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Newton’s Method for Minimal Learning
Machine

Joonas Hamildinen and Tommi Kérkk&dinen

Abstract Minimal Learning Machine (MLM) is a distance-based supervised ma-
chine learning method for classification and regression problems. Its main advances
are simple formulation and fast learning. Computing the MLM prediction in regres-
sion requires solution of the optimization problem, which is determined by the input
and output distance matrix mappings. In this paper, we propose to use the Newton’s
method for solving this optimization problem in multi-output regression and com-
pare the performance of this algorithm with the most popular Levenberg-Marquardt
method. According to our knowledge, MLM has not been previously studied in the
context of multi-output regression in the literature. In addition, we propose new
initialization methods to speed up the local search of the second-order methods.

1 Introduction

In multi-output regression, the aim is to predict multiple real-valued target variables
all at once [2]. The most straightforward or baseline approach to build a multi-output
regression model is to train an independent regression model for each target variable
separately [12]. It has been experimentally demonstrated that using single model
for the multi-output regression can give better prediction accuracy than the single
target, vector-valued approach, especially when the target variables are correlated
[12]. Other benefits of using multi-output over single target regression are lower
computational cost, simpler models, and better model interpretability [2].
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Minimal Learning Machine (MLM) [3] is a simple method with fast learning rate
based on a linear mapping between distance matrices. These distance matrices are
computed with respect to a subset of data points referred as reference points. Ac-
coding to [7, 6], favoring well-separed reference points improves the generalization
capability of MLLM and gives more compact models. Moreover, due to the construc-
tion of the distance-based kernel, MLLM is capable to learn non-linear relations from
data. Lately, it was shown that MLM has universal approximator capability and it
can provide accurate predictions with the distance matrix regression model [6].

In the multilateration optimization problem of MLM, the predicted output is
solved from the minimization problem determined by the predicted distances with
respect to reference points. In one dimensional regression, the MLM prediction can
be computed efficiently from the predicted distances with the analytical formula
[11]. However, in the multi-output regression, such an approach can not be applied
simultaneously to all target variables and we have to use an optimization solver
to get the MLM prediction for the multidimensional output space. In the original
formulation of the MLM [3], the Levenberg-Marquardt (LM) method [10] was
recommended to be used to solve the multilateration problem. Another efficient
method to solve such optimization problems is to apply the Newton’s method [9].

In general, it is known that the second-order Newton’s method converges to local
minimum faster than the Levenberg-Marquadt method [4]. On the other hand, the
Newton’s method is more sensitive to the initialization than the Levenberg-Marquadt.
Therefore, a good initial guess is essential for the Newton’s method so that it can be
applied with the MLM reliably. In this chapter, we integrate the Newton’s method to
MLM, propose efficient initialization methods for the Newton’s method, and show
experimental comparison with the Newton’s and Levenberg-Marquadt methods for
MLM in multi-output regression. In addition, we show a comparison of the multi-
output MLM and single target MLM in multi-output regression.

2 MLLM

2.1 Formulae

In general, training and prediction with MLM is straightforward. Training of the
MLM method can be divided into three main steps:

1) Reference point selection,
2) Distance matrix computation,
3) Distance regression model computation.

The MLM training steps are depicted in Algorithm 1. In training, Step 3 is usually
the most costly. Output predicting for new inputs with the MLM can also be divided
into three steps:

1) Input space distance computation,
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2) Output space distance estimation,
3) Optimization.

The MLM output prediction steps are depicted in Algorithm 2. In output prediction,
various optimization methods can be used to solve the optimization problem which
significantly affect how accurate and efficient MLM is for new inputs.

Algorithm 1 MLM training

Input: Training input dataset X, Training output dataset Y, #reference points K.
Output: Regression model B, input space reference points R, output space reference points T.
1.1: Select set of input space reference points R from X.
1.2: Select set of output space reference points T from Y.
2.1: Compute distance matrix Dy between X and R.
2.2: Compute distance matrix Dy between Y and T.
3:  Compute distance regression model B for Dy and Dy from (3).

Algorithm 2 MLM prediction

Input: New input x, regression model B, input space reference points R, output space reference
points T.
Output: Predicted output y.
1: Compute distances in input space dy = (|[x —r{ ][, ..., [[x = rx ).
2: Estimate distances in output space § = dxB.
3: Solve multilateration problem (3) for T and §.

