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Improving Clustering and Cluster
Validation with Missing Data using
Distance Estimation Methods

Marko Niemelä and Tommi Kärkkäinen

Abstract Missing data introduces a challenge in the field of unsupervised
learning. In clustering, when the form and the number of clusters is to be
determined, one needs to deal with the missing values both in the clustering
process and in the cluster validation. In the previous research, the clustering
algorithm has been treated using robust clustering methods and available
data strategy, and the cluster validation indices have been computed with the
partial distance approximation. However, lately special methods for distance
estimation with missing values have been proposed and this work is the first
one where these methods are systematically applied and tested in clustering
and cluster validation. More precisely, we propose, implement, and analyze
the use of distance estimation methods to improve the discrimination power
of clustering and cluster validation indices. A novel, robust prototype-based
clustering process in two stages is suggested. Our results and conclusions
confirm the usefulness of the distance estimation methods in clustering but,
surprisingly, not in cluster validation.

1 Introduction

The two main approaches for prototype-based clustering with missing values
are imputation (Lin and Tsai [11]) and available data strategy. Combined
with a statistically robust (see Kärkkäinen and Heikkola [9]) cluster proto-
types like median or spatial median (Äyrämö [2]), the available data strategy
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has proven to provide reliable results in a scalable fashion (Hämäläinen et al.
[8]). However, in many applications the unsupervised tasks that need to be
solved consist of estimation and determination of both the clusters and the
number of them. The latter is addressed using cluster validation indices,
which have been scarcely addressed with missing values although new tech-
niques constantly emerge (Fu and Perry [5]).

As depicted in Hämäläinen et al. [7], Niemelä et al. [13], the cluster val-
idation indices are composed of a quotient of estimates of Inter and Intra
of a clustering result, i.e., the variability of data within clusters divided by
the separation of clusters. Both of these measures are computed with a dis-
tance measure which is inhereted from the clustering problem formulation
(Hämäläinen et al. [8]). Therefore, a key to reliable cluster validation indices
with missing values is how to estimate the distances between the prototypes
and the observations. For this purpose, in Niemelä et al. [13], the classical
partial distance strategy (Gower [6]) was applied with promising results. How-
ever, more recently a set of papers have appeared (Eirola et al. [3, 4], Mesquita
et al. [12]), which have addressed the distance estimation with missing values
for both squared and euclidean (nonsquared) distances with better accuracy
than in Gower [6].

This work continues the work in Niemelä et al. [13] by offering similar com-
parisons of cluster validation indices when the clustering method is replaced
with the use of l2-norm, i.e., optimized values of cluster prototypes minimize
the Euclidean distance error with the target data instead using the squared
Euclidean distance based error function (Äyrämö [2], Hämäläinen et al. [7]).
Further, instead of the partial distance strategy, we utilize two previously
presented distance estimation strategies (Eirola et al. [3], Mesquita et al.
[12]) for calculating the distances between the possible incomplete data vec-
tors during the cluster evaluation process. A novel, robust prototype-based
clustering process in two stages is suggested when these strategies are ap-
plied in clustering. We then assess the usefulness of the distance estimation
in cluster validation. As a whole, the purpose of this paper is to realize and
test the distance estimation methods in an attempt to improve the reliability
of clustering and cluster validation indices with missing values.

2 Methods

Prototype-based clustering methods, such as K-means, solve an optimization
problem with K prototypes (Äyrämö [2], Hämäläinen et al. [7]). The objec-
tive function is defined to minimize the sum of the distances of the points to
their closest prototypes. The prototype-based algorithm is composed of ini-
tialization and local improvement of the initial prototypes. This refinement
is carried out in an iterative fashion by assigning individual observations to
the closest prototypes and recomputation of the prototype with the assigned
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observations. These steps are repeated until the final converge is reached
(Hämäläinen et al. [7]). The initial prototypes can be selected randomly but
a more effective method is to use the K-means++ type of initial selection
(Arthur and Vassilvitskii [1], Hämäläinen et al. [7]).

