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A B S T R A C T

Background: Temporal principal component analysis (tPCA) has been widely used to extract event-related
potentials (ERPs) at group level of multiple subjects ERP data and it assumes that the underlying factor loading
is fixed across participants. However, such assumption may fail to work if latency and phase for one ERP vary
considerably across participants. Furthermore, effect of number of trials on tPCA decomposition has not been
systematically examined as well, especially for within-subject PCA.
New method: We reanalyzed a real ERP data of an emotional experiment using tPCA to extract N2 and P2 from
single-trial EEG of an individual. We also explored influence of the number of trials (consecutively increased
from 10 to 42 trials) on PCA decomposition by comparing temporal correlation, the statistical result, Cronbach’s
alpha, spatial correlation of both N2 and P2 for the proposed method with the conventional time-domain
analysis, trial-averaged group PCA, and single-trial-based group PCA.
Results: The results of the proposed method can enhance spatial and temporal consistency. We could obtain
stable N2 with few trials (about 20) for the proposed method, but, for P2, approximately 30 trials were needed
for all methods.
Comparison with Existing Method(s): About 30 trials for N2 were required and the reconstructed P2 and
N2 were poor correlated across participants for the other three methods.
Conclusion: The proposed approach may efficiently capture variability of one ERP from an individual that
cannot be extracted by group PCA analysis.
1. Introduction

Event-related potentials (ERPs) are considerably small compared
with other signals (e.g., noise, spontaneous EEG, etc.) and they are
often temporally and spatially mixed with other signals to some ex-
tent (Beauducel et al., 2000; Beauducel and Debener, 2003). Imaging
that several sources are active at a specific time point, the voltage at
that time point will be the sum of those sources (i.e., temporal overlap
issue). Similarly, the voltage of collected signals at a specific electrode
site is also contribution of multiple sources (i.e., spatial overlap is-
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Dalian, 116024, China.

E-mail addresses: zhang.guanghui@foxmail.com (G. Zhang), cong@dlut.edu.cn (F. Cong).

sue) (Scharf et al., 2022). Although signal-to-noise (SNR) is improved
considerably after some preprocessing steps (e.g., filtering, artifact
correction via independent component analysis), the preprocessed ERP
signals still contain considerable noise and the overlapping problem for
the ERP components still exists. To address this, temporal principal
component analysis (tPCA) has been widely used to estimate those
temporally and/or spatially mixed ERP components (Fogarty et al.,
2020; Male and Gouldthorp, 2020; Bonmassar et al., 2020; Dien, 2012,
1998; Dien et al., 2007; Kayser and Tenke, 2003, 2006a,b).
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1.1. Model and use of temporal PCA, and potential problems of its current
application

As shown in Fig. 1a, matrix 𝐙 ∈ ℜ𝑇×𝑀 formed by preprocessed ERP
data from multiple participants with 𝑇 variables (i.e., time samples)
and M observations (i.e., combinations of electrodes, conditions, and
participants) can be represented using blind source separation (BSS)
model (see Fig. 1) (Cong et al., 2011a,b; Makeig et al., 1997, 1999):

𝐙 = 𝐚1 ◦ 𝐬1 +⋯ + 𝐚𝑟 ◦ 𝐬𝑟 +⋯ + 𝐚𝑅 ◦ 𝐬𝑅 = 𝐀𝐒, (1)

𝐀 ∈ ℜ𝑇×𝑅 is coefficient matrix and the magnitude of each element for
its 𝑟th column 𝐚𝑟 is the coefficient for 𝑟th source at a specific time point
(see Fig. 1b) which determines signal amplitude at that time point.
𝐒 ∈ ℜ𝑅×𝑀 is source matrix and its each row 𝐬𝑟 is spatial distribution
which is related to stimulus-locked activity, spontaneous EEG, or noise
(see Fig. 1c). Therefore, the amplitude 𝐳(𝑡0) ∈ ℜ1×𝑀 for all channels
at time point 𝑡0 is the sum of multiplication between the coefficient
𝑎𝑟(𝑡0) ∈ ℜ1×1 and the corresponding spatial source 𝐬𝑟 ∈ ℜ1×𝑀 or 𝐳(𝑡0) =
∑𝑅

𝑟=1 𝑎𝑟(𝑡0) ⋅ 𝐬𝑟 (see Fig. 1). R is the number of sources. ‘‘ ◦ ’’ represents
outer-product between two vectors. ‘‘⋅’’ represents dot-product.

In practice, both 𝐬𝑟 and 𝐚𝑟 are unknown. Fortunately, some algo-
rithms, for example, singular value decomposition (SVD) and Promax
rotation, have been developed to estimate them. Thus, the matrix Z
can be approximately estimated by the sums of outer-product of several
factors related to stimulus onset1:

≈ 𝐮1 ◦ 𝐲1 +⋯ + 𝐮𝑘 ◦ 𝐲𝑘 +⋯ + 𝐮𝐾 ◦ 𝐲𝐾 = 𝐔𝐘, (2)

∈ ℜ𝑇×𝐾 = [𝐮1,… ,𝐮𝑘,… ,𝐮𝐾 ] and it is the estimate of 𝐀 which
is known as factor loading or factor coefficient. Each row of 𝐔 con-
tains 𝑇 coefficients corresponding to 𝑇 time points and the columns
are factor variances that are in descending order. 𝐘 ∈ ℜ𝐾×𝑀 =
[𝐲1,… , 𝐲𝑘,… , 𝐲𝐾 ]𝑇 represents 𝐙 in the factor (principal component)
space, and its rows correspond to factors and columns are observations.
That is, 𝐲𝑘 estimates 𝐬𝑟 and it is topographical distribution of 𝑘th factor
which is also known as factor score. K, the number of factors, is esti-
mated by some methods, for example, cumulative explained variance,
and it is usually smaller than the number of sources R because we
are only interested in the sources related to stimulus-onset activities.
The basic mathematical procedure for tPCA from the view of BSS
can be found in Appendix A and more details about PCA algorithm
based on SVD are available in Abdi and Williams (2010), and more
information about Promax rotation and other rotation methods can be
found in Richman (1986), Hendrickson and White (1964).

ERP components are usually extracted from ERP data2 of all partici-
pants under all conditions by means of tPCA (Fogarty et al., 2020; Male
and Gouldthorp, 2020; Bonmassar et al., 2020; Dien, 2012, 1998; Dien
et al., 2007; Kayser and Tenke, 2003, 2006a,b). In detail, ERP datasets
are first concatenated across electrodes, conditions, and participants
to form a matrix. The size of the matrix is time samples multiplied
by the combinations of electrodes, conditions, and participants. PCA
is then conducted to decompose this matrix into several factors. The
corresponding PCA procedure refers to trial-averaged group PCA (TG-
PCA) in this study and it assumes (i.e., measurement invariance) that
all subjects and conditions share the same time-course. That is, the
underlying factor loading is fixed across participants across conditions:

𝐮𝑘 = 𝐮(1)𝑘 = ⋯ = 𝐮(𝑝)𝑘 = ⋯ = 𝐮(𝑃 )𝑘, (3)

1 Term ‘‘factor’’ is used here to represent principal component extracted by
CA and Promax rotation, which is to avoid confusion with ERP component.
is also used to avoid confusion with R.
2 We called the averages of single-trial EEG as ‘‘ERP data’’ in this study

ecause noise signals are assumed to be totally removed during averaging
2

rocedure and only information evoked by stimulus is contained. c
k is the order of a particular factor, p is the order of a particular
participant, and P is the number of participants.

However, even if the experimental environment is well controlled,
the responses for the stimuli are not exactly same across participants
because, for example, brain structure substantially varies among people
at least. Another problem is that, because single-trial EEG are first
averaged for each condition before PCA performance, the potential
variability of ERP of interest in single-trial EEG among participants may
be averaged out during such an averaging procedure.

To study the potential variability of ERP components that may
be averaged out during averaging procedure, some researchers have
performed PCA on the single-trial EEG data for all conditions for all
participants to isolate ERP components (Rushby and Barry, 2009; Mac-
Donald and Barry, 2017; MacDonald et al., 2015; Rushby et al., 2005).
We name this procedure as single-trial-based group PCA (SGPCA).
Similarly, Barry and his colleagues have tried to use a separate PCA to
explore the latency difference of ERP components of interest between
conditions among all participants (Barry et al., 2016). Note that the
core ideas of the above works are similar to TGPCA.

1.2. Effects of the number of trial on the study of ERP

It is widely accepted that SNR of ERPs linearly increases with the
increase of square root of the number of trials N, i.e., SNR ∼

√

𝑁 (Luck,
014). That is, the more number of trials, the higher SNR. However,
ore trials may lead to fatigue, influencing the task performance of
articipants and resulting in the enhancement of unexpected signals
e.g., alpha band). Therefore, it is critical and necessary to keep a
alance between data quality and experimental time by optimizing the
rial numbers involved in experiments.

Several early studies have provided data-driven evidence and guide-
ines on how many trials should be contained in specific ERP exper-
mental paradigms. For example, N2, P3, N1, P1, P2, error-related
egativity (ERN), Late positive potential (LPP), N170, and error positiv-
ty (Pe) have been systematically investigated (Clayson, 2020; Larson
t al., 2010; Huffmeijer et al., 2014; Pontifex et al., 2010; Olvet
nd Hajcak, 2009; Fischer et al., 2017; Thigpen et al., 2017; Cohen
nd Polich, 1997; Rietdijk et al., 2014; Kleene et al., 2021; Clayson
nd Larson, 2013). Most of these studies have quantified how to use
inimum number of trials to obtain the stable and reliable measures of
RPs of interest for conventional time-domain analysis. Although Steele
t al. (2016) has studied how to use minimal number of trials to obtain
reliable ERN for PCA decomposition, the impact of trial number on

he PCA decomposition of single-subject (within-subject PCA or WPCA)
as poorly investigated and the comparison between group PCA and
PCA was not fully explored either.

