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We extend the applicability of the hydrodynamics, perturbative QCD and saturation -based EKRT (Eskola-
Kajantie-Ruuskanen-Tuominen) framework for ultrarelativistic heavy-ion collisions to peripheral collisions by
introducing dynamical freeze-out conditions. As a new ingredient compared to the previous EKRT computations
we also introduce a nonzero bulk viscosity. We compute various hadronic observables and flow correlations,
including normalized symmetric cumulants, mixed harmonic cumulants, and flow–transverse-momentum corre-
lations, and compare them against measurements from the BNL Relativistic Heavy Ion Collider (RHIC) and the
CERN Large Hadron Collider (LHC) . We demonstrate that the inclusion of the dynamical freeze-out and bulk
viscosity allows a better description of the measured flow coefficients in peripheral collisions and enables the
use of an extended centrality range when constraining the properties of QCD matter in the future.

DOI: 10.1103/PhysRevC.106.044913

I. INTRODUCTION

Heavy-ion collisions at ultrarelativistic energies provide
the means to produce and investigate experimentally quark-
gluon plasma (QGP), a strongly interacting fluid of quarks
and gluons. In recent years the two main collider experiments
that have investigated QGP properties are the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Labo-
ratory (BNL), and Large Hadron Collider (LHC) at CERN.
In these experiments a small, short-lived, fluid-like behaving
droplet of strongly interacting matter is created at nearly zero
net-baryon density. The matter properties of QGP such as its
equation of state (EoS) and transport coefficients are reflected
in the detailed behavior of various experimental observables;
see, e.g., Refs. [1–7].

The equation of state of strongly interacting matter at zero
net-baryon density is currently well known from lattice-QCD
computations, and the expected transition temperature Tc ≈
150–160 MeV [8–11] from hadronic matter to QGP is well
within the reach of the LHC and RHIC experiments. Currently
there are some experimental constraints on the equation of
state [12–14], but even the lattice-QCD data allows some free-
dom in the EoS parametrizations [15]. The best knowledge
about the transport properties of QCD matter is coming from
the global fits of fluid dynamical computations to the available
low-pT data from RHIC and LHC [15–22]. Currently, at least
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within the given models, the shear viscosity at temperatures
near the QCD transition temperature is quite well constrained.
However, the same cannot be said about the bulk viscosity.
Even if the different analyses are based on very similar un-
derlying models, the final constraints on the bulk viscosity
can differ quite significantly depending on the details of the
selected data and fine details of the models.

The experimental information about the collective dy-
namics and the spatial structure of the initial conditions is
primarily encoded in the flow measurements. The most basic
quantities are the Fourier components of the azimuthal hadron
spectra, usually called the flow coefficients vn. The measured
flow coefficients reflect the collective fluid dynamical behav-
ior of the system, as they are generated during the evolution
of the system when the initial spatial inhomogeneities are
converted into momentum-space anisotropies. In the fluid
dynamical limit the driving force for this conversion is the in-
homogeneous pressure gradients, and the effectiveness of the
conversion is dictated by the EoS and the transport properties
of QCD matter.

In the actual collisions the flow coefficients fluctuate
strongly from event to event, and the fluctuations need to
be explicitly considered when modeling the collisions. The
presence of the flow fluctuations complicates the modeling,
but at the same time they offer also a possibility to probe the
initial conditions and the spacetime evolution in much greater
detail. For example, the relative fluctuation spectra of the
elliptic flow coefficient v2 are practically independent of the
QCD matter properties, and reflect mainly the initial density
fluctuations, giving thus a way to directly constrain the initial
particle production [23], at least at the LHC energies; see the
discussion in Ref. [24]. Moreover, the various observables
measuring the correlations between the flow coefficients react
to the matter properties and initial conditions in a nontrivial
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way, and offer further constraints on both of them. In partic-
ular, the correlations cannot be trivially reproduced just by
reproducing the flow coefficients themselves [25].

The aim of this paper is to calculate various measur-
able flow-correlators by using relativistic second-order fluid
dynamics with QCD-based initial conditions. The main ingre-
dients that go into the computation are the matter properties,
equation of state and transport coefficients, initial conditions
for the fluid dynamical evolution given by the primary pro-
duction of particles, and finally the conditions when the fluid
dynamical evolution ceases and the fluid decouples into free
hadrons.

The initial conditions are computed by using the per-
turbative QCD based EKRT (Eskola-Kajantie-Ruuskanen-
Tuominen) saturation model [25,26], where the primary
quantity is the minijet transverse energy computed in next-
to-leading order perturbative QCD. The low-pT production
of the particles is then controlled by a saturation conjecture,
detailed in Sec. II. The EKRT saturation model is the main
feature that gives a predictive power to our computation.
Once the framework is fixed at some collision system, e.g.,
in central Pb + Pb collisions at the LHC, the collision energy,
centrality, and nuclear mass number dependence of hadronic
observables are predictions of the model [25,27–29]

Once the initial conditions are given, the remaining inputs
to the fluid dynamical computation are the matter properties.
The EoS is provided by the s95p parametrization of lattice-
QCD results [30], and the specific shear viscosity η/s, is
parametrized such that it has a minimum around the QCD
transition temperature. As a new ingredient compared to the
previous EKRT computations we introduce nonzero bulk vis-
cosity, parametrized such that it is peaked close to Tc. The
main impact of bulk viscosity is to reduce the average pT

of hadrons [6]. This allows us to relax our earlier [25,27–
29] rather high chemical freeze-out temperature Tchem = 175
MeV, in order to better reproduce the measured identified
hadron abundances, while still reproducing the measured av-
erage transverse momentum of hadrons.

Another new feature in the computation is the dynamical
condition to decouple the system into free hadrons. The earlier
EKRT results were computed using a constant-temperature
decoupling at Tdec = 100 MeV. It can be argued that the
system decouples when the mean free path of hadrons is
larger than the size of the system. The mean free path is a
function of temperature, and if the system size is fixed the
condition gives a constant temperature. However, the system
size actually changes as function of time when the system
expands, and moreover the system size varies from colli-
sion to collision: Central nuclear collisions produce a much
larger system than peripheral ones. In order to account for
the differences in the size of the systems, we introduce two
conditions for decoupling. The global condition compares
the overall size of the system to the mean free path, or
here rather to the relaxation time in the second-order fluid
dynamics, and the local condition that requires that the Knud-
sen number Kn, the ratio of microscopic and macroscopic
length or time scales, is sufficiently small for the fluid dy-
namics to be applicable [31,32]. We note that this approach,
in particular the global condition, is slightly different from

the earlier works where dynamical decoupling was developed
[33,34].

The main advantage of using dynamical decoupling,
besides that it is physically better motivated than the constant-
temperature decoupling, is that it allows one to extend the
agreement between the fluid computation and the measured
flow coefficients towards peripheral nuclear collisions. In
particular, the success of fluid dynamics in reproducing the
flow coefficients in high-multiplicity proton-nucleus colli-
sions [35–42] suggests that fluid dynamical models should
then also describe peripheral nuclear collisions with similar
hadron multiplicities.

This paper is organized in the following way: In Sec. II
we shortly review the EKRT saturation model. In Sec. III
we introduce the second-order fluid dynamics, and give the
parametrizations of shear and bulk viscosities, and the corre-
sponding corrections to the hadron momentum distributions.
In Sec. IV we detail the dynamical freeze-out conditions, and
in Sec. V we introduce the definitions of the experimental
observables. The results from the computations are given in
Sec. VI, where we show the new results with bulk viscosity
and dynamical decoupling and compare those to the earlier
predictions of the EKRT model. Finally the summary and
conclusions are given in Sec. VII.

