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SIGNIFICANCE
To aid melanoma diagnostics, various non-invasive tech-
nologies have developed. Hyperspectral imaging is a novel 
non-invasive technology, which combines digital imaging, 
spectroscopy and the use of machine learning. The advan-
tages include large field of view and rapid imaging process. 
This study assessed the accuracy of hyperspectral imaging 
in distinguishing between histopathologically verified naevi 
and melanomas. The results indicate that hyperspectral 
imaging is feasible for non-invasive diagnostics and pro-
vides high sensitivity and specificity. The novel method 
needs further validation with larger data-sets. The results 
will serve as a basis for future development of this novel 
imaging technique for commercial use.

Malignant melanoma poses a clinical diagnostic pro-
blem, since a large number of benign lesions are ex-
cised to find a single melanoma. This study assessed 
the accuracy of a novel non-invasive diagnostic tech-
nology, hyperspectral imaging, for melanoma detec-
tion. Lesions were imaged prior to excision and histo-
pathological analysis. A deep neural network algorithm 
was trained twice to distinguish between histopatho-
logically verified malignant and benign melanocytic le-
sions and to classify the separate subgroups. Further-
more, 2 different approaches were used: a majority 
vote classification and a pixel-wise classification. The 
study included 325 lesions from 285 patients. Of these, 
74 were invasive melanoma, 88 melanoma in situ, 115 
dysplastic naevi, and 48 non-dysplastic naevi. The stu-
dy included a training set of 358,800 pixels and a vali-
dation set of 7,313 pixels, which was then tested with 
a training set of 24,375 pixels. The majority vote clas-
sification achieved high overall sensitivity of 95% and 
a specificity of 92% (95% confidence interval (95% 
CI) 0.024–0.029) in differentiating malignant from be-
nign lesions. In the pixel-wise classification, the over-
all sensitivity and specificity were both 82% (95% CI 
0.005–0.005). When divided into 4 subgroups, the di-
agnostic accuracy was lower. Hyperspectral imaging 
provides high sensitivity and specificity in distinguis-
hing between naevi and melanoma. This novel method 
still needs further validation.

Key words: hyperspectral imaging; non-invasive diagnostic; 
machine learning; malignant melanoma.
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Invasive malignant melanoma (MM) is the deadliest 
type of skin cancers with its prognosis related to the 

invasion depth (Breslow depth) at the time of diagnosis 
(1). With increasing incidence, the healthcare costs of 
MM are expected to expand dramatically (2). MM is 

the cost driver of skin cancers, with total annual costs of 
> 90 million euros in Sweden (3). Earlier diagnosis could 
minimize these expenses, since the costs of melanoma in 
situ (MIS) without metastatic potential are significantly 
lower than those of advanced or metastasized MM (4).

The excisional biopsy and histopathological examina-
tion of suspicious pigmented lesions is the current gold 
standard for diagnosing MM. Even though early detec-
tion of MM is the best strategy to reduce mortality as-
sociated with melanoma, unnecessary excision of benign 
lesions increases morbidity and raises healthcare costs 
associated with melanoma screening (5). The number 
needed to excise, i.e. the number of excised lesions per 
diagnosed melanoma varies from > 20 for primary care 
to 6 for pigmented lesion specialists (6). A differential 
diagnostic problem for melanomas are benign pigmented 
lesions, including dysplastic naevi (DN) and other non-
dysplastic benign naevi (BN), which can resemble early 
MM or MIS clinically (7). There is therefore a demand 
for objective and non-invasive examination methods to 
aid the clinicians in deciding which lesions to excise.

Hyperspectral imaging (HI) is a novel non-invasive 
imaging technique, which combines digital imaging, 
spectroscopy and the use of machine learning (ML) to 
provide automated diagnostic classifications. Unlike 
human colour vision, which is limited by the trichro-
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matic colour system to detect the wavelengths of visual 
light (380–740 nm), HI can provide information from 
wavelengths not visible by humans. A hyperspectral 
image is a stack of hundreds of overlapping images taken 
at different narrow wavebands of light. The resulting 
hyper spectral cube contains 2 spatial dimensions and the 
spectral data for every pixel provides a third dimension. 
The technique can be used for diagnostic purposes (8, 
9) or to visualize tumour borders (10, 11).