.3. Organization of the present study

To address the above mentioned problems, we divided the current
tudy into two main parts. In the first part, we proposed a method
WPCA) to study the variability across individuals that extracted two
RP components from single-trial EEG of an individual by means of
PCA in an emotional ERP experiment, and the following steps were
nvolved (see Fig. 2a). Firstly, single-trial EEG data for each subject
ith all the remaining trials were stacked along electrodes to form a
atrix separately. Secondly, tPCA and Promax rotation were employed

o decompose the matrices separately. Next, the factors associated with
n ERP of interest for each subject were selected and projected onto
he electrode fields (i.e., in microvolt) that reconstructed the single-
rial EEG waveform. Back-projection procedure can refer to Fig. 2b.
fterwards, the reconstructed waveforms of single-trial EEG were av-
raged separately under each experimental condition for each subject.
inally, the mean amplitudes of the ERPs were quantified within a pre-
efined time-window at some electrodes to make comparisons between

onditions.
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Fig. 1. Blind source separation (BSS) model for ERP/EEG data (decomposition of temporal principal component analysis). For the preprocessed single-trial EEG or ERP data
𝐙 ∈ ℜ𝑇×𝑀 , it can be considered to be the sum of outer-product between the coefficients 𝐚𝑟 ∈ ℜ𝑇×1 and spatial source 𝐬𝑟 ∈ ℜ1×𝑀 , that is, 𝐙 = 𝐚1 ◦ 𝐬1 +⋯+ 𝐚𝑟 ◦ 𝐬𝑟 +⋯+ 𝐚𝑅 ◦ 𝐬𝑅. R
is the number of sources. For the scalp data at point 𝑡0 (red line), i.e., the topographic distribution 𝐳(𝑡0) ∈ ℜ1×𝑀 is regarded to be multiplication between coefficient for the first
source at time point 𝑡0 and the first spatial source 𝐬1: 𝐳(𝑡0) = 𝑎1(𝑡0) ⋅ 𝐬1 if the coefficients for the other sources at this time point are zero (i.e., 𝑎1(𝑡0) = ⋯ = 𝑎𝑅(𝑡0) = 0).
The other three methods, namely, conventional time-domain analy-
sis, TGPCA, and SGPCA, were also used to quantify ERP components
of interest. We examined the differences among four used methods
by comparing the corresponding ERP waveforms, topographical dis-
tributions, spatial correlation coefficient (CCs), Cronbach’s alpha, and
statistical analysis results. Note that the comparison is based on the
data for all remaining trials in this part.

In the second part, we investigated whether the number of trials
(consecutively increased from 10 to 42) has a significant effect on three
PCA-based methods and conventional time-domain analysis compared
with the yields of all the remaining trials. We first measured temporal
CCs of P2/N2 waveforms for all participants between the averages
with small number of trials (e.g., 10 trials) and the grand average
with all remaining trials, and afterwards, we computed the Cronbach’s
alpha for waveforms of the increased trials. Computing consistency of
topographies among participants for all cases as well, and we finally
examined the statistical results for all cases.

2. Data description and method

In this section, we briefly described a published ERP experiment (Lu
et al., 2016) and introduced PCA procedures in step-by-step. The data
and Matlab code scripts used in this study are available at: http://
zhangg.net/publications/.

2.1. Participants

22 healthy undergraduate students from Shanghai University of
Sport participated in the study as paid volunteers. This experiment had
been approved by the local ethics committee and all participants had
signed their written informed consent before the experiment. The age
of participants was 22.05 ± 1.53 years old (from 20 to 24), including
10 males and 12 females.

2.2. Stimuli and task

2.2.1. Stimuli
We used 60 pictures in this experiment including 20 disgusting pic-

tures, 20 fearful pictures, and 20 neutral pictures. The disgusting items
are, for example, dead animals, feces, maggots, and moldy pictures. The
fear items are those pictures that may make people feel fearful, such
3

as guns, snakes, accidents, dogs, etc. Neutral items are those pictures
showing peaceful scenes, for example, household objects and tranquil
animals. More details about how to select those pictures can be found
in Lu et al. (2016).

2.2.2. Task
Before starting the ERP experiment, participants were required to

fill out the Beck Anxiety Inventory and Self-rating Anxiety Scale to mea-
sure the state of anxiety that may reflect typical reactions to disgusting
and fearful items. Participant were allowed to do the following ERP
task if both measurements were within the normal range.

ERP part is a modified oddball distinction task in which participants
were required to respond to different emotional pictures. At the begin-
ning, participants had a practice with ten trials to better understand the
procedure. At the beginning of each trial, a black fixation (fixed time
is 300 ms) was displayed in the center of the computer screen, and
then a blank white screen was displayed with a random time-window
between 500 ms and 1500 ms. Afterward, the stimuli were displayed to
participants, and then disappeared after 1000 ms or terminated by key
press (’J’ for the deviant pictures and ‘F’ for standard ones). Another
blank screen with 1000 ms followed the response before the next trial.

We used a blocked-design method for fear and disgust induction to
avoid contamination across emotional emotions for random designs,
that is, we featured a single category of emotional (deviant) stimuli
in each block. Six blocks featuring disgusting, neutral, and standard
stimuli were included in the experiment. Another six blocks with
fearful, neutral, and standard stimuli were also included. In each block,
there were 100 trials that comprised 70 standard stimuli and 30 deviant
stimuli. A natural scene of a chair was used for standard stimuli.
Deviant stimuli included 10 moderately/extremely disgusting pictures,
10 moderately/extremely fearful pictures, and 10 neutral pictures,
separately. Participants received accuracy (ACC) rates for both standard
and deviant stimuli at the end of each block. More details about the task
can be found in Lu et al. (2016).

2.3. EEG recording and preprocessing

Nineteen electrodes (F3, FC3, C3, CP3, P3, Fz, FCz, Cz, CPz, Pz, F4,
FC4, C4, CP4, P4, TP9, TP10, VEOG, and HEOG) were used to record
EEG based on the international 10–20 system with 1000 Hz sampling
rate. EEG recordings were referenced at FCz (Brain Products GmbH,
Germany). The impedance was less than 5 k𝛺 for each sensor of each

subject.

http://zhangg.net/publications/
http://zhangg.net/publications/
http://zhangg.net/publications/
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Fig. 2. Pipeline for extracting ERP of interest from single-trial EEG of an individual using temporal principal component analysis (tPCA) (a), and example of back-projection for
two factors (b). (a) Step 1: Single-trial EEG for multiple conditions for an individual are arranged into a matrix 𝐙 ∈ ℜ𝑇×𝑀 along electrodes (numbers of trials for condition 1, ⋯,
and 𝐽 are 𝐸1, ⋯, and 𝐸𝐽 , respectively; 𝐶 is number of electrodes), and the matrix is decomposed into R factors using tPCA; Step 2: Selecting and projecting factors of interest
back onto electrode fields for reconstructing the waveforms of single-trial EEG �̂� ∈ ℜ𝑇×𝑀 ; Note that only information related to the identified factors is contained in �̂�; Step 3:
Averaging single-trial EEG for each condition, calculating the amplitudes or latencies for ERP for different conditions within a defined time-window at some specific electrodes,
and computing the difference between conditions based on these obtained amplitudes or latencies. (b) Example of back projection for two factors that computing the sums of
outer-products between temporal parts and spatial parts for both Factor 1 and Factor 2. ‘‘⋅’’ represents dot-product. ‘‘ ◦ ’’ represents outer-product between two vectors.
The collected EEG data were preprocessed offline. Firstly, the left
and right mastoids were set to offline references, and the sampling rate
was set to 500 Hz. Secondly, EEG data were filtered by an infinite
impulse response (IIR) band-pass filter: the lower cut-off was 0.1 Hz,
and the higher cut-off was 30 Hz, with 48 dB/oct slope. Next, the
filtered EEG data were segmented from 200 ms before stimulus onset
to 900 ms after stimulus onset. Those epochs whose magnitudes ex-
ceeded ±80 μV were discarded and the remaining epochs were baseline
corrected by subtracting the mean amplitudes of baseline period (from
−200 ms to 0 ms) from the amplitude of the whole epoch. Those epochs
can be classified into six categories, namely, extreme disgusting (ED),
4

moderate disgusting (MD), neutral disgusting (ND), extreme fearful
(EF), moderate fearful (MF), and neutral fearful (NF).

We demonstrated that a linear filter (i.e., wavelet filter) plays an
important role in denoising and reducing the number of factors related
to noisy signals for BSS application and it can yield better overall results
than BSS algorithm without filter (Cong et al., 2011c). Therefore,
wavelet filter was used to improve SNR of single-trial EEG before any
further analysis. The parameters were set for wavelet filter as below:
the number of decomposition level was 9; the select mother wavelet
was ‘rbio6.8’; the detail coefficients at levels 4, 5, 6, 7, and 8 were
used for signal reconstruction.
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The preprocessed EEG data of 20 subjects were involved in N2
analysis and 17 subjects were for P2. Note that neural disgusting
and neural fearful conditions were merged into one condition in the
previous study (Lu et al., 2016). More details for data collection and
experiment can be found in Lu et al. (2016).

2.4. Procedures for PCA application

To extract ERPs of interest from preprocessed ERP/EEG data, PCA
was employed and the following steps are included: arrange pre-
processed ERP/EEG datasets into a matrix, estimate the number of
sources, select the rotation method, identify factors of interest, and
project the identified factors onto electrode fields (i.e., in microvolt).
Here, trial-averaged data are taken as an example to explain the
procedures about how to use PCA to extract ERPs.

The first step is to arrange ERP datasets into a matrix. The recorded
EEG datasets are born with temporal and spatial dimensions for multi-
condition and multi-subject trial-averaged datasets, and therefore, two
types of matrices can be formed (Dien, 2012; Dien et al., 2007, 2005).
For the first type of matrix, time-samples are variables and the com-
binations of electrodes, conditions, and subjects are observations. The
related PCA procedure is named as ‘‘tPCA’’. For the second type of ma-
trix, electrodes are variables and the other variances (i.e., time samples
and condition-subjects) are merged into be observations. Likewise, we
call the performance of PCA on this type of matrix as ‘‘spatial PCA’’
(sPCA). In this study, the former type is formed based on the following
reasons. For one thing, regarding the performance of tPCA and sPCA,
tPCA can yield overall better results than sPCA (Dien, 1998, 2012). For
another thing, the desired ERP is easily mixed with others in the spatial
domain to some degree due to the volume conduction (Dien, 2012).

