § > 0 such that
P ()] < [ ® (g, 1) — (VPp(wo), m)| + [(VPp(wo), y)] < (1 + L) (y,1)]
for all p = ®(wo) € ®(W) and all (y,¢) € spt® ) with |(y,t)| < 6, where L :=
IV?¢[ o). On the other hand, if |(y,t)| € spt P~ satisfies |(y,t)| > 6, then triv-
ially,
ey )] = P -1y, P . < 2lellze ey t

o™y, )] = v (®(wo) ™) - (mw (P (wo) - w)| < ===y, D)]-

In conclusion, there exists a constant L' > 1 such that for all p € (W), it holds

127D )] < Jwl + [¢® ) (w)] < L], weW. (3.20)
Finally, plugging formula (3.18) into (3.16) and using the left-invariance of dp,
L L B (3.20)
Ve e D w) = vET o (0)] S d (@0 D (w), 00 S ] (321)

Now (3.21) proves that ¢ satisfies (3.11).

The converse implication stated in Proposition 3.10 is not needed in the paper, so we
only sketch the argument. Let ¢ be intrisically differentiable with intrinsic gradient satis-
tying (3.11). Then ¢ is again uniformly intrinsically differentiable. This is a consequence
of Proposition 3.29, see also [10, Remark 2.24]. Therefore, according to [1, Theorem 1.2],
the intrinsic graph S = ®(W) is an H-regular surface, and the condition (ii) in Definition
3.6 holds. So, it remains to check that the horizontal normal of S is a-Holder continuous.
This follows from the expression (3.13) (which is available by [1, Theorem 1.2]) using
estimates similar to those above (3.60). O

The proof of Proposition 3.10 referred to the following auxiliary lemma.
Lemma 3.22. Let p : W — V be defined on the codimension-1 vertical subgroup W < H". If
p € H" and w € W are such that  is intrinsically differentiable at my(p - w), then

VA w) = V(- w)) 623)

Proof. By its very definition, a function 1) : W — V is intrinsically differentiable at a point
wp € W if and only if Po Y for Po = wo - P (wy) is intrinsically differentiable at 0, and in
that case »

Veap(wg) = V) (0), (3.24)
see, for instance, [25, Definition 4.71, Proposition 4.76.] and [1, top of p.192]. Now fix ¢,
and points w € W, and p € H" as in the statement of the lemma. We first apply formula
(3.24) to ¥ := p and wy := mw(p - w). Hence,

po = wo-p(wo) = T (pw)-@(mw (p-w)) = p-w-my(p~) - p(mw(p-w)) *L pow- @) (w)
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and (3.24) reads

V(- w) = VAU O Dl ) (3.25)
On the other hand, denoting
g =w- o )(w),
we observe that the graph of [p® )] s gy' -7, where I is the graph of ?" "), s0
G T =g B(W) = [p-go] ' B(W).

This shows that

p(Paol™) — [, ")
and hence
e 0)
In particular, [o® )]0 Y is intrinsically differentiable at 0. Formula (3.24) applied to
¢ = ®"), pg = go and w := w yields

(3.25) = VSO([pqorl)SD([p.qO]—l)(0) _ V[‘P(pil)]

-1 _ —1y (gL _ _
ver e (w) = vie” )]0 )[4,0(1’ D@0 (o). (3.26)
The lemma follows by observing that the right hand sides of (3.25) and (3.26) are equal.
O

With the main definitions now in place, we repeat Theorem 1.6 below.

Theorem 3.27. Let S = (W) < H", where ¢ € Cﬁ’a(W) is compactly supported. Then S has
BPGBI in the sense of Definition 1.10.

Before proving this, let us deduce the qualitative corollary, Theorem 1.7:

Theorem 3.28. Let S < H" bea Cﬁ’a—surface. Then H*" 1 almost all of S can be covered by
bilipschitz images of closed subsets of codimension-1 vertical subgroups. In particular, S is LI
rectifiable.

Proof. There are (at least) two possible approaches. One is to use the implicit function
theorem [18, Theorem 6.5] to express the surface S locally as the intrinsic graph of a locally
defined intrinsic C1*-function. This function does not, literally, satisfy the assumptions
of Theorem 3.27, but the proof of Theorem 3.27 could be localised with some effort.

The biggest difficulty in this approach is of expository nature as localising the proof of
Theorem 3.27 would lead to a more cumbersome version of Proposition 3.29 below. So
we take the following alternative route: in Appendix B, we show that every point on S
has a neighbourhood which can be contained on the intrinsic graph I' of a globally de-
fined, compactly supported intrinsic C'1:*/3-function. Since T is LI rectifiable by Theorem
3.27, the same is also true for S. O

It remains to prove Theorem 3.27. Recall the notation V and W from Definition 3.6. We
will frequently abbreviate (0, z2,...,z2,,t) =: (x2,...,22,,t) =: (y,t) for points in W,
and continue to use the notation

2n
(Veo(w),yy = Y Dfp(w)z;
=2
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for an intrinsically differentiable . The functions D{ ¢ have been introduced as the com-
ponents of the intrinsic gradient V¥ in Definition 3.9, but under additional regularity
assumptions on ¢, they can also be obtained as derivatives of ¢ in the direction of the
vector fields

Df =X;, je{2,....2n}\{n+1} and D} ,:=0,,,, + 0.

A first result of this type is [1, Proposition 3.7], and more specific statements will follow
shortly in the proof of the next result, which is a key ingredient in the proof of Theorem
3.27.

Proposition 3.29. Assume that ¢ : W — V is intrinsically differentiable on W and it has
a continuous intrinsic gradient which satisfies (3.11) with constant H > 1and 0 < o < 1.
Suppose further that L := |V9@| pow) < 00, and p = ®(w) for some w € W. Then,

" 1) = (VPp(w) )l SN, 01T (gt e W (3.30)
The implicit constant in (3.30) only depends on H and L.

The proposition says, in a "left-invariant”" way, that ¢ is locally well-approximated by
linear functions. The main corollary is Proposition 3.41, which quantifies how well the
intrinsic graph of ¢ around ®(w) is approximated by the vertical tangent plane determined

by V¥p(w).

Proof of Proposition 3.29. For n = 1 the proposition was established in [10, Proposition
2.23]. The case n > 1 can be proven in a simpler way without the arguments that were
used in [10, Proposition 4.2]. We include here a self-contained proof for that case. By the
definition of the intrinsic differentiability and intrinsic gradients, we have

_ _ -1 _
1o ) (g, 1) = (VEp(w), 1) = |0 (g, 1) — (V¥ @D (0), )
and so we just prove that
oy, 1) — (V2(0), 1) < (g, )|+, forall (y,t) e W, (3.31)

under the assumption that p = 0 and ¢(0) = 0. Notice that the constants L and H are not
changed under left translations.

To explain the idea, let us first consider a C1%(R) function h : R — R with h(0) = 0.
Then, fory > 0,

Ih(y) — K (0)y] = /0 "H(s) - W(0)ds| < /O "I () — W(O)ds < [yl

To prove (3.31), we apply the same idea, but we integrate along integral curves of vector
fields Df, J = 2,...,2n. We use the assumption n > 1 to ensure that the origin can be
connected to any point

(y,t) = (0,29,...,29,,t) €W
by a curve v : I — W that is defined as a concatenation vy := v; % -+ % ¥, 3 of the
following curves:

e 7 is an integral curve of
Dy y = Oupiy + 00
that connects 0 to a point of the form

a:=(0,...,0,2041,0,...,0,7(Tps1)).
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® Y2 % .- % Y9, 3 is a concatenation of integral curves of
DY =X, je{2,....2n}\{n + 1}
with the property that

lengtth (Y2 % *xyont3) S [ (y, )]
and 7y * - - - * 9,43 connects a to (y, t).

A similar construction was used in [2, Proposition 6.10]. We now explain in detail how

Y, -+ Yon+s are defined. First, let A, 1 be an integral curve of DY 41, given by

Ant1(s) :=(0,...0,s,0,...,7(s)), (3.32)

where s is the component corresponding to the coordinate z,,1;, and 7 : J — Risa
solution of the Cauchy problem

7'(s) = ¢(0,...,0,s,0,...,0,7(s)),
{ 7(0) = 0.

Such a solution exists by Peano’s theorem since ¢ is continuous, and we assume that .J
is the maximal interval of existence for 7 containing the point 0. As moreover V¥¢ is
continuous, which follows from the assumption (3.11) by Remark 3.12, we find by [10,
Lemma 4.4] that

(SO o )\n+1)/(3) = D7f+1@(An+1(3))7 seJ. (333)
To be precise, [10, Lemma 4.4] is stated in H', but since A\, is entirely contained in the
Tn41t-plane, we can apply the result to

(Xps1,t) = ©(0,...,0,2041,0,...,0,1),
interpreted as a function on a vertical subgroup in H!. Moreover, using the same proof
as for [10, (4.4)], one can show that in fact J = R, and
IT(s)| <pr |s|?, seR. (3.34)

The curve 7, will be an appropriately parametrized subcurve of A\, ;. If 2,41 > 0,
we naturally define ; to be the restriction of A1 to the interval [0, zy,41]. If 2,41 <0,
we have to reverse the order of the parametrization, so we make the general definition:
v1(8) := Apt1(sgn(zni1)s), s € [0, |xn41]], if 1 # 0, and we let v1 be the constant curve
71 = 0 otherwise. Note that the points a := 7 (|z,+1]) and (y, t) belong to

G:={(z1,...,20041) ER¥: 21 =0 and 2,41 = 2ni1},

and G with the group law and metric induced from H" is isometrically isomorphic to
H"~! with dy. We next show that there exists a compact interval I = [|z,,11], b] such that
a and (y, t) can be connected by a concatenation 2 * - - - xy2,,1.3 : I — G of integral curves
of DY = X;,j€1{2,...,2n}\{n + 1} so that

max [(v2x - *y2n+3)(s) Sz I(y, )l and  lengthy, (yo*- - -*y2n43) S dul(a, (y,1)). (3.35)

The first inequality in (3.35) follows from the second one since

(3.34)
lall i zpsa| and  [znia| < (. 1) (3.36)

and

I(y2 * - *x Yon13)(s)| < lengthyn (y2 % -+ *y243) + |a], sel.
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Thus it suffices to find curves which satisfy the second condition in (3.35). To achieve this,

tirst concatenate curves 7s,...,v2,—1 in the following way: follow the unique integral
curve of Dy = X, starting at a for time zo, then follow the integral curve of Df =
X; for time z;, etc. for j = 3,...,n,n + 2,...,2n, until you reach ¢’ = (y,7(zp41) +

3" 5 @%n+s). Then connect @’ to (y,t) by a curve o, * - - * yo,43 with

n
t— <7'(~’Un+1) + % Z Cﬂiﬁﬂnﬂ')
i=2

This is possible since [ X2, X;,+2] = 0p. NOw 72 % « - - % 2,43 connects a to (y, t) as desired,
and

1/2

1engthH” (7211 koo Kk 72n+3) 5

1/2
lengthy, (y2 * -+ * yop43) S |wo| + - + |22, | +

n
t— <7'(~’Un+1) + % Z Cﬂiﬁﬂnﬂ')
i=2

< du(a, (y, 1) + [7(2ng1) — 2
S du(a, (y,1)).
Hence we have found curves s, . . ., 2,13 so that the conditions in (3.35) are satisfied.