This study sought to determine the accuracy of a 
HI system combined with a novel 3-dimensional (3D) 
deep learning method in the non-invasive diagnosis of 
melanocytic lesions.

MATERIALS AND METHODS
Recruitment

The study protocol followed the principles of the Declaration 
of Helsinki and was approved by local ethics committees in 
both Gothenburg and Tampere (approval numbers 283-18 and 
R14120). Patients were recruited prospectively at 2 study centres 
in Finland (the Department of Dermatology of Helsinki Univer-
sity Hospital in Helsinki and the Päijät-Häme Central Hospital in 
Lahti) between June 2016 and October 2017 and at Sahlgrenska 
University Hospital in Gothenburg, Sweden between June 2018 
and December 2019. 

The inclusion criterion was any clinically atypical melanocytic 
lesion that was scheduled for excision and subsequent histopat-
hological analysis.

Image acquisition and sampling for histopathology

The lesions were first photographed and evaluated with a der-
matoscope by a dermatologist. Hyperspectral images were taken in 
vivo using 3 similar HI system prototypes (HSCP2, Revenio group, 
Finland). The system consists of a Fabry-Pérot interferometer (FPI) 
based hyperspectral imager and diffuse illumination system (12). 
The use of an FPI enables fast scanning in the spectral domain. 
The imager captures 120 wavebands rapidly in seconds using the 
diffuse reflectance of visible and near-infrared light (wavebands 
450–900 nm) within a large field of view (FOV) of 12 cm2 (spatial 
resolution 6,400 pixels/cm). The imaging depth of HI depends on 
the wavelength (13). In the used wavelength range, the imaging 
depth varies between 0.5 and 5 mm as a function of wavelength. The 
full width of each waveband’s half maximum varies from 5 to 15 
nm. The camera used is capable to taking images at a resolution of 
1,920×1,200 pixels. This corresponds to approximately 15 μm/pixel 
spatial resolution. Before each hyperspectral image was acquired, an 
image from a white reference standard was obtained. The detailed 
description of the HI technique is available elsewhere (8, 10, 11).

After imaging, the lesions were excised and processed for routine 
histopathological examination. The specimens were fixed in 4% 
formalin, embedded in paraffin, sectioned using the traditional 
vertical bread loaf technique and stained with haematoxylin-eosin 
(H&E). All samples were assessed by dermatopathologists and 
the histopathological diagnoses of the excised specimens were 
considered as the true label for the data-set.

Data processing

Based on the histopathological reports, a dermatologist (JP) and 
dermatopathologist (NN) manually annotated each image and 
categorized them according to 5 classes: healthy skin, BN, DN, 
MIS, and MM. 

The mathematical modelling was performed by a mathematician 
(IP). A supervised ML approach was used to train a deep neural 
network algorithm to distinguish between the different lesion 
types. The neural network used in this study was modified from 
Hyper3Dnet, a network which utilizes both 3D and 2-dimensio-
nal convolutional layers, extracting features from both spectral 
and spatial domains (14). To increase the sample size, we chose 
to train a pixel-wise classification algorithm. The images were 
divided vertically in the middle of the annotated lesion similarly 
to the method used by Räsänen et al. (9). The left side was used 
to train the algorithm and validate the training process. The right 
side was used to test classification performance. This ensured 
firstly that the training or validation set did not contain data-points 
from the image currently being classified, and, secondly, that the 
training set contained a sufficient variation of different lesion ty-
pes (15–17). In the pixel-wise analysis this approach made pixels 
training and test sets independent and reduced the effect of spatial 
autocorrelation (18). From the left side of each of the images, 50 
pixels from the healthy area and 100 pixels from the annotated 
lesion area were randomly selected for training and validation. For 
each pixel, a 25×25×55 window was collected, where the first 2 
variables correspond to the spatial domain and the last 1 to the 
spectral domain. The analysis included every second band in the 
spectral domain in order to reduce the amount of data for proces-
sing. This data-set was then randomly divided into the training set 
(41,437 samples) and the validation set (7,313 samples). There 
was a slight imbalance between classes in the training set. Clas-
ses were balanced using the random over-sampling method (19), 
which increased the amount of training data to 89,700 samples. 
Data augmentation was performed by rotating images 3 times 90° 
in the spatial domain (20). This multiplied the training set by a 
factor of 4 (358,800 samples). For testing, a total of 24,375 pixels 
from the right halves of the images was selected. 