The second step is to estimate the number of factors related to
stimulus onset. This step aims to use few factors to represent the whole
data. Several approaches have been developed to realize this goal, such
as Parallel Test (Horn, 1965; Dien, 2010a), gap measure (He et al.,
2010; Cong et al., 2013), and cumulative explained variance (Zhang
et al., 2020; Huster and Raud, 2018; Arbel et al., 2013). Parallel test
and cumulative explained variance are frequently used to determine
how many factors should be retained. Parallel Test suggests few factors
to be extracted in the case that the factors are highly correlated, for
example, ERP data are recorded from few sensors (Lim and Jahng,
2019; Beauducel, 2001). The previous studies have demonstrated that
much stronger biases can be obtained from the few extracted factors
than from many more factors (Wood et al., 1996; De Winter and Dodou,
2012).

Therefore, we here used cumulative explained variance to estimate
the number of sources and it is actually to calculate the percentage L
between the sums of first 𝐾 lambda values (one lambda corresponds to
ne factor) over the sums of all lambda values:

=
∑𝐾

𝑘=1 𝜆𝑘
∑𝑇

𝑡=1 𝜆𝑡
× 100%, (4)

here 𝐾 is the number of estimated sources associated with stimulus
nset; 𝑇 is the number of variables/time samples here (𝐾 ≪ 𝑇 ); The
ambda values are in descending order: 𝜆1 ≥ ⋯ ≥ 𝜆𝑡 = ⋯ = 𝜆𝑇 = 𝜎2

nd they are the non-zero eigenvalues of the matrix 𝐙𝑇𝐙 or 𝐙𝐙𝑇 . 𝜆𝑘 is
he variance for 𝑘th factor. Once 𝐿 is given with a specific value, for
xample, 95%, 99%, and so on, the corresponding number of sources
an be then obtained.

The third step is to select the rotation method. The goal of rotation
s to rearrange the factors into simple and interpretable structures so
hat one factor corresponds to one ERP (Dien, 2012). Some rotation
ethods, such as Promax, Varimax, can be utilized. Those rotations
ethods can roughly be oblique and orthogonal methods. The key
ifference between these two methods is that the former one allows
he factors to be correlated with each other but the later requires
5

he factors to be uncorrelated. Due to the volume conduction, ERP
omponents overlap in temporal and spatial domain to some extent.
hus, the factors are required to be correlated substantially (Dien,
998; Scharf et al., 2022). Besides, the results of actual and stimulated
RP datasets indicated that Promax rotation showed more accurate
esults than Varimax rotation (Dien et al., 2005; Dien, 1998; Dien
t al., 2003). And, simulation ERP studies also revealed that Promax
enerated overall better results for tPCA, and Infomax yielded better
eparation for sPCA (Dien et al., 2007; Dien, 2010b). Therefore, Promax
otation was used in all cases in this study.

The fourth step is to identify factors of interest. Although some pre-
rocessing steps are utilized to remove some artifacts or noise, like
C offset, slow drift of sensors, eye movement, line noise, and muscle
ontraction (Jung et al., 2000; Delorme et al., 2007; de Cheveigné and
elken, 2019; de Cheveigné, 2020; Sai et al., 2017), the preprocessed
ata still contain spontaneous EEG brain activities, ERP components of
on-interest, ERP components of interest, and noise activities. There-
ore, we need to identify those factors associated with ERPs of interest
or further analysis. Generally, the identification of desired factors is
ased on two aspects (Dien, 2012; Barry et al., 2020; Zhang et al.,
020): (1) the polarity and latency of temporal factor; (2) the polarity
nd topographical distribution of spatial factor.

The fifth step is to project the identified factors back onto electrode
ields (i.e., rescale them to microvolt) for correcting the polarity and the
ariance indeterminacies between different factors. When performing
CA on an ERP dataset of multiple subjects, an ERP of interest may be
ecomposed into several factors because the differences are found in
atencies or phases of this ERP across different subjects to some degree.
or example, for N2, the latencies of some subjects’ ERP are from 200
o 250 ms, and the others are located in 250–300 ms. Two factors
hose latency is 136 ms and 168 ms respectively will be extracted by
CA (as shown in Fig. 3 for the PCA decomposition of all remaining
rials). Therefore, all of the decomposed factors related to this ERP
f interest should be back-projected onto electrode fields (Dien, 2012,
998; Zhang et al., 2020).

. Quantification of P2 and N2

In this study, ERPs of interest, P2 and N2, were reanalyzed because
hey reflected the emotional cognitive processing, which were reported
n Lu et al. (2016). For the proposed method and other three alternative
ethods, both ERPs were separately quantified from all remaining

rials and consecutively increased trials (i.e., 10, 11, ⋯, 41, and 42
rials). Notably, 10 is applied to ensure the number of observations is
arger than the number of the variables when using PCA. 42 is used as
he upper number because it is the maximal common number of trials
cross all conditions across all subjects. For the case with few trials,
he number of trials is the same across conditions across subjects. For
he case of all remaining trials, the number of trials may vary across
onditions across subjects.

To better identify the factor(s) extracted by means of three PCA-
ased methods, a time-window was set for P2 (130–190 ms) and N2
190–310 ms) separately. That is, factors are considered for further
nalysis only when peak latencies of corresponding temporal factors are
ithin the defined time-window. According to the previous study (Lu
t al., 2016), we measured the mean amplitudes for both P2 and N2 at
ix electrodes (FC3, FCz, FC4, C3, Cz, and C4 electrode sites) based on
he inspection of topographical distribution of all remaining trials.

To distinguish the procedures of three PCA-based methods, we here
efine that single-trial EEG for 𝑝th participant 𝐙𝑝 ∈ ℜ𝑇×(𝐶×𝐸𝑝) has 𝑇

time points, C electrodes, and 𝐸𝑝 trials (𝐸𝑝 = 𝐸𝑝,1 + ⋯ + 𝐸𝑝,𝑗 + ⋯ +
𝐸𝑝,𝐽 is the trial number of all conditions J). The trial-averaged ERP
data of 𝑝th participant are then defined by using �̄�𝑝 ∈ ℜ𝑇×(𝐶×𝐽 ) =
1
𝐸𝑝

∑𝐸𝑝
𝑒=1 𝐙

𝑝
𝑒 . Therefore, the trial-averaged data of multi-participants is

�̄� ∈ ℜ𝑇×(𝐶×𝐽×𝑃 ) = [�̄�1,… , �̄�𝑝,… , �̄�𝑃 ]. Single-trial EEG data of all
participants is Φ ∈ ℜ𝑇×(𝐶×𝑃×(𝐸1+⋯+𝐸𝑝+⋯+𝐸𝑃 )) = [𝐙1,… ,𝐙𝑝,… ,𝐙𝑃 ].
The specific back-projection model of three PCA-based methods is in
Appendix B.
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Fig. 3. Identified factors associated with P2 that were extracted from all remaining trials for trial-averaged group PCA (a) and single-trial-based group PCA (b). Topographical
distributions were averaged across 17 participants for each condition. Higher percentage of explained variance for one factor implicates that this factor contributes more to P2
and latencies of P2 for more participants are near the peak point of that factor.
3.1. Conventional time-domain analysis

To quantify P2 and N2 in the conventional time-domain analysis,
the following steps are included. Note that the mentioned single-trial
EEG from this section were preprocessed based on the pipeline in
Section 2.3.

For the analysis of all remaining trials, single-trial EEG data for
each condition for each participant were first averaged to obtain ERP
waveform. Similarly, for analysis of the increased trials (from 10, 11,
⋯, 41, and 42), single-trial EEG were also averaged separately. Mean
amplitude was then quantified within the defined time-window from
these averaged ERP waveforms for P2/N2 at the defined electrode sites.
Consequently, for each case, we obtained 102 amplitude values for P2
(i.e., 17 participants and 6 conditions) and 120 amplitude values for
N2 (i.e., for 20 participants and 6 conditions).

3.2. Trial-averaged group PCA

To isolate P2/N2 from ERP data for all participants by means of
tPCA, six steps are included.

Step 1: Averaging single-trial EEG for both few trials and all re-
maining trials for each condition for each participant separately. For
example, single-trial EEG data with 10 trials were averaged, resulting
6

in a third-order tensor (15 channels × 550 samples × 6 conditions) for
each participant.

Step 2: Arranging the averaged ERP data for all subjects and all
conditions into a big-size matrix �̄� along channels. The size of �̄� for
N2 is 550 samples × (15 channels × 6 conditions × 20 subjects), and it
is 550 samples × (15 channels × 6 conditions × 17 subjects) for P2.

Step 3: Using PCA to decompose the matrix �̄� into 550 factors that
are identical to the number of samples, and 40 factors were remained
and rotated using Promax rotation for all cases in Matlab environment
(Version 2018b, the Mathworks, Inc., Natick, MA; functions: 𝑝𝑐𝑎.𝑚
and 𝑟𝑜𝑡𝑎𝑡𝑒𝑓𝑎𝑐𝑡𝑜𝑟𝑠.𝑚). These 40 factors were considered to come from
sources of stimulus-related signals, and we used them to represent the
whole original data. The other 510 factors were discarded because
they were regarded to be associated with noise or other signals. After
inspection for all cases, these 40 factors accounted for more than 99%
of overall variance for each case.

Step 4: Identifying the factors that were extracted from P2/N2 based
on corresponding temporal factor 𝐮𝑇𝐺𝑃𝐶𝐴

𝑘 and spatial factor 𝐲𝑇𝐺𝑃𝐶𝐴
𝑘 .

For example, P2 is a positive-going ERP (with negative voltage) that
is defined from 130 ms and 190 ms and is distributed around cen-
trofrontal sites in this study. Factors 4 and 15 were finally selected to
reconstruct the waveforms of P2 for all remaining trials because of the
following four aspects (see Fig. 3a). For the first aspect, their latencies
are 136 ms and 168 ms separately, and corresponding polarities are
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negative for both factors. For the second one, we also observed the
maximal amplitude is at centrofrontal sites, and polarities are negative
for both factors. For the third one, the correlation of spatial parts
between the two factors is about 0.8 which indicates that they are
highly correlated. For the last one, the identification of the factor was
also based on correlation of spatial factor between participants (i.e., the
correlation for P2 should be more than 0.1 and N2 is more than 0.3).
Note that we only described the correlations between identified factors
for all remaining trials in the manuscript.

