
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Data Analytics in Healthcare : A Tertiary Study

© The Author(s) 2022

Published version

Taipalus, Toni; Isomöttönen, Ville; Erkkilä, Hanna; Äyrämö, Sami

Taipalus, T., Isomöttönen, V., Erkkilä, H., & Äyrämö, S. (2023). Data Analytics in Healthcare : A
Tertiary Study. SN Computer Science, 4(1), Article 87. https://doi.org/10.1007/s42979-022-
01507-0

2023



Vol.:(0123456789)

SN Computer Science            (2023) 4:87  
https://doi.org/10.1007/s42979-022-01507-0

SN Computer Science

REVIEW ARTICLE

Data Analytics in Healthcare: A Tertiary Study

Toni Taipalus1  · Ville Isomöttönen1  · Hanna Erkkilä1 · Sami Äyrämö1 

Received: 7 December 2021 / Accepted: 14 November 2022 
© The Author(s) 2022

Abstract
The field of healthcare has seen a rapid increase in the applications of data analytics during the last decades. By utilizing 
different data analytic solutions, healthcare areas such as medical image analysis, disease recognition, outbreak monitor-
ing, and clinical decision support have been automated to various degrees. Consequently, the intersection of healthcare and 
data analytics has received scientific attention to the point of numerous secondary studies. We analyze studies on healthcare 
data analytics, and provide a wide overview of the subject. This is a tertiary study, i.e., a systematic review of systematic 
reviews. We identified 45 systematic secondary studies on data analytics applications in different healthcare sectors, including 
diagnosis and disease profiling, diabetes, Alzheimer’s disease, and sepsis. Machine learning and data mining were the most 
widely used data analytics techniques in healthcare applications, with a rising trend in popularity. Healthcare data analytics 
studies often utilize four popular databases in their primary study search, typically select 25–100 primary studies, and the 
use of research guidelines such as PRISMA is growing. The results may help both data analytics and healthcare researchers 
towards relevant and timely literature reviews and systematic mappings, and consequently, towards respective empirical stud-
ies. In addition, the meta-analysis presents a high-level perspective on prominent data analytics applications in healthcare, 
indicating the most popular topics in the intersection of data analytics and healthcare, and provides a big picture on a topic 
that has seen dozens of secondary studies in the last 2 decades.

Keywords Data analytics · Healthcare · Review · Machine learning · Data mining · Artificial intelligence

Introduction

The purpose of data analytics in healthcare is to find new 
insights in data, at least partially automate tasks such as 
diagnosing, and to facilitate clinical decision-making [1, 2]. 
Higher hardware cost-efficiency and the popularization and 
advancement of data analysis techniques have led to data 
analytics gaining increasing scholarly and practical footing 
in the healthcare sector in recent decades [3]. Some data 
analytics solutions have also been demonstrated to surpass 
human effort [4]. As healthcare data is often characterized 
as diverse and plentiful, especially big data analysis tech-
niques, prospects, and challenges have been discussed in 
scientific literature [5]. Other related concepts such as data 
mining, machine learning, and artificial intelligence have 
also been used either as buzzwords to promote data analytics 

applications or as genuine novel innovations or combina-
tions of previously tested solutions.

The terms big data, big data analytics, and data analyt-
ics are often used interchangeably, which makes the search 
for related scientific works difficult. Especially, big data 
is often used as a synonym for analytics [6], a view con-
tested in multiple sources [7–9]. In addition, the term data 
analytics is wide and usually at least partly subsumes con-
cepts such as statistical analyses, machine learning, data 
mining, and artificial intelligence, many of which overlap 
with each other as well in terms of, e.g., using similar 
algorithms for different purposes. Finally, it is not uncom-
mon that scientific works that are not focused on techni-
cal details discuss concepts such as machine learning at 
different levels of specificity. For example, some studies 
consider merely high-level paradigms such as supervised 
on unsupervised learning, while some discuss different 
tasks such as classification or clustering, and others focus 
on specific modeling techniques such as decision trees, 
kernel methods, or different types of artificial neural net-
works. These concerns of nomenclature and terminology 
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apply to healthcare as well, and we adapt the broad view 
of both healthcare and data analytics in this study. In other 
words, with data analytics we refer to general data ana-
lytics encompassing terms such as data mining, machine 
learning, and big data analytics, and with healthcare we 
refer to different fields of medicine such as oncology and 
cardiology, some closely related concepts such as diagno-
sis and disease profiling, and diseases in the broad sense of 
the word, including but not limited to symptoms, injuries, 
and infections.

