
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Structural Parameters under Partial Least Squares and Covariance-Based Structural
Equation Modeling : A Comment on Yuan and Deng (2021)

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC

Published version

Schuberth, Florian; Rosseel, Yves; Rönkkö, Mikko; Trinchera, Laura; Kline, Rex B.;
Henseler, Jörg

Schuberth, F., Rosseel, Y., Rönkkö, M., Trinchera, L., Kline, R. B., & Henseler, J. (2023). Structural
Parameters under Partial Least Squares and Covariance-Based Structural Equation Modeling : A
Comment on Yuan and Deng (2021). Structural Equation Modeling : A Multidisciplinary Journal,
30(3), 339-345. https://doi.org/10.1080/10705511.2022.2134140

2023



Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=hsem20

Structural Equation Modeling: A Multidisciplinary Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/hsem20

Structural Parameters under Partial Least Squares
and Covariance-Based Structural Equation
Modeling: A Comment on Yuan and Deng (2021)

Florian Schuberth, Yves Rosseel, Mikko Rönkkö, Laura Trinchera, Rex B. Kline
& Jörg Henseler

To cite this article: Florian Schuberth, Yves Rosseel, Mikko Rönkkö, Laura Trinchera, Rex B.
Kline & Jörg Henseler (2022): Structural Parameters under Partial Least Squares and Covariance-
Based Structural Equation Modeling: A Comment on Yuan and Deng (2021), Structural Equation
Modeling: A Multidisciplinary Journal, DOI: 10.1080/10705511.2022.2134140

To link to this article:  https://doi.org/10.1080/10705511.2022.2134140

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 21 Nov 2022.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=hsem20
https://www.tandfonline.com/loi/hsem20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10705511.2022.2134140
https://doi.org/10.1080/10705511.2022.2134140
https://www.tandfonline.com/action/authorSubmission?journalCode=hsem20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=hsem20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10705511.2022.2134140
https://www.tandfonline.com/doi/mlt/10.1080/10705511.2022.2134140
http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2022.2134140&domain=pdf&date_stamp=2022-11-21
http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2022.2134140&domain=pdf&date_stamp=2022-11-21


RESEARCH ARTICLE

Structural Parameters under Partial Least Squares and Covariance-Based
Structural Equation Modeling: A Comment on Yuan and Deng (2021)

Florian Schubertha , Yves Rosseelb , Mikko R€onkk€oc , Laura Trincherad , Rex B. Klinee and
J€org Henselera,f

aUniversity of Twente; bGhent University; cUniversity of Jyv€askyl€a; dNEOMA Business School; eConcordia University; fUniversidade Nova de Lisboa

ABSTRACT
In their article, Yuan and Deng argue that a structural parameter under partial least squares structural
equation modeling (PLS-SEM) is zero if and only if the same structural parameter is zero under covari-
ance-based structural equation modeling (CB-SEM). Yuan and Deng then conclude that statistical tests
on individual structural parameters assessing the null hypothesis of no effect can achieve the same
purpose in CB-SEM and PLS-SEM. Our response to their article highlights that the relationship they find
between PLS-SEM and CB-SEM structural parameters is not universally valid, and that consequently,
tests on individual parameters in CB-SEM and PLS-SEM generally do not fulfill the same purpose.

KEYWORDS
Bias correction; factor score
regression; measurement
error; partial least squares
structural equation
modeling (PLS-SEM)