Given set of input data points X = {x;} II\:’ , and corresponding output data points
Y = {y;}Y,, where x; € RM and y; € R, in the training phase of MLM, a set
of rerence points R = {r,-}{i | is selected from X and T = {t,-}ili , from Y. The
number of reference points K could be also different for T and R, however, they
are usually selected equal. This simplifies the MLM formulation so that K is the
only hyperparameter to be optimized in the training. In the original derivation of
the MLM [3], the reference point selection was conducted randomly. For better
generalization and more sparser models, the RS-maximin method for the reference
point selection is preferred [7, 6]. Next, a distance matrix Dy € RNV*K for the input
space and Dy € RN*K for the output space is computed so that

(Dy)ij = lIx; —1jll, (1)

and
(Dy)ij = llyi = t;lI. 2

Finally, a linear regression model between the distance matrices Dy and Dy is
computed using the Ordinary Linear Least Squares (OLLS) [3]

B= (DxTDx)_leTDy- (3)
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To assure positive definiteness and unique solvability (see, e.g., [8]), a small positive
regularization constant & > 0 times an identity matrix I can be added to the diagonal
of the outer-product matrix to have it in the form Dy Dy + &I [7].

In the output prediction, we first compute distances in the input space for a new
input x with respect to the reference points R. In Step 2, the distance regression model
B in Eq. (3) is applied to estimate the distances in the output space with respect to
the reference points T. Finally, to predict the output, we solve the multilateration
problem, i.e., we aim to find y such that

ly — tell ~ 6k, “)

where k = 1,...,K and § = (||x—r]|],...,||x —rk||)B. This goal can be approximately
achieved by solving the least-squares optimization problem, i.e., by minimizing the
following objective function

K
I = Dy - tell® - 627 )
k=1

With the one dimensional output space, we can differentiate the objective function
(5) and set the resulting derivative to zero. This yields to the cubic equation [11]

K K K
Ky =33 0y + Y (Bif =8y + Y (66’1 — 1) = 0. (6)
i=1 i=1 i=1

i=

Solving the cubic equation with analytical formula is very fast compared to opti-
mization based approaches to compute the MLM prediction for one dimensional
regression. This MLM approach is referred as the Cubic Minimal Learning Machine
(C-MLM) [11]. For a multi-output regression, C-MLM can be used to form sepa-
rately regression models for each output variable. However, drawback of this single
target MLM approach compared to forming single regression model for multi-output
regression problem is that computational and space complexity for the MLM training
is significantly higher compared to a single model approach. Therefore, optimization
based solver for multi-outputs of the objective function (5), such as the Newton’s
method, is more preferred in terms of the computational and space complexity.

2.2 MLM using the Newton’s method

In principle, the most efficient local solver for the quadratic (actually quartic) op-
timization problem is provided by the classic Newton’s method with an iteration
step! — [ + 1 as follows:

=5 - [V2IGH] T VTG
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(e.g., [9] and articles therein). More precisely, it is straightforward to calculate the
derivative and Hessian of Eq. (5) in a matrix-vector form. The most important facet
for the efficiency of the Newton’s method is the initial guess, which should be
accurate enough to assure quadratic convergence, which is only obtained locally.

Here we suggest two simple initialization approaches for the multilateration prob-
lem. The first approach is based on considering Egs. (4) and (5) in a completely
component wise form

K m K K m 1
PN EDWIET
k=1 i=1 k=1 k=1 i=1
which yields
-0 _ 1 s O 7
yi_Ekzl(tki\/_%)i. ()

In practice, all sign combinations for all components of #° should be tested and the
candidate with the smallest value of the cost function in Eq. (5) selected. We refer
to this approach as delta+.

The second approach is based on using the K; nearest reference points given by the
prediction of the distance regression model. First, we identify K; nearest reference
points T = {f; }fz’l from T using predicted distances §. Then, the initialization is
simply given by

== ()

For K; = 1, the initial guess is the nearest reference point based on the predicted
distances. For K; = K it approaches the mean of data when K increases. Setting
1 < K; << K we get an initial guess that is based on local neighborhood of the
reference points. We refer to this approach as t-mean.

3 Experiments

Next, we describe the realization of the proposed methods and provide results from
the computational experiments. The comparative starting point for the prediction
accuracy experiments performed and reported here is the experimental conclusion
that was drawn in [7] for the multi-output classification problems: The MLM does
not overlearn so that the most accurate classifier was given by the parameter-free full
(i.e., use all observations as reference points) MLM model.
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Name Description N ML
ATP7D  Airline ticket minimum price over next 7 days for six flight cases. 296 411 6
ATP1D  Next day airline ticket price for six flight cases. 337 411 6
wQ River water quality. 1060 16 14
SCM20D Supply chain product mean price over next 20 days for 16 products. 8966 61 16
SCM1D Next day supply chain product mean price for 16 products. 9803 280 16

Table 1: Dataset description and charasteristics.