Before the actual training, effects of vignetting and curvature 
of the skin surface were reduced by normalizing reflectance from 
images subject to the spectral mean, i.e.  where λi denotes diffe-
rent wavebands. Here R() is reflectance spectra for the each pixel. 
Reflectance R{ ) = I{ )/I_0{ ), where I is measured radiance and 
I_0 is irradiance of the light source, which is measured by imaging 
white Teflon target. R_(  i) is single waveband image. This is nor-
malizing data in such a way that the mean of each spectrum is 0.

Training was performed using Hyper3Dnet with modifications 
to the encoder part of the architecture (14) where only 16 filters 
were used, and the dense layer had only 256 nodes. Training used 
an Adam optimizer with a learning rate of 0.0001, a momentum 
term β_1 of 0.9, a momentum term β_2 of 0.999, and an epsilon 
value of 10×10−8. The algorithm was implemented using Python 

3.6 (https://www.python.org) and Tensorflow 2.0 (tensorflow.
org). For computing, a Tesla P100-PCIE-16GB general-purpose 
graphics processing unit (Tesla, Nvidia, UK) was used. For 
training, 60 epochs on mini-batches (size 64) were computed. 
Categorical cross-entropy was used for loss function.

Two different approaches were used: (i) the majority of the 
pixels per lesion “majority vote” classification; and (ii) the pixel-
wise classification. In the majority vote classification, the class 
was determined by selecting pixels from the annotated right half 
of the lesional area and counted to which class the majority of 
pixels in this area belonged. The classification result was true 
positive if most predictions were in the same class as the ground 
truth (the annotated masks based on histopathology). In the pixel-
wise classification, each tested pixel was seen as an independent 
sample. Both models were trained twice: for 2 class classification 
to distinguish benign (BN+DN) and malignant lesions (MIS+MM) 
and to classify different lesion types. The pixel-wise classification 
also included pixels from the annotated healthy skin regions sur-
rounding the lesional area and resulted in either 3 classes (healthy, 
benign or malignant) or 5 classes (healthy, BN, DN, MIS, MM) 
while the majority vote only analysed the lesional area and resulted 

http://medicaljournalssweden.se/actadv


A
ct

aD
V

A
ct

aD
V

A
d
v
a
n

c
e
s 

in
 d

e
rm

a
to

lo
g
y
 a

n
d
 v

e
n

e
re

o
lo

g
y

A
c
ta

 D
e
rm

a
to

-V
e
n

e
re

o
lo

g
ic

a

3/7 J. Paoli et al. “Hypespectral imaging for melanocytic lesions”

Acta Derm Venereol 2022

in either 2 classes (benign vs malignant) or 4 classes (BN, DN, 
MIS and MM).

RESULTS

In total, 364 melanocytic lesions were imaged in the 3 
study centres. In 39 cases, the HI system settings were 
not optimal at the time of imaging and the images were 
excluded due to imaging artefacts. Thus, 325 lesions in 
285 patients were included in the study.

Lesion characteristics and histopathological diagnoses
The mean diameter of the lesions was 9.4 mm (range 
3–50 mm). All the lesions fitted the FOV and could be 
imaged in 1 session. The malignant lesions (MM+MIS) 

were larger than the benign lesions (DN+BN) with a 
mean diameter of 11.5 mm (range 4–50) and 7.2 (range 
3–16), respectively, p < 0.05. The majority of the imaged 
lesions were located on the torso (53.5 % n = 174), and 
on the extremities (40.9%, n = 133), while only 5.5 % 
(n = 18) were in the head and neck region. 

Histopathological diagnoses were: 74 MMs, 88 MIS, 
115 DN, and 48 BN. The mean Breslow thickness of the 
MMs was 1.2 mm (range 0.2–6.3). The MMs were of the 
following subtypes: superficial spreading (n = 52), lentigo 
maligna melanoma (n = 9), melanoma associated with a 
naevus (n = 6), nodular melanoma (n = 3) and unclassified 
(n = 3). Of the DN, 81 showed low-grade dysplasia and 21 

Table I. Results of the majority vote classification

Majority vote Class Sensitivity Specificity 95% CI

Two classes Benign 0.97 0.89 0.0185–0.034
Malignant 0.93 0.96 0.028–0.021
OA 0.95 0.92 0.024–0.029

Four classes BN 0.95 0.80 0.024–0.043
DN 0.99 0.70 0.011–0.050
MIS 0.85 0.93 0.039–0.028
MM 0.71 0.99 0.049–0.011
OA 0.88 0.84 0.035–0.040

In the 2 class analyses, the benign group included both dysplastic naevi (DN) and 
non-dysplastic benign naevus (BN), while the malignant group included melanoma 
in situ (MIS) and invasive melanomas (MM).
95% CI: 95% confidence interval; OA: overal accuracy (bold).