1. Motivation

In a recent article, Yuan and Deng (2021) contribute to a
better understanding of different types of factor scores and
their relations by showing the relationship between Bartlett
factor scores (Bartlett, 1937), regression factor scores
(Thomson, 1934; Thurstone, 1935), and scores obtained by
partial least squares structural equation modeling (PLS-SEM,
Wold, 1982). In doing so, they elaborate on the relationship
between regression and Bartlett factor scores and remind us
that Bartlett and regression weights are rescaled versions of
each other (Bartlett, 1938; Lawley & Maxwell, 1962).
Similarly, they elaborate on the findings in the PLS-SEM lit-
erature that scores obtained by Mode B weights are (a)
asymptotically proportional to regression factor scores if
separately computed for each latent variable (see, e.g.,
Dijkstra, 1985 p. 57 and Dijkstra, 2010 p. 33), and (b)
asymptotically univocal, i.e., scores for one factor are
asymptotically not contaminated by variance of other factors
(Lohm€oller, 1989, pp. 100–107; see also Harman, 1976,
p. 387). Based on these results, they show that the correl-
ation between regression factor scores and Bartlett factor
scores, respectively, equals the canonical correlation between
the first pair of canonical variates for cases in which there
are only two blocks of indicators. Further, Yuan and Deng
(2021) propose a transformation of PLS-SEM Mode A
weights into PLS-SEM Mode B weights. Such a transform-
ation can be beneficial since PLS-SEM Mode A weights are
known to be more numerically stable than Mode B weights
(Dijkstra & Henseler, 2015a), while, as Yuan and Deng
(2021) show, factor scores obtained by PLS-SEM Mode B
attain maximum reliability asymptotically.

Besides these valuable insights, Yuan and Deng (2021)
claim that a structural parameter under PLS-SEM equals
zero if and only if the corresponding structural parameter
is zero under covariance-based structural equation model-
ing (CB-SEM). Further, they argue that in structural mod-
els containing latent variables the population parameters
are arbitrary, and then conclude that “for the purpose of
modeling the relationship among latent variables, the prox-
ies still permit unbiased test for the significance of each
parameter estimate” (p. 558). More specifically, they claim
that a “statistical test on individual parameters [… ] under
PLS-SEM can achieve the same purpose as that under CB-
SEM given the same overall-model structure” (p. 562).
This is surprising because it is at odds with the various
criticisms raised in the literature regarding the use of PLS-
SEM for structural models containing latent variables (e.g.,
Goodhue et al., 2017; R€onkk€o et al., 2015, 2016; R€onkk€o &
Evermann, 2013; Schuberth, 2021) and contradicts recent
PLS-SEM guidelines recommending bias correction if PLS-
SEM is applied to latent variable models (e.g., Benitez
et al., 2020; Evermann & R€onkk€o, in press; Schuberth
et al., in press).

In this comment on Yuan and Deng’s paper, we shed
more light on the relationship between CB-SEM and PLS-
SEM parameters and we show it is generally not true that a
structural parameter under PLS-SEM is equal to zero if and
only if the corresponding structural parameter equals zero
under CB-SEM. In doing so, we draw on the literature on
error-in-variables models, i.e., the methodological research
strand that focuses on the consequences of variables contami-
nated by error. In addition, we present a scenario analysis
which further illustrates the problem. Furthermore, we explain
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that statistical tests on individual structural parameters in
most cases do not achieve the same purpose under PLS-SEM
and CB-SEM. In the last section we give a conclusion.

2. Relationship between PLS-SEM and CB-SEM
Structural Parameters

In their article, Yuan and Deng (2021) argue that a struc-
tural parameter under PLS-SEM is equal to zero if and only
if the corresponding parameter is zero under CB-SEM,
assuming that the model is correctly specified (see also
Equation (20) in Yuan and Deng, 2021). According to Yuan
and Deng, this is because in PLS-SEM each predictor will
be correlated with its response variable whenever the latent
predictor variable is correlated with the latent response vari-
able and the two correlation coefficients have the same sign.

As we will show in the following argument, their state-
ment is not generally valid and only true under very specific
conditions, such as in structural models with a single latent
predictor variable or with orthogonal latent predictor varia-
bles, which are unlikely to hold in situations where SEM is
typically applied. Like Yuan and Deng (2021), we limit our
focus to linear recursive structural equation models with
uncorrelated structural disturbance terms. Each latent variable
gj is assumed to be standardized and measured reflectively by
a set of indicators xj ¼ kjgj þ ej with j ¼ 1, :::, J: As is com-
mon, we assume that the random measurement errors e have
a mean of zero and are mutually uncorrelated. Further, we
assume that the random measurement errors are uncorrelated
with the latent variables and the structural disturbance terms.
Additionally, it is assumed that the structural disturbance
terms are uncorrelated with the exogenous latent variables.