3.1 Experimental setup

In the experiments, we first focus on comparing the Newton’s method and the
Levenberg-Marquardt for the MLM with different initialization methods. For fair
comparison, we use same initialization methods for both. In addition to delta+ and
t-mean methods, we also used random reference point initialization to demonstrate
the importance of proper initial guess. All the experiments are conducted in the
MATLAB environment. For the Newton’s method, we used our own matlab im-
plementation and for the Levenberg-Marquardt the MATLAB’s Isqnonlin-function
with an option options.Algorithm = ’levenberg-marquardt’. For the both method’s
we used 107 relative step tolerance as the stopping criteria! and maximum number
of iterations to 400. Since the Levenberg-Marquardt build-in implementation also
uses the function tolerance!, we set to this to 10715 so that it will not be used as
a stopping criteria. In addition, we show comparison of the Newton’s method to
single target C-MLM. The C-MLM output prediction was implemented based on
the Algorithm 2 in [11].

We selected five multi-output regression datasets that have real-valued target vec-
tors from http://mulan. sourceforge.net/datasets-mtr.html. The charac-
teristics of the datasets are listed in Table 1, where N is the number of observations,
M is the number of input variables and L is the number of target variables. Detailed
description of the Airline Ticket Price (ATP) and the Supply Chain Management
(SCM) datasets is given in [13].

The ATP1D [13] dataset is a high-dimensional regression dataset for the next day
flight ticket prices prediction and, similarly, the ATP7D dataset is for the minimum
ticket prices prediction for the next 7 days, i.e., the whole week forward. In the ATP
datasets, these statistics are computed for the same six target flight cases. Note that
ATPI1D and ATPD7 have the same input variables. The input variables for the ATP
datasets contain information about the number of days between observation day and
the departure day of the flight, day of the week, multiple variables related to the price
statics and the quotes from all airlines.

The Water Quality (WQ) dataset consist of 14 target variables that are collected
from chemical analysis of the water quality of Slovenian rivers during a six-year
period [5]. The goal of the WQ dataset is to predict 14 chemical chemical variables

Lhttps://www.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.
html
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with the 16 biological variables which describe the living organisms (biota) of the
river.

The SCM datasets SCM 1D and SCM20D consist of regression task for 16 output
variables (product prices) which are next day mean prices (SCM1D) or 20 days mean
prices (SCM20D). These datasets are collected from the Trading Agent Competition
in SCM, where observation corresponds to single day in the competition. Input
variables are related to observed prices on an observation day and time-delayd days.

We reduced the dimensions of the ATP1D and ATP7D input datasets by using
the binary random projection [1] resulting to M = 50 dimensional input data. This
way we can avoid distance matrix singularity issues, because originally the input
dimension was very high and the number of data points relatively low. Use of the
dimension reduction also decreases the computational load in distance calculations.
Input and output datasets were then minmax-scaled to the range of [0, 1].

In each trial, we used a random partition of the whole dataset into training (%) and
testing sets (%). We repeated these trials for each method ten times and averaged the
results. For the prediction accuracy, we used the Root Mean Squared Error (RMSE)
and computational cost of the optimization method was compared by tracking the
number of iterations needed for the convergence. The RS-maximin method [6] was
used for the reference point selection and the relative number of reference points
K,er = 100 Ntfiz — was varied as {10,20,...,100}. For the delta+, we selected the
initial point corresponding to the smallest objective function (5) value out of two
sign combinations: y° with only using the plus-sign or the minus sign in equation
(7). For t-mean we fixed K; = 5.

Let us summarize the computational complexity related to the experiments.
Clearly, higher number of observations N, higher input dimension M, and higher-
dimensional output L (vai C) increase the computational burden within the methods.
With respect to these parameters, the increase is linear because these parameters only
affect the computation of the distance matrices D and D, in (1) and (2), respectively.
The core parameter affecting the overall computational complexity of the methods
is K (number of reference points). Computationally the most demanding operation
is to solve the linear distance regression equation in (3), since, e.g., basic form of
a Cholesky factorization needs O(K?) operations. Because of these considerations,
the scalability of the methods concerning the parameters defined in Table 1 will be
studied with respect to K only.

