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REMARKS ON MARTIO’S CONJECTURE

VILLE TENGVALL

Abstract. We introduce a certain integrability condition for the re-
ciprocal of the Jacobian determinant which guarantees the local homeo-
morphism property of quasiregular mappings with a small inner dilata-
tion. This condition turns out to be sharp in the planar case. We also
show that every branch point of a quasiregular mapping with a small
inner dilatation is a Lebesgue point of the differential matrix of the
mapping.

1. Introduction

For a given constant K ≥ 1 a mapping

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

is called K-quasiregular if it belongs to Sobolev space W 1,n
loc (Ω,Rn) and if

the following distortion inequality

|Df(x)|n ≤ KJf (x)

holds for almost every x ∈ Ω. If a mapping is K-quasiregular for some K ≥ 1
then it is called quasiregular and if it is, in addition, a homeomorphism
we call it quasiconformal. Quasiregular and quasiconformal mappings have
been intensively studied for several decades and for their basic properties
and more detailed background we refer to monographies [AIM09, HKM93,
IM01, Res89, Ric93, Vuo88, Vä71].

To every quasiregular mapping f : Ω→ Rn we associate the inner distor-
tion function

KI(·, f) : Ω→ [1,+∞], KI(x, f) =

{
|D#f(x)|n
Jf (x)n−1 , if Jf (x) > 0

1, otherwise,

that measures the distortion of the infinitesimal geometry of n-dimensional
balls under the mapping. We define the corresponding inner dilatation in
the following way

KI(f) := ess sup
x∈Ω

KI(x, f) .

Above and in what follows

Jf (x) := detDf(x) and D]f(x) := adjDf(x)
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2 VILLE TENGVALL

stand for the Jacobian determinant and the adjugate matrix associated to
the differential matrix Df(x). In addition, in the context of matrices |A|
denotes the operator norm of an n× n matrix A.

In this article we study the local homeomorphism property of quasiregular
mappings by investigating the conditions under which the branch set

Bf = {x ∈ Ω : f is not a local homeomorphism at x}
of a given quasiregular mapping f : Ω→ Rn with a small inner dilatation is
empty. Our work is motivated by the well-known Martio’s conjecture which
states that every quasiregular mapping in dimension n ≥ 3 that has the
inner dilatation less than two is a local homeomorphism. The conjecture was
originally presented in a paper [MRV71] by Martio, Rickman, and Väisälä
and it was motivated by the preliminary work of Martio [Mar70]. In this
article we state and examine a slightly stronger version of this long-standing
open problem:

Conjecture 1.1 (Strong Martio’s conjecture). A non-constant quasiregular
mapping

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 3)

with KI(f) < infx∈Bf i(x, f) is a local homeomorphism.

Above and in what follows i(x, f) ∈ Z stands for the local topological index
of a point x ∈ Ω under a quasiregular mapping f : Ω→ Rn. Note that

i(x, f) ≥ 2 for every x ∈ Bf ,
see [Ric93, Chapter I] for further details. We also point out that the holo-
morphic function

f : C→ C, f(z) = zm (m ≥ 2)

shows the conjecture to fail in dimension two. Moreover, if the conjecture
is true, then its extremality can be verified by the standard m-to-1 winding
mapping

(r, θ, z)
w7→ (r,mθ, z) (z ∈ Rn−2) ,

written here in cylindrical coordinates. Indeed, this mapping is branching
on an (n − 2)-dimensional hyperplane and for its inner dilatation we have
KI(w) = m.

The main motivation to Martio’s conjecture comes from the generalized
Liouville’s theorem of Gehring [Geh62] and Reshetnyak [Res67] which says
that non-constant 1-quasiregular mappings in dimension n ≥ 3 are restric-
tions of Möbius transformations, see also [BI82]. In [MRV71, Theorem 4.6]
Martio, Rickman and Väisälä (see also [Gol71]) showed that the local homeo-
morphism property of 1-quasiregular mappings holds also for mappings with
the dilatation close to one by proving that in each dimension n ≥ 3 there
exists ε(n) > 0 such that every quasiregular mapping