Spatial median is a statistically robust location estimate which can toler-
ate a large amount of missing values in data since it can handle up to 50 %
of erroneous or missing components (Äyrämö [2]). The available data strat-
egy (ADS) is a convenient way to omit the missing values during the cluster
refinement phase. It is based on projecting all computations to the avail-
able values using a projection matrix P, which represent the pattern of the
available values similarly to Kärkkäinen and Toivanen [10]. This is obtained
by setting (Pi)j = 1 if and only if the corresponding data component (xi)j
exists, and zero otherwise. Using the available data strategy, the objective
function for the spatial median based clustering can be written as follows:

J =
K∑

k=1

Jk = arg min
{ck}

∑
xi∈Ck

‖Pi (xi − ck)‖ , (1)

where {xi}Ni=1, xi ∈ Rn, is the set of N observations with n-dimensions and
{ck}Kk=1 are the prototype vectors which are local minimizers of (1) defining
the partition CK

k=1 of data into K disjoint subsets. We emphasize that the
base of ADS, realized through the projection, lies in avoiding to introduce
any additional assumptions on the data distribution.

In Eirola et al. [3], the expected squared Euclidean distance (ESD) esti-
mation method for missing data was presented. The method assumes mul-
tivariate normally distributed data, which may be valid in many real world
situations. Normality provides a rough approximation for nearly any contin-
uous data distribution with relevant sample size, e.g., due to the central limit
theorem (Rouaud [14]). In particular, it is assumed in Eirola et al. [3] that
missing values in data vectors are random variables from the conditional nor-
mal distribution in which random variables are conditioned with the observed
ones. In this case the incomplete parts of the vectors can be replaced with
the conditional mean. If the missing components of x are denoted by x(1) and
the available components are denoted by x(2) and n-dimensional incomplete
multivariate data is partitioned as follows:

x =

[
x(1)

x(2)

]
, (2)

then

µ =

[
µ(1)

µ(2)

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where µ and Σ denotes mean and covariance of x. Further, conditional mean
and variance for missing values can be expressed as follows:
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x̂(1) = µ(1) +Σ12Σ
−1
22 (x(2) − µ(2)),

(σ2)(1) = Σ11 −Σ12Σ
−1
22 Σ21.

Notice that the multivariate normal parameters can be estimated for data sets
even data cannot pre-partitioned as in (2). Thus, for conditional parameters,
appropriate elements are required to be extracted from specific locations in
µ and Σ based on missingness pattern of individual observations.

It was proved in Eirola et al. [3] that the expected value for the squared
Euclidean distance is the sum of the distance between the two estimated data
vectors and the variances of the imputed components:

E[d2il] = E[||xi − xl||2] = ||x̂i − x̂l||2 + σ2
i + σ2

l , i 6= l, i, l ∈ [1, N ].

A novel expected Euclidean distance (EED) method for estimating the
nonsquared l2-norm based distances with missing values was presented in a
more recent study Mesquita et al. [12]. It uses the same basic principles as
in Eirola et al. [3] for calculating the conditional distribution parameters.
However, the EED is based on the assumption that the squared variables fol-
low the Gamma distribution. This suggests use of the Nakagami distribution,
where a random variable is obtained by taking the square root of a Gamma
distributed variable. More precisely, the expected value of the Nakagami dis-
tribution can be written as

E[dil] =
Γ (m+ 1

2 )

Γ (m)

(
Ω

m

) 1
2

, (3)

where

m =
E[d2il]

2

V ar[d2il]
, Ω = E[d2il].