Naturally, because of growing interest in the intersection 
of data analytics and healthcare, the scientific field has seen 
numerous secondary studies on the applications of differ-
ent data analysis techniques to different healthcare subfields 
such as disease profiling, epidemiology, oncology, and men-
tal health. As the purpose of systematic reviews and map-
ping studies is to summarize and synthesize literature for 
easier conceptualization and a higher level view [10, 11], 
when the number of secondary studies renders the subjec-
tive point of understanding a phenomenon on a high level 
arduous, a tertiary study is arguably warranted. In fact, we 
deemed the number of secondary studies high enough to 
conduct a tertiary study. In this study, we review system-
atic secondary studies on healthcare data analytics during 
2000–2021, with the research goals to map publication fora, 
publication years, numbers of primary studies utilized, sci-
entific databases utilized, healthcare subfields, data analytics 
subfields, and the intersection of healthcare and data analyt-
ics. The results indicate that the number of secondary stud-
ies is rising steadily, that data analytics is widely applied in 
a myriad of healthcare subfields, and that machine learn-
ing techniques are the most widely utilized data analytics 
subfield in healthcare. The relatively high number of sec-
ondary studies appears to be the consequence of over 6800 
primary studies utilized by the secondary studies included 
in our review. Our results present a high-level overview of 
healthcare data analytics: specific and general data analytics 
and healthcare subfields and the intersection thereof, pub-
lication trends, as well as synthesis on the challenges and 
opportunities of healthcare data analytics presented by the 
secondary studies.

The rest of the study is structured as follows. In the next 
section, we describe the systematic method behind second-
ary study search and selection. In Section “Results” we pre-
sent the results of this tertiary study, and in Section “Dis-
cussion” discuss the practical implications of the results as 
well as threats to validity. Section “Conclusion” concludes 
the study.

Methods

Search Strategy

We searched for eligible secondary studies using five data-
bases: ACM Digital Library (ACM DL), IEEExplore, Sci-
enceDirect, Scopus, and PubMed. In addition, we utilized 
Google Scholar, but the search returned too many results to 
be considered in a feasible timeframe. The search strings 
and publications returned from the respective databases are 
detailed in Table 1. Because the relevant terms healthcare, 
big data and data analytics have been used in an ambigu-
ous manner in the literature, we performed two rounds of 
backward snowballing, i.e., followed the reference lists of 
included articles to capture works not found by the database 
searches. The search and selection processes are detailed 
in Fig. 1.

Study Selection

After the secondary studies were searched for closer eligibil-
ity inspection, the first author applied the exclusion criteria 
listed in Table 2. In case the first author was unsure about a 
study, the second author was consulted. In case a consensus 
was not reached, the third author was consulted with the final 
decision on whether to include or exclude the study. Regard-
ing exclusion criterion E5, we only considered secondary 
studies, i.e., mapping studies and different types of literature 
reviews. Furthermore, due to different levels of systematic 
approaches, we deemed a study systematic if (i) the uti-
lized databases were explicitly stated (i.e., stated with more 
detail than “we used databases such as...” or “we mainly 

Table 1  Search strings—Scopus database search returned 16,135 results which were sorted by relevance, and the first 2,000 papers were selected 
for further inspection

Database Search string # of results

ACM DL [Publication Title: data analy] AND [Publication Title: healthcare] AND [[Publication Title: review] OR [Publica-
tion Title: map] OR [Publication Title: systematic]] AND [Publication Date: (01/01/2000 TO 04/30/2021)]

34

IEEExplore data analy* healthcare review 325
ScienceDirect data analytics healthcare review; title: healthcare; article type: review article 118
Scopus ( TITLE-ABS-KEY ( data AND analy* AND healthcare AND review ) AND PUBYEAR> 1999 ) AND ( review ) 2000*
PubMed (healthcare[Title/Abstract]) AND (data analy*[Title/Abstract]); limited to “systematic review” 107
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used Scopus”), (ii) search terms were explicitly stated, and 
(iii) inclusion or exclusion criteria or both were explicitly 
stated. Regarding exclusion criteria E6, E7 and E8, several 
studies considered healthcare in related fields such as health-
care from administrative perspectives [12], healthcare data 
privacy [13, 14], data quality [15], and comparing human 
performance with data analytics solutions [4]. Such studies 
were excluded. Similarly, studies returned by the database 
searches on data analytics related fields such as big data and 
its challenges [16], Internet-of-Things [17], and studies with 
a focus on software or hardware architectures behind analyt-
ics platforms [18, 19] rather than on the process of analysis 
were also excluded.