Step 5: Using the identified factors to reconstruct the waveform
for ERP for all conditions for all participants based on back-projection
theory (see Fig. 2b). For example, using Factor 4 and Factor 15 to
reconstruct the P2 waveform for all remaining trials, that is, �̄�𝑇𝐺𝑃𝐶𝐴

𝑃 2 =
𝐮𝑇𝐺𝑃𝐶𝐴
4 ◦ 𝐲𝑇𝐺𝑃𝐶𝐴

4 + 𝐮𝑇𝐺𝑃𝐶𝐴
15 ◦ 𝐲𝑇𝐺𝑃𝐶𝐴

15 (see Eq. (B.1) in Appendix B).
Note that the information of P2 is assumed to be contained in �̄�𝑇𝐺𝑃𝐶𝐴

𝑃2
and other information is totally removed.

Step 6: Measuring the mean amplitude for P2/N2 within the defined
time-window at specific electrode sites for all cases.

3.3. Single-trial-based group PCA

We also quantified P2 and N2 separately from all remaining trials
and from few trials using single-trial-based group PCA. The same
steps are as for the procedure of the trial-averaged group PCA (see
Section 3.2) except for the following two aspects.

For the first aspect, in the first step, we organized single-trial EEG
for all conditions for all subjects into a big-size matrix instead of
averaging single-trial EEG. For example, a matrix Φ with 550 samples
× (15 channels × 6 conditions × 17 subjects × 10 trials) was formed to
extract P2 from 10 trials for different conditions for all participants. For
the second aspect, for the Step 5 in Section 3.2, we averaged single-trial
EEG reconstructed by the identified factors for each condition for each
participant. Note that 40 factors were also remained for all cases which
explained more than 99% of total variance.

3.4. Within-subject PCA

The following steps were conducted to extract P2/N2 from the
preprocessed single-trial EEG data for each subject with few trials and
all remaining trials (see Fig. 2a).

Step 1: Single-trial EEG for all conditions for 𝑝th participant with a
specific number of trials (e.g., 10 trials) were arranged into a matrix
𝐙𝑝 with size of 𝑇 × (𝐶 × (𝐸𝑝,1 +⋯ + 𝐸𝑝,𝑗 +⋯ + 𝐸𝑝,𝐽 )). 𝑇 is the number
of samples, 𝐶 is the number of channels, and 𝐸𝑝,𝑗 is the number of
trials for 𝑗th condition (𝑗 = 1,… , 𝐽 − 1, and 𝐽 ). Note that, for the
analysis of all remaining trials, 𝐸𝑝,1, ⋯, 𝐸𝑝,𝐽−1, and 𝐸𝑝,𝐽 may vary
across conditions across participants because of artifact rejection during
preprocessing procedures. Whereas, for the analysis of adding trial
numbers, the number of trials is the same for all conditions and all
participants (i.e., trial number is 10, 11, ⋯, 41, and 42, separately).

Step 2: The matrix (𝐙𝑝)𝑇 was decomposed into 𝑇 (i.e., 550) factors,
and 𝐾 (𝑝) factors were then remained and rotated by means of Promax
rotation (𝐾𝑝 ≤ 𝑇 ) (see Appendix B). Here, aiming to extract ERPs of
interest successfully, 𝐾𝑝 was set to 40 for both few trials (consecutively
increased from 10 to 42 trials) and all remaining trials. These 40 factors
accounted for more than 99% of total variance for each case.

Step 3: The factors associated with P2/N2 were chosen for the next
procedure according to following aspects. The first aspect was to judge
if the latency of 𝑘th temporal factor 𝐮𝑊𝑃𝐶𝐴

𝑘 (𝑝) fell in the predefined
time window. In this study, 130–190 ms was for P2 and 190–310 is
for N2. The second one was to judge if the topographical distribution
of 𝑘th spatial factor 𝐲𝑊𝑃𝐶𝐴

𝑘 (𝑝) was in accordance with spatial property
of P2/N2. More details about how to identify factors of interest were
described in fifth step of Section 3.2. Thirdly, the correlations between
factor scores for the selected factors were computed and examined.
7

Lastly, correlation of spatial factor between participants (i.e., the cor-
relation for P2 should be more than 0.1 and N2 is more than 0.3)was
computed and examined.

Step 4: The identified factors were projected onto electrode fields
for correcting their variance and polarity indeterminacies, and these
factors were then reconstruct a new matrix 𝐙𝑝 = 𝐮𝑊𝑃𝐶𝐴

𝑘1
(𝑝) ◦ 𝐲𝑊𝑃𝐶𝐴

𝑘1
(𝑝)+

⋯ + 𝐮𝑊𝑃𝐶𝐴
𝑘𝑛

(𝑝) ◦ 𝐲𝑊𝑃𝐶𝐴
𝑘𝑛

(𝑝) (see Eq. (B.3)). Besides, although the iden-
ified factors and the corresponding order/number may vary across
articipants, we can use back-projection theory to address this issue
nd reconstruct the waveforms of single-trial EEG at microvolt level.
he reconstructed single-trial EEG data were then averaged for each ex-
erimental condition separately, resulting in a matrix with 550 samples
(15 channels × 6 conditions) for each participant for each case.
Step 5: Mean amplitudes of P2/N2 of different conditions for that

articipant were finally measured within a defined time-window at
ome electrodes.

Step 6: Repeating Steps 1–5 until both P2 and N2 were extracted
rom the single-trial EEG of each subject and quantified from the
econstructed ERP data.

Here is main difference among four used methods. Conventional
ime-domain analysis assumes that only the information associated with
he analyzed ERP (i.e., one brain activity) is contained within the
efined time-window although the analyzed ERP may overlap with
ther ERPs (Beauducel and Debener, 2003; Donchin and Heffley, 1978).
CA is able to disentangle those spatially and temporally overlapped
RP components efficiently (Dien, 2012; Kayser and Tenke, 2003,
006a,b). For the two group PCA, they assume that the time-course
i.e., factor loading) is the same across all participants across all condi-
ions, whereas within-subject PCA allows the time course to vary across
articipants.

.5. Internal consistency analysis and statistical analysis

For the analysis of all the remaining trials, to evaluate the per-
ormance for four used methods, we respectively computed the corre-
ponding Cronbach’s alpha. During computation of Cronbach’s alpha,
articipants were then serving as ‘items’ and samples were observed to
ssess the extent of internal consistency of waveforms for P2/N2 across
articipants. Moreover, we also computed spatial Pearson correlation
oefficients (CCs) of topographies among participants to assess how
2 and N2 are spatially similar across participants. The topography
f one subject is characterized by 90 values (15 electrode sites and 6
onditions).

For the few trials, besides the Cronbach’s alpha and spatial CCs,
e explored the relationships of waves between few trials and all

emaining trials by computing CCs between the averages of small trial
umbers and the grand averaged N2/P3 (i.e., all remaining trials were
ncluded). For example, computing the CC for waveforms between the
verage with 10 trials and grand averages with all remaining trials
or conventional time-domain analysis. The aim is to examine the
onsistency between averages of small trials and the grand averages.

We used two-ways repeated measurement analysis of variance (rm-
NOVA) with valence (extreme, moderate, and neutral) × negative-
ategory (disgusting and fearful) as within-subject factors to compute
he statistical results of the measured mean amplitudes for all trials
nd increased trials separately. The uses of ANOVA obey the following
ationales: (1) individual measurements are mutually independent; (2)
he data follow an additive statistical model including fixed effects and
andom errors; (3) the random errors are normal distribution; and (4)
he random errors are as homogeneous as possible. Greenhouse–Geisser
ethod was used for correcting the number of degrees of freedom.
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Table 1
Orders, latencies (i.e., peak latencies of the selected factor loadings), percentages (%) of explained variance of the identified factors extracted from all remaining trials for P2 for
each participant for within-subject PCA.

Subject # # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9

Factor Order 9,11 7,15 11,12 5,7 32 4 16 4,10 9
Latency (ms) 168,136 168,136 136,168 136,168 168 136 168 136,168 168
Variance (%) 1.32,1.06 2.64, 1.33 1.35,1.19 4.20,2.89 0.18 4.37 1.41 4.91,1.87 1.92

Subject # # 10 # 11 # 12 # 13 # 14 # 15 # 16 # 17 –

Factor Order 11,14 6 13,25 10,30 23 16 10,13 4,20 –
Latency (ms) 136,168 136 136,168 168,136 136 136 136,168 168,136 –
Variance (%) 1.21,1.08 3.47 1.17,0.41 1.85,0.41 0.41 1.44 1.82,1.45 3.98,0.90 –
Table 2
Orders, latencies (i.e., peak latency of the selected factor loadings), percentages (%) of explained variance of identified factors extracted from all remaining trials for N2 for each
participant for within-subject PCA.