II. INITIAL CONDITIONS

The initial energy density profile is computed by using the
EKRT saturation model [25,26,43,44]. It is based on the next-
to-leading-order perturbative QCD (pQCD) computation of
transverse energy (ET ) production, controlled by the low-pT

cutoff scale p0 determined from the local saturation condition
[44],

dET

d2r
(TATA(r), p0,

√
sNN , A,�y, b, β ) =

(Ksat

π

)
p3

0�y, (1)

where �y is the rapidity interval, b is the impact parameter,
Ksat quantifies the uncertainty in the onset of saturation, and β

quantifies the freedom in the NLO ET definition with low-pT

cutoff. The solution p0 = psat of the saturation condition then
inherits the

√
sNN and A dependence from the NLO pQCD

computation of ET , and the nuclear geometry enters through
the product TATA of the nuclear thickness functions,

psat = psat(TATA(r),
√

sNN , A,�y, b, Ksat, β ). (2)

The local energy density at the formation time τs = 1/psat can
then be written using psat as

e(r, τs(r)) = dET (psat )

d2r
1

τs(r)�y
= Ksat

π
[psat (r)]4. (3)

At each point in the transverse plane the energy density
is further evolved into a common initialization time τ0 =
1/psat,min ≈ 0.2 fm by using (0 + 1)-dimensional Bjorken
expansion, where the minimum saturation scale psat,min =
1 GeV. Below this scale the computed energy density pro-
file is connected smoothly to the e ∝ TATA profile. As
in the earlier works, we take β = 0.8, and Ksat is fixed
from the charged particle multiplicity measured in central
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√
sNN = 2.76 TeV Pb + Pb collisions. For further details and

explicit parametrizations of psat, see Refs. [25,27,28].
The nuclear thickness functions are computed by first ran-

domly sampling the nucleon positions from the Woods-Saxon
nucleon density profiles. The Au and Pb nuclei are taken as
spherical with a radius R = 6.38(6.7) fm for Au (Pb), and a
thickness parameter d = 0.55 fm. As in Ref. [45], in the case
of Xe we take into account the deformation by introducing the
parameters β2 = 0.162 and β4 = −0.003 [46]. The Xe radius
is R = 5.49 fm and the thickness parameter d = 0.54 fm.

The nuclear thickness functions are then computed by sum-
ming up the individual nucleon thickness functions,

TA(r) =
∑

i

Tn,i(ri − r), (4)

where Tn is a Gaussian with a width σ = 0.43 fm. The event-
by-event fluctuations emerge from the random positions of
the nuclei, and impact parameter: The fluctuating TATA profile
leads to a fluctuating energy density profile through the TATA

dependence of the saturation scale in Eq. (3).
A randomly sampled collision event, i.e., the nucleon po-

sitions in the nuclei and the impact parameter between the
two nuclei, is accepted using a geometric criterion: We re-
quire that there is at least one pair of colliding nucleons
with a transverse distance less than

√
σNN/π , where σNN

is the inelastic nucleon-nucleon cross section. Here we take
σNN = 42 mb in

√
sNN = 200 GeV Au + Au, σNN = 64 mb

in
√

sNN = 2.76 TeV Pb + Pb, σNN = 70 mb in
√

sNN =
5.023 TeV Pb + Pb, and σNN = 72 mb in

√
sNN = 5.44 TeV

Xe + Xe collisions. We emphasize that this criterion is only
used as a condition that nuclear collision happens at all; it is
not needed in the computation of the initial profile.

III. FLUID DYNAMICAL EVOLUTION
AND PARTICLE SPECTRA

After the hot strongly interacting system is produced at
τ0 ∼ 1/psat, the subsequent spacetime evolution is computed
using relativistic dissipative fluid dynamics. The basic equa-
tions of fluid dynamics are the local conservation laws of
energy, momentum, and conserved charges like net-baryon
number. These can be expressed in terms of the energy-
momentum tensor and charge four-currents as ∂μT μν = 0 and
∂μNμ

i = 0. In what follows we shall neglect the conserved
charges so that it is sufficient to consider only the energy-
momentum tensor. It can be decomposed with respect to the
fluid four-velocity uμ as

T μν = euμuν − P�μν + πμν, (5)

where the fluid velocity is defined in the Landau picture,
i.e., as a timelike, normalized eigenvector of the energy mo-
mentum tensor, T μ

ν uν = euμ. Here e = T μνuμuν is the local
energy density, P = − 1

3�μνT μν is the isotropic pressure, and
πμν = T 〈μν〉 is the shear-stress tensor. The angular brackets
denote the projection operator that takes the symmetric and
traceless part of the tensor that is orthogonal to the fluid
velocity, i.e., A〈μ〉 = �μνAν and

A〈μν〉 = 1
2

[
�μ

α�ν
β + �

μ
β�ν

α − 2
3�μν�αβ

]
Aαβ, (6)

where �μν = gμν − uμuν , and gμν is the metric tensor for
which we use the gμν = diag(+,−,−,−) convention. The
bulk viscous pressure is defined as � = P − P0, where P is
the total isotropic pressure and P0 is the equilibrium pressure.

The conservation laws are exact, but they do not give suf-
ficient constraints to solve the evolution. The simplest fluid
dynamical theory follows by neglecting the dissipative effects
completely. In that case the system is always in a strict thermal
equilibrium, entropy is conserved, and the equation of state in
the form P0 = P0(e) closes the system. The dissipation plays,
however, a significant role in the evolution of the system in
heavy-ion collisions, and it cannot be readily neglected. The
dissipative effects are contained in the shear-stress tensor and
in the bulk viscous pressure. Therefore the remaining task is to
write evolution equations for them. In the formalism of Israel
and Stewart [47] the equations take the form

τ�

d

dτ
� + � = −ζθ − δ���θ + λ�ππμνσμν, (7)

τπ

d

dτ
π 〈μν〉 + πμν = 2ησμν + 2τππ 〈μ

α ων〉α

− δπππμνθ − τπππ 〈μ
α σ ν〉α

+ϕ7π
〈μ
α πν〉α + λπ��σμν, (8)

where σμν = ∇〈μuν〉 is the strain-rate tensor, ωμν =
1
2 (∇μuν − ∇νuμ) is the vorticity tensor, and θ = ∇μuμ is
the expansion rate. The shear and bulk relaxation times
are denoted by τπ and τ� respectively, while first-order
transport coefficients are the shear viscosity η and the
bulk viscosity ζ . The coefficients of the nonlinear terms
δ��, λ�π, δππ , τππ , ϕ7, λπ� are second-order transport coef-
ficients. Formally these equations can be derived from kinetic
theory [47–54], by expanding around equilibrium and keep-
ing terms up to the first order in gradients (or Knudsen
number, a ratio of microscopic and macroscopic time/length
scales, such as Kn ∼ τπ∇μuμ, [55]), second order in inverse
Reynolds number ∼πμν/P0, and product of Knudsen number
and inverse Reynolds number.