Since the Nakagami distribution requires variances of distances, some extra
calculations are needed. The variances can be calculated as follows (the details
are given in Mesquita et al. [12]):

Var[d2il] = E[x4
i + x4

l − 4x3
ixl − 4xix

3
l + 6x2

ix
2
l ]− E[(xi − xl)

2]2,

where the expected values can be obtained by using non-central moments of
the normal distribution:

E[xi] = x̂i,

E[x2
i ] = x̂i

2 + σ2
i ,

E[x3
i ] = x̂i

3 + 3x̂iσ
2
i ,

E[x4
i ] = x̂i

4 + 6x̂i
2σ2

i + 3σ4
i .
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Notice that we do not apply the weighted formulas in Mesquita et al. [12],
because we assume similarly to ESD that the distributions are multivariate
Gaussians instead of mixture of Gaussians.

Concerning cluster validation, we will apply the same cluster valida-
tion indices as in our previous study Niemelä et al. [13]. References to
the original suggestions of the indices are given in Hämäläinen et al. [7],
Niemelä et al. [13]. These read as follows (abbreviations given in parenthesis):
Calinski-Harabasz (CH), Davies-Bouldin (DB), Davies-Bouldin∗ (DB∗),
Generalized Dunn (GD), kCE-index (KCE), Pakhira-Bandyopadhyay-Maulik
(PBM), Ray-Turi (RT), Silhouette (SIL), WB-index (WB), and Wemmert-Gançarski

(WG). Since clustering here is performed using the Euclidean distances (1), the
indices were first implemented and preliminary tested by using the l2-norm.
We then noticed that Calinski-Harabasz, kCE-index, and WB-index ob-
tained better results with their original forms of using the squared distances
in the definitions of Intra and Inter. The reason might be that these indices
include a scaling factor which was originally derived for the squared distances.

The formulas for the used indices are given in Table 1. There, m denotes
the spatial median of the whole dataset. Moreover, the squared form (·)2 can
also denote a componentwise application, for instance, within each cluster for
Jk as in (1). We remind that the main focus of this work is that the distances
both in clustering and in the CVIs afterwards can be computed with ADS,
ESD, or EED, respectively.

In the Silhouette index, Intra(xi) is the average Euclidean distance of
the ith observation to all other points in the same cluster whereas Inter(xi) is
the average of the minimum distances of the ith point to points in a different
cluster:

Intra(xi) =
1

nk − 1

∑
xj∈Ck

d(xi,xj), Inter(xi) = min
k 6=k′

1

nk′

∑
xj∈Ck′

d(xi,xj).

(4)
Contrary to other indices in Table 1, in Silhouette one needs to calculate
pairwise distances between the original, possible incomplete observations.
Hence, the distance estimation techniques as presented above could be es-
pecially beneficial for the Silhouette index. On the other hand, because of
the computations over each cluster and each observation within a cluster, the
computational complexity is of the order O(N2).

Notice that in Table 1 both Intra and Inter can be defined in three lev-
els of abstraction concerning the clustering result: globally as, e.g., with
kCE-index, clusterwise as, e.g., with Davies-Bouldin, and pointwise as,
e.g., in Silhouette. This division is reflected in the actual Formula where
no arguments is being given in the global case (Intra in kCE-index), ar-
guments related to clusters are given in the clusterwise case (Intra(k, k′) in
Davies-Bouldin), and index of an individual observation is given in the final
case (Intra(xi) in Silhouette), respectively.
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Table 1 Formulas of cluster validation indices

Abbr Intra Inter Formula

CH J 2
K∑

k=1

nkd(ck,m)2 K−1
N−K

× Intra
Inter

DB Jk

nk
+ Jk′

nk′
d(ck, ck∗)

1
K

K∑
k=1

max
k 6=k′

Intra(k,k′)

Inter(k,k′)

DB∗ Jk

nk
+ Jk′

nk′
d(ck, ck∗)

1
K

K∑
k=1

max
k 6=k′

Intra(k,k′)

min
k 6=k∗

Inter(k,k∗)

GD max Jk

nk
min
k 6=k′

d(ck, ck′)
2×Intra
Inter

KCE J 2 1 K × Intra

PBM J
N∑

i=1

d(xi,m)× max
k 6=k′

d(ck, ck′)
(
K×Intra

Inter

)2
RT 1

N
J min

k 6=k′
d(ck, ck′)