Now we are ready to implement the idea explained at the beginning of the proposition.
Namely, we will write ¢(y, t) as an integral of (¢ 0~)’, where 7 is the concatenation of the

(3.37)

curves 7, ..., v2n+3. 1o relate this to the intrinsic gradient, we apply again the intrinsic
differentiability of ¢, and observe that

(v o X)) (5) = DY p(Ni(s)), (3.38)
forall j = 2,...,2n, where A\, is asin (3.32), and \; for j # n+ 1 is an arbitrary integral

curve of D}O = X;. For j = n+1, we saw (3.38) already in (3.33). For j # n + 1, the vector
field Df is linear and independent of ¢, and (3.38) follows directly from the intrinsic
differentiability assumption by the argument given at the beginning of the proof of [1,
Proposition 3.7]. Hence, if « is the piecewise C! curve given by

Y(s) = (y1 %+ * y2nt3)(s) = (y(s),t(s)), s €[0,0],

we get that ¢ o is piecewise C'! and

b b
|@@¢><v¢wmxyw=‘4<¢ovywwm~£<vwwmxyw»ds

b
(ﬁ?)/"\vvwcws»——VWwan\d& (3.39)
0

b
sHAw@W@

where in the last inequality we have used the assumption that ¢ satisfies (3.11). In the
first inequality, we used the fact that for almost all s € [0, b], the tangent vector 7(s) exists
by construction, and is of the form (0,...,0,+1,0,...,0) with

(9 07)(s) “2Y Do(r(s)) = (VZo(r(5)), 9(5))
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if the z;-component of 7(s) is +1, and

(9 07)(s) 2 —DPo(1(s)) = (VEe(v(s)). 5 (s))

if the zj-component of 7(s) is —1. Having established (3.39), we will estimate from above
the expression

b |1'n+1| b
/0 ()@ ds = /0 I (s)]*ds + / [y % -+ % Y2nsa) (s)| ds.

mn-%—l‘

Firstly, since (3.34) holds, we have

|41 [n41] 41
/0 ()@ ds < /0 151 1 /T (gn(@ns)s)7 ds <p (. )]

and secondly, by definition of v;, j € {2,...,2n + 3}, we have

(3.36),(3.37)
b — [wp11|] = lengthy, (y2 * - % y2013) S 4 [(y,0)]-

This combined with the first condition in (3.35) yields

b
/ [(v2 % % Yonta) (5)|* ds Si [y, )|

xn+1|

Putting together (3.39) and the last estimates, we can conclude

b
oy, 1) = VP0(0), )l Sh /0 ()™ ds Se |y, )]

and the proof of Proposition 3.29 is complete. O

Remark 3.40. Recall from Proposition 3.10 that a compactly supported function ¢ € C[éfo‘ (W)
(as in Theorem 3.27) satisfies (3.11) for some constant H > 1. The letter H will refer to
this constant for the rest of Section 3. We also remark that ¢ is intrinsic Lipschitz, recall
Definition 1.2. Indeed, a C’ﬁ’a(W) function is intrinsically differentiable with continuous
intrinsic gradient, and the compact support assumption implies that V¥ € L*(W). In
the case n = 1, [10, Lemma 2.22] states that then ¢ is intrinsic Lipschitz. One could adapt
the proof to higher dimensions using Proposition 3.29, or alternatively refer to (3.20) to
conclude also for n > 1 that ¢ is intrinsic Lipschitz. We denote by L the maximum of the
intrinsic Lipschitz constant of ¢, and the sup-norm |[V¥¢| 1« (w). The compact support

assumption of ¢ € C’ﬁ’a(W) is initially needed to ensure that max{H, L} < co. However,
the constants are then left-invariant: if p € H, then gp(Vl) is intrinsically differentiable,
its intrinsic gradient is continuous, and satisfies (3.11) with the same constant H (see [10,
Lemma 2.25]), ]\V‘P(pil)ap(p_l) Iz (wy < L by Lemma 3.22, and ™" is intrinsic Lipschitz
with constant L, even though the support of ™) of course depends on p.

We use Proposition 3.29 to quantify how well the intrinsic graph S < H" of a com-
pactly supported Cﬁ’a function is approximated at a point p € S by a certain vertical
plane. For p € S, let W, = W), x R be the unique vertical subgroup with the property that
W, is a (2n — 1) dimensional subspace of R?*" which is perpendicular to the line spanned
by the vector v (p) using coordinates as in (3.13).
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Proposition 3.41. Fixn e Nand 0 < o < 1. Let p € Cpy i (W) be compactly supported on the
codimension-1 vertical subgroup W < H", and write S := ®(W). Then, there exists a constant
A = A(H,L) > 1such that for every p € S,

distrr(q, S) < Adu(p,q)'™,  qep W, (3.42)

Here H and L are defined as in Remark 3.40, that is, ¢ satisfies (3.11) with constant H, ¢ is
intrinsic L-Lipschitz, and |V || po ) < L.

Proof of Proposition 3.41. The plan is to apply estimate (3.30) from Proposition 3.29. Note
that

Lp(yat) = (Ovyvt) : (<V§"ap(w),y>, 070)

defines a map W — W), since

2n
W, = { <Z DY o(w)z;, xa, . .. ,x2n> o (z2y.. ., ) € RQn_l} (3.43)
i=2

is a (2n — 1)-plane perpendicular to

-1
D5 p(w)
DQnQD( )
in R?". In fact, L, is a bijection W — W, and for all (y,t) = (0,z2,...,22,,t) € W,
I Ly(y, )] = |({VPo(w), y), 4, t — a1 (VPp(w), )| ~1 [y, 1)], (3.44)

because |[V¥p(w)| < |[VP@|row) < L. The last observation immediately implies the
inequality “<7.” in (3.44). It also gives the converse inequality, since

1 1
[y 8) S Jyl + 1HE S Jyl + [t — 2m1(V20(w), )] + [San 1V p(w), )|

Selyl+ [t = 52n41(V0( ),y>|§ S Lp(y: -

Moreover, for arbitrary w = (y,t) € W, we have dg(q, S) < dg(q,p - P~ D(y,t)), where
®@") is the graph map of ¢» ), simply because ®* )(W) = p~! . S. Therefore, by the
left-invariance of dy, one has for ¢ = p- L,(y, ),

distr (g, 5) < du(p~" - ¢, ®% )y, 1)) = dua(Ly(y, ), @ (y, 1))

= (3.30) Lia

(3.44)
~mn [ Lp(y, O = du(p, ).

This proves (3.42), and hence the proposition. O
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3.1.1. Reduction to unit scale. The rest of Section 3 is devoted to the proof of Theorem 3.27
in the case n > 1. With the earlier preparations in place, a proof for the case n = 1 could
be obtained along the same lines, but some steps would require a separate discussion.
Instead, we will deduce the case n = 1 later from a more general result, see Theorem
4.62. So we fix n > 1 for the rest of this section, and constants will be allowed to depend
on n without special mentioning.

Theorem 3.27 for n > 1 is essentially a corollary of Theorem 1.14 applied to

(Ga dGnu') = (anl X R’dH"—lxRaE2n) and (M’ dM) = (S’ dH)a (345)

where (G, dg) is defined as in (1.1) and the line below it.

Once the hypotheses of Theorem 1.14 have been verified — a task occupying the next
section — the theorem will yield the existence of 2L'-bilipschitz maps f: K — Sn B(p, 1),
pe S, where K = G with H?*"*}(K) > § > 0. The constant § > 0 will only depend on ¢,
the Holder constant H in (3.11), the constant L that bounds the intrinsic Lipschitz con-
stant of ¢ and the L*-norm of V¥¢, whereas the constant L’ will depend only on L. This
is saying, in particular, that the BPGBI condition holds at unit scale. How about other
scales? The following easy lemma shows that property (3.11) improves under “zooming

s,

m

Lemma 3.46. Let ¢ : W — V be intrinsically differentiable with continuous intrinsic gradient
V% that satisfies (3.11) with constants o > 0 and H > 1. For r > 0, let
or(w) :=1[pod], weW.

Then, ¢ := o, is an intrinsically differentiable function with intrinsic graph 6, ;. (®(W)), its
intrinsic gradient is continuous, and satisfies (3.11) with constants o and r® H, that is

-1 _ -1 B
VO @D (w) — VP e (0) < o H w], we W,p e by, (B(W)).
Proof. Fix 0 < r < 1 and let w be an arbitrary point in W. Then
b1 [w - p(w)] = 81 (1) - 51 (9(w)) = 61 (w) - 61 (26 (51 (w))),
which shows that 1 (®(W)) is the intrinsic graph of ¢y = ¢, as defined in the lemma.
Since the Heisenberg dilations are group isomorphisms which commute with vertical
projections, it is easy to see that 1 is intrinsically differentiable with intrinsic gradient
V¥ = VPpod,.
Moreover, since 1P~ ) = %So(ém(p)’l) o 0, for p € 6,/ (®(W)), we have

T = g 607 o

()

which yields the remaining claims in the lemma. O

Returning to the proof of Theorem 3.27, let p € S and, first, 0 < r» < C, where
C := 2diampy(P®(spt¢)). Using the previous lemma, and also recalling that dilations
have no effect on intrinsic Lipschitz constants, S, . := d;/,(5) is an intrinsic graph of an
intrinsic Lipschitz function with essentially bounded intrinsic gradient satisfying (3.11)
with constants depending only on the corresponding constants for S, and C. There-
fore, by the BPGBI property at scale r = 1, to be established in the next section, ev-
ery ball Sy, n B(p,1) contains the image of a 2L'-bilipschitz map g from a compact
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set K « G with H*""}(K) > § = §(C) > 0. Now, one may simply pre- and post-

compose g with the natural dilations in G and H" to produce a 2L'-bilipschitz map

gr: 6-(K) — S n B(6:(p),r) (note also that H?>"+1(§,(K)) = r2nTIH2H(K) = §r2nth),
Next, consider the case » > C. Then, if p € S is arbitrary, the set S n B(p, r) satisfies

H2Y[S A B(p,r)] n W) = 1S A B(p,r)).

Thus, the restriction of Id to [S'n B(p, )] n W (composed with an isometry G =~ W) yields
the desired bilipschitz map in this case.

3.2. Proof for graphs with Holder continuous normals. In this section we complete the
proof of Theorem 3.27. After the reduction to unit scale in Section 3.1.1, it remains to
verify the hypotheses of Theorem 1.14 for n > 1, (G,dg) := (H" ! x R, dgn-1p), and
(M,dy) = (S,dm), where S = ®(W), as in Theorem 3.27. To be accurate, also take
zo = 0 € G, and fix pg € M arbitrary. We start by defining the maps i,,—.,: G — S. They

will not depend on the scale index k£ > 0, that is, ik = iw—p forall k > 0, and they can

w—s
also be defined for all points w € G, p € M (and not oz;lly those close to xg and py).

To construct the maps i,,—.,: G — S, we will first define certain bilipschitz maps ¥, :
W — W,. We know that W is isometric to W,, so without further restrictions, this would
be an easy task, but keeping in mind (1.13), we want to make sure that the mappings ¥,
change in a controlled way as we let p vary in S. It would be possible to arrange this even
for isometric ¥, but the construction is simpler if we allow for bilipschitz distortion, and
the main ideas are contained in the following lemma.