To demonstrate that Yuan and Deng’s (2021) statement
about the relationship between PLS-SEM and CB-SEM
structural parameters is not generally true, we draw on the
literature on error-in-variables models, i.e., the literature
that studies problems associated with variables contaminated
by errors.1 As Yuan and Deng (2021) pointed out, PLS-SEM
creates proxies for each latent variable gj as ~gj ¼ w0

jxj ¼
w0
jkjgj þ w0

jej ¼ qjgj þ dj to estimate the structural parame-
ters. Obviously, these proxies are representations of the
latent variables contaminated by random measurement
error. As is common in PLS-SEM, the weights are scaled to
ensure that each proxy has unit variance, i.e., varð~gjÞ ¼
w0
jRjjwj ¼ 1 where Rjj denotes the variance-covariance

matrix of the indicators associated with the latent variable
gj. Since all latent variables are standardized, the variance of
the composed random measurement error term dj equals
1�q2j , where q2j is the reliability of proxy ~gj for latent vari-
able gj. Following Dijkstra and Schermelleh-Engel (2014, see
Equations 10 and 11), in cases where Mode A weights are
used to build the proxies, the reliability of proxy ~gj is given
as q2j ¼ ðw0

jkjÞ2 ¼ ðk0jkjÞ2=ðk0jRjjkjÞ (see Yuan & Deng, 2021,
p. 562 and also Dijkstra, 1985, Chapter 2). Similarly, if

Mode B weights are used to create the proxies, their reliabil-
ity is given as q2j ¼ k0jR

�1
jj kj (Dijkstra, 2010, Equation 1.24).

Under PLS-SEM, the structural parameters of each equation
of the structural model are estimated by ordinary least squares
(OLS). Consequently, its use for structural equation models
with latent variables resembles applying the naive estimator,
i.e., the OLS estimator, to models with additive random meas-
urement error in all variables, i.e., dependent and independent
variables (see, e.g., Carroll et al., 2006, Chapter 2). For this
type of model, Buonaccorsi (2010, Equation 5.7) has derived
the expected value of the estimates obtained by the naive esti-
mator. Applying Equation 5.7 of Buonaccorsi (2010) to the
PLS-SEM context, the probability limit of the PLS-SEM struc-
tural parameter estimates is given as follows:2

plim ĉPLS ¼ ðQRQþ I�Q2Þ�1QRqdepc, (1)

where R is the population correlation matrix of the inde-
pendent latent variables. Moreover, the matrix Q contains
the square root of the reliabilities of the proxies for the
independent latent variables on the diagonal and I is a unit
matrix of the same dimension as Q: Similarly, qdep equals
the square root of the reliability of the dependent latent var-
iable’s proxy. Note that since in PLS-SEM the proxies are
standardized, the random measurement errors comprised in
the proxy for the dependent latent variable additionally dis-
tort the parameter estimates (e.g., Bollen, 1989, Chapter 5).
Further, c is the vector containing the true standardized
structural parameters of that equation, i.e., the probability
limit of the standardized structural parameter estimates
under CB-SEM. The effects of random measurement errors
on PLS-SEM parameter estimates have also been pointed
out in prior PLS-SEM literature (see, e.g., Dijkstra, 1985,
2010; Dijkstra & Henseler, 2015a, 2015b).

Given that Q is a diagonal matrix, Equation (1) reveals that
it is generally not true that the probability limit of a structural
parameter estimate under PLS-SEM equals zero if and only if
the population counterpart equals zero, as Yuan and Deng
(2021) have claimed. In fact, this is only the case under one of
the following conditions: (i) in simple regression models, i.e., if
the model has only one independent latent variable, (ii) if all
independent latent variables are uncorrelated, (iii) if all inde-
pendent latent variables have no effect on the dependent latent

1Error-in-variable models have also been studied in other fields such as
econometrics. See, e.g., Wooldridge (2012, pp. 320–323).