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 3)

with KI(f) < 1 + ε(n) is a local homeomorphism. However, the proof in
[MRV71] is implicit and does not give any explicit estimate for the number
ε(n) > 0. The only explicit bound is given by Rajala in [Raj05], but it is
only slightly larger than zero and it depends on the dimension of the space.
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In this article we gain new information on Martio’s conjecture by estimat-
ing the Hausdorff dimension of the image of the branch set for quasiregular
mappings with a small inner dilatation. Our approach applies the modulus
of continuity estimate [Ric93, Theorem III.4.7], the well-known lower bound
[Ric93, Proposition III.5.3] for the size of the image of the branch set, and
the regularity properties of the local inverses of quasiregular mappings de-
fined outside the image of the branch set. The aforementioned regularity
properties depend on the level of the integrability of the reciprocal of the
Jacobian determinant of the mapping. By denoting

αf :=

(
KI(f)

infx∈Bf i(x, f)

) 1
n−1

and qf :=
2

n(1− αf )
− 1

we may state our first main result as follows:

Theorem 1.2. Let

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

be a non-constant quasiregular mapping such that

KI(f) < inf
x∈Bf

i(x, f) .

If the reciprocal of the Jacobian determinant satisfies

1/Jf ∈ Lqloc(Ω) for some q > qf

then f is a local homeomorphism. Moreover, in the planar case the same
statement holds even if q ≥ qf .

A simple construction shows that the integrability condition of the recip-
rocal of the Jacobian determinant in Theorem 1.2 is actually sharp in the
planar case, see Example 3.2. Furthermore, Theorem 1.2 can be considered
as a continuation of the author’s earlier joint work [KLT21] with Kauranen
and Luisto where the strong Martio’s conjecture was verified for mappings
of bounded length distortion (abbr. BLD-mappings). To see this we recall
that a mapping of bounded length distortion can be defined as a Lipschitz
mapping

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

such that
Jf (x) > c for almost every x ∈ Ω ,

where c > 0 is some positive constant. Especially, these mappings form a
subclass of quasiregular mappings. Thus, Theorem 1.2 improves the result
in [KLT21] by relaxing the boundedness conditions of the Jacobian deter-
minant. In this article we also obtain several alternative proofs for the local
homeomorphism property of BLD-mappings with a small inner dilatation,
see Remark 2.2 and 4.1. For further information about the local injectivity
properties of BLD-mappings we refer to [GMRV00, HK00, MV88]. All these
results should be contrasted with the well-known inverse function theorem
which states that every continuously differentiable mapping is a local diffeo-
morphism outside its zero set of the Jacobian determinant, see e.g. [KP13]
for some further details on this well-known result.

There are also several other important partial results in the direction
of Martio’s conjecture. First of all, the conjecture is known to be true if
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the branch set contains any non-constant rectifiable arc, see e.g. [Ric93,
p. 76]. Also every sufficiently smooth quasiregular mapping is a local home-
omorphisms even if its inner dilatation is not considered small, see [BH04,
KTW05]. Local injectivity of quasiregular mappings also follows if the di-
latation tensor

Gf (x) =

{
Df(x)TDf(x)

Jf (x)2/n
, if Jf (x) > 0

I , otherwise,

is approximately continuous or is close to some continuous matrix-valued
function in BMO or VMO, see [GMRV98, Theorem 3.22] and [MRV99,
Theorem 4.1 and 5.1]. Most of the arguments that apply the properties
of the dilatation tensor to study Martio’s conjecture use a similar kind of
implicit compactness argument as in [MRV71] combined with the fact that
a quasiregular mapping is locally invertible at each point x0 ∈ Ω where the
condition

lim
r→0

 
B(x0,r)

|Gf (z)−
 
B(x0,r)

Gf (x) dx| dz = 0

holds, provided that n ≥ 3. Especially, it follows that if Gf ∈W 1,p for some
p ∈ [1, n] then

Hn−p(Bf ) = 0.(1.1)

For further discussion in this direction we refer to [HK00]. If one wishes to
study Martio’s conjecture in terms of the dilatation tensor then the following
theorem might turn out to be useful as we see in Remark 2.2.(3):

Theorem 1.3. Let

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

be a non-constant K-quasiregular mapping such that

KI(f) < i(x0, f) for a given x0 ∈ Bf .
Then there exist

p = p(n,K) > n and r0 > 0

such that for every exponent 0 < s < p(n,K) and every radius 0 < r < r0

we have  
B(x0,r)

|Df(x)−Df(x0)|s dx ≤ Cx0rs(µ−1),

where µ = (i(x0, f)/KI(f))1/(n−1) and Cx0 := Cx0(n,K, s).