It is worth noting that we followed the respective second-
ary study authors’ classification of techniques, e.g., whether 
a technique is considered machine learning or deep learning. 
In the case a study considered more than one data analytics 
or healthcare subfield, we categorized the study according to 
what was to our understanding the primary focus. This is the 

reason we have refrained from defining terms such as deep 
learning in this study—the definitions are numerous and by 
defining the terms, we might give the reader the impression 
that we have judged whether a secondary study is concerned 
with, e.g., machine learning or deep learning.

Results

Publication Fora and Years

We included 45 secondary studies (abbreviated SE in the 
figures, cf. 7 for full bibliographic details). A total of 34 
(76%) of the selected secondary studies were published 
in academic journals, nine (20%) in conference proceed-
ings, and two (4%) were book chapters. Most of the stud-
ies were published in distinct fora (cf. Table 3), and fora 
with more than one selected secondary study consisted 
of Journal of Medical Systems, International Journal of 

Fig. 1  Study selection process showing the process step by step as 
well as the numbers of secondary studies in each step—A1, A2 and 
A3 refer to the authors responsible for each step, E refers to an exclu-

sion criterion described in Table  2, and n indicates the number of 
included papers after a step was completed

Table 2  Exclusion (E) criteria ID Criterion for exclusion Example 
studies 
excluded

E1 Published online outside the time frame 2000 to April 2021
E2 Published in a non-peer-reviewed forum
E3 Is not written in English
E4 Full text we could not find or download [20–23]
E5 Is not a systematic secondary study [24–31]
E6 focus on data analytics but not on healthcare [17, 18, 32]
E7 Focus on healthcare but not on data analytics [33–35]
E8 Focus on healthcare-related field but not on healthcare [36–39]
E9 Automatic or semi-automatic mapping [40]



 SN Computer Science            (2023) 4:87    87  Page 4 of 14

SN Computer Science

Medical Informatics, Journal of Biomedical Informatics, 
and IEEE Access. As expected, the publication fora were 
aimed at either computer science, healthcare, or both. 
Finally, as can be observed in Fig. 2, the trend of system-
atic secondary studies in the intersection of data analytics 
and healthcare is growing.

Secondary Study Qualities

The selected secondary studies utilized a total of 37 dif-
ferent databases. The most frequently used databases were 
PubMed, Scopus, IEEExplore, and Web of Science, respec-
tively. Other relatively frequently used databases were ACM 

Table 3  Publication fora Forum Number 
of stud-
ies

Journal of Medical Systems 4
International Journal of Medical Informatics 3
Journal of Biomedical Informatics 3
IEEE Access 2
Americas Conference on Information Systems (AMCIS) 1
Annals of Operations Research 1
Applied Clinical Informatics 1
Archives of Computational Methods in Engineering 1
Artificial Intelligence in Medicine 1
Australasian Conference on Information Systems 1
Biomedical Informatics Insights 1
BMC Family Practice 1
BMC Medical Informatics and Decision Making 1
Clinical Microbiology and Infection 1
Communications in Computer and Information Science 1
Computational and Structural Biotechnology Journal 1
Enterprise Information Systems 1
Healthcare 1
IEEE Computers, Software, and Applications Conference (COMPSAC) 1
IEEE International Conference on Humanoid, Nanotechnology, Information Technology, Com-