Subject # # 1 # 2 # 3 # 4 # 5

Factor Order 6,8,15,32 8,11,12,13 16 1,10,14,30 3,9,11,32
Latency (ms) 232,264,296,200 232,200,264,296 296 264,232,296,200 200, 296,264,232
Variance (%) 2.13,1.62,0.76,0.25 2.39,1.59,1.58,1.46 1.44 55.08,1.44,0.93,0.26 7.24,2.42,1.90,0.32

Subject # # 6 # 7 # 8 # 9 # 10

Factor Order 3,7,10,33 10,12,13,14 2,4,9,30 10,11,12 3,32
Latency (ms) 200,264,296,232 200,232,264,296 264,200,296,232 296,232,264 296,264
Variance (%) 8.47,2.47,1.48,0.17 1.80,1.60,1.47,1.29 8.02,4.46,2.07,0.33 1.66,1.59,1.53 7.63,0.28

Subject # # 11 # 12 # 13 #1 4 # 15

Factor Order 11,30 3,12,32 8,9,13 6,11,12,29 5,16,17,33
Latency (ms) 264,232 232,264,200 232,264,296 232,264,296,200 264,296,200,232
Variance (%) 1.53,0.27 5.57,1.17,0.17 2.86,2.46,1.60 2.94,1.25,1.22,0.21 3.46,1.01,0.96,0.35

Subject # # 16 # 17 # 18 # 19 # 20

Factor Order 2,6,10 15 2,4,7 2,8,11,32 1,8,31,25
Latency (ms) 264,232,296 232 296,200,232 232,296,264,200 264,200,232,296
Variance (%) 10.76,2.53,1.33 1.85 10.65,6.28,3.37 9.21,1.99,1.65,0.29 47.54,2.00,0.73,0.56
4. Results

4.1. Results for all remaining trials

4.1.1. Factors extracted by three PCA-based methods for P2/N2
In this section, we descried the factors used to recover waveforms

of P2/N2 for three PCA-based methods for all remaining trials.
P2: For trial-averaged group PCA, as shown in Fig. 3a, factors 4

(latency is 136 ms) and 15 (latency is 168 ms) were selected, and
they explained 2.58% and 0.12% of total variance separately. The
correlation between their spatial parts was 0.8. As for single-trial-based
group PCA (Fig. 3b), we observed that the properties of factors 7 and
10 were consistent with P2 and they explained 2.56% and 1.98% of
total variance separately. Latency for both factors is 136 ms and 168 ms
separately. The correlation between their spatial parts was −0.80. For
within-subject PCA, we identified about 1.59 ± 0.51 factors (explained
2.95 ± 1.97% of total variance) that were related to P2 from single-trial
EEG for each participant for within-subject PCA. The identified factors
and corresponding information for each participant were described in
Table 1.

N2: Factors 2 (232 ms), 5 (200 ms), 9 (296 ms), 26 (264 ms) were
dentified for trial-averaged group PCA (Fig. 4a) and they explained
.53%, 1.87%, 0.41%, and 0.04% of total variance separately (Fig. 4b).
heir spatial correlations were highly correlated (Fig. 4c) and the
egative correlation meant that the polarities between two factors were
pposite. Similarly, for single-trial-based group PCA (Figs. 4d–f), four
actors were also selected, namely, Factor 3 (232 ms), Factor 10 (200),
actor 12 (264 ms), and Factor 16 (296 ms) which accounted for
.54%, 2%,1.64%, and 1.25% of total variance, respectively. They were
lso highly related based on the correlations between the corresponding
patial parts (Fig. 4f). For within-subject PCA, 3.18 ± 1.07 factors that

explained 12.85 (± 15.04)% of total variance for each subject were used
8

to reconstruct N2 and we listed the identified factors and the related
information in Table 2.

4.1.2. Reconstructed grand averaged waveform and topography
Figs. 5 and 6 display reconstructed grand averaged waveforms

and topographies for P2/N2 for those four used techniques when all
the remaining trials were involved based on the identified factors as
described in Section 4.1.1.

Comparing with topographies and waveforms of P2 (Fig. 5) and
N2 (Fig. 6) by conventional time-domain analysis, they were recon-
structed well for P2/N2 using three PCA-based methods. Note that the
waveforms and topographies of P2/N2 for trial-averaged group PCA
and single-trial-based group PCA were no different (Figs. 5 and 6b, c).
But it does not mean that they are the same (although PCA is a linear
decomposition algorithm) because the proportion of explained variance
of selected factors that used to reconstruct those waveforms of P2/N2
for trial-averaged group PCA were different from those for single-trial-
based group PCA. The proposed method reconstructed the waveforms
and topographies of P2/N2 successfully as the other two group PCA
methods did (Fig. 5d and Fig. 6d).

We observed that the P2 was a positive-going ERP component and
had negative voltage in the original waveform, whereas, as shown
in Figs. 5b–d, the reconstructed waveforms of P2 of three PCA-based
methods were negative-going because PCA just performed on the volt-
age of P2 on the original data rather than the corresponding polarity.
Likewise, the reconstructed N2 waveforms were negative-going that
consistent with original waveforms for three PCA-based methods as
shown in Fig. 6.

4.1.3. Internal consistency and statistical results for P2/N2
P2: Both Cronbach’s alpha (excellent level > 0.9) and spatial sim-
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Fig. 4. Identified factors related to N2 that were extracted from all remaining trials and their correlations for trial-averaged group PCA (a–c) and single-trial-based group PCA
(d–f). Topographical distributions were obtain by averaging across 20 participants for each condition (b and e) and correlations was based on those topographies of all conditions
and participants for two factors (c and f). Higher proportion of explained variance for one factor implicates that this factor contributes more to N2 and latencies of N2 for more
participants are nearly distributed to the peak point of that factor. Negative correlation as shown in c and f between two factors reflects their polarities are opposite.
ilarity for two group PCA methods are lower for the conventional
time domain and within-subject PCA. The spatial topographies for the
within-subject PCA were much more consistent across participants than
for the conventional time domain (see Fig. 7a and b). For the statistical
9

analysis, as shown in Table 3, there was no significant difference for
all used techniques between disgusting and fearful stimuli. We found
significant main effect for negative-category and the interaction effect
between valence and negative-category.
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Fig. 5. Reconstructed grand averaged waveforms (at FC3, FC4, FCz, C3, C4, and Cz electrode sites) and topographies of P2 under different conditions for all remaining trials
for time-domain analysis (a), trial-averaged group PCA (b), single-trial-based group PCA (c), and within-subject PCA (d). Note that the transparent lines in panels b–d are grand
averaged waveforms for time-domain analysis. Topographies were measured from 130 to 190 ms for P2 across 17 participants. Time window from −200 ms to 800 ms was used
here to show P2 clearly.
N2: There is no difference in Cronbach’s alpha among the four used
methods and the three PCA-based methods yielded slightly high Cron-
bach’s alpha (see Fig. 7c). Spatial similarity is improved for the pro-
posed method compared with the other three methods (see Fig. 7d). For
the statistical analysis, we observed a significant main effect for valence
for all used techniques but not for negative-category. The interaction
effect between valence and negative-category was also significant (see
Table 4).

4.2. Effect of the number of trials on quantification of P2/N2

Here we displayed the internal consistency of P2/N2 based on
temporal CCs and Cronbach’s alpha, spatial similarity, and statistical
analysis to show the influence of the number of trials on quantification
of P2/N2. The selected number of factors related to P2/N2 and the
10
explained variance of these factors for three PCA-based methods are
shown in Appendix C (see Figs. C.1 and C.2).

4.2.1. Internal consistency of P2/N2
We used CCs to examine the relationships between averages of small

trials and grand average of all remaining trials for P2/N2 (see Fig. 8 a
and b).

Regarding P2 (Fig. 8a), the excellent CCs (>0.9) were observed
after about 25 trials for within-subject PCA, whereas few trials (about
10 trials) were needed to obtain excellent CCs for the other three
approaches. The CCs for two group PCA methods was slightly higher
than for conventional time-domain analysis because both methods
extracted common features of P2 across participants, resulting in the
similar reconstructed P2. Besides the common feature of P2, within-
subject PCA also captures variability of P2 for one participant. As
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Fig. 6. Reconstructed grand averaged waveforms (at FC3, FC4, FCz, C3, C4, and Cz electrode sites) and topographies of N2 for all remaining trials for conventional time-domain
analysis (a), trial-averaged group PCA (b), single-trial-based group PCA (c), and within-subject PCA (d). Note that the transparent lines in panels b–d are grand averaged waveforms
for time-domain analysis. Topographies were measured from 190 to 310 ms for N2 and were averages across 20 participants for all conditions. Time window from −200 ms to
800 ms was used here to show N2 clearly.
for N2 (Fig. 8b), the three PCA-based approaches had higher CCs
than for conventional time-domain analysis as shown in the previous
study (Steele et al., 2016). There was no difference for CCs of P2/N2
between the two group PCA methods, which is consistent with the
claim that PCA is a linear decomposition algorithm (Wold et al., 1987;
Anowar et al., 2021)

We also computed the Cronbach’s alpha of P2 and N2 for those
four approaches separately when trials were added to the averages (see
Fig. 8 c and d). For both P2 and N2, all the methods showed a high
intralsubject consistency. That is, Cronbach’s alpha is greater than 0.95.
Specifically speaking, for P2, Cronbach’s alpha value was lowest for
both group PCA methods, slightly higher for the other two methods
(Fig. 8c) which is contrast with the findings in Steele et al. (2016).
As for N2, three PCA-based methods helped to improve intralsubject
consistency slightly compared with conventional time-domain analysis
11
which is consistent with Steele et al. (2016). That is, Cornbach’s alpha
was lowest for conventional time-domain analysis. Note that those
differences between the used four methods were negligible (Fig. 8d).

The following issues need to notice. Firstly, CCs (or Cronbach’s
alpha) for P2 was different from that for N2 because different numbers
of participants were involved and N2 was a dominant part for the
whole time period. Secondly, the difference in the number of partic-
ipants between P2 and N2 was mainly reflected in CCs rather than in
Cronbach’s alpha. Thirdly, as we described in Section 4.1.1, the lines of
CCs/Cronbach’s alpha for both group PCA methods were coincidence,
but it did not mean that they were the same.

4.2.2. Change of correlation coefficients of topographies among participants
To examine the performance of those four used techniques, we

assessed the intersubject consistency of P2/N2 by measuring the CCs
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Fig. 7. Cronbach’s alpha spatial similarity of both P2 and N2 for all remaining trials for the four used methods.
Fig. 8. Internal consistency analysis for P2/N2. (a) and (b): Correlation coefficients (CCs) between P2/N2 averages of consecutive increased trials (i.e., 10, 11, …, 41, and 42)
and all remaining trials. (c) and (b) are Cronbach’s alpha for adding trials. Electrodes are used for both P2 and N2 at FC3, FCz, FC4, C3, Cz, and C4 electrodes.
of topographies (’spatial similarity’) between participants for increased
trials and all remaining trials (see Fig. 9).