In addition to the above-mentioned results, some additional information
and related results to Martio’s conjecture can be found from [Hei02, Iwa87,
IM93, MR73, Ric85] and [Sre92].
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2. Decay of the differential matrix at the branch points and
the proof of Theorem 1.3

Recall that if

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

is a non-constant quasiregular mapping then by [Ric93, Theorem III.4.7] for
each x ∈ Ω there exist positive numbers r(x) and CI(x) such that

|f(x)− f(y)| ≤ CI(x)|x− y|1/αf (x) for every y ∈ B(x, r(x)) ,(2.1)

where αf (x) :=
(
KI(f)/i(x, f)

)1/(n−1)
. When

KI(f) < i(x, f) for all x ∈ Bf ,
the upper estimate in (2.1) implies that

Bf ⊂ Df ∩ Cf ,(2.2)

where

Df := {x ∈ Ω : f is differentiable at x}
is the set of differentiability of f and

Cf := {x ∈ Ω : |Df(x)| = 0}
is the critical set of f . Usually the set Df ∩ Cf is much larger than the
branch set Bf , and this is the case even for quasiregular mappings with a
small dilatation. Indeed, by [GV73, Final remarks 23] for every ε > 0 there
exists a (1+ε)-quasiconformal mapping f : Ω→ Rn such that the Hausdorff
dimension of the intersection Df ∩ Cf satisfies

dimH(Df ∩ Cf ) = n.

On the other hand, by [BH04, Theorem 1.3] there exists η(n,K) > 0 such
that

dimH Bf ≤ n− η(n,K)

for every K-quasiregular mapping f : Ω → Rn, see also [OR09]. In other
words, under the assuptions of the strong Martio’s conjecture the inclusion
in (2.2) could in principle be strict. Therefore, it is not enough to analyze the
critical set in order to provide information about the geometric properties
of the branch set for quasiregular mappings with a small dilatation.

Despite these difficulties it turns out that under the assumptions of the
strong Martio’s conjecture we can still estimate the decay of |Df | at the
branch points. For this purpose, let us recall that by [IM01, Theorem 14.4.1]
every K-quasiregular mapping

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

belongs to Sobolev space W 1,s
loc (Ω,Rn) for all s with

q(n,K) :=
nλK

λK + 1
< s <

nλK

λK − 1
=: p(n,K),
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for some λ = λ(n) ≥ 1. The constant λ is commonly conjectured to equal
one, see e.g. [IM01, p. 164]. Furthermore, for each test function φ ∈ C∞0 (Ω)
the Caccioppoli-type inequality

‖φDf‖Ls ≤ C(n,K, s)‖f ⊗∇φ‖Ls

holds whenever q(n,K) < s < p(n,K). This way we obtain the following
result.

Proposition 2.1. Let

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

be a non-constant K-quasiregular mapping such that

KI(f) < i(x0, f) at a point x0 ∈ Bf
and suppose that q(n,K) < s < p(n,K). Then there exist constants

Cx0 := Cx0(K,n, s) > 0 and r0 := r0(x0) > 0

such that 
B(x0,r)

|Df(x0)−Df(x)|s dx ≤ Cx0(K,n, s)rs(µ−1) whenever 0 < r < r0 ,

where µ := (i(x0, f)/KI(f))1/(n−1).

Proof. By (2.1) the mapping f is differentiable at the point x0 ∈ Bf and

Df(x0) = 0.

Without loss of generality, we may assume that x0 = f(x0) = 0. For each
r > 0 define ϕr : Rn → R,

ϕr(x) =


1, if 0 ≤ |x| ≤ r
1− |x|−rr , if r < |x| < 2r
0, if |x| ≥ 2r

to be the standard cut-off function. If we fix an exponent s such that

q(n,K) < s < p(n,K),

then by [IM01, Theorem 14.4.1] we getˆ
B2r

|Df(x0)−Df(x)|s dx ≤ C(K,n, s)

ˆ
B2r

|f(x)|s|∇ϕ(x)|s dx(2.3)

= C(K,n, s)r−s
ˆ
B2r

|f(x)|s dx.