2The original Equation 5.7 of Buonaccorsi (2010) reads as follows:

Eðb̂1, naiveÞ ¼ c1 ¼ ðRXX þ RuÞ�1RXXb1 ¼ jb1 ,

where the vector b̂1, naive contains the OLS estimates of the independent
variables’ parameters in a multiple regression model in which both dependent
and independent variables are contaminated by additive random
measurement errors. Additionally, RXX and Ru are the expected variance-
covariance matrices of the true independent variables (i.e., the independent
variables measured without error) and the random measurement errors
comprised in the observed independent variables, respectively. Further, b1 is
the vector containing the expected value of the independent variables’
parameters in cases where there is no random measurement error. The matrix
j is also known as the reliability matrix, which determines the degree of bias
due to attenuation. Since PLS-SEM relies on estimated weights to form the
proxies, we consider the probability limit of the PLS-SEM estimates instead of
their expected value. Furthermore, in PLS-SEM all variables, i.e., the latent
variables and their proxies, are assumed to be standardized, which is not the
case in the formula of Buonaccorsi (2010). Therefore, the reliability of the
dependent variables also needs to be taken into account.
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variable, or (iv) if the latent variables’ proxies show a reliability
of zero. Note that in the case of a proxy’s reliability being
zero, the indicators forming that proxy would be uncorrelated
with all other indicators in the model. Consequently, neither
CB-SEM nor PLS-SEM estimates are identified. Similarly, we
emphasize that in case of isolated latent variables, the PLS-
SEM weights used to build the proxies for these latent varia-
bles are not defined (Dijkstra, 1985, p. 72).

To further highlight this point, we consider a latent vari-
able model with two correlated latent predictor variables g1
and g2 and one latent response variable g3. All latent varia-
bles are standardized, i.e., they have a mean zero and a unit
variance. The structural model is given as follows:

g3 ¼ c1g1 þ c2g2 þ f: (2)

To ensure that the latent response variable has a unit
variance, the variance of the structural disturbance term is
chosen as varðfÞ ¼ 1�c21�2c1c2/12�c22, where the correl-
ation between the two latent predictor variables is denoted

by /12: Considering Equation (1), the structural parameter
estimate under PLS-SEM ĉPLS1 converges in probability to:

plimĉPLS1 ¼ c1q1q3ð1�/2
12q

2
2Þ þ c2/12q1q3ð1�q22Þ

1� /2
12q

2
1q

2
2

: (3)

Assuming that the true structural parameter between the
two latent variables g1 and g3 is equal to zero, i.e., c1 ¼ 0,
Equation (3) simplifies as follows:

plimĉPLS1 ¼ c2
/12q1q3ð1�q22Þ
1� /2

12q
2
1q

2
2

: (4)

Considering Equation (4), ĉPLS1 would be consistent, i.e,.
plimĉPLS1 ¼ c1 ¼ 0, if c2 were equal to zero or if the latent
variables g1 and g2 were uncorrelated, i.e., /12 ¼ 0:
Similarly, ĉPLS1 would be consistent if the reliabilities of the
proxies ~g1 or ~g3 were equal to zero. This is arguably not the
case in most empirical settings. Moreover, a completely unreli-
able proxy would require that the indicators making up that

Table 1. Scenario 1 in which a structural parameter equals zero under CB-SEM, while the corresponding structural parameter under PLS-SEM is different to zero.

Coefficients Values

Factor loadings
k11
k12
k13

0
@

1
A ¼

0:5
0:8
0:7

0
@

1
A;

k21
k22
k23

0
@

1
A ¼

0:5
0:8
0:7

0
@

1
A;

k31
k32
k33

0
@

1
A ¼

0:5
0:8
0:7

0
@

1
A

x11 x12 x13 x21 x22 x23 x31 x32 x33

Indicator correlations

1:00
0:40 1:00
0:35 0:56 1:00
0:15 0:24 0:21 1:00
0:24 0:38 0:34 0:40 1:00
0:21 0:34 0:29 0:35 0:56 1:00
0:11 0:17 0:15 0:17 0:28 0:25 1:00
0:17 0:27 0:24 0:28 0:45 0:39 0:40 1:00
0:15 0:24 0:21 0:25 0:39 0:34 0:35 0:56 1:00

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

Structural parameters under CB-SEM

Structural parameters under PLS-SEM

Note: Values are rounded to the second decimal.
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proxy be uncorrelated with all other indicators in the model.
Consequently, neither the ML estimates nor the PLS-SEM esti-
mates would be identified. Therefore, it can be concluded that
a structural parameter of zero under CB-SEM does not gener-
ally imply a structural parameter of zero under PLS-SEM.