Lemma 3.47. Forn > 2and D := (as,...,ay, ¢, b, ..., b,) € R?"™1 define

n

Yp(x2,...,Tm) 1= CTpi1 + Z(aﬂz + bizpi),
i—2

and consider the vertical subgroups
W= {(21,...,700,t) eH" : 11 =0} and W' := {(z1,...,22,,t) e H" : @1 = ¥p(w2,...,72,)}.
Then the map Vp(0,z2, ..., Top,t) 1=
(’L/JD($2, cee 7-7;2n)7 b2xn+1 + x2,..., bnxn+1 + Tn,y Tptl, —A2Tp41 + Tpi2y -, —ApTpi1 + Ton, t)
has the following properties:

(1) Up: (W,.) — (W) is a group isomorphism,

(2) Up: (W, dy) — (W, dg) is Lp-bilipschitz with Lp depending continuously on D,

3) du(Vp(w), Up(w)) < max{|D — D’|,|D — D'|V2} |wl|, for all w e W.
Proof. We start by noting that

n

Yp(w2,...,T2,) = CTpy1 + Z(aiwi + biTni)
i=2

= Yp(baZni1 + 2, ..., bpZpg1 + Ty Tng1, —Q2Tps1 + Tpg2, .oy —AnTpy1 + T2n),

which can be used to show that U (W) = W'. It further follows directly from the defini-
tion that ¥ p, is injective, ¥ p(0) = 0, and ¥p(w~t) = (¥p(w))~!. In order to see that

Up(w-w') =Vp(w) Upw), ww eW, (3.48)
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it suffices to verify the identity for the last components of the points, as the first compo-
nents agree obviously by linearity of ¥ p. Forw = (0, x2, ..., z,,t), w' = (0,25, ..., 25,,1),
we find that

n
(Up(w-w)]ons1 =t +t' + 3 Z(xlxlnﬂ — TpiTh)
i=2
n n
=t +t + % <cxn+1 + Z(aixi + bixnﬂ)) Ty — % <cx'n+1 + Z(aix; + bixilﬂ-)) Tt
i=2 i=2

+ ((bz‘ﬁﬂnﬂ + 2)(—aizy g + 25,p) — (bixh, g + 2)(—aizng1 + l“n+z‘))

D=
7=

Il
I\

(2

=[¥p(w) - ¥p(w)]on+1,

which shows (3.48) and thus completes the proof of the first claim in the lemma. Us-
ing the group isomorphism property and the fact that ¥p commutes with Heisenberg
dilations, we next observe that

(¥ p(w), Vp(w')) = [¥p(w) ™ Up(w)| = |[Up(w ™" w)| € [epdu(w,w’), Cpdu(w,w)],

where

~—

ep = min{|[Up(v)|: Jv] =1} and Cp :=max{|¥p(v)]: [|v] = 1}.

This concludes the second part of the lemma, up to the continuity of D — Lp, which
will follow from the third part. To verify the third part, let us fix D, D’ € R?*~1, and an

arbitrary point w = (0,2, ..., z2,,t) in W, and compute ¥/ (w)~! - ¥p(w) =
(w(DfD’)(w% (b2 - bé)xn-i-l? cee (bn - b/n)mn-l-la 0, (al2 - a2)mn+17 SRR (a/n - an)xn-i-h T)a
where
n
Ti= STng1 | ¢ Y(p-p) Z Dni + (ai — aj);)
=2

This shows that
(¥ p (w), ¥pr(w)) < max{|D — D'[,|D — D'|"?}w],
as claimed. U

The mappings defined in Lemma 3.47 will be used later in the case where the com-
ponents of D are the entries of an intrinsic gradient V¥¢(w). For p = ®(w), we then
denote

\ij = \I/(D‘P

£ o(w),....DE, p(w)) (3.49)

so that ¥,,(W) = W, is the vertical plane appearing in Proposition 3.41.

Remark 3.50. It is important to note that V), is different from the obvious parametrization
L, : W — W, used in the proof of Proposition 3.41. While L, is intrinsic Lipschitz, the
map ¥, is metrically Lipschitz and it is obtained by precomposing L, with a map that
serves as “characteristic straightening map” in this setting.
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Remark 3.51. The proof of Theorem 3.27 can be modified so that it yields 2-bilipschitz
maps instead of 2L'-bilipschitz maps for a constant L' = L'(L) > 1. In the case n = 1 this
is due to the third author in an earlier version of this paper, and it is based on replacing
the bilipschitz map ¥, : W — W, in (3.49) by the isometry (0,y,t) — (yep,t), where ¢,
represents a horizontal unit vector vector (in the {X;, Xs}-frame) perpendicular to the
horizontal normal vy (p).

Returning to the proof of Theorem 3.27, we proceed to construct the mappings i, :
G — ®(W)forwe G,pe S =®W). Since G = H* ! x R (as in (1.1)) is isometrically
isomorphic to W via the map

F:((z1,-.-,29n-2,t),8) — (0,21, ..., 2n—1,8, Zn, - - - Zon—2, )

the idea for the construction of 4,,,,(v) is informally the following: identify w=!-cv e G
with the point F(w™! -¢ v) € W, then map this point to the vertical plane W, by means
of the bilipschitz map ¥,, from (3.49), left translate by the point p, and finally let i,,_,,(v)
be a point in S of minimal distance from p - ¥,,(F(w~! - v)) € p - W,, keeping in mind
Proposition 3.41. Such a point may not be unique, but this does not matter as long as the
choice is made depending only on the product w™! -¢ v, and not on the points v and w
individually.

We now explain the construction in detail. First, if u € G, let

q:=ql[p,u] € S
be any point satisfying
it (p - Wp(F(0)), q) = distus (p- Up(F(w)), S) (352)
Then, if v,w e Gand p e S, let
Z‘w—>p(v) = Q[pywil G U]' (3.53)
The definition implies that if w, w’,v,v" € G withw™! g v = (w')~! .¢ v/, then
Gwop(V) = Ty p(V'). (3.54)

To simplify notation in the sequel, we define Tan,’: (G,dg) — (W, dn) to be the map
given by

Tany'(v) = U, (Flw™ gv)), ved, (3.55)
It follows from Lemma 3.47 that Tany: (G,dg) — (W,,dn) is a bilipschitz map with
bilipschitz constant bounded in terms of |V | 1wy . Evidently iy, ,(w) = p-Tany (w) =
p. Also note that the isomorphism property of ¥,, o F implies the following "chain rule":

Tany" (w3) = Tany," (w2) - Tany? (ws), wi,we, w3 € G, peS. (3.56)
Since p - Tany)(v) € p - W), one infers from (3.42) and the definition of i,,.,(v) that
du(p - Tany) (v), dw—p(v)) = disty(p - Tany (v), S)
< Adg(p - Tanl (v),p)'** <p Adg(w,v)' . (3.57)
Using this estimate, one has
|dpx (1> (V), tw—sp(v")) — dua(p - Tany'(v), p - Tany (v"))]
< du(p - Tany (v), iw—p(v)) + du(p - Tany (v'), iy—p(v'))
<1, Amax{dg(w,v)' T, dg(w,v") T}, v,v' € G. (3.58)



METRIC RECTIFIABILITY OF H-REGULAR SURFACES 25

Moreover
di(p - Tany (v),p - Tany'(v)) = du(Vp(F(w™ g v)), Up(F(w™" g 1)),

and since ¥, o I is bilipschitz with a constant that depends only on |[V¥#| 1.« vy, condi-
tion (1.12) follows with the help of (3.58).

It remains to check condition (1.13). Using the homogeneity of G (see the discussion
around (3.63) for further details), it suffices to verify the case "z = 0" of condition (1.13):
if we G with |w|| <2,pe S, and ip,p(w) = g€ S, then

iz (i0-p(0), iu—q(v)) Sp AH max{|w] 72, o2, dg (v, w) T/} (3.59)

for all v € G with |v| < 1. (In particular, it may be interesting to note that the Cﬁ’a—
hypothesis only gives the condition (1.13) with exponent «/2.) To estimate the left hand
side of (3.59), the strategy will be to first obtain a corresponding estimate for

d(p - Tand(v), ¢ - Tany (v)),

and eventually conclude (3.59) from this bound combined with (3.57). Consider v, w € G
with |w| < 2. Start by applying the "chain rule" (3.56), and the triangle inequality, as
follows:

du(p - Tang(v), q- Tan;”(v)) = du([p - Tang(w)] .
< du([p - Tan (w)] -
To estimate I3, note that by left-invariance
I, = dH(Tang’(v),Tang’(v)) = dH(\I’p(F(wfl ‘G V)), \I’q(F(uf1 ‘G 0)))-
Then (3.49) and the third part of Lemma 3.47 imply that
I = da(Vp(F(w™ - 0)), ¥e(F(w™ ¢ v))) S [Voe(mw(p)) — Voe(mw(a))|?da (v, w).
To proceed, we note that p = a - ¢(a) and ¢ = b - p(b) satisfy
V20 (b) — V¥p(a)| = [Vp(mw(p-(a) "t -a" - b-p(a))) = Vo(mw(p))]
= [V D (p(a) a b pla) — Vo D (0))

(3.11) L
< Hlp(a)™ -a™ b p(a)|®

=Hp(a) " -a™ b o))" pa)|
< 2Hdy(p,q)%,

using Lemma 3.22 when passing to the second line. It follows for p € S and ¢ = ig_,p(w)
with |w|| < 2 that

Ve (mw(p)) — VPe(mw(q))| < 2Hdwu(p, )" = 2H dg(io—p(0), io—p(w))” (3.60)

(328) H Y+ Alw|*] <o AH||w||*
< 1 Hllwl® + Alwl*] Sp AHJw|*

One needed here the assumption ||w| < 2 since (3.58) initially gives a term of the form
|w|!T*. The estimate above implies that

L Se VPe(mw(p) — V¥ (mw ()| 2de (v, w) S AH|[w]*2dg (v, w).
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Thus, the term I; is bounded from above by the right hand side of (3.59).
The term I, has the form I = |[b=! - a - b with

a=q'p- Tang(w) and b = Tany (v).

Note that |a| = du(q,p - Tang(w)) <1 Alw|!t® by (3.57) (this is the place where the
relation ¢ = ig_,(w) is used), whereas |b| ~; dg(w,v). Now, writing a = (z,,t,) and
b = (z,t), one can easily compute that

n

bl a-b=a- <O, 0, Z (Zq,iThbmti — xb,ixa7n+i)> =:a-(0,0,w(zq,xp)). (3.61)
i=1

(This is just the fundamental "commutator relation" in H".) Consequently,
I < [lall + V/[w(za, 20)| S Alw]* + +/[a][[b]
st A”wH1+a + A1/2”wH1/2+o¢/2dG(w, U)1/2
St Amax{[w] 2, dg(w, v)' /%),

This shows that also > is bounded by the right hand side of (3.59). Glancing again at the
estimates for I; and I, one sees that

dy(p - Tand(v), ¢ - Tan? (v)) <z AH max{[w| ™2, dg (v, w) T2}, (3.62)

which is even a bit better than (3.59). The estimate (3.59) now follows from the triangle
inequality:
dH(Z‘O—m(U)a Z-w—>q (U)) < dH(Z‘O—m(U)?p ' Tang(”))
+ du(p - Tang(v), q - Tang'(v))
+ di(iw—q(v), ¢ - Tang'(v)).
The middle term here is controlled by (3.62), and the first and third terms are controlled
by (3.57), recalling the bounds for |v| < 1 and |w|| < 2, which ensure that we can replace
"a" by "a/2" in (3.57). This concludes the proof of (3.59).
Finally, we address the point left open above, that (3.59) looks slightly less general

than (1.13). To check (1.13) properly, we need to fix w;, ws € Bg(0,1) and p, ¢ € S with
iw, —p(w2) = g, and verify that

dH (iwlap(w?)), iWQ—»q (w3)) ,S maX{dG (wly w2)a dG (wla ’U)3)), dG (ZUQ, w3)}1+0¢/2 (363)

for all ws € G with dg(wy,ws) < 1. However, set w := wfl ‘g we and v 1= wfl ¢ w3, and
observe that
w;l cws=w'-¢v and wfl cws=0"1go.