munication and Control, Environment, and Management (HNICEM)
1

IEEE International Conference on Information Communication and Management (ICICM) 1
IEEE Reviews in Biomedical Engineering 1
IEEE Symposium on Industrial Electronics & Applications (ISIEA) 1
International Conference on Emerging Technologies in Computer Engineering 1
International Joint Conference on Biomedical Engineering Systems and Technologies 1
International Journal of Healthcare Management 1
Intensive Care Medicine 1
JAMIA Open 1
JMIR Medical Informatics 1
Journal of Diabetes Science and Technology 1
Journal of the Operational Research Society 1
Management Decision 1
NPJ Digital Medicine 1
Procedia Computer Science 1
Scientific Programming 1
Studies in Health Technology and Informatics 1
Yearbook of Medical Informatics 1
Total 45
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Digital Library, Google Scholar, and Springer Link. Most 
of the secondary studies (33, or 73%) utilized four or fewer 
databases (M = 3.6, Mdn = 3). However, many bibliographic 
databases subsume others, and the number of utilized data-
bases should not be taken as a metric for a systematic review 
quality. For example, a PubMed search implicitly searches 
MEDLINE records, and Google Scholar indexes works from 
most other scientific databases. The extended coverage of a 
wider range of academic works naturally results in numerous 
studies to further inspect, posing a challenge in the amount 
of work required. The most popular databases used in the 
secondary studies are visualized in Fig. 3.

The secondary studies reported an average of 155 
selected primary studies (Mdn = 63, SD = 379.2), with a 

minimum of 6 (SE44) and a maximum of 2,421 primary 
studies (SE31). Five secondary studies selected more than 
200 primary studies (cf. Fig 5). In total, the secondary 
studies utilized 6,838 primary studies. The number of sec-
ondary and primary studies categorized by the data analyt-
ics approach is summarized in Fig. 4.

Some secondary studies reported similar details on their 
respective primary studies, such as visualizations of pub-
lication years (22 studies), research approach summaries 
such as the number of qualitative and quantitative stud-
ies (8 studies), research field summaries (4 studies), and 
details on the geographic distribution of the primary study 
authors (5 studies). The use of PRISMA (preferred report-
ing items for systematic reviews and meta-analyses) [41] 
guidelines was reported in 15 studies.

Fig. 2  Number of included 
secondary studies by publica-
tion year (bars, left y-axis), 
and the number of included 
primary studies by publication 
year (dots, right y-axis)—the 
year 2021 was only considered 
from January to April; the 
figure shows that the number of 
secondary studies is rising

Fig. 3  Four most popular 
databases used by the second-
ary studies were PubMed, 
IEEEXplore, Scopus and Web 
of Science—4 studies did not 
use any of these four databases, 
and other databases are not 
considered, e.g., the second-
ary study SE14, in addition to 
IEEExplore, might have also 
utilized other databases not 
visualized here
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Subject Areas Identified

Some selected studies considered the relationship between 
healthcare in general and a specific data analysis technique, 
while other studies considered the relationship between 
data analytics in general and a specific healthcare subfield. 
Most of the studies, however, considered the relationship 
between a specific data analysis technique and a specific 
healthcare subfield. These considerations are summarized 
in Fig. 6. Readers interested mainly in general healthcare 
in the context of a specific analysis topic should refer to the 
secondary studies on the left-hand side, readers interested in 
general data analytics in the context of a specific healthcare 
topic should refer to secondary studies on the right-hand 
side, readers interested in a specific analysis topic applied 
to a specific healthcare topic should consider the studies in 
the middle, and readers interested in the applicability of ana-
lytics techniques in general to healthcare in general should 
consider the studies in the top row. Additional information 
on the secondary studies is presented in 6.

Discussion

Implications

Considering the number of primary studies utilized, only 
12 studies (27%) used more than a hundred primary studies. 
Figure 5 seems to indicate that the threshold for conducting 
a literature review or a mapping study in healthcare data 
analytics is typically between 25 and 100 studies. Further-
more, and on the basis of the evidence currently available, 
it seems reasonable to argue that at least 25 primary studies 
(84% of the secondary studies) warrant a systematic review, 
and the results of systematic reviews can be seen as valu-
able synthesizing contributions to the field. This observation 
arguably also supports the relevance of this study, although 
this study covers a relatively large intersection of the two 
research areas.