Fig. 1. Majority vote classification. 
The number of lesions in each class is 
shown in the confusion matrix below. 
BN: benign nevus; DN: dysplastic 
nevus; MM: malignant melanoma; MIS: 
melanoma in situ.

Table II. Results of the pixel-wise classification

Pixel-wise Class Sensitivity Specificity 95% CI

Three classes Healthy 0.88 0.85 0.004–0.004
Benign 0.81 0.78 0.005–0.005
Malignant 0.76 0.81 0.005–0.005
OA 0.82 0.82 0.005–0.005

Five classes Healthy 0.90 0.82 0.004–0.005
BN 0.71 0.62 0.006–0.006
DN 0.85 0.59 0.005–0.006
MIS 0.62 0.73 0.006–0.004

MM 0.55 0.86 0.006–0.004

OA 0.77 0.74 0.005–0.006

In the 2 class analyses, the benign group included both dysplastic naevi (DN) and 
non-dysplastic benign naevus (BN), while the malignant group included melanoma 
in situ (MIS) and invasive melanomas (MM).
95% CI: 95% confidence interval; OA: overal accuracy (bold).

Fig. 2. Pixel-wise classification. 
The number of pixels in each class is 
shown in the confusion matrix below. 
BN: benign nevus; DN: dysplastic 
nevus; MM: malignant melanoma; MIS: 
melanoma in situ.

http://medicaljournalssweden.se/actadv
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high-grade dysplasia. In 6 cases, the grade was not report-
ed. Among the BN, the diagnoses were mainly compound 
naevi (n = 27), junctional naevi (n = 5), intradermal naevi 
(n = 5) and blue naevi (n = 5). There was also 1 case each 
of: congenital naevus, Reed naevus, spindle cell naevus, 
deep penetrating naevus, and special site naevus.

Hyperspectral analysis
Majority vote classification. In the majority vote analysis, 
the annotated right half of the lesions were analysed, and 
which class the majority of pixels in this area belonged to 
was counted. The classification result was true positive 
if most predictions were in the same class as the ground 
truth (the annotated masks based on histopathology). In 
2 classes analyses for benign (BN+DN) vs malignant 
(MIS+MM), the overall sensitivity was 0.95 and speci-
ficity 0.92 (95% CI 0.024–0.029). Overall sensitivity for 
4 classes (BN, DN, MIS, MM) was 0.88 and specificity 
0.84 (95% CI 0.035–0.040) (Table I, Fig. 1). 
Pixel-wise classification. In the pixel-wise classification, 
the model was trained based on independent pixels of 
the image. Each tested pixel on the right lesion halves 
was seen as an independent sample and the class was 
determined separately for each pixel. Pixels from the 
annotated lesional area and healthy skin surrounding the 
lesions were included. Overall accuracy of pixel-wise 
classification for 3 classes (healthy, benign, malignant) 
was 0.82 for both sensitivity and specificity (95% CI 
0.005–0.005), while for 5 classes (healthy, BN, DN, MIS, 
MM) the overall sensitivity was 0.77 and specificity was 
0.74 (95% CI 0.005–0.006) (Table II, Fig. 2).

Both the pixel-wise and the majority vote approaches 
offered not only classification, but also delineation, and 
a map-like representation of the lesions as is shown in 
Figs 3–4. Mean spectra and standard deviation (SD) for 
healthy skin and different lesions are shown in Fig. 5.

DISCUSSION

In this study, HI showed its potential for the non-invasive 
diagnosis of naevi and melanoma. The most reliable 
results were achieved when using the majority vote 
method for differentiating benign (BN+DN) vs malignant 
(MIS+MM) melanocytic lesions. This analysis achieved 
higher overall sensitivity 95% and specificity 92% than 
the pixel-wise analysis for (82% overall sensitivity and 
specificity). The classifications into histological subclas-
ses (BN, DN, MIS, MM) showed somewhat lower overall 
accuracy with both methods, which could be explained 
by a lower number of cases and pixels when dividing the 
material into subgroups.