For P2 (see Fig. 9 upper panel), spatial similarity for both conven-
tional time-domain analysis and within-subject PCA was higher than for
the other two group PCA methods in most of cases. Spatial similarity
for within-subject PCA went up with the number of trials increases
12
and it changed slightly for conventional time-domain analysis across
trials. Additionally, the difference of spatial similarity between the
two methods decreased gradually with the number of trials increases.
Topographies for the two group PCA methods were the same but were
less similar between participants.
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G. Zhang et al.

Fig. 9. Correlation coefficients (CCs) of topographies between any two different subjects for adding trial numbers and all remaining trials for the four used techniques for P2 (upper
panel) and N2 (lower panel). Note that the topographies are for six conditions within one participant. Topographies were measured from 130 to 190 ms for P2 and 190–310 ms
for N2 for all participants for each case. Error bars were the standard error of the mean of the possible pairs. The number of pairs is J*P*(P-1)/2 (P is number of participants
and J is number of conditions).

Fig. 10. Statistical analysis results for P2 averages of increased trials and grand average of all remaining trials using four different methods. Valence (V) × Negative-category (NC)
are the within-subject factors. V∗NC is the interactive effect between valence and negative-category factors.
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Table 3
Statistical results of P2 (130–190 ms) for four used methods for all remaining trials. Valence (V) and Negative-category (NC) are the within-
subject factors. TDA: Time-domain analysis. TGPCA: trial-averaged group PCA. SGPCA: Single-trial-based group PCA. WPCA: Within-subject
PCA.

Methods 𝑉 𝑁𝐶 𝑉 ∗ 𝑁𝐶

𝐹 𝜂2𝑝 𝑝 𝐹 𝜂2𝑝 𝑝 𝐹 𝜂2𝑝 𝑝

TDA 3.079 0.161 0.060 19.392 0.548 < 𝟎.𝟎𝟎𝟏 10.355 0.393 < 𝟎.𝟎𝟎𝟏
TGPCA 1.752 0.099 0.190 21.303 0.571 < 𝟎.𝟎𝟎𝟏 10.484 0.396 𝟎.𝟎𝟎𝟏
SGPCA 1.752 0.099 0.190 21.303 0.571 < 𝟎.𝟎𝟎𝟏 10.484 0.396 𝟎.𝟎𝟎𝟏
WPCA 2.387 0.130 0.108 17.868 0.528 𝟎.𝟎𝟎𝟏 7.245 0.312 𝟎.𝟎𝟎𝟒
Table 4
Statistical results of N2 (190–310 ms) for the four used methods when all trials are averaged. Valence (V) and Negative-category (NC)
are the within-subject factors. TDA: Time-domain analysis. TGPCA: trial-averaged group PCA. SGPCA: Single-trial-based group PCA. WPCA:
Within-subject PCA.

Methods 𝑉 𝑁𝐶 𝑉 ∗ 𝑁𝐶

𝐹 𝜂2𝑝 𝑝 𝐹 𝜂2𝑝 𝑝 𝐹 𝜂2𝑝 𝑝

TDA 27.431 0.591 < 𝟎.𝟎𝟎𝟏 0.415 0.021 0.527 5.081 0.211 𝟎.𝟎𝟏𝟐
TGPCA 27.455 0.591 < 𝟎.𝟎𝟎𝟏 0.452 0.023 0.510 5.198 0.215 𝟎.𝟎𝟏𝟏
SGPCA 27.455 0.591 < 𝟎.𝟎𝟎𝟏 0.452 0.023 0.510 5.198 0.215 𝟎.𝟎𝟏𝟏
WPCA 24.397 0.562 < 𝟎.𝟎𝟎𝟏 0.746 0.038 0.399 5.553 0.226 𝟎.𝟎𝟏𝟎
(

a
E
𝑘

Regarding N2 (see Fig. 9, lower panel), spatial similarities for
ithin-subject PCA were slightly higher than for the other three ap-
roaches. There were no much more differences of spatial CCs for all
sed methods across trials (Fig. 9, lower panel).

Furthermore, the spatial similarities in all cases were approximately
hree times as great for P2 (about 0.25) as for N2 (roughly 0.75) for all
pproaches. Compared with N2 (about 15 trials), we need more trials
or P2 (about 25 trials) to yield similar results as for all remaining trials.

.2.3. Number of trials affects the statistical results of P2/N2
To evaluate the influences of the number of trials on the statistical

esults, we applied two-ways rm-ANOVA to calculate the statistical
esults based on the mean amplitudes of P2/N2 that were obtained from
ew trials and all remaining trials, separately (see Figs. 10 and 11).

Fig. 10 displays the statistical results of increased trials and all
emaining trials for P2 for the four used approaches. We found that
he p values of main effects of Valence/Negative-category, and their
nteraction showed decreased trends with number of trials increases.
hese trends suggest that adding trials had very a slight effect on the
tatistical results after a certain number of trials, for example, 30 trials.
or the proposed method, 34 trials or more trials could yield the same
tatistical results as all remaining trials do, but only 32 trials were
eeded for the other three methods.

Similarly, regarding statistical results for N2, as shown in Fig. 11,
e also observed the downward trends for p values of both main
ffects of Valence/Negative-category and their interaction effect with
he increase of number of trials. Few trials (about 19) for within-subject
CA could produce the stable and equivalent results as all trials do, but
pproximately 33 trials were for the other three techniques.

. Discussion

Factor analysis methods, for example, temporal principal compo-
ent analysis (tPCA), have been widely used to extract event-related
otentials (ERPs) of interest from ERP data of all participants (called
rial-averaged group PCA) or single-trial EEG of all participants (named
ingle-trial-based group PCA). Both methods assume that the underly-
ng factor loading is identical across experimental conditions and across
articipants which is also famous as measurement invariance (Mered-
th, 1993). However, this assumption may fail to work if the latency and
hase for one ERP component vary across participants considerably.
or example, for N2 in this study, latencies for some participants are
round 200–250 ms and the others maybe 250–300 ms. Consequently,
he factor loadings may be different across participants. As were re-
orted in previous psychometric studies (Borkenau and Ostendorf,
14
1998; Molenaar and Campbell, 2009; Nesselroade and Molenaar, 2016;
Marsh et al., 2018), in the first part, we extracted ERP components
from single-trial EEG of an individual (refer Fig. 2a) by comparing with
the factors of P2/N2 obtained by the other two group PCA methods
in a modified oddball emotional experiment (for all remaining trials).
In the second part, we investigated how the number of trials affects
quantification of P2 and N2. That is, how many minimum number of
trials can yield the stable results as all remaining trials do which is
explored by computing the Pearson correlation coefficients (CCs) of
waves between few trials and all remaining trials, Cronbach’s alpha,
spatial similarities, and statistical analysis.

5.1. Differential results between PCA-based methods/ERP components for
all remaining trials

As illustrated by Eqs. (1) and (2), ERP data are assumed to be the
mixtures of brain activities and noise signals (i.e., PCA is based on
the linear transformation (Anowar et al., 2021; Wold et al., 1987)),
it is therefore no surprising that the yields for trial-averaged group
PCA (TGPCA) and single-trial-based group PCA (SGPCA) are almost
the same if all else being equal. Mathematically (see Appendix B), the
PCA decomposition from the trial-averaged data �̄� of all participants
is approximately equal to the mean of reconstructed single-trial EEG
Φ (the number of trials is E), i.e., 𝑃𝐶𝐴[�̄�] ≈ 1

𝐸
∑𝐸

𝑒=1(𝑃𝐶𝐴[Φ])𝑒
Φ = [𝐙1,… ,𝐙𝑒,… ,𝐙𝐸 ] and 𝐙𝑒 is 𝑒th single-trial EEG of all conditions

and all participants). PCA[⋅] represents the whole PCA decomposition
procedure, and �̄� = 1

𝐸
∑𝐸

𝑒=1 𝐙𝑒. We will get highly similar reconstructed
waveforms and topographies if the numbers of the estimated factors are
the same (see Appendix B, 𝐾1 is TGPCA for and 𝐾2 is for SGPCA) and
all factors associated with an ERP are identified for back-projection for
both group PCA methods (see factors are for P2 and N2 in Figs. 3 and
4). Simply, if we assume only one factor is related to ERP component of
interest, the back-projection 𝐮𝑇𝐺𝑃𝐶𝐴

𝑘1
◦ 𝐲𝑇𝐺𝑃𝐶𝐴

𝑘1
of that ERP for TGPCA is

pproximately equal to the average of the back-projection of single-trial
EG 1

𝐸
∑𝐸

𝑒=1 𝐮
𝑆𝐺𝑃𝐶𝐴
𝑘2

◦ 𝐲𝑆𝐺𝑃𝐶𝐴
𝑘2

(𝑒) for SGPCA. 𝑘1 may be different with
2 (see Figs. 3 and 4).

The above mentioned discussion is demonstrated by the P2 and N2
results for the two group PCA methods. For example, the reconstructed
P2 wave from the PCA decomposition of the trial-averaged ERP data
(�̄�𝑃2 = 𝐮𝑇𝐺𝑃𝐶𝐴

4 ◦ 𝐲𝑇𝐺𝑃𝐶𝐴
4 +𝐮𝑇𝐺𝑃𝐶𝐴

15 ◦ 𝐲𝑇𝐺𝑃𝐶𝐴
15 ) is approximately equal to

the average of the reconstructed single-trial P2 wave of all participants
1
𝐸
∑𝐸

𝑒=1(Φ)𝑃2𝑒 = 1
𝐸
∑𝐸

𝑒=1(𝐮
𝑆𝐺𝑃𝐶𝐴
7 ◦ 𝐲𝑆𝐺𝑃𝐶𝐴

7 (𝑒) + 𝐮𝑆𝐺𝑃𝐶𝐴
10 ◦ 𝐲𝑆𝐺𝑃𝐶𝐴

10 (𝑒)).
Note that the latencies for P2 factors extracted by the two group
PCA methods are the same (see Fig. 3a and b). Similarly, for N2, the
almost equivalent reconstructed waves were also obtained for both
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Fig. 11. Statistical analysis results for N2 averages of increased trials and grand average of all remaining trials using four different methods. Valence (V) × Negative-category (NC)
are the within-subject factors. V∗NC is the interactive effect between valence and negative-category factors.
trial-averaged group PCA (�̄�𝑁2 =
∑

𝐮𝑇𝐺𝑃𝐶𝐴
𝑘1

◦ 𝐲𝑇𝐺𝑃𝐶𝐴
𝑘1

, 𝑘1 is 2, 5, 9,
and 26 separately) and single-trial-based group PCA ( 1

𝐸
∑𝐸

𝑒=1(Φ)𝑁2
𝑒 =

1
𝐸
∑𝐸

𝑒=1(
∑

𝐮𝑆𝐺𝑃𝐶𝐴
𝑘2

◦ 𝐲𝑆𝐺𝑃𝐶𝐴
𝑘2

(𝑒)), 𝑘2 is 3, 10, 12, and 16 separately)
when all four factor associated with N2 were chosen (see Fig. 4).
Therefore, as shown in Section 4.1, we therefore observed the highly
similar reconstructed waves, topographies, CCs, Cronbach’s alpha, spa-
tial similarity, and statistical analysis results for the two group PCA
methods.