By [Ric93, Theorem III.4.7] we find Cx0 > 0 and r0 > 0 such that

|f(x)| ≤ Cx0 |x|µ(2.4)

for all x ∈ B(0, r0). Therefore, by combining (2.3) and (2.4) we have 
Br

|Df(x0)−Df(x)|s dx ≤ Cx0(K,n, s)rs(µ−1) for all x ∈ B(x0, r0) ,

and the claim follows. �

Now Theorem 1.3 is a direct consequence of Proposition 2.1 and Hölder’s
inequality.
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Proof of Theorem 1.3. Fix s ∈ (0, p(n,K)). We may assume that

0 < s ≤ q(n,K)

as otherwise the claim follows from Proposition 2.1. By applying Hölder’s
inequality and Proposition 2.1 we get

 
B(x0,r)

|Df(x0)−Df(x)|s dx ≤

( 
B(x0,r)

|Df(x0)−Df(x)|n dx
) s

n

≤ Cx0(K,n, s)rs(µ−1),

and the claim follows. �

Note that as a consequence of Theorem 1.3 every branch point of a given
non-constant quasiregular mapping with the assumptions of the strong Mar-
tio’s conjecture is a Lebesgue point of the differential matrix of the mapping.
In the BLD-setting this is already enough to prove the conjecture as we see
in the following remark.

Remark 2.2. Suppose that

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

is a mapping with a bounded length distortion such that

KI(f) < inf
x∈Bf

i(x, f) .

Then we observe the following.

(1) One can use the upper estimate in (2.1) and radiality properties
of BLD-mappings to show that f is a local homemorphism, see
[KLT21].

(2) Proposition 2.1 implies the local homeomorphism property of f . In-
deed, for every BLD-mapping we may find a constant c > 0 such
that

Jf (x) > c for almost every x ∈ Ω.

Therefore, Proposition 2.1 can hold for f only if Bf = ∅.
(3) If x0 ∈ Bf then we may use Theorem 1.3 to show

lim
r→0

 
B(x0,r)

|Gf (x)| dx = 0,

which contradicts the fact that |Gf (x)| ≥ 1 almost everywhere. This
is also enough to show that Bf = ∅.

Especially, each of the observations above imply the strong Martio’s conjec-
ture for BLD-mappings.

3. Proof of Theorem 1.2 and an example for its sharpness in
the planar case

In order to prove Theorem 1.2 let us first introduce the notation and the
terminology used in the proof. We start by recalling that a domain U ⊂⊂ Ω
is called a normal domain of a quasiregular mapping

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)
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if

f(∂U) = ∂f(U) .

If a normal domain U satisfies

U ∩ f−1(f(x)) = {x},

then it is called a normal neighborhood of x. In addition, for a given point x ∈
Ω we denote by U(x, f, r) the x-component of the preimage f−1(B(f(x), r)).
The following standard lemma from [Ric93, Lemma I.4.9] is needed for the
proof.

Lemma 3.1. Let

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

be a non-constant quasiregular mapping. Then for every x ∈ Ω there exists
a radius rx > 0 for which U(x, f, r) is a normal neighborhood of x such that

f(U(x, f, r)) = B(f(x), r) for every 0 < r ≤ rx.

Moreover, we have

diamU(x, f, r)→ 0 as r → 0.

One may also replace the balls in the statement by cubes.

Proof of Theorem 1.2. We prove the planar and the higher dimensional cases
separately. Note that, beacause we do not have a good global control on the
constants CI(x) > 0 in the modulus of continuity estimate (2.1), our proof
gives a slightly weaker outcome in higher dimensions.

A) Proof of the planar case: Let us assume that the inner dilatation of a
non-constant quasiregular mapping

f : Ω→ R2 (Ω ⊂ R2 domain)

satisfies the assumption

KI(f) < inf
x∈Bf

i(x, f) ,

and that for the reciprocal of the Jacobian determinant we have

1/Jf ∈ Lqloc(Ω) for some q ≥ qf .

For the contradiction suppose that Bf 6= ∅. Without loss of generality, we
may assume that

0 ∈ Bf and f(0) = 0, and denote m := i(0, f).