These relations, and (3.54), show that
fwy—p(W3) = Goop(v)  and iy, —q(w3) = iwoq(v).

Thus, (3.63) follows from (3.59) applied with w and v, as above.
This completes the verification of the hypotheses of Theorem 1.14, and hence the proof
of Theorem 3.27.
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4. LIPSCHITZ FLAGS AND EXTRA VERTICAL HOLDER REGULARITY

This section is devoted to the first Heisenberg group, H'. For convenience we use co-
ordinates (,y, t), instead of (z1,z2,t), to denote points in H'. As usual, we may identify
W with R? by mapping (0,,t) to (y,t), and we identify (x,0,0) € V with z € R.

Definition 4.1. We say that an intrinsic Lipschitz function ¢ : W — V has extra vertical
Holder reqularity with constants 0 < v < 1and H > 0 if

oy, t) — oy, )] < Ht — /| 2%, (4.2)
forall y,t,t € R.

Intrinsic Lipschitz functions are always 1/2-Holder continuous with respect to the Eu-
clidean metric along vertical lines. Condition (4.2) constitutes an amount of extra regu-
larity at small scales which is not implied by the intrinsic Lipschitz condition alone, see
for instance [6, Example 1.3].

Remark 4.3. The definition is left invariant: if ¢ has extra vertical Holder regularity with
constants o and H, then for every p € H!, the function gp(Vl) whose intrinsic graph is p~— -
®(W) also has extra vertical Holder regularity with the same constants. Moreover, for

r > 0, the function ¢ 1 opod,, whose intrinsic graph is 61 (®(W)), has extra vertical Holder
regularity with constants a and Hr®. So condition (4. 2) improves under “zooming in”.

Remark 4.4. An intrinsic Lipschitz function with compact support has extra vertical Holder
regularity with constants 0 < a < 1 and H > 0 if and only if there is H' > 0 such that

H,|t 7t,|l+Taa if |t 7t/| < 1’

s , oyt eR, 4.5
Bt — ]2, iffi—t|>1, *3)

lo(y, ) — oy, 1) < {

that is, ¢ has extra vertical Holder regularity in the sense of [16, Theorem 5.1].

Before studying in more detail the intrinsic graphs of functions that satisfy the condi-
tions in Definition 4.1, we give two examples of such functions.

Example 4.6. Under the identification W = R? and V £ R described before Definition 4.1,
every compactly supported Euclidean Lipschitz function ¢ : R? — R is an intrinsic Lipschitz
function that satisfies the extra vertical Holder reqularity condition in Definition 4.1 with o = 1.

Example 4.7. Let 0 < o < 1, W,V < H! as above, and let ¢ : W — V be a compactly
supported Cﬁ’a(W) function. Since spt ¢ is compact, V¥ is continuous and compactly sup-
ported, hence L := |V¥¢| o) < o0. According to [10, Lemma 2.22], this implies that o is
intrinsic Lipschitz. The extra vertical Holder reqularity condition follows from [10, Proposition
4.2], keeping in mind the characterization of compactly supported C[éfa(W) functions stated in
Proposition 3.10.

Intrinsic graphs of intrinsic Lipschitz functions with extra vertical Holder regularity
turn out to be well approximable at all points and small scales by intrinsic Lipschitz
graphs of a special form, the Lipschitz flags; see Proposition 4.25 for the precise state-
ment. In the proof of Theorem 1.11, Lipschitz flags will play an analogous role as vertical
tangent planes did in the proof of Theorem 1.6, so we start with some observations of
general nature that serve as a counterpart for Section 3.1.
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4.1. Approximation by Lipschitz flags.

Definition 4.8. We say that F' = H! is a Lipschitz flag if there exists a Euclidean Lipschitz
map ¢ : R — R such that ' is the intrinsic graph ®(W) of the map ¢ : W — V defined

by
o(y,t) = P(y). (4.9)

Lipschitz flags are bilipschitz equivalent to the parabolic plane. This observation ap-
peared already in [17, Lemma 7.5], but we include the proof for completeness.

Lemma 4.10. If F' < H' is a Lipschitz flag given by an L-Lipschitz function ¢ : R — R, then
there is a ~ (1 + L)-bilipschitz map

\IJF . (W,dH) — (F, dH)

Proof. Let F be a Lipschitz flag, so F is the intrinsic graph ®(W) of the map ¢ : W — V
defined as in (4.9) for the Euclidean L-Lipschitz function ¢ : R — R. We will show that
the map Up : (W,dy) — (F,dn) given by

Vp(y,t) == (w(w y,t / ¥(n d77> (4.11)

is the ~ (1 + L)-bilipschitz map which we are lookmg for. Firstly, we observe that

Up(yt) =2 <y,t + /Oy¢(n) dn) :

where ® is the graph map' of ¢, hence ¥r(W) = ®(W). Moreover, since 1 is an L-
Lipschitz function, we get

dH(\I]F(ya t)’ \I]F(y/’ t/))

/

( W) =)y =yt —t+ 5y =)@ ) +¥(y)) +/y ¥(n) dn)

H( y/ . y,t’ iy /yy/ (1#(”);“30) + (w(n)—;ﬁ(y’)) d77> H
S(+1L) (y —y\+\/—)

for all (y,t), (y/,t') € W. On the other hand, since

Y ,
t,_H/ (w<n>2w<y>> n (w(m Qw(w) dn| +
Y
it follows

dia((y: 1), (v, 1)) S ly = /| + [t ='1Y2 S (1 + L)du(Vr(y, 1), Yr(y', 1),

for all (y,t),(y',t') € W. Hence, putting together (4.12) and the last inequality, we get
that U is a ~ (1 + L)-bilipschitz map, as desired. O

(4.12)

il < g (M) | (A1) gy,

IThe map VU is the composition of the graph map ® with the “characteristic straightening map” men-
tioned in the introduction. First, the characteristic straightening map sends horizontal lines in W to integral
curves of V¥ = 0, + 1(y)0s, and these integral curves are then mapped by ® to the horizontal curves that
foliate the flag F'.
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Given an intrinsic Lipschitz graph S = H!, we will define for each p € S a Lipschitz
flag that intersects S in a Lipschitz curve passing through p. We start with some gen-
eral definitions that will be used throughout this section. We state them in terms of the

intrinsic Lipschitz function ¢(p71), whose intrinsic graph is p~ 1.8, recall (3.19) .

Definition 4.13. Let S = ®(W) = {w-p(w) : w € W} be the intrinsic graph of an intrinsic
L-Lipschitz function ¢ : W — V. To each point p € S, we associate the function
Yp: R— R
1) (4.14)
s> (s, 7p(s)),

where 7, : R — R is some solution of the Cauchy problem

{5l = e, forseR @15

Note that (7~ is intrinsic Lipschitz with the same constant as ¢, and then the global
existence of 7, follows as in [2, (6.27)]. Proposition 6.10 in [2] is only for higher dimen-
sions, but this part of the argument works also for our setting H'!. Moreover, using the
same proof as for [2, (6.30)], it follows that 7, satisfies the inequality

()l Se s, seR. (4.16)
Notice further that , : s — (0, s, 7,(s)) is a C! curve with
0 1
Yp(s) = 1 - pg"” )\»yp(s),

-1
PP (9 (5))
where we recall that Dy is the vector field D5 = 0, + 0;. As a consequence, from [2,

Proposition 6.6] it also follows that s — 1,(s) = o) (7p(s)) is Euclidean Lipschitz with
Lipschitz constant depending only on the intrinsic Lipschitz constant of ¢. The solution
T, may not be unique, but we never need other properties of it than the ones described

above, so any choice will do. For completeness, we also mention that 7Y o p is a
Lipschitz curve in (H!, dy) by [21, Theorem 4.2.16].

Definition 4.17. Let S = ®(W) be the intrinsic graph of an intrinsic Lipschitz function
¢ : W — V. For each point p € S, we define

Fy = {(0,y,1) - (¥p(y),0,0) : (y.) e R?}. (4.18)
We note the following properties of F}, defined as in (4.18):
(1) F,is a Lipschitz flag,
(2) 0 e I,
(3) p- F, is also a Lipschitz flag,
@) Fp o (p7'-8) 200 D (y,(R)).
Item (1) follows immediately from the fact that ¢, is a Euclidean Lipschitz function.
The item (2) follows since p € S, and so 1,(0) = ap(p_l)(O, 0) = 0. Next, (3) follows by
computing explicitly that

p-Fp={(0,y,t) - (¢¥(y),0,0) : (y,t) € R?},
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where ¥(y) 1= ¥p(y — yp) + xp and p = (zp, Yp, tp). Since ¢, : R — R is Lipschitz, so is
1. Finally, (4) is clear from the definitions since v, (y) = o (y, 7p(y)) and F}, is of the
form (4.18).

Definition 4.19. Let S = ®(W) be the intrinsic graph of an intrinsic Lipschitz function
¢ : W — V. For each point p € S, welet ¥, := Vg, : W — F}, be the map given by the
formula (4.11) applied to the Lipschitz flag F' = F}, from (4.18), that is,

. 1
W,(y,t) = (tp(” '

(o, 7(y) y, t — gw(fl)(yﬁp(y)) +/Oy w(”l)(nﬁp(n))dn)- (4.20)

The reader may think of ¥, as a surrogate for the bilipschitz map defined in (3.49),
which sends W to the vertical plane W,,. In this analogy, the Lipschitz flag F}, plays the
role of W,,. To emphasise this conceptual similarity, we decided to use again the symbol

“W¥,” in Definition 4.19. The analogy is however not perfect: if go(p_l) is not intrinsic
linear, the map ¥, from Definition 4.19 is not a group homomorphism and hence we lack
a counterpart for the chain rule (3.56), which we proved for the map defined in (3.55).
The following properties of ¥, = ¥, defined as in (4.20) will be used:
(1) ,(0) = 0 since 0@ )(0,0) = 0,

@) Uy, 1) = 20 (y, 7, () - (0,0,), as [ 9@ (n, 7p(n)) dn = [ 7p(n) dnp = 7,(y),
(3) ¥, is bilipschitz with a constant that depends only on the intrinsic Lipschitz con-
stant of ¢ (by Lemma 4.10 and the paragraph before Definition 4.19).