Similar to one of concerns in the analysis of human behavioral
data (Nesselroade and Molenaar, 2016, 2010), the proposed method
(within-subject PCA) tries to explore the interindividual variability
(i.e., the factors related to ERP components vary across participants)
which is contrast with the group PCA methods that the factors are
invariant. That is, all the participants completely share the same factor
loadings (see Figs. 3 and 4) for the two group PCA methods, whereas
the factors related to P2/N2 for the proposed method may vary as
shown in Tables 1 and 2. For example, regarding the extraction of
P2, Factors 7 and 10 (latencies are 136 ms and 168 ms, respectively,
see Fig. 3b) are identified in single-trial-based group PCA analysis, but
only one factor (latency is 136 ms, see Table 1) for Subject 6 is se-
lected for within-subject PCA analysis. Therefore, only the information
near 136 ms for the reconstructed P2 for Subject 6 is preserved for
within-subject PCA (WPCA): 𝐙6

𝑊𝑃𝐶𝐴 = 𝐮𝑊𝑃𝐶𝐴
4 (6) ◦ 𝐲𝑊𝑃𝐶𝐴

4 (6). Whereas
the information of the reconstructed P2 around 136 ms and 168 ms
via single-trial-based group PCA (we called it SGPCA) are retained:
Φ6

𝑆𝐺𝑃𝐶𝐴 = 𝐮𝑆𝐺𝑃𝐶𝐴
7 ◦ 𝐲𝑆𝐺𝑃𝐶𝐴

7 (6) + 𝐮𝑆𝐺𝑃𝐶𝐴
10 ◦ 𝐲𝑆𝐺𝑃𝐶𝐴

10 (6). As a result,
we can observe the differences of the reconstructed P2/N2 wave and
topographies vary among the three PCA-based methods (see Figs. 5
and 6) (because Φ6

𝑊𝑃𝐶𝐴 is not identical/similar to 𝐙6
𝑆𝐺𝑃𝐶𝐴). Similarly,

he different factors used to reconstruct P2 and N2 (see Figs. 3 and 4,
ables 1 and 2) lead to differential results between P2 and N2 when
sing the same PCA method.
15
5.2. Effect of the number of trials on P2/N2 results

We found that the effect of the number of trials on PCA decompo-
sition depends on the analyzed ERP components like the conclusion of
early report for conventional time domain analysis (Boudewyn et al.,
2018).

Pearson CCs of waveforms for P2/N2 between the averages with
few trials and the grand average of all remaining trials were affected
by the number of trials, but such affect depends on the analyzed
ERP components and the used analysis method. Consistent with the
previous study (Steele et al., 2016; Beauducel et al., 2000), as shown
in Fig. 8a and b, CCs of two group PCA methods were higher than for
the conventional time-domain analysis, that is, few trials were required
for group PCA methods to obtain the reliable P2 and N2. It is no
surprising that CCs of both P2 and N2 for the two group PCA methods
was higher than the proposed PCA method because both group PCA
methods try to extract the common features of ERP components from
all participants. Similarly, few trials were needed to obtain a stable
N2 for the proposed method than for the conventional time-domain
analysis. However, the proposed method needed more trials than for
the conventional time-domain analysis for P2.

Also, we calculated the Cronbach’s alpha for increased trials to show
the extent of homogeneous for the waveforms of all participants for a
specific number of trials, which also showed variant across ERP compo-
nents and across the measure methods (see Fig. 8c and d). Similar to the
findings by Thigpen et al. (2017), we also observed that the consistency
of N2 for the used methods is slightly better than for P2. In contrast
with the previous report (Steele et al., 2016; Beauducel et al., 2000),
Cronbach’s alpha of P2 for conventional time-domain analysis is higher
than the one for three PCA-based methods. All Cronbach’s alpha values
for four methods reached the excellent level (more than 0.9).

Moreover, we computed the spatial similarity of topographies be-
tween participants across the number of trials to examine the spatial
internal consistency across participants. As far as we know, this is the
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first time to use spatial similarity to evaluate the homogeneity of an
ERP in spatial domain. More trials (about 30) were needed for P2 with
low spatial similarity to obtain spatial stable P2 and about 15 trials
are required for N2 with high spatial similarity (0.75). This suggests
that ERP component with high spatial similarity needs few trials to
get stable measures than the other ERP components with low spatial
similarity.

Finally, the statistical results of P2/N2 for increased trials reflected
that the effect of the number of trials also depends on the ERP com-
ponents being analyzed (Figs. 10 and 11). Specifically, we can use
about 30 trials to obtain the equivalent statistical results of P2 as all
remaining trials do for all used methods (Fig. 10). For N2, as shown in
Fig. 11, about 20 trials for the proposed method can achieve the same
results as for all trials, but more trials will be needed for other methods
(e.g., 30 trials). This indicates that the proposed method may capture
the variability of an individual that group PCA methods cannot do.

5.3. Limitations and future directions

There are some potential limitations in the present study. Firstly,
we only extracted P2/N2 from neurotypical participants, and we did
not compared with other populations (older people, infants, etc.) and
influence of the number of trials on PCA decomposition of other
ERP components has not been further studied as well. Secondly, the
comparison of yields between PCA and ICA was not included in this
study. Many applications of ICA indicated that ERPs of interest can also
be efficiently extracted from both single-trial EEG and averaged ERP
datasets (Lee et al., 2016; Wessel, 2018; Cong et al., 2013; Rissling
et al., 2014) so that it is worth investigating the information of the
desired ERP using ICA from either average traces or single-trial traces.
Thirdly, the identification of factors associated with the desired ERP
components seems to be a subjective method in this study, which
only takes temporal and spatial properties into consideration. As de-
scribed in the application of ICA on the single-trial EEG from single
subject (Rissling et al., 2014), we can also identify the factors related to
ERPs of interest by using characteristics of the factor topography, factor
waveform, factor spectra, and factor dipoles. Furthermore, we merely
investigated the effects of trial numbers on the internal consistency of
ERPs and statistical results, but the interactive effects between subjects
and trials are not further studied as in past report (Boudewyn et al.,
2018) because few subjects (i.e., 22) are involved in current study.
Finally, the performance of PCA was evaluated by computing the cor-
relation of peak amplitudes/topographies/latency between the original
simulated data and PCA-extracted data in previous studies (Beauducel
et al., 2000; Beauducel and Debener, 2003; Dien et al., 2007; Dien,
2010b), but we did not do such work in this study because latency
scores and peak amplitude scores could not be validly obtained for
many participants as in previous studies (Kappenman et al., 2021;
Luck, 2014). Although we concluded that the proposed method did
overall better results than the other three methods, this conclusion is
needed to further verify via the simulation data. Following this line,
we also need to further examine if the measurement invariant across
subjects was seriously violated for group PCA methods compared with
within-subject PCA.

6. Conclusion

Overall, it is first time to obtain P2 and N2 from single-trial EEG
data of individuals for extracting ERP variability using PCA. We also
extended the investigation of the minimum of trials that is used to
obtain a stable P2 and N2 to the proposed method and the two
group PCA methods. Moreover, the reconstructed P2 and N2 by the
proposed method are more spatially consistent than the other three
methods. N2 has internally consistent after about 30 trials are averaged
for conventional time-domain analysis, trial-averaged group PCA, and
single-trial-based group PCA, whereas within-subject PCA can yield
a stable N2 with about 20 trials based on correlation coefficients of
16

waves, Cronbach’s alpha, spatial similarity, and statistical analysis.
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Appendix A. Model for temporal PCA from view of blind source
separation

Simply, we here taking the procedure of trial-averaged group PCA
as an example to explain how to extract ERP components at the group
level with the view of blind source separation (BSS). As we described in
Section 1.1, for the matrix 𝐙 ∈ ℜ𝑇×𝑀 (rows of the matrix correspond to
the samples, and columns are multiplications of electrodes, conditions,
and participants) formed by the ERP data of multi-participants with
multi-conditions, it can be represented by Eq. (1).

Because the signals in Eq. (1) are mixtures of stimulus related sig-
nals and other signals (e.g., noise), we usually use few sources (number
is K) associated with stimulus onset to represent the whole original
data. We therefore need to estimate the number of stimulus related
sources which is realized by some methods, for example, the accumu-
lative explained variance. This procedure is known as dimensionality
reduction. Thus, 𝐙 can be converted to a new matrix 𝐗 ∈ ℜ𝐾×𝑀 (Cong
et al., 2011a,b; Zhang et al., 2020).