In a similar way, Equation (4) shows that we cannot con-
clude that a structural parameter other than zero under
PLS-SEM implies a structural parameter other than zero
under CB-SEM. Further, one can directly show that a struc-
tural parameter of zero under PLS-SEM does not necessarily
imply a structural parameter of zero under CB-SEM.
Considering Equation (3), this is illustrated if c1 ¼
�c2/12ð1�q22Þ=ð1�/2

12q
2
2Þ, where it is assumed that c2 6¼ 0:

In this situation, the structural parameter estimate under
PLS-SEM ĉPLS1 converges in probability to zero, while the CB-
SEM counterpart converges in probability to a value other
than zero. Note how this also shows that it is not true that a
structural parameter other than zero under CB-SEM implies
a structural parameter other than zero under PLS-SEM.

To show this issue numerically, we focus on two scenarios
illustrated in Tables 1 and 2. Scenario 1 assumes that the

structural parameters of g1 and g2 on g3 are 0 and 0.7, respect-
ively. The correlation between the two latent variables g1 and
g2 is assumed to be 0.6. Further, we measure each latent vari-
able gj by three indicators with the factor loadings 0.5, 0.8,
and 0.7. For simplicity, it is assumed that the indicators are
standardized. To form the PLS-SEM proxies, we use Mode A
weights; consequently, the reliability of the three proxies is
given as q2j ¼ ðk0jkjÞ2=ðk0jRjjkjÞ�0:74: As the following equa-
tion shows, the structural parameter estimate under PLS-SEM
ĉPLS1 does not converge in probability to zero, i.e., the true
value of the structural parameter (which equals the probability
limit of the structural parameter estimate under CB-SEM):

plimĉPLS ¼ 1 0:6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:74 � 0:74p

0:6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:74 � 0:74p

1

� ��1

0:62
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:74 � 0:74p

0:7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:74 � 0:74p

� �
¼ 0:10

0:47

� �
: (5)

Scenario 2 is very similar to Scenario 1, but here the
structural parameters for the latent variables are set to c1 ¼
0:22 and c2 ¼ 0:82: Additionally, the correlation between

Table 2. Scenario 2 in which a structural parameter is different to zero under CB-SEM, while the corresponding structural parameter under PLS-SEM equals zero.

Coefficients Values

Factor loadings
k11
k12
k13

0
@

1
A ¼

0:5
0:8
0:7

0
@

1
A;

k21
k22
k23

0
@

1
A ¼

0:5
0:8
0:7

0
@

1
A;

k31
k32
k33

0
@

1
A ¼

0:5
0:8
0:7

0
@

1
A

x11 x12 x13 x21 x22 x23 x31 x32 x33

Indicator correlations

1:00
0:40 1:00
0:35 0:56 1:00

�0:17 �0:27 �0:24 1:00
�0:27 �0:43 �0:38 0:40 1:00
�0:24 �0:38 �0:33 0:35 0:56 1:00
�0:08 �0:14 �0:12 0:17 0:27 0:24 1:00
�0:14 �0:22 �0:19 0:27 0:43 0:38 0:40 1:00
�0:12 �0:19 �0:17 0:24 0:38 0:33 0:35 0:56 1:00

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

Structural parameters under CB-SEM

η1

η2

η3

γ1 = 0.22

γ2 = 0.82

φ12 = −0.68

1

1

ζ 0.52

Structural parameters under PLS-SEM

η̃1

η̃2

η̃3

γ1 = 0.00

γ2 = 0.50

φ12 = −0.50

1

1

ζ 0.75

Note: Values are rounded to the second decimal.
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the two exogenous latent variables is set to /12 ¼ �0:68: As
is clear in Table 2, the structural parameter estimate of c1
under CB-SEM converges in probability to 0.22, while the
PLS-SEM counterpart converges to 0.