In this work the fluid dynamical setup is the same as in our
previous works [4,5,25,27,28], i.e., we assume boost-invariant
longitudinal expansion, so that it is enough to solve the
equations of motion numerically in (2 + 1) dimensions [56].
The second-order transport coefficients in the Israel-Stewart
equations are taken from the 14-moment approximation to
massless gas [48,49,51] and bulk-related coefficients are from
Ref. [57], i.e.,

δ�� = 2

3
τ�, λ�π = 8

5

(
1

3
− c2

s

)
τ�, δππ = 4

3
τπ

τππ = 10

7
τπ , ϕ7 = 9

70P0
, λπ� = 6

5
τπ , (9)

where c2
s is the speed of sound. The shear and bulk relaxation

times are given by

τπ = 5η

e + P0
, τ� =

(
15

(
1

3
− c2

s

)2

(e + P0)

)−1

ζ . (10)
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FIG. 1. Shear viscosity to entropy density ratio as a function of
temperature.

The remaining input to the equations of motion are the equa-
tion of state and the temperature dependence of the shear and
bulk viscosities.

The parametrizations of the shear viscosity to entropy
density ratio are shown in Fig. 1, where η/s = 0.20 and
η/s = param1 are the same as implemented in earlier works
[25,27,28]. The new parametrization η/s = dyn has a similar
linear QGP part as the previous parametrizations while the
hadronic part follows a power law, with power PH , reaching its
minimum (η/s)min at temperature TH followed by a constant
part with width Wmin, i.e.,

η/s(T ) =
⎧⎨
⎩

(η/s)min + SH T
((

T
TH

)−PH − 1
)
, T < TH

(η/s)min, TH � T � TQ

(η/s)min + SQ(T − TQ), T > TQ,

(11)
where SH and SQ are the slope parameters below TH and above
TQ = TH + Wmin, respectively. The bulk viscosity is included
together with the new η/s = dyn parametrization and its ratio
to entropy density is plotted as a function of temperature
in Fig. 2. Formally our paramaterization is written in the
form

ζ/s(T ) = (ζ/s)max

1 +
(

T −T ζ/s
max

w(T )

)2 , (12)

w(T ) = 2(ζ/s)width

1 + exp
(

aζ/s (T −T ζ/s
max )

(ζ/s)width

) , (13)

where (ζ/s)max, T ζ/s
max, (ζ/s)width, and aζ/s are free parameters.

The asymmetry parameter aζ/s describes the asymmetry of
the bulk viscosity peak in such a way that aζ/s = 0 gives a
completely symmetric peak. For the EoS we use the s95p
parametrization [30] of the lattice QCD results that includes
the chemical freeze-out, implemented as effective chemical
potentials in the hadronic part of the EoS [58–60]. The earlier
η/s = 0.20 and η/s = param1 parametrizations use chemical

FIG. 2. Bulk viscosity to entropy density ratio as a function of
temperature.

freeze-out temperature Tchem = 175 MeV while the η/s =
dyn parametrization uses Tchem = 155 MeV.

The transverse momentum spectra of hadrons are ob-
tained by computing the Cooper-Frye freeze-out integrals on
the kinetic decoupling surface for the hadrons included in
the hadronic part of the EoS. The two- and three-body de-
cays of unstable hadrons are accounted for. For the earlier
parametrizations η/s = 0.20 and η/s = param1 the kinetic
decoupling surface is set to a constant Tdec = 100 MeV tem-
perature hypersurface while the η/s = dyn parametrization
uses dynamical criteria (see Sec. IV for details) to determine
the decoupling surface. The Cornelius algorithm [61] is em-
ployed to find the decoupling surface. The viscous correction
δ fi to each single-particle equilibrium momentum distribu-
tion, needed in the Cooper-Frye integrals, is implemented as
in Refs. [2,62–64],

δ fi = − f0i f̃0i
Cbulk

T

[
m2

3Ek
−

(1

3
− c2

s

)
Ek

]
�

+ f0i f̃0i

2T 2(e + P0)
πμνkμkν, (14)

where kμ is the four-momentum of a given hadron, Ek = uμkμ

is the energy of the hadron in the local rest frame, f0i is its
equilibrium distribution, and f̃0i = 1 ± f0i, with + (−) for
bosons (fermions). The coefficient Cbulk is determined from

1

Cbulk
=

∑
i

gim2
i

3T

∫
d3k

(2π )3k0
f0i f̃0i

[
m2

i

3Ek
−

(1

3
− c2

s

)
Ek

]
.

(15)
Here gi is the degeneracy factor of a given hadron species i,
and the sum includes all the species in the EoS.

The fluid dynamical evolution and the transverse mo-
mentum spectra are computed for each collision event. The
events are then grouped to the centrality classes according
to the final charged particle multiplicities. However, if the
experiments report the centrality of the collision by using
the number of wounded nucleons, we can compute it by
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TABLE I. Numerical values of the
fit parameters used in the current study.

Initial state

Ksat 0.67
Shear viscosity

(η/s)min 0.11
TH (MeV) 135
SH (GeV−1) 0.025
SQ (GeV−1) 0.3
Wmin (MeV) 35
PHG 8.0

Bulk viscosity

(ζ/s)max 0.09
(ζ/s)width (MeV) 60
T ζ/s

max (MeV) 240
aζ/s −0.5

Dynamical freeze-out

CKn 0.8
CR 0.15

using the geometric collision criterion detailed at the end of
Sec. II.

Numerical values of the parameters used here for the η/s =
dyn parametrization are shown in Table I. The initial state
parameter Ksat is tuned to produce the same charged particle
multiplicity in 2.76 TeV Pb + Pb collisions as obtained in
the ALICE measurements. Parameters of the shear viscosity
and the dynamical freeze-out are iteratively adjusted to obtain
results that match with ALICE measurements of vn{2} in
2.76 TeV Pb + Pb collisions. Further tuning of the hadronic
part of the η/s parametrization is done to also match STAR
measurements of vn{2} in central to mid-central 200 GeV
Au + Au collisions. The chemical freeze-out temperature is
adjusted together with the parameters of bulk viscosity to
achieve a good simultaneous agreement of the pion average
pT and the proton multiplicity.

We note that the idea here is that bulk viscosity in hadronic
evolution is mainly described by chemical freeze-out [65–67].
In chemical freeze-out the corresponding bulk relaxation time
is formally infinite, or at least much longer than the evolution
time of the system, and the dynamics of the bulk pressure
related to the nonequilibrium chemistry in this case cannot
be readily computed using Israel-Stewart type of theory that
assumes that the relaxation times are smaller than the evolu-
tion timescale. Instead, the bulk viscosity that is parametrized
here should be thought as the residual bulk viscosity that
is not included in the partial chemical freeze-out formal-
ism [60]. In practice, the condition that low-temperature
bulk viscosity is described mainly by chemical freeze-out
is set by adjusting the asymmetry parameter aζ/s in the
parametrization such that bulk viscosity over entropy density
becomes very small near and below the chemical freeze-out
temperature.

We want to emphasize here that this is only one exam-
ple parametrization which seems to give a good agreement

with the LHC and RHIC measurements. To get more detailed
estimates of the parameters and their errors and correlations,
a global analysis of heavy-ion observables and the parameter
space is needed.

IV. DYNAMICAL FREEZE-OUT

When modeling heavy-ion collisions using hydrodynamics
the kinetic freeze-out is usually set to take place at a constant-
temperature hypersurface. The basic argument is that the fluid
decouples into free particles when the temperature dependent
mean free path of the particles becomes of the same order as
the size of the system R, i.e., λmfp(T ) ∼ R. If the system size
was a constant, this condition would give a constant freeze-
out temperature. However, in reality the system size changes
as a function of time, and moreover it can differ significantly
from collision to collision. In particular, the systems created
in central collisions are much larger than the ones created in
peripheral collisions.