Intra
Inter

SIL See text See text 1
N

N∑
i=1

Inter(xi)−Intra(xi)

max(Intra(xi),Inter(xi))

WB J 2
K∑

k=1

nkd(ck,m)2 K × Intra
Inter

WG d(xi, ck) min
k 6=k′

d(xi, ck′)
K∑

k=1

∑
xi∈Ck

Intra(xi)

Inter(xi)

3 Experiments and Results

Eight synthetic two dimensional data sets coinciding with our previous study
were selected12. Experiment were performed using MATLAB (R2018b, 64-
bit) and the same algorithm settings were used in clustering as in Niemelä
et al. [13]: removing data components completely at random, discarding fully
incomplete observations, minmax-scaling data to a range [−1, 1], perform-
ing initialization in an iterative manner, using previously selected prototypes
with K-means++ initialization algorithm, ranging K from 2 to 20, using 100
replicates in each clustering, and selecting final solutions as the lowest clus-
tering error for the each value of K. Mean vectors and covariance matrices of
incomplete multivariate normal data were estimated using ecmnmle method
which was provided in MATLAB’s Financial Toolbox.

Table 2 presents median calculation times and root mean square errors
when clustering was performed with (EED, second row of results in each cell
of Table 2) and without (ADS, first row of results in each cell of Table 2)
distance estimation for all synthetic data sets. The clustering and missing

1 http://cs.uef.fi/sipu/datasets/
2 http://users.jyu.fi/~mapeniem/CVI/Data/
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Table 2 The median calculation times and the obtained root mean square errors
after repeated clustering. The numbers of observations are given in the brackets in
the second row of the table.

ADS S1 S2 S3 S4 S2D2 S5D2 O200 O2000
EED (5000) (5000) (5000) (5000) (2000) (2970) (200) (2000)

Time(s)∗+ 12.670 15.520 21.030 23.270 1.090 4.090 1.470 5.030
14.460 17.440 18.410 22.900 0.890 3.140 1.080 2.330

SD(s)∗+ 2.100 2.300 2.920 3.060 0.140 0.670 0.120 0.610
2.203 1.973 2.054 4.544 0.067 0.389 0.238 0.198

RMSE 0.005 0.006 0.013 0.013 0.049 0.073 0.054 0.034
0.002 0.002 0.004 0.004 0.024 0.017 0.028 0.006

∗ By Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz processor
without parallelization
+ Times were measured through 100 replicates in clustering

values generation were repeated 100 times using 20 % of missing values in
the data. The correct numbers of clusters were used in every repetitions. The
root mean square errors were calculated between the real centroids and the
obtained clustering results. Regarding to the errors, the EED method pro-
vided better results with all data sets, especially with the S5D2 and O2000.
In addition, the EED showed almost the same computational complexity as
the traditional ADS with the largest S1–S4 data sets and to be faster with
the rest of data sets.

Figure 1 shows clustering results through 100 repetitions for O200 and
S5D2 data sets which consisted of 20 % re-generated missing values in each
repetition. The obtained cluster prototypes are illustrated with the black
circles. The original data centroids are visualized with the filled red circles.
It can be seen from the figure that the variances of the clustered prototypes
are smaller around the real prototypes when the EED distance estimation
strategy was used. Further, Figure 1(e) shows some of the prototypes which
were obtained with the ADS and should belong to the sparse bottom left
cluster. However, these prototypes appeared to move towards to the dense
cluster next to it. This is illustrated with an ellipse around prototypes.

The distance estimation strategy globally utilizes information on Gaussian
distributed data while it makes decision of prototype locations and thus it
appears to offer more stable results in the cases of sparse data sets. However,
since the method is based on approximated quantities of the normal distribu-
tions, it can lead to nonoptimal solution locally, whereas the traditional ADS
based clustering can be mathematically proofed to find a local minimum of
an error function (Äyrämö [2]). This is the reason why we ended up using a
two-stage clustering approach: distance estimation based clustering method
first offers a high-quality initialization for the robust traditional method.
The whole procedure is given in Algorithm 1. The new method was com-
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(a) O200 data set (b) ADS with O200 data (c) EED with O200 data

(d) S5D2 data set (e) ADS with S5D2 data (f) EED with S5D2 data

Fig. 1 Clustering results of repeated clustering for two synthetic data sets using
spatial median with and without distance estimation. The data sets consisted of 20
% missing values.

