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Abstract: Efficient and scalable early diagnostic methods are warranted due to the rising

prevalence of knee osteoarthritis. Radiographic imaging is the standard procedure in os-

teoarthritis diagnosis. However, the circumstances for early diagnosis are problematic since

the plain radiographs are insensitive to the established early signs of knee osteoarthritis. Fur-

thermore, developing machine learning tools for radiographic knee osteoarthritis diagnosis

is challenging due to noisy ground-truth. The objective of this thesis was to assess a feature

called spiking of tibial tubercles, which has been hypothesized as an early sign of knee os-

teoarthritis. Additionally, we developed a model based on neural networks for identifying

the feature in plain radiographs. Our results indicate promise in including tibial spiking as

an early feature of knee osteoarthritis, and the feature is identifiable automatically. However,

the work in the current thesis is limited and should be validated by future work.

Keywords: osteoarthritis, knee joint, radiography, tibial spiking, convolutional neural net-

works

Suomenkielinen tiivistelmä: Polvinivelrikon kasvavan esiintyvyyden vuoksi tehokkaat varhaiset

diagnoosimenetelmät ovat haluttavia. Radiografia on keskeinen osa polvinivelrikon diagnos-

tiikassa. Polvinivelrikon varhainen tunnistaminen on haastavaa, sillä tärkeimpiä polvinivel-

rikon merkkejä on vaikea havaita röntgenkuvista taudin varhaisessa vaiheessa. Koneoppi-
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mallien kehittämistä varhaiseen polvinivelrikon tunnistamiseen vaikeuttaa lisäksi saatavilla

olevan datan kohinaisuus. Tämän tutkielman tavoitteena oli tarkastella hypoteesia eminen-

tian terävöitymisestä varhaisen polvinivelrikon piirteenä. Tutkielmassa kehitettiin myös neu-

roverkkopohjainen malli piirteen tunnistamiseen röntgenkuvista. Työn tulokset viittaavat

eminentian terävyyden olevan yhteydessä varhaiseen polvinivelrikkoon. Tämän lisäksi pi-

irre voidaan tunnistaa automaattisesti röntgenkuvista. Työn tuloksia voidaan pitää kuitenkin

vasta alustavina.

Avainsanat: polvinivelrikko, röntgenkuvaus, eminentian terävöityminen, konvoluutioneu-

roverkko
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Glossary

Adam Adaptive moments estimation (optimization method)

Anteroposterior concerned with axis from anterior to posterior or front to back

BN Batch normalization

CDF Cumulative distribution function

CNN Convolutional neural network

FNN Feedforward neural network

Grad-CAM Gradient-weighted Class Activation Mapping

JSN Joint space narrowing

KL Kellgren-Lawrence (osteoarthritis classification)

Lateral Situated on the side

Medial Situated near the center, opposite of lateral

OA Osteoarthritis

Osteophyte Bone spur or projection that form near the joints

PDF Probability density function

ReLU Rectified linear unit

SGD Stochastic gradient descent

Subchondral sclerosis Thickening of bone beneath the cartilage

Tubercle Small prominence or protrusion

iv



List of Figures
Figure 1. Comparison between knee radiographs with and without tibial spiking. Ar-

rowheads note the spiking tibial spines (adapted from Patron et al. 2022). . . . . . . . . . . 3
Figure 2. Comparison between an image with a low contrast and histogram equalized

image, presented with histogram and a CDF of the histogram.. . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3. A simple feedforward neural network. We denote the layer number with a

superscript and specify the unit with a subscript. Note that the bias is omitted in
the graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 4. A grayscale image convolved with Sobel filter. The input image is 374×374
and the output is 372× 372. The output of a valid convolution shrinks as the
pixels on the border of the input image are not processed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 5. ResNet bottleneck block, BN denotes batch normalization. The rectangles
indicate the convolutional layer, and the parameters are given in order: input
channels, kernel size, output channels (adapted from He et al. 2016). . . . . . . . . . . . . . . . . 32

Figure 6. The ResNeXt block illustrated by group convolution, both designs are equiv-
alent (adapted from Xie et al. 2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

List of Tables
Table 1. An agreement matrix for two raters. The proportions are calculated by divid-

ing the raw frequencies by the sample size N. The proportions for agreements
on each category are found on the diagonal, and correspondingly the disagree-
ments are found off-diagonal. Additionally, the row and column proportions are
noted with prow and pcolumn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 2. Rank sum example: observations (measurements) from groups A and B are
detailed in the score column, and the corresponding rank of the observation is in
the rank column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Table 3. Confusion matrix for binary classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. The modified ResNeXt architecture used in (Patron et al. 2022), adapted from