A typical way to solve this issue is to connect fluid dynam-
ics to a microscopic hadronic afterburner that automatically
takes care of the freeze-out. However, a drawback in this
approach is that it can easily lead to unphysical discontinuities
in the transport coefficients, as at typical temperatures at the
switching between fluid dynamics and hadron cascade the η/s
values in the fluid evolution are O(0.1), whereas on the hadron
cascade side they are O(1) [68–70]. Instead of a coupling to
hadron cascade, in this work we treat the whole evolution,
including the hadronic phase, using fluid dynamics. This has
the specific advantage that it allows us to keep all the trans-
port coefficients continuous throughout the whole temperature
range realized in the evolution.

In order to account for the nontrivial system size de-
pendence of the freeze-out, we determine the decoupling
surface dynamically [33,34] using two different conditions.
The applicability of fluid dynamics requires that the local
Knudsen number is sufficiently small, and fluid evolution
becomes effectively free streaming when Kn 	 1. In com-
parisons between kinetic theory and fluid dynamics it was
shown that a constant Knudsen number freeze-out in fluid
dynamics catches very well the freeze-out dynamics of the
kinetic evolution [32]. On the other hand, even if the local
condition gives that fluid dynamics is applicable, the over-
all size of the system can still be small compared to the
mean free path of the particles. In order to account for this
kind of nonlocal freeze-out, we impose a second condition
that the fluid element decouples when the mean free path
is of the same order as the system size. Hence, our dy-
namical freeze-out setup is determined by the following two
conditions:

Kn = τπθ = CKn, (16)
γ τπ

R
= CR, (17)

where CKn, CR = O(1) are some proportionality constants and
R is the size of the system. Here we have assumed that the
mean free path is proportional to the relaxation time. The addi-
tional gamma factor in the second equation takes into account
that the size of the system is calculated in the center-of-
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momentum frame of the nuclear collision, while the relaxation
time is calculated in the fluid rest frame. To make sure that
we are not in the QGP phase when freeze-out happens, we
also require that at the freeze-out surface T < 150 MeV. In
order to use latter condition (17) we need to have some kind
of estimate for the system size which, however, is not uniquely
determined. In this work we define the size of the system
as

R =
√

A

π
, (18)

where A is the area in the x, y plane in which Kn < CKn.
Additionally we take into account the possibility that the
system may consist of multiple separate areas of a fluid and
calculate the system size for each of these regions separately.
We note that our approximation of the system size is close
to the maximum length that a particle must travel from the
center to the edge of the system. In practice, however, most of
the matter is distributed closer to the edges of the system and
most of the particles are moving with the fluid also towards
the edge. For this reason the actual size of the system that
the particles see can be significantly smaller than R, and as a
result the proportionality constant CR can also be significantly
smaller than 1.

In summary, here we have on the one hand reduced a pos-
sibly complicated nonequilibrium dynamics of the hadronic
evolution in the dynamical treatment of kinetic freeze-out,
and on the other hand we treat the nontrivial chemistry in
the hadronic evolution as a constant-temperature chemical
freeze-out. While such an approach may not catch the full
microscopic details of the freeze-out dynamics, the purpose
is that it would still capture its essential features. A clear
advantage is, as mentioned above, that it allows us to keep
the transport coefficients of the matter continuous throughout
the evolution, and at the same time it also allows us to get
constraints for the hadronic part of the transport coefficients.
As we can see, the physical picture of the evolution is some-
what different from the typical hybrid hydro+cascade models,
where the low viscosity QGP evolution is immediately fol-
lowed by high-viscosity hadronic evolution. In our picture the
peripheral collisions decouple practically immediately after
the hadronization, but in the central collisions there can still be
quite long low-viscosity evolution in the hadronic phase. This
is demonstrated in Fig. 3 where the entropy-flux-weighted
average freeze-out temperature is plotted as a function of
centrality for the η/s = dyn parametrization introduced in
Sec. III. We can also notice that the average freeze-out tem-
perature is sensitive to the collision energy and size of the
colliding nuclei.

V. FLOW COEFFICIENTS AND CORRELATORS

The fluid dynamical computation gives a single-particle
transverse momentum spectrum of hadrons for each event, and
its azimuthal modulation can be expressed by its pT dependent
Fourier components vn(pT ) and the phases or event-plane

FIG. 3. Average freeze-out temperature for η/s = dyn
parametrization in 200 GeV Au + Au, 2.76 TeV Pb + Pb,
5.023 TeV Pb + Pb, and 5.44 TeV Xe + Xe collisions.

angles �n(pT ),

dN

dy d p2
T dφ

= 1

2π

dN

dy d p2
T

(
1 +

∞∑
n=1

vn(pT ) cos{n[φ − �n(pT )]}
)

.

(19)

The flow coefficients can be expressed in a convenient way by
a complex flow vector Vn as

Vn(pT ) = vn(pT )ein�n (pT ) = 〈einφ〉φ, (20)

where the angular brackets denote an average:

〈· · · 〉φ =
(

dN

dy d p2
T

)−1 ∫ 2π

0
dφ

dN

dy d p2
T dφ

(· · · ). (21)

Similarly, the pT -integrated flow coefficients can be defined
as

Vn = vnein�n = 〈einφ〉φ,pT , (22)

where the average is defined as

〈· · · 〉φ,pT =
(

dN

dy

)−1∫ 2π

0
dφ

∫ pT ,max

pT ,min
d p2

T w
dN

dy d p2
T dφ

(· · · ),

(23)
and the pT -integrated multiplicity dN

dy is defined with the same
pT integration limits pT,min and pT,max as above. In addition it
is possible to use a pT or an energy dependent weight w in the
pT integration.

In the following we will write down the expressions of
various measurable pT -integrated quantities, but suppress the
rapidity, weight, and pT integration limits from the notation.
The pT limits will be denoted explicitly when we show our
results. Unless otherwise stated, the weight function w = 1.

In the fluid dynamical simulations of heavy-ion collisions
we are working directly with continuous particle distributions.
In the experiments this is not the case, but each event is
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measured as a finite number of particles. Therefore, the
definitions above are not directly applicable, but the flow
coefficients are rather defined through particle correlations.
As an example of a two-particle correlation and its continuum
limit we can write

1

Ne(Ne − 1)

∑
pairs i �= j

einφ1 e−inφ2

−→ 1

N2

∫
dφ1dφ2

dN2

dφ1dφ2
einφ1 e−inφ2 , (24)

where Ne is the number of hadrons in the event, and
dN2/dφ1dφ2 is a two-particle distribution function that can
be written as a sum of the product of the single-particle distri-
bution functions and a direct correlation

dN2

dφ1dφ2
= dN

dφ1

dN

dφ2
+ δ2(φ1, φ2), (25)

where the direct part emerges, e.g., due to hadron decays. It
is a genuine two-particle correlation that is absent if all the
correlations between the hadrons are due to the underlying
collective flow. If the direct component can be neglected, the
two-particle correlation above can be written in the continuum
limit as

1

N2

∫
dφ1dφ2

dN

dφ1

dN

dφ2
einφ1 e−inφ2 = vnein�nvne−in�n = v2

n .