Algorithm 1 Spatial median clustering based on distance estimation
Input: Data set Xm with missing values and the number of clusters K

Select initial prototypes in an iterative manner by using previously
selected prototypes and K-means++ algorithm.

Calculate a mean vector and a covariance matrix of the Xm.
repeat

1. Estimate distances between observations and prototypes by Eq. (3).
2. Assign individual observation to the closest prototype.
3. Recompute prototypes with the assigned observations.

until The final convergence
Repeat steps 2 and 3 without distance estimation.

Output: K partitions and prototypes of the given data set

pared against spatial median without distance estimation in the experiments
related to the cluster validation.

Table 3 summarizes the results of the cluster validation indices. Accord-
ing to the table, the two-stage clustering approach notably improved the
performance of most of the indices. Especially, the results improved in the
cases of O200 and S5D2 data sets which were the most demanding for the
indices. Calinski-Harabasz was the best performing index which always
recommended the correct numbers of clusters with the new approach. The
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results of the Calinski-Harabasz were promising also without distance es-
timation since only in two out of 32 cases the index did not recommend the
correct solutions. Other well performing indices were kCE-index, Ray-Turi,
and Silhouette which recommended very often the correct numbers of clus-
ters over all test cases.

The indices were implemented to use the ESD or EED distance estimation
strategy. The strategy was selected based on the squared (ESD) or non-
squared (EED) index formula (see Table 1). However, the distance estimation
decreased the performance of most of the indices. Only Silhouette and
Wemmert-Gançarski benefited from the estimation. Against other indices,
Silhouette and Wemmert-Gançarski calculate Inter using distances between
observations and their neighboring centroids or clusters (see Table 1 and Eq.
(4)). Hence, distances were needed to be calculated more accurately for these
two indices which is a good reason why the performance gain was obtained.
Since distance estimation offered only marginal benefit with these two indices,
we do not report results here.

4 Discussion

Let us briefly reflect the obtained results to the results of our previous study
in Niemelä et al. [13]. The performance increased with most of the indices
only by changing the clustering method to use the robust spatial median.
The new estimation strategies yielded to performance gain. In eight over ten
cases the results were at least equal, and in most of those (seven cases) better
compared to the results of K-means with the partial distance strategy. How-
ever, Wemmert-Gançarski, which was the best performing index in Niemelä
et al. [13], benefited the least from the current changes. Also, the results
of Pakhira-Bandyopadhyay-Maulik were not improved, whereas especially
Calinski-Harabasz and Ray-Turi were improved to recommend more often
the correct number of clusters. The partial distance strategy was tested also
in the current study but we noticed that the ADS performed better with the
spatial median and, therefore, the results of the strategy were not reported
here.

The new clustering method did not increase the computational complex-
ity of the clustering. More specify, data vectors and variances were needed
to be estimated only once for each observation which consisted missing val-
ues. This was done before the local refinement step of the prototype-based
clustering (see Algorithm 1). Surprisingly, the calculation times were even
smaller compared to the traditional spatial median clustering in cases of
small data sets. However, all the data sets were only two dimensional and,
hence, provided minimal challenge for the EED. In comparison, we tested the
distance estimation through the whole clustering process such as estimations
were repeated every time when cluster partitions were changed, i.e., as many
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times as final convergence was reached for each replicate of the clustering.
As expected, this approach was computationally very intensive. Further, the
performance of the indices did not improve as much that the method could
be recommended to the clustering.