The situation outlined above also shows that Yuan and
Deng (2021, p. 562) are mistaken in stating that “statistical
test[s] on individual parameters (i.e., H0 : cj0 ¼ 0) under
PLS-SEM can achieve the same purpose as that under CB-
SEM given the same overall-model structure.” According to
the discussion in the literature on error-in-variables models,
it is well known that the validity of statistical tests regarding
single regression coefficients is very limited in the presence
of measurement error when the tests are based on OLS esti-
mates (e.g., Carroll et al., 2006, Chapter 10). For instance,
Brunner and Austin (2009) studied the behavior of the t test
to test the null hypothesis that a single regression coefficient
equals zero for a regression model with two independent
variables that are both contaminated by random measure-
ment error. In their study, they conclude that researchers
relying on the OLS estimator and the t test to test H0 : cj ¼
0 will almost certainly make a type I error when there are
additive random measurement errors in the independent
variables. Westfall and Yarkoni (2016) reached the same
conclusion when they showed that tests on individual
parameters are more reliable in CB-SEM than in OLS
regression if random measurement errors are present.

The same holds for PLS-SEM when it is used to estimate
structural models containing latent variables. This has also
been observed in the PLS-SEM literature where, for
instance, Goodhue et al. (2017, pp. 678) conclude that
“[s]pecifically, in both regression and PLS[-SEM], excessive
false positives are possible, and the incidence increases with
measurement error, with the size of the correlation between
predictor constructs and with sample size.” Hence, we can
conclude that statistical tests on individual parameters do in
general not achieve the same purpose under PLS-SEM and
CB-SEM.

3. Conclusion

The study of Yuan and Deng (2021) contains various contri-
butions including PLS-SEM Mode A weights transformed
into Mode B weights. These transformed weights will enjoy
the numerical stability of classical Mode A weights and pre-
serve the asymptotic maximum reliability known from
Mode B weights. Moreover, their study contributes to a bet-
ter understanding of different types of factor scores, includ-
ing those obtained by PLS-SEM and their relationships.
Although it is not new in the PLS-SEM literature that Mode
B weights asymptotically attain maximum reliability and
asymptotically produce scores that are univocal (Dijkstra,
1985; Lohm€oller, 1989), Yuan and Deng further formalize
these properties and link them to other more traditional
ways of obtaining factor scores. However, both reliability
and univocality of PLS-SEM factor scores have been studied
before by means of simulation studies and the published
results show that their finite sample behavior is not always
as good as the asymptotic results suggest (R€onkk€o, 2014;

R€onkk€o & Ylitalo, 2010). Particularly, in PLS-SEM, the
weights depend strongly on the inter-block correlations, i.e.,
on correlations between indicators that belong to different
latent variables. Consequently, in finite samples, particularly
in small samples, PLS-SEM factor scores are contaminated
by variance of other factors (i.e., univocality is sacrificed;
R€onkk€o & Ylitalo, 2010, refers to this as bias). Hence, the
finite sample behavior of PLS-SEM factor scores more likely
resembles the behavior of regression factor scores than that
of Bartlett factor scores. Similarly, and as Yuan and Deng
(2021) noted, only anecdotal evidence is available regarding
the performance of PLS-SEM under misspecified models
(R€onkk€o et al., in press). Consequently, we need future
research to shed more light on these issues.

Besides providing insight on the different types of factor
scores, Yuan and Deng (2021) draw a connection between
structural parameters under PLS-SEM and CB-SEM. As we
have shown in our comment, the connection they make is
only true under very special conditions such as structural
equations with one independent latent variable or a situation
in which all independent latent variables are uncorrelated.
Therefore, it is generally not possible to draw conclusions
from a CB-SEM structural parameter about the PLS-SEM
counterpart and vice versa. Consequently, effect size measures
and statistical tests on individual structural parameters can
generally not achieve the same purpose under CB-SEM and
PLS-SEM. This highlights that bias caused by random meas-
urement errors, i.e., attenuation bias (Cohen et al., 1990),
should be taken seriously even if one is only interested in
whether a parameter equals zero in the population.