(26)

In this limit the two-particle correlator can be written in terms
of the flow coefficient. This particular correlator is referred to
as the two-particle cumulant, and its average over events gives
the two-particle cumulant vn{2},

vn{2} =
√〈

v2
n

〉
ev, (27)

where 〈· · · 〉ev denotes the average over the events. A simi-
lar reasoning leads to a multitude of flow observables. Here
we write down only the continuum limit in the absence of
direct or nonflow correlations. It should be noted, however,
that although the experimental procedures try to suppress the
nonflow part by, e.g., requiring a rapidity gap between each
pair of hadrons, it is still possible that some of the observables
are still plagued by the nonflow. With the current setup we
cannot address the nonflow part theoretically, but will assume
that the experimental techniques remove them completely.

In a naive picture one may think that the flow coefficients
are generated independently as a fluid dynamical response
to the corresponding eccentricities of the initial conditions,
vn ∝ εn. In practice, however, this picture holds only for the
elliptic flow coefficient v2 and to a lesser degree for v3 [23,71],
and even then the relation between v2 and ε2 ceases to be
linear when ε2 becomes large in noncentral collisions [25].
In general, the flow coefficients are not independent of each
other, but both the correlations between the eccentricities
in the initial conditions and the nonlinear fluid dynamical
evolution generate correlations between them. The degree of
the correlation can be measured through various observables
that correlate both the magnitudes of the flow, vn, and the
event-plane angles �n [71].

A measurable way to quantify the degree of correlation
between the flow coefficients is the so called symmetric cu-
mulant [72], defined as

SC(n, m) = 〈
v2

nv
2
m

〉
ev,N4 − 〈

v2
n

〉
ev,N2

〈
v2

m

〉
ev,N2 , (28)

where it is important to notice that the event-average is per-
formed with powers of multiplicity as a weight, as denoted
in the above equation. An advantage of this definition is that
at the particle correlation level the latter term in the defini-
tion removes the direct two-particle correlations from the first
term, which in turn is a four-particle correlator at the particle
level. Thus the direct two-particle nonflow does not affect
the symmetric cumulant. The symmetric cumulant is not a
correlator in a sense that it depends not only on the degree
of correlation between vn and vm, but also on their absolute
magnitudes. On the other hand, the normalized symmetric
cumulant, defined as

NSC(n, m) = SC(n, m)〈
v2

n

〉
ev,N2

〈
v2

m

〉
ev,N2

, (29)

is a measure of only the correlation. The downside of the
normalized version is that the normalization can be affected
by the direct two-particle nonflow contributions.

The symmetric cumulants measure only correlations in-
volving two second-order flow coefficients. The more general
mixed harmonic cumulants (MHC) were introduced in
Ref. [73] to give observables that can quantify the correlations
between between more than two flow coefficients with higher-
order moments of vn’s. Like symmetric cumulants, mixed
harmonic cumulants are also constructed in such a way that
lower order correlations are removed from multiparticle corre-
lations and the definition of MHC containing two second order
flow coefficients is identical to the symmetric cumulants, i.e.,
MHC(v2

m, v2
n ) = SC(v2

m, v2
n ). Mixed harmonic cumulants for

six-particle correlations involving moments of v2 and v3 can
be defined as

MHC
(
v4

2, v
2
3

) = 〈
v4

2v
2
3

〉
6 − 4

〈
v2

2v
2
3

〉
4

〈
v2

2

〉
2

− 〈
v4

2

〉
4

〈
v2

3

〉
2 + 4

〈
v2

2

〉2
2

〈
v2

3

〉
2,

MHC
(
v2

2, v
4
3

) = 〈
v2

2v
4
3

〉
6 − 4

〈
v2

2v
2
3

〉
4

〈
v2

3

〉
2

− 〈
v2

2

〉
2

〈
v4

3

〉
4 + 4

〈
v2

2

〉
2

〈
v2

3

〉2
2, (30)

where 〈· · · 〉i = 〈· · · 〉ev,Ni . Similarly one can define mixed har-
monic cumulants for eight-particle correlations between v2

and v3 as

MHC
(
v6

2, v
2
3

) = 〈
v6

2v
2
3

〉
8 − 9

〈
v4

2v
2
3

〉
6

〈
v2

2

〉
2

− 〈
v6

2

〉
6

〈
v2

3

〉
2 − 9

〈
v4

2

〉
4

〈
v2

2v
2
3

〉
4

− 36
〈
v2

2

〉3
2

〈
v2

3

〉
2 + 18

〈
v2

2

〉
2

〈
v2

3

〉
2

〈
v4

2

〉
4,

+ 36
〈
v2

2

〉2
2

〈
v2

2v
2
3

〉
4,

MHC
(
v2

2, v
6
3

) = 〈
v2

2v
6
3

〉
8 − 9

〈
v2

2v
4
3

〉
6

〈
v2

3

〉
2

− 〈
v2

2

〉
2

〈
v6

3

〉
6 − 9

〈
v4

3

〉
4

〈
v2

2v
2
3

〉
4

− 36
〈
v2

2

〉
2

〈
v2

3

〉3
2 + 18

〈
v2

2

〉
2

〈
v2

3

〉
2

〈
v4

3

〉
4

+ 36
〈
v2

3

〉2
2

〈
v2

2v
2
3

〉
4,
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MHC
(
v4

2, v
4
3

) = 〈
v4

2v
4
3

〉
8 − 4

〈
v4

2v
2
3

〉
6

〈
v2

3

〉
2

− 4
〈
v2

2v
4
3

〉
6

〈
v2

2

〉
2 − 〈

v4
2

〉
4

〈
v4

3

〉
4

− 8
〈
v2

2v
2
3

〉2
4 − 24

〈
v2

2

〉2
2

〈
v2

3

〉2
2

+ 4
〈
v2

2

〉2
2

〈
v4

3

〉
4 + 4

〈
v4

2

〉
4

〈
v2

3

〉2
2

+ 32
〈
v2

2

〉
2

〈
v2

3

〉
2

〈
v2

2v
2
3

〉
4, (31)

and for six-particle correlations between v2, v3, and v4 as

MHC
(
v2

2, v
2
3, v

2
4

) = 〈
v2

2v
2
3v

2
4

〉
6 − 〈

v2
2v

2
3

〉
4

〈
v2

4

〉
2

− 〈
v2

2v
2
4

〉
4

〈
v2

3

〉
2 − 〈

v2
3v

2
4

〉
4

〈
v2

2

〉
2

+ 2
〈
v2

2

〉
2

〈
v2

3

〉
2

〈
v2

4

〉
2. (32)

Analogously to normalized symmetric cumulants one defines
normalized mixed harmonic cumulants as

nMHC
(
vk

n, v
l
m

) = MHC
(
vk

n, v
l
m

)
〈
vk

n

〉
k

〈
vl

m

〉
l

, (33)

nMHC
(
vk

n, v
l
m, vq

p

) = MHC
(
vk

n, v
l
m, v

q
p
)

〈
vk

n

〉
k

〈
vl

m

〉
l

〈
v

q
p
〉
q

. (34)

A complementary observable to the symmetric cumulants,
usually referred to as the event-plane correlator, is defined as
[74]

〈cos(k1�1 + · · · + nkn�n)〉SP

=
〈
v

|k1|
1 · · · v|kn|

n cos(k1�1 + · · · + nkn�n)
〉
ev√〈

v
2|k1|
1

〉
ev · · · 〈v2|kn|

n
〉
ev

, (35)

where the kn’s are integers with the property
∑

n nkn = 0 so
that the correlator is independent of the azimuthal orientation.
Despite its name it actually measures a correlation between
both the magnitudes of the flow and event-plane angle, and
in this sense provides complementary information to the sym-
metric cumulants above.