5 Conclusions

In this study, the internal cluster validation indices were compared to eval-
uate the number of clusters with data sets which included various ratios of
missing values. The study differentiated from Niemelä et al. [13] by using
similar experimental settings but extending the clustering method for more
robust spatial median and utilizing the recently presented EED distance es-
timation strategy for clustering. The ESD and EED strategies were tested to
implement to the actual indices. However, the most of the indices performed
better without estimation. Thus, these results were not reported.

The study presented the new approach which performed clustering by
using two stage clustering process where data sets were first clustered by
using EED and, thereafter, the results were given as a starting point to the
traditional ADS based spatial median clustering. On average, the new method
improved the performance of the tested indices compared to the traditional
ADS without distance estimation. Improved results were especially obtained
when the data sets included 20 % of missing values. The best performing
index was Calinski-Harabasz, which together distance estimation based
clustering approach proposed always the correct number of clusters. The
very promising results were also proposed by kCE-index, Silhouette, and
Ray-Turi indices.

As it is well known, characteristics of real world data is rarely obvious.
Therefore, it will be interesting to test the new method and the best indices
with multiple of real world data sets. The special interest would be to measure
the stability of indices against different ratios of missing values when the
correct number of clusters is not clear.

Acknowledgements The authors would like to thank the Academy of Finland for
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Table 3 The determined number of clusters by internal cluster validation indices.
The bolded numbers indicate correct solutions. Each column correspond different
percentage (0, 5, 10, and 20 %) of missing values.

ADS CH DB DB∗ GD KCE
EED(∗∗)

S1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S2 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S3 15 15 15 15 15 15 15 15 15 15 15 15 4 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 4 15 15 15 15 15 15 15

S4 15 15 15 15 17 17 17 15 13 13 13 13 4 3 3 4 15 15 15 15
15 15 15 15 17 15 15 15 13 13 14 13 4 3 3 4 15 15 15 15

S2D2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

S5D2 5 5 5 4(∗) 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 4(∗)

5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5

O200 5 5 5 20 5 5 5 20 5 5 5 20(∗) 4 4 5 5 5 5 20 20
5 5 5 5 5 5 5 5 5 5 5 5 4 5 4 5 5 5 17 5

O2000 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 5 5 5 6 5
5 5 5 5 5 5 5 5 5 5 5 5 4 4 5 4 5 5 6 6

Total 8 8 8 6 6 6 6 6 6 6 6 5 3 4 5 6 8 8 6 6
8 8 8 8 6 7 7 7 6 6 6 6 3 5 5 5 8 8 6 7

ADS PBM RT SIL WB WG
EED(∗∗)

S1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S2 15 15 15 15 15 15 15 14(∗) 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S3 4 4 4 4 15 15 15 15 15 15 15 2 15 15 15 15 15 15 15 15
4 4 4 4 15 15 15 15 15 15 15 2 15 15 15 15 15 15 15 15

S4 5 5 4 4 15 15 15 13 15 14 15 14 15 15 15 15 17 16 17 16
5 5 5 4 15 15 15 14 15 15 15 15 15 15 15 15 17 16 16 15

S2D2 2 2 2 2 2 2 2 2 2 2 2 2 12 12 9 15 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 12 12 8 9 2 2 2 2

S5D2 5 5 5 4(∗) 3 3 3 3 3 3 3 3 5 5 5 6(∗) 3 3 3 3
5 5 5 5 3 3 3 3 3 3 3 3 5 5 5 5 3 3 3 3

O200 5 3 4 4 5 5 5 5 5 5 5 5 19 19 20 20 5 5 20 20
5 3 4 3 5 5 4 5 5 5 5 5 19 19 17 20 5 5 20 20

O2000 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
4 4 3 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5

Total 5 4 4 3 7 7 7 5 7 6 7 5 6 6 6 5 6 6 5 5
5 4 4 4 7 7 6 5 7 7 7 6 6 6 6 6 6 6 5 6

(∗) Correct result was found using the known centers as initial prototypes
(∗∗) Uses EED distance estimation in the first stage of clustering