By (2.1) and Lemma 3.1 there exist a radius r0 > 0 and a constant C0 > 0
such that U(0, f, r) is a normal neighborhood of the origin for every radius
0 < r ≤ r0 and

|f(x)| ≤ C0|x|1/αf whenever |x| < r0.(3.1)

Moreover, by Stöılow factorization theorem the branch set of a planar quasireg-
ular mapping is always a discrete set and therefore we may assume that

Bf ∩ U(0, f, r) = {0}
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for all 0 < r ≤ r0. Especially, if we denote r̃0 := r
1/αf

0 then it follows from
(3.1) that

B(0, rαf /C
αf

0 ) ⊂ U(0, f, r) whenever 0 < r < r̃0.(3.2)

Next, fix a radius

0 < r < min{r̃0, 1}
and denote Br := B(0, r). By applying Lemma 3.1 we cover Br \ {0} by a
countable collection of closed squares {Qi}∞i=1 with pairwise disjoint interiors
and such that

f−1(Qi) = Ui,1 ∪ · · · ∪ Ui,m,
where the sets Ui,j ⊂⊂ U(0, f, r) \ {0} are pairwise disjoint normal domains
of f , see the proof of [Ric93, Lemma II.7.1] for further details of this step.
Then the restricted mappings

fi,j := f |Ui,j : Ui,j → Qi (i = 1, 2, . . . and j = 1, . . . ,m)

are quasiconformal homeomorphisms. Especially, by (3.2) we may estimate
the measure of the set U(0, f, r) from below as follows

C
∑
i,j

ˆ
Br

Jf−1
i,j

(y)χQi(y) dy = CH2(U(0, f, r)) ≥ rαf ,(3.3)

where χQi stands for the standard characteristic function of the square Qi
and C > 0 is some absolute constant.

Now it follows from the assumption q ≥ qf , Hölder’s inequality, estimate
(3.3), chain rule, and the change of variable formula that

1 ≤ r2(αf (q+1)−q) = Cr−2q|B(0, rαf )|q+1

≤ Cr−2q

( ∞∑
i=1

m∑
j=1

ˆ
Br

Jf−1
i,j

(y)χQi(y) dy

)q+1

≤ C
∞∑
i=1

m∑
j=1

ˆ
Br

Jf−1
i,j

(y)q+1χQi(y) dy(3.4)

= C
∞∑
i=1

m∑
j=1

ˆ
Br

1

Jf (f−1
i,j (y))q

Jf−1
i,j

(y)χQi(y) dy

= C

∞∑
i=1

m∑
j=1

ˆ
Ui,j

1

Jf (x)q
dx

= C

ˆ
U(0,f,r)

1

Jf (x)q
dx,

where the constant C > 0 varies line by line but is independent on r > 0.
By applying Lemma 3.1 and the absolute continuity of Lebesgue integral we
see that ˆ

U(0,f,r)

1

Jf (x)q
dx

r→0→ 0 ,

which leads to a contradiction with the estimate (3.4). This proves the
theorem in the plane.
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B) Proof of the higher dimensional case: Let us assume that the inner di-
latation of a non-constant quasiregular mapping

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 3)

satisfies the assumption

KI(f) < inf
x∈Bf

i(x, f) ,

and that for the reciprocal of the Jacobian determinant we have

1/Jf ∈ Lqloc(Ω) for some q > qf .

For the contradiction assume that Bf 6= ∅. First we obtain that we may
always assume

qf =
2

n(1− αf )
− 1 > 0 .

Indeed, otherwise it would follow that

inf
x∈Bf

i(x, f) ≥
(

n

n− 2

)n−1

KI(f) ,

which is not possible if Bf 6= ∅, see [Ric93, Corollary III.5.8]. Thus, from
now on we assume

0 < qf < q .