These correlations as such provide information that is in-
dependent from the flow magnitudes themselves, and give
further independent constraints to the initial conditions and
transport coefficients. However, it is interesting that the event-
plane correlations are closely related to the magnitude of
nonlinear response to the initial conditions [75]. The basic
idea in quantifying the nonlinear response is that the complex
flow vector Vn is divided into a linear part VnL that is assumed
to correlate only with the corresponding initial state eccentric-
ity εn, and into a nonlinear part that is independent of εn [71].
If we consider the simplest possible nonlinear contributions,
we can write

V4 = V4L + χ4,22(V2)2, (36)

V5 = V5L + χ5,23V2V3, (37)

V6 = V6L + χ6,222V
3

2 + χ6,33 V 2
3 (38)

where χ ’s are the nonlinear response coefficients. Note that
the nonlinear parts include only the largest flow vectors V2 and
V3 that can also, to a reasonable approximation as discussed
above, assumed to have only the linear part V2 = V2L and V3 =

V3L. If we further assume that the linear and nonlinear parts are
uncorrelated, we may express the response coefficients as

χ4,22 = Re〈V4(V ∗
2 )2〉ev

〈|V2|4〉ev
(39)

χ5,23 = Re〈V5V ∗
2 V ∗

3 〉ev

〈|V2|2|V3|2〉ev
(40)

χ6,222 = Re〈V6(V ∗
2 )3〉ev

〈|V2|6〉ev
(41)

χ6,33 = Re〈V6(V ∗
3 )2〉ev

〈|V3|4〉ev
, (42)

and the linear parts of V4 and V5 can be written as√
〈|V4L|〉2

ev =
√

(v4{2})2 − χ2
4,22〈|V2|4〉ev, (43)√

〈|V5L|〉2
ev =

√
(v5{2})2 − χ2

5,23〈|V2|2|V3|2〉ev. (44)

The connection between the event-plane correlators and the
nonlinear response coefficients can be seen by observing, e.g.,
that

χ4,22 = 〈cos(4[�4 − �2)〉SP

√√√√〈
v2

4

〉
ev〈

v4
2

〉
ev

, (45)

so that the two measures differ by a normalization factor that
depends on the magnitude of the flow, but not on correlators.
A similar connection can also be made between the other
χ ’s. A more complete list of relations can be found from
Refs. [75,76].

Even though the nonlinear response coefficients and the
correlations between the flow harmonics give information
about the initial state eccentricities and their conversion to mo-
mentum space anisotropies, they do not directly probe the size
of the initial nuclear overlap region, which is more sensitive to
the average pT fluctuations. Thus, the correlation between the
flow coefficients and the average pT is a good probe of the
initial state structure [77]. This flow–transverse-momentum
correlation is defined by a modified Pearson correlation co-
efficient [78]

ρ
(
v2

n, [pT ]
) =

〈
δ̂v2

n δ̂[pT ]
〉
ev√〈(

δ̂v2
n

)2〉
ev

〈
(δ̂[pT ])2

〉
ev

, (46)

where the event-by-event variance at a fixed multiplicity for
some observable O is defined by

δ̂O = δO − 〈δO δN〉ev

σN
δN, (47)

δO = O − 〈O〉ev, σ 2
O = 〈(δO)2〉ev. (48)

VI. RESULTS

In this section we present the results for hadron multiplici-
ties, average pT , flow coefficients, and correlations calculated
from the EKRT pQCD + hydrodynamics framework with
the bulk viscosity and the dynamical freeze-out, and compare
these against the results from our earlier works [25,27–29]
with the constant-temperature freeze-out and without the bulk
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FIG. 4. Charged hadron multiplicity in 200 GeV Au + Au,
2.76 TeV Pb + Pb, 5.023 TeV Pb + Pb, and 5.44 TeV Xe + Xe col-
lisions. The experimental data are from the ALICE [79–81], STAR
[82], and PHENIX [83] Collaborations.

viscosity. The systems we show here are 200 GeV Au + Au,
2.76 TeV Pb + Pb, 5.023 TeV Pb + Pb, and 5.44 TeV Xe +
Xe collisions. As explained in Sec. III, the initial conditions,
the transport coefficients, and the freeze-out parameters are
fixed on the basis of 200 GeV Au + Au and 2.76 TeV data
from RHIC and LHC. For both Pb + Pb collision systems
we run 40 000 event simulations to get better statistics for
the symmetric cumulants while for other collision systems
we did 20 000 event simulations. The statistical errors for
different quantities are estimated, as in Ref. [76], via jackknife
resampling.

A. Multiplicity, average pT , and flow

In Fig. 4 we show the centrality dependence of charged
hadron multiplicities for all the above systems compared to
the STAR [82], PHENIX [83], and ALICE [79–81] data. The
essential parameter that controls the multiplicity is Ksat in
the local saturation criterion. This coefficient is fixed from
the multiplicity in 0–5% 2.76 TeV Pb + Pb collisions. The
centrality,

√
sNN , and nuclear mass number dependence are

predictions of the model. The value of Ksat depends on
the chosen η/s(T ) and ζ/s(T ) parametrizations due to the
different entropy production with different shear and bulk
viscosities. However, the final results for the multiplicities are
in practice the same for all parametrizations and they agree
excellently with the experimental data across all centrality
classes and collision energies.

The centrality dependences of identified particle multiplic-
ities for 200 GeV Au + Au, 2.76 TeV Pb + Pb, and 5.023
TeV Pb + Pb collisions are shown in Fig. 5 (left). All of the
parametizations manage to produce the same pion multiplic-
ities as the ALICE and PHENIX measurements while the
kaon multiplicities differ significantly from the experimental
data. The ratio between the proton and pion multiplicities
is mostly controlled by the chemical freeze-out temperature.
Parametrizations η/s = 0.2 and η/s = param1 use Tchem =

175 MeV in order to obtain the same average pT for pions
in 2.76 TeV Pb + Pb collisions as the ALICE measure-
ments. However this comes with the drawback that the proton
multiplicities differ from the experimental data by a fac-
tor of ∼2. The addition of the bulk viscosity in the η/s =
dyn parametrization enables the possibility to use Tchem =
155 MeV, which clearly improves the proton multiplicities.
However, there is still some discrepancy left that is most
visible in the most central collisions at the LHC.

In Fig. 5 (right) we show the average pT of identified par-
ticles as a function of centrality for 200 GeV Au + Au, 2.76
TeV Pb + Pb, and 5.023 TeV Pb + Pb collisions. Compared
to the earlier results, the η/s = dyn parametrization improves
the agreement with the experimental data across both collision
systems, except for kaons at the LHC energies. In particular,
the relative change of the proton 〈pT 〉 as a function of cen-
trality is reproduced better. This improvement is not only due
to the addition of the bulk viscosity but also the dynamical
freeze-out plays a major part by affecting the lifetime of the
fluid. The centrality dependencies of the pT -integrated flow
coefficients v2{2}, v3{2}, and v4{2} in all studied systems are
shown in Fig. 6. The shear viscosity and the dynamical freeze-
out parameters of the η/s = dyn parametrization were tuned
to approximately reproduce v2{2} in 2.76 TeV Pb + Pb col-
lisions while also reproducing v2{2} in central to mid-central
200 GeV Au + Au collisions. The most essential feature of
the dynamical freeze-out is that the smaller collision systems
freeze out earlier in the hadronic phase. This means that there
is less time for the initial state eccentricities to convert to
the momentum space anisotropies in peripheral collisions.
Indeed, as seen in Fig. 6, all pT -integrated flow coefficients
for the η/s = dyn parametrization are significantly smaller in
peripheral collisions than the results of the η/s parametriza-
tions from the earlier works that used a constant-temperature
decoupling surface. As can be seen from the comparison
to measurements, the η/s = dyn parametrization reproduces
well the centrality dependence of all flow coefficients in all
LHC collision systems and clearly improves the results from
the earlier ones in peripheral collisions. The biggest discrep-
ancy with the data and the model calculation is the 40–80%
centrality range in 200 GeV Au + Au collisions. In this region
especially the predictions for the flow coefficients v3{2} and
v4{2} are well outside of the error bars of the measurements.
There are multiple possible reasons for this. First of all, due
to the lower multiplicity in the 200 GeV Au + Au collisions
it is reasonable to expect significantly larger nonflow effects
compared to the LHC systems. Additionally, the δ f correc-
tions to the particle spectra are much larger at RHIC than at
LHC, which adds additional uncertainty to the RHIC results.
Lastly, we do not include any nucleon substructure [91], initial
flow, or nonzero πμν to our initial state model, and effects of
these modifications are still under investigation. We note that
other groups report very similar flow coefficients in peripheral
RHIC collisions; see, e.g., Refs. [19,92].