Remark 4.21. 1If S = ®(W) is itself a Lipschitz flag, that is, the intrinsic graph of an intrinsic
Lipschitz function ¢ : W — V that does not depend on the ¢-variable, then

-1 Yy 1
W, (y,t) = @ )(y,t+ /0 o )(n,Tp(n))dn), (4.22)

and in particular, ¥,(W) = ®* (W) and hence S = p - U, (W) in that case. Also note

that here gp(pfl) does not depend on the t-variable, and so the integral in (4.22) can be
written without the dependence on 7,,.

As we noted below Definition 4.17, the surfaces F,, = U,,(W) and p~' - 5 = ®# ) (W)
intersect at least along a curve. The next lemma shows that they approximate each other
well also in a neighborhood of that curve if ¢ has extra vertical Holder regularity.

Lemma 4.23. Let ¢ : W — V be an intrinsic Lipschitz function with extra vertical Holder
reqularity with constants 0 < o < 1 and H > 0. Then

-1
du(Up(y, 1), P ) (y, 7y (y) + 1)) < H[t| T2 < H|(y,0)|"™,  (y.t) e R

Remark 4.24. From the proof of Lemma 4.23 one can infer that if ¢ has extra vertical
Holder regularity in the stronger sense of (4.5), then

di(Wy(y, ), 8% (y, 7 (y) + 1)) < H min{[t| T2 |72 for (y,¢) € R,

Proof of Lemma 4.23. Recall that 7, is a solution of the Cauchy problem (4.15), and we
have that

U,(y,t) = @ D (y,m,(y)) - (0,0,¢)
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for all (y,t) € R%. As a consequence,

—1

dsz (W, (y, 1), ®P ) (y, 7 (y) + 1)) = da(@P ) (5, 7 (1)) - (0,0,8), 87 ) (y, 7, (1) + 1))
= % Dy, () + 1) (0,9, 7 (y) + )7 (0,5, 7)) - 0Py, 7p(y)) - (0,0,1)]
= 1% Ny, 7p(y) + 1) — 0Py, ()] < Ht| 5,

as claimed. U

In the following we denote by [A]5"" the §-neighbourhood of a set A — H' with respect

to dy, and [B]gR2 stands for the Euclidean J-neighbourhood of a set B < R2. A direct
corollary of Lemma 4.23 is the following result:

Proposition 4.25. Let ¢ : W — V be an intrinsic L-Lipschitz function with extra vertical
Holder reqularity with constants 0 < o < 1 and H > 0. Then, there is ¢ = ¢(L) > 1 such that
forallr > 0andallp e S = ®(W) it follows

(1) S B(p,r) < [p- xpp(W)]f};,l
2) (p-p(W)) n B(p,r) < [S155
where § := 6(H,r) := Hr'*e,

Remark 4.26. Continuing Remark 4.24, we note that if an intrinsic L-Lipschitz function ¢
has extra vertical Holder regularity with constants 0 < o < 1 and H’ > 0 in the stronger
sense (4.5), then the conclusion of Proposition (4.25) can be improved by replacing ""
with H min{r!*® r1=2}. In other words, the intrinsic graph of ¢ is well approximated
by Lipschitz flags also at large scales.

Proof of Proposition 4.25. Fix r > 0 and p € S as in the assumptions of the proposition.
Since the metric dy is left invariant, it is sufficient to show that there is ¢ = ¢(L) > 1 such
that

@) (p~" - S) 0 BO.r) < [T,(W)]E,
(i) W (W)~ B(0,7) < [p~" - S|%.
We consider (i). Let ¢ € (p~! - S) n B(0,7). We will prove that ¢ € [‘I’p(w)][gsl for
a constant ¢ depending only on L. Firstly, since ¢ € ®® (W) n B(0,r), we have that
q =@ (0,y,7,(y) + t) for some (y,t) € R and ||q| = |[®® ) (y,7,(y) + t)| < . More
precisely, by the definition of @ "), we find

—1 —1 2
P Ny, m(y) + )| <7, |yl <7, and ’Tp(y) +t— Sy ) (y, T(y) +t)‘ <z,

(4.16) 2
< CLT’2 + 3%

(4.27)

1< () +t = 3ye® Dy mly) + 0| + @)l + |3y @) + 1)
Now applying Lemma 4.23 to the point (y, t), we obtain

- (4.27)
din(W,(y,1),0) = din(T,(y, 1), ®F )y, () + 1)) < H|t[+2 <),

~

soqE [\IJP(W)]E;, as desired.
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Next we consider (ii). Let ¢ € ¥,(W) n B(0,7). We want to prove that g € [p~* - S]fg
for a constant ¢ that depends only on L. Since ¢ = ¥, (y,t) = P (y, 7(y)) - (0,0,¢) for
some (y,t) € R? and |¢| < r, we have that

—1 2

1® Dy, () <7, |yl <r, and ’t + Tp(y) — 2y )(y,Tp(y))’ <.

and so
1 1 (4.16) 5 5
1< |+ ) = 502 D) + Inm)] + 56 D) < 4+ o 428)

Now we apply Lemma 4.23 to the point (y, ¢), hence

_ _ (4.28)
dsz(q, @7 (y, 7, (y) + 1)) = diz(Up(y, £), 8P ) (y, 7 (y) + 1)) < H|t| I+ <5,

soge[pt- S]]g; for ¢ depending only on L, as desired. This completes the proof. O

Let 7: H! — R? be the projection 7(z,y,t) = (z,y). Then « is 1-Lipschitz (H!, dy) —
(R2,] ), which easily implies the following statement:

Lemma 4.29. Assume that Ay, Ay c H', pe H', r > 0, and § > 0 are such that
A1 Blp,r) < [Ao]

then ,
7(A1 A Blp,r)) < (A2 n B(p,r + 9)]E.

The lemma will applied with Ay = F, a Lipschitz flag. Then 7(F) < R? is a Lips-
chitz graph, and the lemma says that 7(A; n B(p,r)) is contained in the Euclidean ¢-
neighbourhood of the Lipschitz graph 7(F') whenever if A; n B(p,r) < [F]gﬂl.

4.2. Proof for graphs with extra vertical Holder regularity. In this section, we prove
Theorem 1.11 from the introduction, which we restate here for the reader’s convenience.

Theorem 4.30. Let S = H! be the intrinsic graph of a globally defined but compactly supported
intrinsic Lipschitz function with extra vertical reqularity. Then S has big pieces of bilipschitz
images of the parabolic plane (11, diy). In particular, S is LI rectifiable.

The theorem will be proven as an application of Theorem 1.14 and a reduction to unit
scale analogous to the one after Lemma 3.46. We will verify the hypotheses of Theorem
1.14 for (G, dg) = (I, dn) and (M, dar) = (S, dm), with zp = 0 € G and an arbitrary point
po € S. Since the map (y,t) — (0,y,t) is an isometric isomorphism between (II, +, dr1)
and (W, -, dp), it suffices to construct maps i,,—,, : W — S with the desired properties.
As in Section 3.2, the maps i,,—., will be independent of the "scale" parameter k € N, and
can be defined for all p € S and all w € W.

Definition 4.31. Let S = ®(W) be the intrinsic graph of an intrinsic Lipschitz function
¢ : W — V. For each point p € S and u e W, let ¢ := ¢[p, u| € S be any point satisfying

dyg (p : qu(“)? Q) = disty (p ’ \Ilp(u)7 S) : (4.32)

Then, define iy, : W — S as

iwop(v) := gq[p,w ' - v]. (4.33)
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Remark 4.34. Remark 4.21 implies thatif S = ®(W) is itself a Lipschitz flag, then i,,_,,(v) =
p-V,(w™t - v) for all v,w € W. In general, the extra vertical Holder regularity allows to
control the distance between i,,_,,(v) and p - ¥, (w1 - v).

If ¢ has extra vertical Holder regularity with constants 0 < a < 1 and H > 0, then
Lemma 4.23 immediately implies that

du(p - \I’p(w_1 . w'),iwﬂp(w')) = disty (\I’p(w_1 . w'),p_1 . S)
= distyg (¥, (w™' - wf), 00 (W)
< Hdg(w,w' )+, (4.35)

forallpe S = (W) and w,w’ € W.

Once again, i,,—.,(v) does not depend on the points v and w individually, but only on
the product w™ ! v, and by definition i,,_,,(w) = p. To apply Theorem 1.14, we need to
verify the two hypotheses (1.12) and (1.13). We start by showing that (1.12) holds for a
constant which depends only on the bilipschitz constant of ¥, which in turn depends
only on the intrinsic Lipschitz constant of ¢, recall the comment below Definition 4.19.
Now (1.12) follows immediately from (4.35) and the triangle inequality:

‘dH(iwﬁp(w/% iwﬁp(w”))—dH(\IJp(wfl-w/)7 \Ilp(wil'w/))‘ g H max{dH(wv U)/), dH(w7 w//)}lJra’
(4.36)
forall p € S and w,w’, w” € W. We proceed to verify condition (1.13) in our situation:

Proposition 4.37. Let ¢ : W — V be an intrinsic L-Lipschitz function that has extra vertical
Holder reqularity with constants 0 < o < 1 and H > 0. If wy, wa € W satisfy |Jw1 |, [|wz| < 1,
and p, q € ®(W) satisfy iy, —p(w2) = g, then

it (g —p(W3), g g (w3)) Sprz, max {dy(wy, ws), dyg (w1, ws3), dig (wa, w3)}' T2 (4.38)
for all wg € W with dy(wy,ws3) < 1.
Remark 4.39. If ¢ does not depend on the t-variable, that is, ®(W) is itself a Lipschitz flag
and the extra Holder regularity holds with constant H = 0, then the left hand side of

(4.38) vanishes for all wy, ws, ws € W with 7y, ,,(w2) = ¢. Indeed, Remark 4.34 implies
in this case that

wg),

by —p(W3) =P~ \I’p(wl_l “w3),  dwy—q(ws) = q - Yg(wy
and
q = i p(w2) = p- Wy(wy ' - wy). (4.40)
Hence, the left hand side of (4.38) can be written as
i1 (i1 —p(W03) ury g (w3)) = dia(Wp(wy - w3), Up(wi ! - wa) - Wolwy ' - ws)).

We recall from Remark 4.21 that
_ Y _
Uy(y,t) = o) (y,t+/ ol 1)(77=Tq(77))d77)- (4.41)
0

Let us spell out the formula for ®(¢™"):

@) P20 [l DYt ™) — o) - @) g (W () -[), (442)
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where we have applied the formula ®(mw(p - v)) = p - @@ ") (v) from Lemma 3.17 in the
last equality. Using (4.41)-(4.42), and writing w; = (0, y;, t;), it is not difficult to show that

Wp(wi - wa) - o(wy ' - ws)

N - Yys—y2 442 _
= U, (wyt - wy) - B R (y3 — y2,t3 —to + /0 ol )(n,Tq(n))dn) “ Wy (wy ' - ws).

We omit some computations, as the remark only serves to motivate Proposition 4.37.

—1

Proof of Proposition 4.37. We first apply the triangle inequality:

du (iwlﬂp(w3)’iw2HQ(w3)) < dp (p ’ \I]p(wl_l ’ w3)’iwlﬂp(w3))

+ du(p - \I’p(wl_l “ws3),q - \Ijq(U)Q_1

- wz))
+du (g Vg(wy - w3),iuwy—q(ws)) .