The earliest included secondary study was published 
in 2009, which might be explained by the relative novelty 
of data analysis in healthcare, at least with computerized 

Fig. 4  Number of secondary 
studies included in this tertiary 
study, and the number of 
primary studies utilized by the 
secondary studies, categorized 
by data analytics approach; DA 
general data analytics, TA text 
analytics, INF informatics, NA 
network analytics, DL deep 
learning, PM process mining, 
BDA big data analytics, DM 
data mining, ML machine learn-
ing; the figure shows that the 
general term data analytics was 
the most popular in the second-
ary studies

Fig. 5  Number of primary 
studies (x-axis) selected for 
final inclusion in the secondary 
studies (y-axis), e.g., the chart 
shows that six secondary studies 
included 0–24 primary stud-
ies—one study (SE6) did not 
disclose the number of primary 
studies, and one study (SE15) 
reported two numbers: 24 pri-
mary studies for a quantitative 
analysis, and 28 primary studies 
for a qualitative analysis, and 
we reported that study using the 
latter number
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automation rather than merely applying statistical analy-
ses. In addition, although systematic reviews are relatively 
common in medicine, they have only recently gained popu-
larity and visibility in information technology [10]. As 
may be observed in Fig. 2, the trend of secondary studies 
is growing, which consequently indicates that the number 
of primary studies in the intersection of data analytics and 
healthcare is gaining research interest. The rising popu-
larity of machine learning algorithms may be explained 
by the rising popularity of unstructured data, the growing 
utilization of graphics processing units, and the develop-
ment of different machine learning tools and software 
libraries. Indeed, many of the techniques behind modern 
machine learning implementations have been around since 
the 1980s, but only the combination of large amounts of 
data, and developments in methods and computer hard-
ware in recent years have made such implementations 
more cost-effective. The development of trends illustrated 
in, e.g., Fig. 2 propounds the view that machine learning 
algorithms will gain more and more practical applications 
in healthcare and related fields, such as molecular biol-
ogy [42]. Finally, some studies have argued [43] as well 
as demonstrated [44, 45] that the evolution of machine 
learning is changing the way research hypotheses are 

formulated. Instead of theory-driven hypothesis formula-
tion, machine learning can be used to facilitate the for-
mulation of data-driven hypotheses, also in the field of 
medicine.

Secondary study publication fora were numerous and 
focused either on information technology, healthcare, or 
both, without obvious anomalies. The secondary studies 
utilized dozens of different databases in their primary study 
searches. It seems that the coverage of these databases is 
not always understood, or it is disregarded, regardless that 
utilizing non-overlapping databases results in less work in 
duplicate publication removal. For example, Scopus indexes 
some of ACM DL, some of Web of Science, and all of IEE-
Explore, effectively rendering IEEExplore search redundant 
if Scopus is utilized—a fact we as well understood only 
after conducting our searches. In addition, Google Scholar 
appears to index the bibliographic details of effectively all 
published research, yet the number of search results returned 
may be overwhelming for a systematic review. In practice, 
the selection of databases is balanced by the amount of work 
needed to examine the results on one end of the scales, and 
coverage on the other. Backward or forward snowballing 
may be utilized to limit the amount of work and to extend 
coverage.

Fig. 6  Selected secondary studies and whether they consider only specific data analytics techniques (left side), only specific healthcare subfields 
(right side), both (center), or neither (top); the figure may be utilized in finding relevant secondary studies on desired subfields
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Secondary study topics summarized in Fig. 6 give some 
implications for subject areas of healthcare data analytics 
that are mature enough to warrant a secondary study. As 
the figure shows, these areas are aplenty, and the most fre-
quent data analytics techniques applied seem to be machine 
learning (13 secondary studies) and data mining (7 second-
ary studies). It is worth noting that the nomenclature we 
applied in this study reflects that of the secondary study 
authors. As explained earlier in this study, attempts at defin-
ing, e.g., machine learning and data mining in this study 
would inevitably contradict the definitions given in some of 
the included secondary studies. For further reading, Cabat-
uan and Maguerra [46] provide a high-level overview of 
machine learning and deep learning, and Shukla, Patel and 
Sen [47] on data mining. For more technical approaches, 
both Ahmad, Qamar and Rizvi [30] and Harper [48] review 
data mining techniques and algorithms in healthcare.

Opportunities and Challenges in Healthcare Data 
Analytics

Many of the selected secondary studies provided syntheses 
on the current challenges and opportunities in healthcare 
data analytics. As the secondary studies inspected over 6800 
studies of healthcare data analytics, we have summarized 
recurring insights here.