3.2 Results

3.2.1 Computational cost

The #iterations are plotted as a function of K,.; in Figure 1. There is almost an
order of magnitude difference between the Newton’s and LM method, the Newton’s
method clearly performs better than the LM method in terms of #iterations. The
execution time (wall-clock and CPU time) of the LM method was even two orders
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Fig. 1: #Iterations as a function of K,..; for the Newton’s and LM method.
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Fig. 2: CPU time as a function of K,..; for single target C-MLM and MLM using the

Newton’s method.

of magnitude slower than the Newton’s method, this probably due to MATLAB’s
build-in implementation’s high initial computational cost of the wrapper functions.
Therefore, #iterations give more realistic comparison of the execution time between

these methods.

The random approach for the initialization performs clearly worst for both opti-
mization methods. For the two largest datasets, SCM 1D and SCM20D, both methods
convergence fastest with the t-mean initialization. Performance of the delta+ com-
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pared to other methods varies for different datasets, but in overal, also that method
gives faster convergence for both methods than the random approach.

In addition, we compared the execution time for the single target C-MLM and the
MLM with the Newton’s method using the t-mean initialization. In general, training
time of the single target C-MLM is clearly higher than the MLM with the Newton’s
method and the prediction time with the single target C-MLM is about equal or
worse. Note that the initialization time of the Newton’s method is also included in
the prediction time. Results for the largest dataset are shown in Fig. 2. For the output
prediction, the time difference increases when K increases.

3.2.2 Accuracy

Results for the prediction accuracy are summarized in Fig. 3. The single target C-
MLM is the most accurate method for all the datasets. Even for the K,.; = 10 it
is more accurate than the full MLM model (K,.; = 100) with both optimization
methods. As expected, the random initialization approach leads to worse RMSE
results for the Newton’s method but also slightly for the LM method, due to possible
convergence to a bad local minimum. The delta+ and t-mean initialization seem to
give similar level of the RMSE accuracy for the prediction.

4 Discussion

The proposed initialization approaches for the optimization based solvers of the
MLM'’s second phase objective function (5) can significantly affect to the general-
ization accuracy and convergence rate of the whole MLM method. Especially with
the Newton’s method, a proper initial guess needs to be used. The LM method is
more robust to a bad initialization than the Newton’s method, however, a good ini-
tialization also improves the convergence rate of LM. Using the Newton’s method
for the MLM output prediction can provide performance benefits over LM if the
initial guess is close enough to the global solution.

However, because there are some differences in the generalization accuracy be-
tween the different initialization methods, we suggest generating multiple different
initialization candidates provided by the proposed methods and then select the initial
solution corresponding to the smallest objective function value. For delta+ we can
achieve this by testing multiple different sign combinations and for t-mean we can
vary K, variable. This could be alternated based on the demands of the application. If
the number of reference points is tuned, e.g., with cross-validation based approach,
generating just one initialization candidate is probably enough to capture the optimal
K value.

Based on the results for the five real-valued multi-output regression datasets we
ended up with the similar observation than in [7]: the MLM over-learning does not
seem to occur! This implies that the reference point selection is more an issue to
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Fig. 3: MLLM Prediction accuracy as a function of K,..;.

balance the computational cost and accuracy rather than to fine-tune the model for
the optimal accuracy in the context of multi-output regression.

Based on the results, computational costs for the training and prediction are clearly
higher in the multi-output regression for the single target C-MLM than when using the
single model based MLM approach. On the other hand, using single target C-MLM
regression models improves the accuracy compared to the single model approach.
Therefore, the single target C-MLM should be considered for multi-output regression
rather than the single MLM model if the computational cost remains reasonable and
on the acceptable level.

5 Conclusions

In this chapter, we proposed and tested the Newton’s method for the MLM output
estimation in the context of multi-output regression. The MLM output estimation in
regression requires to solve an optimization problem, where the algorithm details
have significant effect to the accuracy and computational cost of the MLM.
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Based on the experiments with five multi-output regression datasets, forming
the MLM multi-output model with the single target MLM models is more accurate
approach than using a single MLM model for all the targets. However, the compu-
tational cost for the MLM training and prediction can be clearly reduced when the
regression problem has several targets by using the Newton’s method with some loss
in the generalization accuracy. How significant this loss is depends on the application.

The Newton’s method convergences up to an order of magnitude faster than
the Levenberg-Marquadt method for the MLLM optimization problem with solving
the MLM optimization equally well when the proper initial guess is given. We
recommend selecting initial point corresponding to the smallest MLM objective
function value out of multiple different initialization approaches for the Newton’s
method. In the future work, a possibility integrate/modify algorithms from the state-
of-the-art multi-output regression approaches to the MLM should be studied.
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