The estimate (4.35) shows that the first and third terms are bounded from above by
Hdy (wy,w3)'t* and Hdy(ws, w3)'t?, respectively, which is better than claimed. So, the
heart of the matter is to prove an upper bound for the second term. This is the content of
the next lemma. O

Lemma 4.43. Under the same assumptions as in Proposition 4.37, we have

dr(p - Wplwi' - ws),q- Uylwy ' - ws)) Spor max {dp(wi, wa), dm(wi, ws), d(wa, ws)} 2.
Proof. We fix points p and ¢ = iy, »p(w2) as in the assumptions of Proposition 4.37. We
may assume with no loss of generality that w; # ws, since otherwise ¢ = p and the
claimed estimate is clear. By left invariance of dy, we have

du(p - ‘I’p(wfl “w3),q - ‘I'q(wgl wg)) = dH(\I'p(wfl 'w3),P71 “q- ‘I’q(wgl ‘w3)). (4.44)

L. g =: (z,y,t). We then define the curves

YR — R?, Yp(s) = ((p(pil)(S,Tp(S)),S)

Let us denote p~

and }
Yo R—=R? yg(s) o= (010 ) (s,74(5)) + 2,5 + ),
whose traces are the w-projections of the corresponding Lipschitz flags:
W(R) =7 (Tp(W))  and  7,(R) =7 (p~" - g Ty(W))
We observe that the curves +, and v, come close in at least one point. Writing

wy = (anlytl)’ w2 = (an2yt2)’ w3 = (an3’t3)’ (445)
and recalling that ¢ = 7., -,,(w2) by the assumption in the lemma, we have

o (y2 = y1) = 1(0)] = [p(y2 — y1) — (2, 9)] < du(Pp(wy - w2),p~" - q)
= dH(p : \Ilp(wfl : w2)’iwlﬁp(w2))

(4.35)
< Hdg(wy, wy) . (4.46)

We next show, a fortiori, that the curves v, and ~, also stay close to each other for some
time. Precisely, we claim that

distrz (7 (s + y2 — 1), Y(R)) S, max {|s + y2 — yl\,dH(wl,wg)}”o‘ , seR. (4.47)
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Note that for s = 0, the right hand side of (4.47) equals dp (w1, wo)' 1Y, as expected. To
prove the claim for arbitrary s € R, we first observe that

(s +y2 —y1) = 7(Vp(s + y2 — y1,0)).
Since V¥, is Lipschitz according to the remark below Definition 4.19,
1Up(s +y2 —y1,0)| <o ll(s 4+ y2 — y1,0)],

and we find
(s +y2 —y1) € (¥p(W) n B(0,r))

for some 0 < r Sz, max {|s + y2 — 1|, du (w1, w2)}. It follows from Proposition 4.25 and
Lemma 4.29 that

- R?
V(s +y2 —y) e[ (" @(W)) n B0, 7 + 05))]65 , (4.48)
where the constant ¢ depends only on L, and § := Hr!*2. Since

(4.35)
du(p,q) < du(p™" - q, Vplw; ™ - wa)) + [V, (wit - we)| Spr de(w, we) ™ + dig(wr, ws),

and dg(wy,ws) < 1, we have
B(0,r+c8)c B(p~'-q,R) (4.49)

for some R > r with R Sy max{|s + y2 — y1|,dm(wi,w2)}. By another instance of

Proposition 4.25 (applied to the point ¢), Lemma 4.29, and left translation by p~!, we find
that
-1 -1 R? 1 R2 R2
[7 (P @(W)) nBlp™" ¢, R)],5 < [7 (07 0 Ue(W) ooy prea = @]y, piva
(4.50)

for a constant 0 < ¢z, g < oo that depends only on L and H. Then the claim (4.47) follows
by combining the inclusions (4.48), (4.49), and (4.50).

We now fix s € R, and let s’ € R be any point such that |y,(s + y2 — y1) — Y4(s")| Su.L
max{|s + y2 — y1|, dm(w1, w2)}1 7. The existence of s’ is guaranteed by (4.47). We next
show that s’ cannot be too far from s. Indeed, considering the first component of 7, (s +
Y2 — Y1) — Y4(8’), we see immediately from (4.47) that

-1

[0® ) (stya—yn, Ty (s+ya—11)) — 0 (s, 7o)~ Spr,p max{]s+ya—ya, di(wr, )+
Considering the second component, we find the estimate &5y
s +y2 —y1 — 8" — y| S max{|s + ya — y1|, dg(wy, wa) }1 T (4.52)
By the initial estimate (4.46), we know that
(y2 — 1) — yl < Hdg(wi, wa)' ™, (4.53)
so (4.52) yields
s — 8’| <p.p max{|s + yo — y1|, d(wy, wa) } . (4.54)

This last estimate allows us to deduce a version of (4.51) with "s"" replaced by "s". Indeed,
recalling that s — 1,(s) = a (s, 74(s)) is a Lipschitz function R — R whose Lipschitz
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constant depends only on L (see below Definition 4.13), we find

B -1
o® V(s + 2 —y1. (s +y2 — 1) — 90 ) (5,74(5)) —

<[l (5,74(5)) — 91T (S, 7y (5)] (4.55)
— -1
1P (5 + yo — g1, (s + 32 — 1)) — @1 (s',74(s))) — 2|
(4.51) / -
S L,H |s — 8’| + max{|s + y2 — y1], dm(w1, w2)}
@29 l+a
S oo max{|s +y2 — yi], dm(wr, w2) (4.56)

After these preparations, we are ready to deduce the desired upper bound for (4.44) by

considering s := y3 — y2. We will show that
1 }1+ 5 ]

(4.57)

d(Vp(w;t - ws),p~t g Uy(wy - ws)) Spop max{dy (w1, wa), dg(wy, ws), dg (ws, ws)

It is convenient to estimate the expression on the left hand side as follows
dH(\I'p(wfl ‘w3)ap71 “q- ‘I’q(wgl “w3))
< da (P (wit - ws), Uy(wit - ws) - Ty(wy b - w3)) (4.58)
+ dH(\I/q(wgl -w3), \I/p(wl_1 cwg)hepThoge \Dq(wgl -w3)) (4.59)

First, the term (4.59) can be bounded using the fundamental commutator relation as in
(3.61) with

a:=[p - Uy(wy' wy)] ' -q and b:= U, (wy' - ws).
This yields
- _ _ . 1 _ 1
(4.59) S P - Tplwi " - w2)] ™ gl + [p - Wplwy " - w2)] 7 - g2 [ Wg(wy ' - ws)|2

1t+a
Seom da(wy, we) T + dpg(wy,we) 2 dy(ws,ws)?,

N

where the last inequality follows from g = iy, ,(w2), the estimate (4.35), and the Lips-
chitz continuity of ¥,,. Hence, recalling that dy(w;,ws) < 2, the expression (4.59) can be
bounded from above by the right hand side of (4.57).

Next, we handle the term (4.58). Since points on the t-axis commute with all other
elements in H', it follows from the definition of ¥, and ¥, that (4.58) is independent of
the vertical components of wy,ws,ws. Writing these points in coordinates, as in (4.45),
and recalling that s = y3 — y2, we thus find

(4.58) = |W,(s +y2 — y1,0) " - U,(ya — y1,0) - Ty(s,0)]. (4.60)

While ¥, and ¥, are in general not group homomorphisms, their second components
are linear:

(U,l2(y,t) = [Yyla(y,t) =y, (y,t)eW.

Thus, the second coordinate of the product in (4.60) vanishes by linearity, and it suffices
to consider the first and and third coordinate, which we denote by I; and I, respectively,
so that

(4.58) < |Iy| + | I 2. (4.61)
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Using that (@ )(0,0) = 0, we may write
1 —1
I= 0" Ny —y1, (2 — 1) — ' (0,0) —

+x+ w(qil)(s,Tq(s)) — ap(pfl)(s +y2 — 1, Tp(s + y2 — y1))-

The term I; is the sum of two expressions of the same form as in the estimate (4.56), and
we thus deduce that

}1+a }1+a.

11| < max{|y2 — y1|, dm (w1, wo) + max{[s + y2 — y1|, du (w1, w2)

Clearly, |y2 — y1| < dm (w1, w2) and by the choice of s = y3 — y2, we have
Is +y2 — 1] = lyz — v1] < du(wr,w3).
Thus we see that |[; | is bounded from above by the right hand side of (4.57), using again
that dy(w,ws), dg(wy, we) < 2. It remains to bound |I3|, where I denotes the third
component of the product in (4.60). A direct computation yields
Iy = —7y(s +y2 — 1) + Tp(y2 — y1) + 74(5) + 5@ (g2 — y1, 7p(y2 — 1)),
and we continue as follows:

1
L] = |7p(s + y2 — y1) — Tp(y2 — y1) — 74(s) — 50 ) (y2 — y1, 7p(y2 — 1))

s+y2—1y1 . s . ( 71)
= / p(0) dU—/ 74(@) + P (y2 —y1,7p(y2 — y1)) do
Y2—Y1 0

- /0 T+ 2 —y1) = 74(0) = &% y2 —y1, 7, (42 — y1)) dor

(0, 74(0)) ~ 2

= /0 [tp(pfl)(a o — Y1, 7p(0 + Y2 — y1)) —

+ [x + tp(qfl)(O,Tq(O)) - <P(p71)(y2 — Y1, Tp(y2 — y1))] do

(4.56)

< L,H/ maX{|0+y2—y1|,dH(w1,w2)}1+ada
Js

Sa.r |s| max{dg (wy, we), dig (wy, ws)}

S, max{dy (wy, wa), dy (w1, ws3), dy (wa, w3)}2+e,

where J; := [s,0] if s < 0 and J; := [0,s] if s = 0. To justify the application of (4.56)
above, we have applied inside the integral an analogous argument as we did to bound
the term ;.

Finally inserting the bounds for |I;| and |I3| in (4.61), we conclude that (4.58) is bounded
from above by the right hand side of (4.57). Combined with the bound for (4.59), this con-
cludes the proof of the lemma. O

Proof of Theorem 4.30. The BPGBI condition "at unit scale" follows from Theorem 1.14,
whose hypotheses (1.12) and (1.13) we have verified in (4.36) and Proposition 4.37, re-
spectively. Here

(GadGuu) = (R2adH,‘C2)? and (M,dM) = (SadH)’

with o = 0 € G, and pg € S arbitrary, and we recall that (G, d¢) is isometric to (W, dy).
More precisely, Theorem 1.14 yields the existence of 2L-bilipschitz maps f: K — S n
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B(p,1), p € S, where K = G with H3(K) > § > 0. The constant L only depends
on the intrinsic Lipschitz constant of ¢, and § > 0 depends in addition on « and the
constant H in (4.2). Since property (4.2) improves under “zooming in”, see Remark 4.3,
we can argue analogously as in Section 3.1.1. Let p € S and, first, 0 < r < C, where
C := 2diamp(®(spt¢)). Using Remark 4.3 and the support assumption on ¢, we see
that Sy, := d,/,(5) is an intrinsic graph of an intrinsic Lipschitz function (with the same
constant) satisfying (4.2) with constants « and H' = H'(H,C).