𝐗 = 𝐕𝑇𝐙 = 𝐕𝑇𝐀𝐒 = 𝐇𝐒, (A.1)

where 𝐕𝑇 ∈ ℜ𝐾×𝑇 is the dimensionality reduction matrix obtained by
applying some PCA algorithms to matrix 𝐙𝑇 and the 𝑘th column of 𝐕
is the 𝑘th eigenvector of the covariance matrix 𝐙𝐙𝑇 (Cao et al., 2003).
𝐗 is the principal component (PC) matrix and each row represents one

𝑇 𝐾×𝐾
PC (Cao et al., 2003). 𝐇 = 𝐕 𝐀 ∈ ℜ is a mixing matrix.

https://www.biorxiv.org/content/10.1101/2021.03.10.434892v3
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Fig. C.1. Numbers of selected factors associated with P2/N2 for the increasing trials and all trials for three PCA-based strategies. Each bar represents the number of identified
factors for a specific number of trials for each PCA-based method. Error bars show the standard error of the mean of single participant values for within-subject PCA.
Fig. C.2. Proportion of explained variance for selected factors for both P2 (upper panel) and N2 (lower panel) for three PCA-based methods. Each bar represents total proportion
of the factors for a specific number of trials for each PCA-based method. Error bars show the standard error of the mean of single participant values for within-subject PCA.
In this study, we seek an un-mixing matrix 𝐖 ∈ ℜ𝐾×𝐾 (or transfor-
mation matrix) by using Promax rotation (Richman, 1986; Hendrickson
and White, 1964) and dimensionality reduction matrix 𝐕 to decom-
pose 𝐗 into a sum of several factors. 𝐖 is typically normalized and
𝑑𝑖𝑎𝑔(𝐖𝑇𝐖) = 𝐈 ∈ ℜ𝐾×𝐾 . Once the un-mixing matrix is generated, its
inverse matrix 𝐁 = 𝐖−1 is used to estimate 𝐇. And we can also use the
unmixing matrix 𝐖 to convert 𝐗 into an estimated component matrix:
17
𝐘 = 𝐖𝐗 = 𝐖𝐇𝐒 = 𝐂𝐒, (A.2)

here, each row of the estimated source matrix 𝐘 ∈ ℜ𝐾×𝑀 represents
topography of each factor (i.e., rotated factor scores) and it is scaled
version of 𝐒; 𝐂 = 𝐖𝐇 is a global matrix.

Generally, we need to choose several factors derived from 𝐗 for
further analysis (Comon and Jutten, 2010), and thus, the theory of
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back-projection is used to analyze these factors simultaneously as ap-
plied in the previous studies (Dien, 1998; Cong et al., 2011a,b; Makeig
et al., 1997, 1999). In the matrix–vector form, the back-projection is
the outer product of 𝑘th column of 𝐁 with 𝑘th row of estimated factor
matrix 𝐘:

𝐐𝑘 = 𝐛𝑘 ◦ 𝐲𝑘, (A.3)

where 𝐐𝑘 ∈ ℜ𝐾×𝑀 represents the back-projected signals at all the elec-
trodes for 𝑘th selected factor and it estimates the partial information
from 𝐗; ‘ ◦ ’ denotes the outer product of two vectors. k is used to
avoid confusion with r in Eq. (1).

Under global optimization, only one nonzero element exists in each
row and each column of matrix 𝐂. That is, the extracted 𝑘th factor can
uniquely represent 𝑟th unknown scaled source (Cong et al., 2011a,b):

𝐐𝑘 = 𝐛𝑘 ◦ 𝐲𝑘 = 𝐡𝑟 ◦ 𝐬𝑟. (A.4)

Note that 𝑘 may be not equal to 𝑟 because we do not know what both
𝐡𝑟 and 𝐬𝑟 are.

Turning back to Eq. (1), 𝑘th factor generated from 𝐙 is selected to
project back onto electrode fields and this procedure can be described
as below:

�̂�𝑘 = 𝐮𝑘 ◦ 𝐲𝑘, (A.5)

𝐔 = 𝐕𝐁, (A.6)

where 𝐔 ∈ ℜ𝑇×𝐾 is the estimation of 𝐀 in Eq. (1)(i.e., the 𝑘th rotated
factor loading) and its columns correspond to the factor variance and
rows are time courses.

In the application of PCA, a desired ERP is often decomposed into
several factors because the latency and phase of the ERP vary among
different subjects. Therefore, those factors need to project back onto
the electrode fields simultaneously based on the following rule (Cong
et al., 2011a,b; Zhang et al., 2020):

�̂� =
[

𝐮𝑘1 ,… ,𝐮𝑘𝑖

][

𝐲𝑘1 ,… , 𝐲𝑘𝑖

]𝑇

= 𝐮𝑘1 ◦ 𝐲𝑘1 +⋯ + 𝐮𝑘𝑖 ◦ 𝐲𝑘𝑖 ,
(A.7)

where 𝑘1,…, and 𝑘𝑖 (1 ≤ 𝑘𝑖 < 𝐾) represent the orders of the identified
factors. Each column of �̂� ∈ ℜ𝑇×𝑀 is the reconstructed waveform of
one or multiple ERP components for one condition for one participant
at one electrode and each row represents the topography at a specific
time point.

Appendix B. Mathematical models for three PCA-based methods

To simply explain the difference and common of the models among
three PCA-based methods, we here define 𝑒th single-trial EEG data for
𝑝th participant 𝐙𝑝

𝑒 ∈ ℜ𝑇×(𝐶×𝐽 ) have 𝑇 time points, C electrodes, and
J conditions (E is number of trials and we assume that all conditions
of each participant have the same number of trials E). Likewise, the
𝑒th single-trial EEG for all conditions and all participants are defined
by using 𝐙𝑒 ∈ ℜ𝑇×(𝐶×𝐽×𝑃 ) (P is the number of all participants). The
trial-averaged ERP data of 𝑝th participant are then defined by using
�̄�𝑝 ∈ ℜ𝑇×(𝐶×𝐽 ) = 1

𝐸
∑𝐸

𝑒=1 𝐙
𝑝
𝑒 .

According to Appendix A, for the trial-averaged group PCA (TG-
PCA), the trial-averaged ERP data �̄� ∈ ℜ𝑇×(𝐶×𝐽×𝑃 ) = [�̄�1,… , �̄�𝑝,… , �̄�𝑃 ]
or �̄� = 1

𝐸
∑𝐸

𝑒=1 𝐙𝑒 for all participants can be decomposed into the sum
of outer-product between 𝐾1 temporal factors and 𝐾1 spatial factors:

�̄� =
𝐾1
∑

𝑘1=1
𝐮𝑇𝐺𝑃𝐶𝐴
𝑘1

◦ 𝐲𝑇𝐺𝑃𝐶𝐴
𝑘1

, (B.1)

where 𝐲𝑇𝐺𝑃𝐶𝐴
𝑘1

∈ ℜ1×(𝐶×𝐽×𝑃 ) = [𝐲𝑇𝐺𝑃𝐶𝐴
𝑘1

(1),… , 𝐲𝑇𝐺𝑃𝐶𝐴
𝑘1

(𝑝),… ,
𝐲𝑇𝐺𝑃𝐶𝐴
𝑘1

(𝑃 )] and 𝐲𝑇𝐺𝑃𝐶𝐴
𝑘1

(𝑝) ∈ ℜ1×(𝐶×𝐽 ) is the topographies of J con-
𝑇𝐺𝑃𝐶𝐴 𝑇×1
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ditions for 𝑝th participant (see Fig. 3a). 𝐮𝑘1 ∈ ℜ is the time
course for 𝑘1𝑡ℎ factor and it is the common temporal feature across all
conditions across all participants (see Fig. 3a and Fig. 4b).

Similarly, for single-trial-based group PCA (SGPCA), the single-trial
EEG data of all participants is defined to be Φ ∈ ℜ𝑇×(𝐶×𝐽×𝑃×𝐸) =
[𝐙1,… ,𝐙𝑝,… ,𝐙𝑃 ] or Φ = [𝐙1,… ,𝐙𝑒,… ,𝐙𝐸 ], the matrix Φ can be
transformed into:

Φ =
𝐾2
∑

𝑘2=1
𝐮𝑆𝐺𝑃𝐶𝐴
𝑘2

◦ 𝐲𝑆𝐺𝑃𝐶𝐴
𝑘2

, (B.2)

𝐮𝑆𝐺𝑃𝐶𝐴
𝑘2

∈ ℜ𝑇×1 is also the common temporal wave across all trials
across all conditions across all participants (see Fig. 4d). 𝐲𝑆𝐺𝑃𝐶𝐴

𝑘2
∈

ℜ1×(𝐶×𝐽×𝑃×𝐸) = [𝐲𝑆𝐺𝑃𝐶𝐴
𝑘2

(𝑒, 1),… , 𝐲𝑆𝐺𝑃𝐶𝐴
𝑘2

(𝑒, 𝑝),… , 𝐲𝑆𝐺𝑃𝐶𝐴
𝑘2

(𝑒, 𝑃 )] and
𝐲𝑆𝐺𝑃𝐶𝐴
𝑘2

(𝑒, 𝑝) ∈ ℜ1×(𝐶×𝐽 ) is the topography of J conditions for 𝑒th trial
for 𝑝th participant (see Fig. 4e).

For within-subject PCA (WPCA), the single-trial EEG data 𝐙𝑝 ∈
ℜ𝑇×(𝐶×𝐽×𝐸) for 𝑝th participant can be represented:

𝐙𝑝 =
𝐾3
∑

𝑘3=1
𝐮𝑊𝑃𝐶𝐴
𝑘3

(𝑝) ◦ 𝐲𝑊𝑃𝐶𝐴
𝑘3

(𝑝), (B.3)

𝐮𝑊𝑃𝐶𝐴
𝑘3

∈ ℜ𝑇×1 is the common temporal wave across all trials and all
conditions for 𝑝th participant. 𝐲𝑊𝑃𝐶𝐴

𝑘3
(𝑝) ∈ ℜ1×(𝐶×𝐽×𝐸) = [𝐲𝑊𝑃𝐶𝐴

𝑘3
(𝑝, 1),

… , 𝐲𝑊𝑃𝐶𝐴
𝑘3

(𝑝, 𝑒),… , 𝐲𝑊𝑃𝐶𝐴
𝑘3

(𝑝, 𝐸)] and 𝐲𝑊𝑃𝐶𝐴
𝑘3

(𝑝, 𝑒) ∈ ℜ1×(𝐶×𝐽 ) is the
topography of J conditions for 𝑒th trial for 𝑝th participant.

Appendix C. Number of factors and explained variance for in-
creased trials for three PCA-based methods

See Fig. C.1 and Fig. C.2.
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