Xie et al. 2017. The convolution layer parameters are presented in the order of
kernel size, and the number of kernels and C denotes the number of grouped
convolutions. A bracket followed by × k indicates the block is repeated k times.
The dense layer has an input size of 2048 and an output size of two. The spatial
output size of the block is presented in the middle column. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 5. Intra and inter-rater reliability (κ) for the original ratings including unsure, bi-
nary ratings with unsure omitted (denoted with o), and overall spiking (denoted
with OR) with 95% confidence interval (CI). Adapted from Patron et al. 2022. . . . . . 37

Table 6. Mean values for spiking and control groups with U-test p-values (adapted
from Patron et al. 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 7. Classifier performance metrics computed for each data subsets (adapted from
Patron et al. 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



Contents
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 SPIKING OF TIBIAL TUBERCLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Reliability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Wilcoxon–Mann–Whitney two-tailed test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Histogram equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Classification criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Feedforward neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Training neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6.1 Adam and other variants of gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6.2 Cross-entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6.3 Batch normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7.1 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7.2 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7.3 ResNeXt architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.4 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7.5 Gradient-weighted Class Activation Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A Article: Automatic Method for Assessing Spiking of Tibial Tubercles As-

sociated with Knee Osteoarthritis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



1 Introduction

Knee osteoarthritis (OA) is a chronic disease targeting the cartilage of the knee joint. OA is

also found in the hands, hips, and feet (Swagerty Jr and Hellinger 2001). Symptomatically

OA manifests in pain, stiffness, and impaired movement of joints (Swagerty Jr and Hellinger

2001). The prevalence of knee OA increases with age (Oliveria et al. 1995). In Finland, the

age-adjusted prevalence of clinically diagnosed knee OA was found to be 6.1% for men and

8.0% for women (Arokoski et al. 2007). Risk factors of knee OA include age, female sex,

obesity, and physical stress (e.g., due to occupation or sports) (Swagerty Jr and Hellinger

2001; Zhang and Jordan 2010).

Plain radiography is typically used imaging modality for diagnosis and assessing knee OA

severity. Radiographic signs of knee OA include asymmetric joint space narrowing (JSN),

osteophytes (bone spurs), cysts, and subchondral sclerosis (thickening of bone beneath the

cartilage) (Swagerty Jr and Hellinger 2001). Kellgren-Lawrence (KL) classification (Kell-

gren and Lawrence 1957) is typically used for assessing the severity of radiological knee

OA. KL is a semi-quantitative composite scoring emphasizing osteophyte formation and

JSN (Kohn, Sassoon, and Fernando 2016). Radiographic classifications such as KL are not

entirely reproducible, i.e., different physicians might disagree on a given KL-rating (Gossec

et al. 2008; Culvenor et al. 2015). For example, the experienced raters produce more repro-

ducible radiographic classifications than trainees (Günther and Sun 1999).

Automatic methods for assessing knee OA from plain radiographs were initially proposed

by Oka et al. 2008; Shamir et al. 2009. The methods were suggested for improving the ob-

jectivity of assessing knee OA (Oka et al. 2008). The current state-of-the-art for classifying

the knee OA severity is based on convolutional neural networks (CNNs) (Yeoh et al. 2021).

The CNN-based methods are proficient in classifying the severe samples of knee OA but

cannot effectively detect the early cases (Antony et al. 2016; Tiulpin et al. 2018; Chen et

al. 2019). Identifying early-stage knee OA is imperative for providing effective interven-

tions (Felson and Hodgson 2014). Radiographic classifications such as KL have limitations

and, as such, should be used in conjunction with clinical examination (Kohn, Sassoon, and

Fernando 2016). This is rarely considered, as the KL-grade is typically used to define the
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ground-truth for knee OA severity prediction (Yeoh et al. 2021). Additionally, radiography

is insensitive to the early cartilage damage and osteophyte formation (Guermazi et al. 2012;

Hayashi et al. 2014). In contrast, magnetic resonance imaging (MRI) can be used to visual-

ize the cartilage directly (Guermazi et al. 2011). However, MRI comes with drawbacks such

as limited availability, high cost, and longer imaging time (Guermazi et al. 2011).

The present work is formatted as an introduction to an article by Patron et al. 2022. The

article’s objective was to study a radiological feature called spiking of tibial tubercles (tibial

spiking in short) that has been hypothesized as a sign of early knee OA (hypothesis A) (D.

Sutton 1987). Finding such early sign of knee OA would be desirable as the feature is

assessable by plain radiography, which is widely available and cheap (Guermazi et al. 2011).