From now on let us denote

α := n(αf (q + 1)− q) < n− 2

and fix ε > 0 such that

α+ εn(q + 1) = n− 2 .(3.5)

Next, fix a point x0 from the inf-index branch set

BIf := {x ∈ Ω : i(x, f) = inf
z∈Bf

i(z, f)}

and fix a normal neighborhood U of x0 such that

i(x0, f) = N(f, U) := sup
y∈Rn

card f−1(y) ∩ U,

see [Ric93, Proposition I.4.10] for the existence of such a normal neighbor-
hood. Then it follows that

i(x, f) = i(x0, f) for every x ∈ Bf ∩ U,

see again [Ric93, Proposition I.4.10]. By applying [Ric93, Proposition III.5.3]
we may find a compact set F ⊂ Bf ∩ U such that

Hn−2(f(F )) > 0 .(3.6)

Fix 0 < δ < 1. Then by applying Lemma 3.1 and the modulus of continuity
estimate (2.1) we cover the set f(F ) by a collection of balls {B(yη, rη)}η∈I
satisfying the following conditions:

(i) For each η ∈ I we have yη ∈ f(F ).
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(ii) For each η ∈ I we have

B(xη, r
αf+ε
η ) ⊂ U(xη, f, rη)

where ε > 0 is defined in (3.5). Note that obtaining this condition
would not be possible if ε = 0, i.e., if q = qf .

(iii) For each η ∈ I we have

0 < rη < δ and diam(U(xη, f, rη)) < δ.

By Vitali covering lemma we then find a countable subcover B1, B2, . . . of
pairwise disjoint balls such that

f(F ) ⊂
⋃
k

5Bk .

For this subcover we write each set Bk \ f(Bf ∩ U) as a countable union

Bk \ f(Bf ∩ U) =
∞⋃
i=1

Qik

of closed cubes Qik with non-empty, pairwise disjoint interiors such that

f−1(Qik) = Uik,1 ∪ · · · ∪ Uik,m ,

where the sets Uik,jk ⊂ Uk \ Bf are pairwise disjoint normal domains. The
existence of such a collection of cubes Qik and normal domains Uik,jk can
be verified by applying Lemma 3.1 similarly as we did in the planar case.

Now we observe that each of the restrictions

fik,jk := f |Uik,jk
: Uik,jk → Qik (ik = 1, 2, . . . and jk = 1, . . . ,m)

gives a quasiconformal inverse

f−1
ik,jk

: Qik → Uik,jk .

In addition, as a quasiregular mapping the mapping f satisfies Lusin’s con-
tition (N−1) which means that for every set E ⊂ Ω we have

Hn(E) = 0 whenever Hn(f(E)) = 0 ,

and therefore we may assume that

Hn(∂Uik,jk) = 0 for every index pair ik, jk .

Moreover, we also have Hn(Bf ) = 0, see [Ric93, Theorem II.7.4]. Thus, by
applying area formula we obtain that

C
∑
ik

∑
jk

ˆ
Qik

Jf−1
ik,jk

(y) dy = CHn(Uk) ≥ r
n(αf+ε)
k ,(3.7)

where Uk := U(xk, f, rk) and C > 0 is some absolute constant. By applying
estimate (3.7), Hölder’s inequality, chain rule, and the change of variable
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formula we get∑
k

r
n(αf (q+1)−q)+εn(q+1)
k ≤ C

∑
k

r−nqk

(∑
ik

∑
jk

ˆ
Qik

Jf−1
ik,jk

(y) dy

)q+1

≤ C
∑
k

∑
ik

∑
jk

ˆ
Qik

Jf−1
ik,jk

(y)q+1 dy

= C
∑
k

∑
ik

∑
jk

ˆ
Qik

1

Jf (f−1
ik,jk

(y))q
Jf−1

ik,jk

(y) dy(3.8)

= C
∑
k

∑
ik

∑
jk

ˆ
Uik,jk

1

Jf (x)q
dx

= C
∑
k

ˆ
U(yk,f,rk)

1

Jf (x)q
dx

≤ C
ˆ
{x:dist(x,Bf∩U)<2δ}

1

Jf (x)q
dx

where the constant C > 0 varies line by line but is independent on the
parameter δ > 0.

In order to finish the proof we recall that ε > 0 was chosen such a way
that

n(αf (q + 1)− q) + εn(q + 1) = α+ εn(q + 1) = n− 2 .