The change in the magnitude of the flow coefficients is
quite modest from 2.76 to 5.023 TeV Pb + Pb collisions, and
a better way to quantify the change is to plot the ratio of
the coefficients between the two collision energies. The ratio
is also a more robust prediction from fluid dynamics and
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FIG. 5. Identified particle multiplicities (left) and average transverse momenta (right) for pions, kaons, and protons in 200 GeV Au + Au,
2.76 TeV Pb + Pb, and 5.023 TeV Pb + Pb collisions. The experimental data are from the PHENIX [84] and ALICE [85,86] Collaborations.

less sensitive to fine tuning of η/s(T ); for a discussion see
Ref. [93]. The predictions for the ratios of vn{2} in Pb + Pb
collisions at 2.76 to 5.023 TeV are shown in the upper panel of
Fig. 7. The predicted increase ranges from up to 8% for v2 to
up to 25% for v4. The predictions match well with the ALICE
measurements for central to mid-central collisions, only in
the most peripheral collisions the η/s = dyn parametrization
overestimates the data slightly, especially in the case of v4, but
there the experimental errors of the ratios are also quite large.

The situation is quite different in the case of Xe + Xe
collisions. The ratio of the flow coefficients between the 5.44
TeV Xe + Xe and 5.023 TeV Pb + Pb collisions is shown in
the lower panel of Fig. 7. The change in the flow coefficients
is significantly larger than in the previous case, even if the
collision energy is almost the same in Xe + Xe as in Pb + Pb
collisions. The reason is that the system size is quite different
when the nuclear mass number changes from A = 208 to
A = 129. The most striking feature is the strong increase of v2
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FIG. 6. Flow coefficients in 200 GeV Au + Au (a), 2.76 TeV Pb + Pb (b), 5.023 TeV Pb + Pb (c), and 5.44 TeV Xe + Xe (d) collisions.
The experimental data are from the STAR [87,88] and ALICE Collaborations [89,90].

in central Xe + Xe collisions compared to Pb + Pb collisions.
A significant factor in the increase is the shape deformation of
Xe nuclei. The deformation enhances the initial elliptic eccen-
tricity fluctuations compared to the spherical double magic Pb
nuclei. As a result the elliptic flow is 30% higher in the Xe
case. The fact that we correctly predict this increase by taking
into account the nuclear deformation is further evidence that
the azimuthal asymmetries in the pT spectra are resulting from
a fluid dynamical response to the initial geometry.

B. Event-plane correlations, cumulants, and
flow–transverse-momentum correlations

The event-plane correlations, defined in Eq. (35), quantify
the correlation between the event-plane angles �n, and also
between the flow magnitudes vn. The computed event-plane
correlations in 2.76 TeV Pb + Pb are shown in Fig. 8. Only a
slight separation between the dynamical freeze-out and earlier
η/s(T ) parametrizations can be seen and all parametrizations

are able to describe the data. The most notable exceptions are
the correlations involving the event-plane angle �6, which
are very sensitive to δ f corrections. In these, the η/s =
dyn parametrization slightly improves the agreement with
the data from the earlier works. This is mostly due the fact
that the η/s = dyn parametrization has lower shear viscosity
and thus smaller δ f corrections. The event-plane correlations
have only been measured for 2.76 TeV Pb + Pb collisions
which is why we do not show results for other collision
systems.

The symmetric cumulants, defined through Eq. (28), are
complementary to the event-plane correlators in the sense that
they depend on the correlation between the flow magnitudes
vn like the event-plane correlators, but are independent of the
event-plane angles. The symmetric cumulants themselves are
not a measure of correlation, but depend explicitly on the
magnitude of vn, and not only on the degree of correlation.
The corresponding correlation measure is defined through the
normalized symmetric cumulants, Eq. (29).
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FIG. 7. The ratio of flow coefficients vn between 5.023 and 2.76 TeV Pb + Pb collisions, and the ratio of vn between 5.44 TeV Xe + Xe
and 5.023 TeV Pb + Pb collisions. The experimental data are from the ALICE Collaboration [89,90].

The normalized symmetric cumulants in 2.76 TeV Pb + Pb
collisions are shown in Fig. 9 compared to the ALICE data
[95]. As in the case of event-plane correlations, there are only
small differences between the three η/s parametrizations. The
overall agreement between the data and the computations is
good, but with a notable exception that in peripheral collisions
we underpredict the NSC(2, 4) correlation. The collision en-
ergy dependence of the normalized symmetric cumulants is
weak, as can be seen in Fig. 10 where we show them in
5.023 TeV Pb + Pb collisions.

In Fig. 11 we show the normalized symmetric cumulants
in 200 GeV Au + Au collisions. Note that here the central-
ity of the collisions is given by the number of participants,
as reported by the STAR Collaboration [96]. Compared to
Pb + Pb collisions we see much more separation between the

dynamical freeze-out and earlier parametrizations for the
NSC(3, 4), NSC(3, 5) and NSC(4, 6) correlations. The pre-
dictions for the NSC(2, 3) correlation are in line with the
measurements while for NSC(2, 4) all the parametrizations
clearly underestimate the data in peripheral collisions.

The correlations between higher order moments of two
or three flow coefficients can be studied using the mixed
harmonic cumulants which provide information that is inde-
pendent of the normalized symmetric cumulants. The EKRT
model predictions for nMHC(v2

2, v
2
3, v

2
4 ) and nMHC(vk

2, v
l
3)

are compared against the ALICE measurements for 5.023 TeV
Pb + Pb collisions in Fig. 12. As can be seen there are
only modest differences between the parametrizations and the
statistical errors in our simulations are already quite large,
especially with nMHC(v4

2, v
4
3 ). This is expected, since the
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FIG. 8. Event-plane correlations in 2.76 TeV Pb + Pb collisions. The data are from the ATLAS Collaboration [94].

correlations between v2 and v3 are thought to be more sen-
sitive to the initial state rather than to the dynamics of the
system. Our predictions seem to agree quite well with the
data except for nMHC(v4

2, v
4
3 ), for which we predict a stronger

correlation in peripheral collisions than what is measured.