Assuming tibial spiking is identifiable by human experts, then an automatic method can be

developed, provided sufficient example data (hypothesis B). In the article, we conducted two

experiments corresponding to hypotheses A and B (Patron et al. 2022).

• In experiment A, we studied the relationship between tibial spiking and early knee

OA by comparing subjects with and without tibial spiking. We examined established

markers of knee OA, such as osteophytes, JSN, and knee pain.

• In experiment B, we developed a CNN-based model for identifying tibial spiking.

Due to the limited availability of data for the feature, we used the transfer learning

approach, i.e., we utilized a pre-trained CNN as a base for our classifier.

The structure of the thesis is the following. Chapter 2 introduces the spiking of tibial tu-

bercles and the previous research regarding the association with knee OA. The theoretical

background for the methods used in the paper is provided in Chapter 3. We summarize the

article’s results in chapter 4. Chapter 5 contains an extended discussion of the study. We

provide the conclusion in chapter 6. The article is included in appendix A.
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2 Spiking of tibial tubercles

Spiking of tibial tubercles refers to abnormally tall or sharp tibial spines (Reiff, Heron, and

Stoker 1991). See Fig. 1 for a comparison between spiking and non-spiking tibial spines.

Tibial spiking has been hypothesized as a feature of early knee OA. Although, the origin of

said hypothesis is unknown. The hypothesis has been recited by D. Sutton 1987 in a radi-

ological textbook. Tibial spiking is also mentioned in another radiological text by Resnick

and Niwayama 1988. However, neither of the authors provides evidence for the hypothesis.

Figure 1: Comparison between knee radiographs with and without tibial spiking. Arrow-

heads note the spiking tibial spines (adapted from Patron et al. 2022).

The research concerning spiking of the tibial tubercles and knee OA is very sparse; to our

knowledge, only five studies have been published on the subject. A summary of the published

research is provided hereafter. Reiff, Heron, and Stoker 1991; Donnelly et al. 1996; Unlu

et al. 2006 investigated tibial spiking by measuring the angulation of tibial spine tips and the

height-width ratio of the tubercles

Hi

W
, i = {L,M} (2.1)

where Hi is the height of the lateral (L) or the medial (M) spine and W is the width of the

tibial plateau. The measurements were calculated using anteroposterior view radiographs.

Reiff, Heron, and Stoker 1991 examined radiographs from 55 subjects and found the length-

ening and sharpening of the tubercles’ peaks associated with knee OA.

Donnelly et al. 1996 conducted a study with 950 subjects examining tibial spiking as a radio-
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logical feature of knee OA. They found angulation of the tibial tubercle to correlate with the

presence of osteophytes and knee OA status (defined by KL-grade 2 or greater). Osteophyte

formation was found to correlate with the lateral tubercle height but not with the medial tu-

bercle height (Donnelly et al. 1996). They concluded that in isolation, tibial spiking was not

a reliable sign of knee OA due to a lack of strong independent association with knee pain

(Donnelly et al. 1996).

Unlu et al. 2006 studied the association between tibial spiking and cartilage defects assessed

via MRI. The study involved 76 knees from 47 subjects and 31 knees from a control group.

The subjects with knee OA had significantly taller and sharper tibial spines compared to

the controls (Unlu et al. 2006). The medial cartilage defects correlated with the medial

tubercle height but not with the lateral tubercle height (Unlu et al. 2006). They also found an

association between the spiking of the lateral tubercle and osteophyte formation in the tibial

compartments (Unlu et al. 2006).

Hayeri et al. 2010 considered the subject from a paleopathological framework, where they

examined 35 tibial bone specimens directly for signs of OA. The bone samples were assessed

by evaluating the osteophytes by size and measuring the height of the tubercles. The study

found spiking of the lateral tibial spine to be associated with osteophyte formation in the

lateral compartment (Hayeri et al. 2010). Bastick et al. 2017 studied the characteristics

associated with patients with early-onset knee or hip OA that underwent joint replacement

surgery within six years. The study considered a wide variety of features. The patients who

underwent total knee replacement showed more signs of radiographic OA, including tibial

spiking (Bastick et al. 2017).