It was a generally accepted view in the secondary stud-
ies that healthcare data analytics is an opportunity that has 
already been partly realized, yet needs to be more studied 
and applied in more diverse contexts and in-depth scenarios 
[49–51]. For example, it has been noted that while big data 
applications are relatively mature in bio-informatics, this is 
not necessarily the case in other biomedical fields [52]. In 
general, healthcare data analytics is rather uniformly per-
ceived as an opportunity for more cost-efficient healthcare 
[52, 53] through many applications such as automating a 
specialist’s routine tasks so that they may focus on tasks 
more crucial in a patient’s treatment. The cost-efficiency is 
likely to be more concretized by novel deep learning tech-
niques such as large language models [54], which are also 
offered through implementations that perform tasks faster 
while consuming less resources [55]. In addition to faster 
diagnoses, data analytics solutions may also offer more 
objective diagnoses in, e.g., pathology, if the models are 
trained with data from multiple pathologists.

Challenges regarding healthcare data analytics are more 
diverse. Perhaps the most discussed challenge was the nature 
of the data and how it can be treated. Many secondary stud-
ies highlighted problems with missing data [56, 57], low-
quality data [54], and datasets stored in various formats 
which are not interoperable with each other [52, 55, 56]. 
Furthermore, some studies raised the concern of missing 
techniques to visualize the outputs given by different data 

analyses [56, 58]. Rather intuitively, many new implemen-
tations and the increases in the amount of data require new 
computational infrastructure for feasible use [54, 58–60]. 
Some studies raised ethical concerns regarding data collec-
tion, merging, and sharing, as data privacy is a multifaceted 
concept [52, 54, 58, 59], especially when the datasets cover 
multiple countries with different legislations. Many studies 
also called for multidisciplinary collaboration between med-
ical and computing experts, stating that it is crucial that the 
analytics implementations are based on the same vocabulary 
and rules as medical experts use [49, 57, 61–64], and that 
the technical experts understand, e.g., how feasible it is to 
collect training data for a model to find patterns in medical 
images. Closely related, many of the more complex analytics 
solutions operate on a black box principle, meaning that it is 
not obvious how the implementation reaches the conclusion 
it reaches [56, 59, 65–67]. Open solutions, on the other hand, 
are typically understandable only for technical experts and 
may be outperformed by the more complex black box solu-
tions. Finally, it has been observed that the already existing 
analytics solutions implemented in different environments, 
e.g., different hospitals [56, 59, 64], are not portable into 
other environments. In addition, it may be that the existing 
solutions are not fully integrated into actual day-to-day work 
[57]. Fleuren et al. [68] summarize the issue aptly, urging “to 
bridge the gap between bytes and bedside.”

Threats to Validity

As is typical for studies involving human judgment, it is 
possible for another group of researchers to select at least a 
slightly different group of studies. Furthermore, the catego-
rization of studies into specific healthcare and data analytics 
topics is a likely candidate for the subject of change. We 
tried to mitigate the effect of human judgment by following 
the systematic mapping study guidelines, such as utilizing 
and reporting explicit exclusion criteria and search terms 
[11], following the PRISMA flow of information guide-
lines [41], and discussing discrepancies and disagreements 
among the authors until consensus was reached. Regard-
ing the challenges related to the wide and rather ambiguous 
subject areas of data analytics and healthcare, we utilized 
two rounds of backward snowballing to mitigate the threat 
of missing relevant studies.

Conclusion

In this study, we systematically mapped systematic second-
ary studies on healthcare data analytics. The results impli-
cate that the number of secondary—and naturally primary—
studies are rising, and the scientific publication fora around 
the topics are numerous. We also discovered that the number 
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of primary studies included in the secondary studies varies 
greatly, as do the scientific databases used in primary study 
search. The results also show that while machine learning 
and data mining seem to be the most popular data analytics 
subfields in healthcare, specific healthcare topics are more 
diverse. This meta-analysis provides researchers with a 
high-level overview of the intersection of data analytics and 
healthcare, and an accessible starting point towards specific 
studies. What was not considered in this study is whether or 
not and how much the selected secondary studies overlap 
in their primary study selection, which could indicate the 
level of either deliberate or unaware overlap of similar work.

Appendix A. Secondary Study Qualities

See Table 4.
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