Previously, we have shown HI to be useful in differen-
tiating between MM and pigmented basal cell carcinoma 
(BCC) and thus shown capability in differentiating 
tumours of melanocytic and keratinocytic origin (9). 
Furthermore, HI can offer a tool for detecting invasive 
parts of larger melanocytic lesions, such as lentigo ma-
ligna melanoma, which could allow for targeted biopsies 
(8). We have also shown that map-like HI images can 
be used preoperatively in the delineation of both mela-
nocytic and non-melanocytic malignant tumours (10, 
11). The advantages of HI include: (i) a combination of 
digital imaging and spectroscopy, i.e. spectral data can 
be obtained from map-like images; (ii) a large imaging 
field (12 cm2) and (iii) a rapid imaging process (s) and 
automated analysis performed on visual data. Although 
there is no commercial HI device available currently, the 
technique could be especially useful for an inexperienced 
physician, since it is not user-dependent and could 
potentially provide an automated diagnosis. HI could 
potentially decrease the number needed to excise among 
general practitioners, and even among dermatologists, 
and help to determine which lesions should be excised 
and which could be followed.

Fig. 3. Classification and likelihood maps for a histopathologically verified invasive melanoma (MM) (left) and non-dysplastic benign naevus 
(BN) (right), pixel-wise method, 5 classes. (a, j) Red-green-blue (RGB) image taken by the hyperspectral imaging (HI) camera, (b, k), annotation 
mask, (c, l) classification map, (d, m) a likelihood map for localization of healthy skin (e, n) a likelihood map for localization of BN, (f, o) a likelihood map 
for localization of dysplastic naevi (DN), (g, p) a likelihood map for localization of melanoma in situ (MIS), (h, q) a likelihood map for localization of a MM.

http://medicaljournalssweden.se/actadv
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To aid melanoma diagnostics, various other non-inva-
sive imaging methods have been developed, including 
digital dermoscopy, reflectance confocal microscopy 
(RCM), high-resolution optical coherence tomography 
(HR-OCT), multiphoton laser scanning microscopy 
(MLT), electrical impedance spectroscopy, Raman 
spectroscopy and multispectral imaging (21–36). Many 
of these techniques are based on spectral technologies 
(37). The advantages of the proposed HI method com-
pared with some other spectral techniques, such as 
Raman spectroscopy, include the possibility to obtain the 
spectral data from an image. The large FOV makes the 
HI fast and enables imaging even larger lesions at once. 
This is a clear advantage compared with RCM or MLT. 

The maplike images can also be used preoperatively in 
the delineation of the lesions (10, 11). Furthermore, HI 
gives automated analysis performing visual data, which 
makes it simple to use and not user dependent. This 
is an advantage compared with extensive training and 
knowledge about histopathology needed for the use of 
some high-resolution techniques, such as RCM or HR-
OCT. A disadvantage compared with the high resolution 
techniques is the poorer resolution. While RCM, MLT 
and HR-OCT are able to detect intracellular structures, 
HIS is limited to cell aggregates. However, we believe 
this resolution combined to the spectral data obtained 
with HI is good enough to achieve acceptable diagnostic 
accuracy for skin tumour diagnostics. Imaging depth 

Fig. 4. Classification and likelihood 
maps for a histopathologically 
verified MIS (pixel-wise method, 
5 classes). (a) Red-green-blue 
(RGB) image taken by hyperspectral 
imaging (HI), (b) annotation mask, (c) 
classification map showing most of the 
pixels correctly classified as melanoma 
in situ (MIS), but some showing invasive 
melanoma (MM), (d) a likelihood map for 
localization of healthy skin, (e) a likelihood 
map for localization of non-dysplastic 
benign naevus (BN), (f) a likelihood map 
for localization of dysplastic naevi (DN), 
(g) a likelihood map for localization of MIS, 
(h) a likelihood map for localization of MM. 
HIS differed from the annotation based 
on the histopathological interpretation. 
It cannot be completely ruled out that a 
small area of MM could have been missed 
in the histopathological interpretation.