Therefore, by the BPGBI property at scale r = 1, every ball S, . n B(p, 1) contains the
image of a 2L-bilipschitz map g from a compact set K = G with H*(K) > § = §(C) > 0.
Now, one may simply pre- and post-compose g with the natural dilations in G and H! to
produce a 2L-bilipschitz map g,: 6,(K) — S n B(5,(p),r) (note also that H3(5,(K)) =
rH3(K) = 613).

Next, consider the case » > C. Then, if p € S is arbitrary, the set S n B(p, r) satisfies

H3([S ~ B(p,7)] n W) = H3(S n B(p,r)).

Thus, the restriction of Id to [S n B(p,r)] n W yields the desired bilipschitz map. The
proof of Theorem 4.30 is thus complete. O

4.3. Application to C'! and intrinsic C1® surfaces. As a first application of Theorem
4.30, we deduce the case n = 1 of Theorem 3.27, recalling from Example 4.7 that a com-
pactly supported CEH’O‘(W) function is intrinsic Lipschitz and satisfies the extra vertical
Holder regularity condition.

Theorem 4.62. Let S = ®(W) < H!, where ¢ € C];H’O‘(W) is compactly supported. Then S has
big pieces of bilipschitz images of the parabolic plane (11, dyy).

Remark 4.63. As a corollary of Theorem 4.30, we also obtain that every Euclidean C L sur-
face in H! is rectifiable by bilipschitz images of subsets of the parabolic plane. As writ-
ten in the introduction, this was known before by the work of Cole-Pauls and Bigolin-
Vittone, cf. Theorem 1.4, but we briefly explain how to deduce it from Theorem 4.30. The
reduction uses again the result by Balogh [5], which says that the set 3(S) of characteristic
points of a Buclidean C! surface in H! has vanishing 3-dimensional Hausdorff measure
with respect to dp.

We will argue that outside X(s), the surface S can be written locally as intrinsic graph
of a compactly supported Euclidean C*! function, and hence as intrinsic Lipschitz graph
with extra vertical Holder regularity. This will show that S is rectifiable by bilipschitz
images of subsets of the parabolic plane.

We now turn to the details. Let p € S\X(S). For r > 0 small enough, S n B(p,r)
is contained in the level set {f = 0} of a Euclidean C* function f : R?® — R with non-
vanishing gradient in B(p, ). Without loss of generality, we may assume that f(0) = 0,
X f(0) > 0and

S0 B(p,r)=1{ge Bp,r): flg) =0}
for r > 0 with the property that X f(¢) > 0 for all ¢ € B(p,r). Since X f(0) = 0, f(0), we
may further assume, by making r smaller if necessary, that 0, f(¢) > 0 for all ¢ € B(p, r).
In order to write S n B(p,r), for small enough r, as intrinsic graph of a Euclidean C
function, we first consider the diffeomorphism

F:R3 - R3 F(x,yt) = (z,y,t+ ).
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Then F(S n B(p,r)) is contained in the level set of f o F~!, and hence it is again a
Euclidean C* surface. Since the derivative of F at the origin is the identity, and 0, f (q) > 0
for all ¢ € B(p,r), we can apply the usual implicit function theorem to deduce that,
if » > 0 is small enough, there is an open set U < R2, and a Euclidean C! function
¢ : U — R such that F(S n B(p,r)) is the Euclidean graph of ) over the set U in the
yt-plane:
F(S n B(p,m) = {5, 8),9,1) : (y,1) € U},

It is easy to see that the preimage of this set under F'is then given by the intrinsic graph
of 1),

S Bp,r)={(W(y.t),y.t — Syv(y,t)): (y,t)eU}.
We will next modify ¢ to obtain a Euclidean C! function ¢ that is defined on the entire
plane, but compactly supported. To this end, let B’, B < U be concentric balls, relatively
open in the yt-plane W (identified with R?), such that

[B(p,7)nS] S {w-(w): we B’} S {w-¥(w): we B} S [B(p,r) nS]
for some 0 < ' < r. We define

&(w), ifwe B\B,
0, otherwise,

Y(w), fwe B,

p(w) = {

with a suitable C'! function ¢ in order that ¢ is also C''. More precisely, ¢ is a compactly
supported C'! function defined in W such that Sn B(p, ') = ®(W)n B(p,r’). By Example
4.6, we know that ¢ is also an intrinsic Lipschitz function with extra vertical regularity.
Finally, it follows from Theorem 4.30 that ®(W) is rectifiable by bilipschitz images, and
hence the same holds for Sn B(p, r’). Repeating the argument for every noncharacteristic
point in S proves that S is rectifiable by bilipschitz images of subsets of the parabolic
plane, and in particular LI rectifiable.

APPENDIX A. FAT CANTOR SETS IN METRIC MEASURE SPACES
Here is again the statement of Proposition 2.2:

Proposition A.1. Every doubling and complete metric measure space (X, d, pu) of diameter > 1
admits fat Cantor sets. In other words, for every e > 0 and ng > 0, the constants 6(ng) > 0
and 7(€) > 0 can be found as in Definition 2.1. They are also allowed to depend on the doubling
constant of (X, d, ).

Proof. Let Q = U{Q,, : z € Z} be a family of closed (and hence compact) Christ cubes on
(X,d, ), see [11, Theorem 11]. Thus, the cubes here are closures of the cubes defined in
[11, Theorem 11]. By changing the indexing of the families Q,, slightly, one may assume
that 27" Sx diamx(Q) < 27" for all @ € Q,. According to [11, (3.6)], the cubes in Q
can be chosen so that they have small boundary regions in the following sense: there are
constants C' > 1 and 7 > 0 such that ;(0,Q) < Cp"u(Q) for all Q € Q, where

0,Q = {r e Q :dist(z,Q°) < p27 "}, Qe Q,. (A.2)
Fix z € X. To begin the construction of a fat Cantor set inside B(z, 1), fix also the param-
eters ¢ > 0 and ny € N, and let )y be a cube in Qj containing x (there may be several
options, since the cubes in Qg are closures of "dyadic" cubes, but any choice will do).
Since diamx (Qp) < 27" < 1, one has Qo < B(x,1). Set D,,, := {Qo}. Now, if one simply
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declared that D,, := {Q € Q,, : @ < Qo}, then one would already have the conditions
(i)-(iii) listed at the beginning of Section 2. Then, the Cantor set K defined by

k= Ue

nzngo QeDy,

would satisfy u(K) = 1(Qo) ~n, 1(B(z,1)) by the doubling hypothesis.

To secure, in addition, the separation condition (iv), one need to remove some bound-
ary regions, and apply (A.2). Namely, fix a constant 7 = 7(¢) > 0, to be determined a
little later, and define

Q6 = Qo\aq_anero and 'D,lm = {Qé}

Then, assume that D), has already been defined for some n > ny. Assume also that
the sets in D], are obtained as compact subsets of sets in D,,: for every ) € D,, there
corresponds a compact set Q' € D}, with Q' < @ (but it may, and will, sometimes happen

that Q' = ). To define D), |, fix Q € D;, 41, and let @’ € D], be the compact set contained
in the D, -parent ) > . Define

Q= [Q\ 02 Q] n Q.

Then evidently Q' @’ , and the conditions (i)-(iii) from the beginning of Section 2 remain
valid for the modified collections D), n > ng. Butnow also condition (iv) is valid. Indeed,
if Q}, Q) € D, are distinct, and there still existed a point z € Q| < Q; with dist(z, Q%) <
72-(1+)n then clearly x € 0,9-»Q1, and hence in fact = ¢ Q.

So, the only remaining concern is the ji-measure of the new Cantor set

K = ﬂ U Q.
nzno Q'eD},
Evidently, if 2 € Qo \ K/, then z € 0,.9-ncQ for some Q € D,, with Q < Qo (hence n = ny).
Recalling the estimate for the ;i-measure of boundary regions above (A.2), one infers that

MQO\K) < 3 D) m(lra-eQ)

nz=zno QeDy,
QcQo
<C Y (2 ] @)
n=ng QeDy,
Q<cQo
= 0 ) 27 (Qo) Sy CTH(Q0).
n=0

Therefore, choosing 7 = 7(C, ¢,n7) > 0 sufficiently small, one has p(Qo \ K') < u(Qo)/2,
hence p(K') 2 11(Qo) Zne (B(x,1)). The proof is complete. O
APPENDIX B. CONTAINING PIECES OF C&’Q—SURFACES ON INTRINSIC GRAPHS

This appendix contains the proof of the following proposition which was needed in
the proof of Theorem 1.7 (or Theorem 3.28).

Proposition B.1. Let S < H" be a Cﬁ’a—su;face, 0 < o < 1. Then, for every pg € S, there
exists ro > 0, a vertical subgroup W < H™ with complementary horizontal subgroup V, and a
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compactly supported intrinsic CY*3-function p: W — V such that S ~ B(po,ro) is contained
on the intrinsic graph of .

Proof. Fix pg € S, and let ro > 0 and B := B(po, o) first be so small that S n B can be
written as

SnB={peB:f(p)=0}
for some f € Cl(B(po, 10r¢)) satisfying Vi f(po) # 0, and

Vi f(p1) — Vuf(p2)| < Hdu(p1,p2)°, p1,p2 € B(po, 10r0). (B.2)

It follows from (B.2) that f,Vyf € L*(B(po,10r¢)). By making ry smaller, one may
further improve (B.2) to

\Viuf(p1) — Vuf(p2)| < min{Hdg(p1,p2), €}, p1, P2 € B(po, 10r0), (B.3)

where € > 0 is a small absolute constant to be chosen later. For notational convenience,
we will also assume that Vi f(po) = (X1f(po),.-.,Xonf(po)) = (1,0,...,0), but any
other non-zero constant vector would work equally well: it is only crucial to choose W
(as in the statement of the proposition) so that Vi f(po) is the horizontal normal of W.
Under the present assumption, set W := {(0,y,t) : y e R?"" 1t e R} and V := {(1,0,0) :
PANS] R}

Let C' > 20 be another constant to be determined later, which may depend on the data

1f Lo (Bworo))> IVES |L0(B), [P0l 70, H and e (B.4)

Then, initially extend f by setting f(x1,y,t) := 1 for (z1,y,t) € H"\ B(po, Cro). The
main task is now to extend f to a function f; € Cﬁ’a/ 3 (H") in such a manner that X; f; >
1; then {f1 = 0} will be an intrinsic C'*/*-graph containing S n B. The extension of f to
f1 can be accomplished, up to a few additional details, by using the standard proof of the
Whitney extension theorem [18, Theorem 6.8] in H"”. An underlying observation is that
Vuf ~ (1,0,...,0)on Bu [H"\ B(py, Cro)], and if C is chosen large enough, depending
on the data in (B.4), the extension f; can be arranged to have the same property.