Notably, testing only for the existence of effects is not a
recommended research practice. Researchers should add-
itionally pay attention to the magnitude of the estimates
(Wasserstein et al., 2019; Wasserstein & Lazar, 2016).
Following Yuan and Deng (2021), this would be a fruitless
endeavor in the context of latent variable models because
the scales of latent variables, and thus the involved parame-
ters, are arbitrary. However, the scale of a latent variable is
no more arbitrary than the scale of any other measured
variable, such as height. The choice to measure height in
centimeters is arbitrary and the parameters of an analysis
would be different if another metric (e.g., millimeters,
inches, feet) were to be used. Once the metric of a measured
variable has been set and fixed, the measured variable and
the involved parameters are no longer arbitrary. It is true
that any parameter involving a latent variable can be
thought of as an algebraic transformation of an unobserved
population quantity (Klopp & Kl€oßner, 2021); however, the
same applies to any parameter involving a measured vari-
able because of the measurement scales’ arbitrariness
(Markus & Borsboom, 2013, Chapter 2). Fortunately, there
are ways to deal with the arbitrariness of scales. In the case
of latent variables studied in the SEM context various meth-
ods have been proposed to choose the metric, such as the
fixed marker scaling, the effects coding scaling, and the
fixed factor scaling. For an explanation, see, e.g., Little et al.
(2006). Similar to choosing the metric of height (e.g., centi-
meters, inches, feet), choosing a particular scaling method is
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arbitrary. Once the scaling method has been chosen, the
scale of a latent variable is fixed and the arbitrariness of its
scale disappears. Consequently, the parameters associated
with the latent variables can be interpreted (see Table 4 of
Klopp & Kl€oßner, 2021) and estimation error, bias, and
consistency can be assessed in a meaningful way.3

To correct the relationship Yuan and Deng (2021) posit
between a structural parameter under PLS-SEM and CB-
SEM, PLS-SEM’s inconsistency could be addressed by cor-
recting for attenuation as has been done in consistent partial
least squares (Dijkstra & Henseler, 2015a). A similar pro-
posal has been made in the context of factor score regres-
sion to address the problem of random measurement error
comprised in the factor scores (e.g., Devlieger et al., 2016).
However, correcting for bias often increases an estimator’s
variability. To quantify the trade-off between an estimator’s
bias and its variability, criteria such as mean squared error
can be used (Casella & Berger, 2001, Chapter 7). The error-
in-variables model literature has shown that it depends on
the sample size and the reliability of the independent varia-
bles whether the estimator corrected for attenuation bias
outperforms the OLS estimator in terms of mean squared
error (see, e.g., Fuller, 1987, Table 1.1.1). In the CB-SEM
and PLS-SEM context, recent simulation studies suggest that
the mean squared error of structural parameters estimated
by CB-SEM (or other bias-corrected methods) is usually
smaller than the mean squared error of these parameters
estimated by methods such as uncorrected factor score
regression or PLS-SEM that ignore the presence of measure-
ment error in the scores (see, e.g., Devlieger et al., 2016;
Yuan et al., 2020). In other words, the observed bias in
methods that ignore random measurement error is often
much larger than the added variability that is inherent to
methods used in correcting for this bias. Possible exceptions
would be in situations where researchers work with a very
small sample size.

In the past decade, PLS-SEM has been heavily criticized
because it produces inconsistent estimates for structural
models that contain latent variables due to attenuation bias
(e.g., Cadogan & Lee, in press; Henseler & Schuberth, in
press; R€onkk€o & Evermann, 2013; R€onkk€o et al., 2015, 2016,
in press; Schuberth, 2021). However, these criticisms have
rarely been echoed in PLS-SEM guidelines which continue
to recommend using PLS-SEM for structural models that
contain latent variables including assessment criteria devel-
oped under CB-SEM, such as average variance extracted,
indicator reliability, and composite reliability (e.g., Hair
et al., 2019, 2020, 2021). Against this background, our com-
ment is a further call for future research on PLS-SEM to
pay serious attention to random measurement errors.
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