Therefore, estimate (3.8) gives for the (n − 2)-dimensional Hausdorff δ-
content of the set f(F ) the following

Hn−2
δ (f(F )) ≤

ˆ
{x:dist(x,Bf )<2δ}

1

Jf (x)q
dx

δ→0→ 0 ,

where the convergence to the zero on the right-hand side follows from the
absolute continuity of the Lebesgue integral, from the local compactness of
the branch set Bf , and the fact that Hn(Bf ) = 0. In this way we see that
Hn−2(f(F )) = 0 which contradicts the assuption (3.6). This concludes the
proof. �

Example 3.2. Consider the function

f : D→ C, f(z) = zm|z|−
m(K−1)

K (D ⊂ C unit disk) ,

where m ≥ 2 is a given integer and 1 ≤ K < m is some real number. In
polar coordinates the function takes the form

(r, θ) 7→ (rm/K ,mθ) .

Therefore, it is an m-to-1 quasiregular mapping such that 0 ∈ Bf and with
the distortion

|D#f |2

Jf
=

mr
m−K

K

(m/K)r
m−K

K

= K a.e.
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Especially, it follows that our function is K-quasiregular. Furthermore, a
direct computation gives usˆ

D

1

Jf (z)q
dz =

2πK

m2

ˆ 1

0

t

t
2q(m−K)

K

dt .(3.9)

As the integral (3.9) is finite if and only if q < K
m−K it follows that

1/Jf ∈ Lq(D) for all q < qf .

In particular, this demonstrates the sharpness of Theorem 1.2 in the plane.

4. Final remarks

We end this article with a few remarks which we consider to be useful for
the further studies on Martio’s conjecture. In what follows, let

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

be a non-constant quasiregular mapping with a non-empty branch set. We
then point out that with some minor modifications in the proof of [Ric93,
Theorem III.5.5] it is possible to show the following upper bound for the
Hausdorff dimension of the image of the branch set

dimH f(Bf ) ≤ αf dimH Bf .(4.1)

This shows that in dimension n ≥ 3 a non-constant quasiregular mapping
with a small inner dilatation always reduces the Hausdorff dimension of its
branch set. This leads to the following two remarks.

Remark 4.1. By [MV88, Corollary 4.23] BLD-mappings preserve Hausdorff
dimensions of sets. Thus the dimension estimate (4.1) provides us yet an-
other proof for the strong Martio’s conjecture in the BLD-setting.

Remark 4.2. It follows from [Ric93, Proposition III.5.3] combined with the
estimates (1.1) and (4.1) that every non-constant quasiregular mapping

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 3)

with the inner dilatation

KI(f) < inf
x∈Bf

i(x, f)

and with the dilatation tensor

Gf ∈W 1,p for some p >
2− n(1− αf )

αf

is a local homeomorphism. This observation is motivated by the result
[HK00, Theorem 3.3] of Heinonen and Kilpeläinen.

Finally, we point out that the results of this article connect Martio’s
conjecture to the problem about the optimal integrability of the reciprocal
of the Jacobian determinant for quasiregular mappings:

Remark 4.3. Suppose that

f : Ω→ Rn (Ω ⊂ Rn domain with n ≥ 2)

is a non-constant quasiregular mapping. Then by following the fundamental
works of Gehring [Geh73], Elecrat and Meyers [EM75], and Martio [Mar74]
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and applying theory of Muckenhoupt weights, see e.g. [Ste93, Chapter V],
it is possible to show that

1/Jf ∈ Lqloc(Ω) for some q > 0.

However, the optimal level of integrability for 1/Jf is only known in the
planar case where it is a consequence of the deep work [Ast94] by Astala.
We refer to [HKZ07, p. 254] and [KOR12, p. 964] for some further discussion
in this direction.
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[Ric93] S. Rickman. Quasiregular mappings, volume 26. Springer-Verlag, Berlin, 1993.
[Ric85] S. Rickman. Sets with large local index of quasiregular mappings in dimension

three. Ann. Acad. Sci. Fenn. Ser. A I Math., 10:493–498, 1985.
[Sre92] U. Srebro. Topological properties of quasiregular mappings. Quasiconformal

space mappings, Lecture Notes in Math., 1508, Springer, Berlin, 104–118, 1992.
[Ste93] E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and os-

cillatory integrals, volume 43 of Princeton Mathematical Series. Princeton Uni-
versity Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy,
Monographs in Harmonic Analysis, III.

[Vuo88] M. Vuorinen. Conformal geometry and quasiregular mappings, volume 1319 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988.
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