Finally in Fig. 13 we show our predictions for the
recently measured flow–transverse-momentum correlations
ρ(v2

n, [pT ]) as a function of the number of participant
nucleons in 5.023 TeV Pb + Pb collisions. These correla-
tors describe the correlation between the average transverse

FIG. 9. Normalized symmetric cumulants NSC(n, m) in 2.76 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [95].
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FIG. 10. Normalized symmetric cumulants NSC(n, m) in 5.023 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [97].

momentum and the flow coefficients and thus one would
expect it to be somewhat sensitive to the bulk viscosity and
freeze-out criterion. The EKRT model calculations confirm
this by showing an increase in all ρ(v2

n, [pT ]) correlations,
especially in the peripheral region. This also improves the
agreement with the ATLAS measurements in peripheral col-
lisions, even though the agreement with the data is still only
qualitative. Most notably the η/s = dyn parametrization gives

the same sign as the measurements for ρ(v2
4, [pT ]) in periph-

eral collisions.

C. Higher-order flow and response coefficients

In Fig. 14 we show the higher-order flow coefficients
v4, v5, and v6 compared to the ALICE data [99] in 2.76
TeV Pb + Pb collisions. As can be seen in the figure, the

FIG. 11. Normalized symmetric cumulants NSC(n, m) in 200 GeV Au + Au collisions. The data are from the STAR Collaboration [96].
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FIG. 12. Normalized mixed harmonic cumulants nMHC in 5.023 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [97].

FIG. 13. The flow–transverse-momentum correlation coefficient ρ(vn{2}, [pT ]) in 5.023 TeV Pb + Pb collisions. The data are from the
ATLAS Collaboration [98].

FIG. 14. Higher-order flow coefficients in 2.76 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [99].
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FIG. 15. Non-linear flow response coefficients in 2.76 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [99].

η/s = dyn parametrization seems to slightly underpredict the
higher order flow coefficients in peripheral collisions, while
the η/s = 0.2 parametrization manages to reproduce the data
quite well. For v6 we point out that the measured flow is larger
in 2.76 TeV than in 5.023 TeV collisions, as can be seen by
comparing measurements with Fig. 16, which is in conflict
with the behavior of the other flow coefficients. We also
note that the difference between the earlier parametrizations
η/s = 0.2 and η/s = param1 is more visible here than in the
case of lower-order flow coefficients.

The corresponding nonlinear response coefficients are
shown in Fig. 15. As explained in Sec. V they are closely re-
lated to the event-plane correlations, and the good agreement
of the calculated response coefficients with the ALICE data
is consistent with the good agreement between the calculated
and the measured ATLAS event-plane correlations in Fig. 8.

The same flow and response coefficients as above, but
for 5.023 TeV Pb + Pb collisions, are shown in Figs. 16
and 17, respectively. Together with other higher order flow
harmonics we also show v7, v8, and v9, which are only

measured for the 5.023 TeV energy. Here we see that
the parametrization that uses dynamical freeze-out predicts
the higher order flow coefficients quite well while the
parametrizations from earlier works are slightly above the
measurements.

The response coefficients are not directly proportional to
the magnitude of the flow coefficients, or the proportionality
is partly canceled by the normalization. That is to say that
the agreement in the response coefficients with the ALICE
data is similar as at the lower collision energy even though
we cannot exactly reproduce the higher order vn’s for both
collision energies simultaneously.

The overall agreement with the higher-order flow coeffi-
cients with the data is quite similar for both the earlier and
current EKRT setup. The improvements due to the dynamical
decoupling are not as clear as for v2. However, the differences
between the parametrizations are also larger, highlighting the
fact that higher-order coefficients, and their

√
sNN dependence

give important constraints on the determination of shear vis-
cosity.
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FIG. 16. Higher-order flow coefficients in 5.023 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [100].

VII. SUMMARY AND CONCLUSIONS

We have presented the results for the low-pT observables
in Pb + Pb, Au + Au, and Xe + Xe collisions at RHIC and
LHC energies from the fluid dynamical computations using
the NLO pQCD based EKRT model for the initial conditions.
Compared to the previous EKRT works in Refs. [25,27,28]
we have now added the bulk viscosity together with the dy-
namical decoupling conditions to improve the validity of our
model in peripheral collisions.

The overall agreement of the computed results with the
data is very good in particular for the

√
sNN , A, and cen-

trality dependence of the charged hadron multiplicity. This
is mainly a feature of the EKRT initial conditions. The
main uncertainty in the EKRT model is the Ksat parameter
in the saturation condition, but this can be essentially fixed
from one measurement of charged hadron multiplicity. Even
if the value of Ksat depends on the η/s parametrization through
the entropy production during the fluid dynamical evolution,
the final results for the

√
sNN , A, and centrality dependence are

practically independent of the Ksat value, making them very
robust predictions of the EKRT model.

The most significant effect of the dynamical freeze-out
can be seen in the absolute magnitude of the flow coeffi-
cients vn. We have demonstrated that we can reproduce the
experimental data for v2 and v3 across the centrality range
0–80% in all the collision systems with the exception of

peripheral RHIC collisions. This is a significant improvement
from the constant-temperature freeze-out which only manages
to describe the data up to the 30–40% centrality class. The
higher harmonics v4, v5, and v6 are quite similarly described
by both the earlier computations and the current setup, but
the differences between the η/s parametrizations are also
more pronounced. On the other hand, the relative increase of
the flow coefficients from 2.76 TeV Pb + Pb to 5.023 TeV
Pb + Pb and 5.44 TeV Xe + Xe collisions is well described
in all the centrality classes shown here. The addition of the
dynamical freeze-out together with the bulk viscosity has also
made it possible to improve the simultaneous agreement of
the identified particle multiplicities and the mean transverse
momenta with the measurements.

We have also shown the EKRT model predictions for the
most recent correlation measurements. Our results for the
symmetric cumulants, the mixed harmonic cumulants, the
response coefficients, and closely related event-plane corre-
lators are very similar to the earlier EKRT results and the
agreement with the data remains reasonably good. The most
notable differences are in NSC(2, 4) correlators in peripheral
collisions, where the predictions are visibly below the exper-
imental data. The effect of the dynamical freeze-out and the
bulk viscosity can be seen in the flow–transverse-momentum
correlators ρ(v2

n, [pT ]), where we demonstrated a better quan-
titative agreement with the experimental measurements in
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FIG. 17. Non-linear flow response coefficients in 5.023 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [100].

peripheral collisions than given by the previous EKRT compu-
tations. Especially, we obtained the correct sign in ρ(v2

4, [pT ])
correlation in peripheral collisions.

In conclusion, we have introduced dynamical freeze-out
conditions to model the decoupling of the fluid to free
hadrons. In particular, the aim was to capture the essential
features of the decoupling that take into account the system
size variations at different collision energies and centralities.
The clear benefit here is that it allows us to keep the trans-
port coefficients continuous throughout the whole temperature
range, without unphysical discontinuities that can appear at
a switching between fluid dynamics and hadron cascade. At
the same time it is then possible to use the measured data
to constrain the QCD matter transport properties also in the
hadronic phase.

We emphasize that in spite of the extensive iteration work
done, the parametrizations shown here do not necessarily
represent the absolute best fit to the data. For that we would
need to do a full statistical global Bayesian analysis of the
parameter space. This we have left as a future work. However,
we have demonstrated that we can reproduce the measured

LHC and RHIC low-pT observables reasonably well, and the
dynamical decoupling leads to quite a different spacetime
picture compared to many hydro+cascade models. Instead
of a very viscous hadronic evolution directly after the low-
viscosity QGP evolution, in the picture presented here the
low-viscosity evolution can extend to quite low temperatures
on the hadronic side.
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