Fig. 5. Mean spectra (black line) and 
standard deviation of (red area) for healthy 
skin, benign naevi (BN), dysplastic naevi 
(DN), melanoma in situ (MIS) and invasive 
melanoma (MM).

http://medicaljournalssweden.se/actadv
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with HI is approximately 2 mm, which is better than the 
high-resolution devices that typically reach the papillary 
dermis. The technique most similar to HI is multispectral 
imaging (MI) which unlike HI (which takes tens to hund-
reds of images with narrow continuous wavebands) takes 
5–15 separate images using non-continuous wide spectral 
bands (37). In previous studies, MI using commercial 
products, such as Melafind (MELA Sciences, Irvington, 
NY, USA) and Siascope (MedX Headquarters, ON, Ca-
nada), has achieved varying sensitivity of 83–98% and 
specificity of 8–91% in melanoma diagnostics (38). In 
a recently published study, another HI system including 
202 pigmented skin lesions achieved 96.7% sensitivity to 
detect MM and a specificity of 42.1% for benign lesions 
(39). The current study had a larger sample size and 2 
further developed analysing techniques, which resulted 
in increased accuracy compared with this study. Interes-
tingly, there are HI systems that can be attached to light 
microscopes for obtaining hyperspectral histopathology 
images of H&E-stained melanoma tissue for tumour 
detection from healthy skin and for measurement of the 
invasion depth (Breslow thickness) (40, 41).

Study limitations
Limitations of the current study include the limited 
number of imaged lesions. Nevertheless, the use of a 
pixel-wise approach increased the data-set dramatically, 
since in this method every single pixel was seen as an 
independent “lesion”. The algorithm used for the data 
analysis was a novel modification of deep neural net-
work analysis that still needs further development. In 
the majority vote analysis, the fact that the current study 
used half of each lesion for training/validation and the 
other half for analysis could potentially have affected 
the results. This approach was used due to the limited 
sample size and large variation in the imaged lesions. 
However, the pixel-wise analysis overcame this poten-
tial bias. Since some images had to be excluded due to 
the low quality, the HI system prototypes also still need 
adjustments in order to avoid imaging artefacts. Even 
though there was variation in the lesion size, with naevi 
being smaller than MM on average, the approach of using 
pixel-wise classification overcame this potential bias. 
Furthermore, experience is needed in imaging different 
body parts, for example acral melanomas and naevi of 
special sites, since skin topography in these areas varies 
and can complicate image acquisition. The current study 
material also lacked Spitzoid lesions and rare mela-
noma subtypes. Furthermore, other pigmented lesions 
including pigmented BCCs and seborrhoeic keratoses, 
dermatofibromas, benign lentigines should be included 
in the differential diagnoses and this needs further study. 
Moreover, patients in this investigation were recruited 
from 2 Nordic countries, meaning that most patients 
had fair skin phototypes. Another limitation is that the 

current study did not collect the specific skin phototypes 
and that the images were taken at different seasons of 
the year, which may have affected the skin pigmentation. 
To examine the external validity of our findings, future 
investigations should also target other populations with 
more pigmented skin. 

Both analytical methods have their limitations. The 
majority vote classification gives only 1 diagnosis per 
lesion and could potentially miss a small melanoma asso-
ciated with a large naevus or a small invasive component 
within a larger MIS. The pixel-wise classification gives 
a more realistic picture, mimicking the histopathology 
of the lesion, showing a classification for each pixel and 
resulting in mixed lesion types. However, these mixed 
images may be confusing for clinicians to interpret. 

HI cannot replace the gold standard of histopathologi-
cal evaluation of melanoma, including assessment of the 
lesion thickness, ulceration, regression and mitotic rate. 
However, since image acquisition with HI is performed 
with different wavelengths and different penetration 
depths, imaging could be adjusted to also measure lesion 
thickness by providing 4-dimensional information (3 
spatial dimensions and the spectral dimension). Inte-
restingly, the classification maps showed a combination 
of spectra within the same lesion in some cases as was 
depicted in Fig. 4. It is therefore possible that HI could 
detect areas of interest that could have been missed in the 
histopathological analysis. Theoretically, it is therefore 
also possible, that minimally invasive melanomas may 
have been missed in the routine histopathological sectio-
ning of the specimen and HI may actually have classified 
1 or more invasive melanomas correctly. Further studies 
with larger data-sets are thus warranted. 

Conclusion
In this study, HI showed its potential in the non-invasive 
diagnosis of melanocytic tumours with relatively high 
sensitivity, specificity, and overall accuracy.
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