Define

k(p) :==Vuf(p), peB,
recalling that f was initially defined on B(pg, 10r¢). Also define k(p) := (1,0,...,0)
Vuf(p) for p e H"\ B(pg, Crp), so both k and f are now defined on the closed set

F := B u [H"\ B(pg, Cro)].
Recalling (B.3), and that Vi f(p) = (1,0,...,0), we note that

|k(p1) — k(p2)| < min{Hdw(p1,p2)”, €}, p1,p2 € F. (B.5)

Towards applying the Whitney extension theorem [18, Theorem 6.8], consider the fol-
lowing quantity R(q, p) appearing in its statement:

fla) = f(p) = k@), m(p~" - q))
du(p, q)

Here 7 is the projection m(x1,...,22,,t) = (x1,...,%2,), and (-, ) stands for the usual

inner product in R27. Recall that 7 is a Lipschitz map H" — R27 and also a group

homomorphism, that is, 7(p - ¢) = 7(p) + 7(q) for p,q € H". The following estimate for

|R(p, q)| will be needed, and next verified:

|R(q,p)| < min{Hdu(p,q)% €},  p,q€ F n B(po,2Cro). (B.6)

R(q,p) := , p,q € F.
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For p,q € B, the estimate follows immediately from (B.3) and [1, Lemma 4.2], which
further cites [23, Theorem 2.3.3]. The case p,q € H"\ B(pg, Crg) is clear, as R(p,q) = 0
(recalling that k(p) = (1,0,...,0) and f(x1,...,22,,t) = x1). Finally, consider points
q € B(po,2C710)\ B(po, Cro) and p € B (the case where the roles of p and q are reversed is
similar, and even slightly easier). Then |k(p) — (1,0,...,0)| <€, f(q) = (1,0,...,0) - 7(q),
and dg(p, q¢) 2 Cro. Consequently,

Rg.p)| = fla) = Fp )ng(gm( 4q)
< K(A,0,..-,0) = k), m(@)| | |f(p) = <kp), 7(p))]
~ C?“Q C?“o

< € < min{dp(p, 9)°, ¢},

noting that |7(q)| < [po| + C7o, and choosing C' > 1 eventually so large that (|po| +
Cro)/(Crg) < 2and (Crg)* = ¢, and

[F(p) = <k(p), 7@)| S [ ey + IVuSl e (5)(IPoll +70) < €Cro.
This completes the proof of (B.6).

Next, we claim that f can be extended to a function f7 € C];H’a/ 3 (H™) with the additional
property that

\Vefi(p) — (1,0,...,0)| < %, peH™ (B.7)

The proof follows the usual argument for the Whitney extension theorem, see [18, The-

orem 6.8] or [15, §6.5], and one just needs to check that the resulting extension is in

Cﬁ’a/ K (H™), and that (B.7) is satisfied. We start by setting up some notation. For any
p € H", let
r(p) := distu(p, F)/20.
Since U := F° = B(poy, Cro)\B is bounded in our scenario, the numbers r(p) above are
uniformly bounded to begin with (in [18] and [15], one needs to take instead r(p) =
min{1, distg(p, F')}/20 to fix this). Thus, by the 5r covering theorem, there exists a count-
able set S « H"\ F such that
U= U B(s,5r(s)),
seS
and the balls B(s,r(s)), s € S, are disjoint. One may then proceed to define the (smooth)
partition of unity {vs}ses of U, subordinate to the cover { B(s, 10r(s))}ses, as in the proof
of either [15, §6.5] or [18, Theorem 6.8]. The key properties are that

Yvs=1y and ) Vavi(p) =0, (B.8)
seS seS
and )
Vz/s < - pel, se s, je{l,2}. B.9

Here VIQHI simply refers to any second order horizontal derivative. Moreover, the supports
of the functions v, have bounded overlap, that is, for p € U fixed, there are only < 1
indices s € S with vs(p) # 0 or Vvs(p) # 0. To be precise, in the proof of [18, Theorem
6.8], condition (B.9) is only stated for first-order horizontal derivatives, that is, for j = 1.
However, the bound for the second order derivatives easily follows from formula [18,
(57)], observing that the functions defined there are all obtained from a fixed smooth
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function by rescaling with a factor proportional to 1/r(p) and using properties of ¢ —

du(p, q)-
Now, the extension f; is defined as follows:

fl(p) = {f(p)7 iprF,
Des vs(P)[f(3) + k(8),m(37" -p))], ifpel.

Here, for p € U given, p € F is any point satisfying disty(p, ) = du(p,p). Since the
definition is precisely the same as the one in [18, Theorem 6.8], the function f; is readily
a Cﬁ(H”)-extenSion of f, and moreover

Vufi(q) = k(q), q€F. (B.10)

To prove, further, that f; € Cﬁ’a/ 3 (H™), and that (B.7) holds, one needs to look closer at
the differences |V f1(p) — Vu f1(q)|. The following estimates are copied from [15, p. 250]
(and completely omitted in [18], as there is virtually no difference between H" and R" in
this argument). First, the horizontal gradient of f; on U is evidently

Virfi(p) = Y {[F(8) + k(3), 7(37" - pDIVavs(p) + vs(p)k(3)},  peU.  (B11)
seS

By (B.10), Vu f1 and Vi f coincide on F, hence satisfy the same estimates, and in partic-
ular (B.5). To understand the behaviour of Vy f1 outside I, consider first the case p € U
and g € F'. First,

Vufi(p) = Vufi(@)] < [Vufi(p) — k(B + [k(B) — k(9)]. (B.12)
Since dy(p, q) < du(p, p) +du(p, q) < 2du(p, q), the second term in (B.12) can be estimated
by
(B.5)
|k(p) — k(q)] S min{Hdu(p,q)", €}. (B.13)

The first term in (B.12) is estimated as follows, recalling (B.8) and (B.11):

(B.8)&(B.11)

Ve fi(p) — k(D) DLFG) + k(3), (5 p)IVEws (p) + s (0)[K(3) — k(D)]

seS

2[F3) = F(B) + k(3), (37" - B Vs (p)

seS

(B.8)

<

DL [(KE) = kD)), w (" - p)] Vs (p)

+ =: 37 + 2o + Xs. (B.14)

> vs(P)[k(3) — k()]

seS

To arrive at the expression for X2, we added here the term

S EB)), 707 p)Vivs(p) = k(D)) o) Y Vary(p) &

seS seS
With the expressions for 31, 32, and X3 in hand, we can now continue to bound the right
hand side of (B.12). First, the term X; essentially contains R(p, §), and can be bounded
using (B.6) and (B.9), and the bounded overlap of the supports of the functions v, (in
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applying (B.6), note that easily p, § € F' n B(po,2Cry), as p, § are among the points in F
closest to p, s € B(pg, Cro)):
r(p)
Repeating verbatim the estimate on [15, p. 251], we moreover find that dy(5,p) S
du(p,p) = distu(p, F') = r(p) for all s € S relevant in the summation above, that is,
for those s € S where v4(p) # 0 or Vivs(p) # 0. Consequently,
¥1 S min{Hdu(p,p)*, e} < min{Hdu(p,q)" €}
Next, to estimate X5, one uses the same ingredients as above, except that the appeal to
(B.6) is replaced by (B.5):
) g dH(ﬁap)
r(p)

Virtually the same argument gives the same upper bound for 3. Starting from (B.12),
and recalling (B.13), one finally infers that

Vi fi(p) — Vufi(e)| < min{Hdu(p,q)*, €}, peU, qeF. (B.15)

By symmetry, (B.15) also holds if p € F and ¢ € U. Combining this with (B.5), one
concludes that (B.15) holds for all pairs p, ¢ € H" with (a) both p, g € F, or (b) one point
in F' and the other one in U. How about the the case (c) p, ¢ € U? The estimate

IVufi(p) = Vufi(g)] S e (B.16)
follows by recalling that |k(p) — (1,0,...,0)| < e and |k(¢) — (1,0,...,0)| < e by (B.5),
then repeating the estimate from (B.14) and using the triangle inequality. So, it remains
to show that |V f1(p) — Vifi(q)| < du(p, q)®/3. The implicit constants here may depend

on all the data in (B.4). One may assume that d(p, ¢) < 1, since otherwise this is implied
by (B.16). Consider first the case where

du(p,q) < r(p)>. (B.17)

Recall, once again, the formulae for Vi f1(p), Vi fi(q) from (B.11); the plan is to make
crude term-by-term estimates. Note that if s € S is fixed, then

-min{Hdy(8,p)%, €}.

-min{Hdg(8,p)", e} < min{Hdg(p,q)",€}.

)~ v @F(S) S [Vavalidir ) S T2 < ),

using (B.9) for j = 1, and the assumption (B.17). Similarly, using (B.9) for j = 2,
f (&) Vuvs(p) — F(3)Vuvs(@)] S 1F] Lo (Bepo2cro) I Vivs|L=d(p, 4)

< Il e Bo2cry)

S )2 Lds(p,q) S 11l oo (B po, 20y (0, @) 2.

Finally, to deal with the last term

A= [CR(3), w37 p)Vivs(p) — (k(3),m(37" - 9)) Viws(q)| (B.18)

that arises from |V f1(p)—Vm f1(q)|, we assume without loss of generality that Vivs(p) #
0; if Vmrs(p) = Vmrs(q) = 0, the estimate is trivial. As explained between (B.14) and
(B.15), the assumption Vyvs(p) # 0 ensures that dy (8, p) < r(p). Hence we have

[Kk(8), (87" p))| < du(8,p) < du(3,9) + du(p,p) S r(p). (B.19)
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This allows us to bound the term A in (B.18) as follows

A S Kk(8), (371 p)IIVEvs(p) — Vivs(a)| + [k(3), (37" p) = 137 )| Vaws(g)]

(B.19),(B.9) (B.17)
2 1 1

S T(P)WdH(Pﬂ)JFdH(p,Q)Tp) S du(p,q

2/3
r\p )

recalling also that the implicit constants in “<” are allowed to depend on the data in
(B.4). These bounds combined with the bounded overlap of the supports of the functions

v, show that
(B.11)

Vefi(p) - Vafi(@)] S du(p.g)'?
under the assumption (B.17). Finally, assume that

dr(p, q) = r(p)*. (B.20)
In this remaining case, one may apply (B.15) as follows:
Vufi(p) = Vufi(g)| < [Vufi(p) — k()| + [Vufi(a) — k(D)|
S dH(pap)a + dH(qa]ﬁ)a S T(p)a + dH(p7 q)Oé g dH(p7 Q)a/37

using the assumption (B.20) in the final estimate. Recalling also the cases (a)-(b) dis-

cussed after (B.15), it has now been established that f; € C]éfa/ 3(IHI”), and (B.16) holds for
all p,q € H". Consequently, (B.7) holds if ¢ > 0 was chosen small enough to begin with,
and then

Xifilp) =45,  peH" (B.21)
It follows from (B.21) that for every p € H", the map s — fi(p - (s,0,...,0)) is strictly
increasing with derivative d;[s — fi(p - (5,0,...,0))] = Xifi(p - (s,0,...,0)) > 3.
Consequently, for every p € H", thelinep -V = {p- (5,0,...,0) : s € R} intersects
{f1 = 0} in exactly one point, so the set { f{ = 0} is the intrinsic graph of a certain func-
tion ¢: W — V. Recalling that f; € C’%I’a/ 3 (H"), and noting (B.21), the conclusion is that
{f1 = 0} is an intrinsic Clva/g—graph. Moreover, since f1(p) = f(p) for all p € B, the
set S B < {f = 0} n B is contained on the graph. Finally, the function ¢ is com-
pactly supported, because fi(z1,...,%2,,t) = 1 forall (x1,...,x9,,t) € H"\ B(po, Cro).
Consequently,

{1 =0} n [H"\ B(po, Cro)] < {(z1, .- w20, 1) s 21 = 0) = W.

This implies that ¢ = 0 outside a sufficiently large ball centred at the origin. The proof of
the proposition is complete. O
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