The results of the aforementioned studies indicate that the tibial spiking might be associated

with knee OA (Reiff, Heron, and Stoker 1991; Donnelly et al. 1996; Unlu et al. 2006; Hayeri

et al. 2010), but is not a reliable feature in isolation (Donnelly et al. 1996). We found no

studies that examined the tibial spiking in subjects with early knee OA. Donnelly et al. 1996

stated to study tibial spiking as an early feature of knee OA but did not specifically analyze

the feature in subjects with early-stage disease. Our paper aimed to fill the gap in the research

regarding hypothesis A.
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3 Methods

This chapter will introduce the methods used in the article (Patron et al. 2022). Section 3.1

introduces the concept of reliability and the Kappa coefficient proposed by Cohen 1960 for

estimating reliability. The study used the Wilcoxon–Mann–Whitney test (Wilcoxon 1945;

Mann and Whitney 1947) to compare spiking samples to non-spiking samples. The test is

detailed in section 3.2. Section 3.3 introduces histogram equalization, which was used in

radiograph preprocessing. Classification metrics used for measuring the performance of the

developed model are summarized in section 3.4.

The model developed for tibial spiking detection is CNN-based. Consequently, we will

cover the relevant details on neural networks. We provide the basics of feedforward neural

networks in section 3.5, and section 3.6 details how neural networks are trained. The last sec-

tion 3.7 will provide an introduction to CNNs, starting from the foundations of convolution

operation and how the valid convolution differs from the convolution operation in CNNs.

Subsequently, the building blocks of CNNs are introduced, i.e., convolution and pooling lay-

ers. In the article, we used ImageNet (Deng et al. 2009) pre-trained ResNeXt (Xie et al. 2017)

as the foundation for the classifier. We cover the ResNeXt architecture by comparing with

the related ResNet architecture (He et al. 2016) in subsection 3.7.3. Additionally, we intro-

duce transfer learning 3.7.4, and gradient-weighted class activation mapping (Grad-CAM)

3.7.5 (Selvaraju et al. 2017). Grad-CAM was used for providing visualizations attempting to

explain the model predictions.

3.1 Reliability analysis

Reliability, used in this thesis, refers to the extent to which repeated measurements or tests

produce the same outcome. In classical test theory, we assume an observed random variable

X is a composite of the true score T and measurement error E, formally defined as

X = T +E, (3.1)
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where T and E are unknown random variables (Novick 1966). The reliability of a test is the

variance ratio of T and X
Var(T )
Var(X)

(3.2)

(Novick 1966). Since the random variable T is unknown, the reliability has to be estimated.

In medicine, the measurement is commonly produced by a human rater, e.g., a physician

diagnosing a patient. Assessing the consistency of a single rater or observer is achieved by

examining the intra-rater reliability. When multiple raters are employed, it is necessary to

evaluate the inter-rater reliability, i.e., the consistency between different raters. In practice,

reliability is evaluated by assessing the consistency of repeated measurements. For nominal

variables, the most straightforward approach would be to calculate the proportion of agreed

samples a to all samples N, i.e.,

pa =
a
N
. (3.3)

The naive approach is, however, inadequate as some of the agreement could be due to chance

alone (Cohen 1960; Banerjee et al. 1999). To this end, Cohen 1960 introduced κ (Kappa), a

chance-corrected coefficient for measuring agreement between two raters. The κ coefficient

makes the following assumptions:

• The samples are independent.

• The classes are nominal scale, independent, mutually exclusive, and exhaustive.

• The raters work independently.

The formulation of κ coefficient is the following

κ =
pa − pc

1− pc
, (3.4)

where pa is the proportion of agreed samples and pc is the proportion of agreement expected

due to chance (Cohen 1960). The κ coefficient can be regarded as the proportion of agree-

ment after the removal of chance agreement.

Let us consider an example. Table 1 presents an agreement matrix for two raters; note that

the matrix describes a joint distribution. The proportion of agreement is simply

pa =
20+15

50
= 0.7.
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We assumed that the rater’s responses were statistically independent. Therefore, the expected

proportion of agreement due to chance is found using the marginal distributions (Cohen

1960). In the case of table 1, this means that we can calculate the pc using the row and

column proportions. To find the proportion of chance agreement pc, we calculate the sum

of the expected agreement for each category (product of corresponding prow and pcolumn

values), i.e.,

pc =
30
50

× 25
50

+
20
50

× 25
50

= 0.5.

Now we can calculate the coefficient

κ =
0.7−0.5
1−0.5

= 0.4.

When observed agreement equals the expected agreement κ = 0 and for perfect agreement

κ = 1 (Cohen 1960). The agreement of raters for table 1 is higher than the expected agree-

ment due to chance, but the difference is not exceptionally high. Whether this is an accept-

able level of agreement would depend on the application.

Table 1: An agreement matrix for two raters. The proportions are calculated by dividing

the raw frequencies by the sample size N. The proportions for agreements on each category

are found on the diagonal, and correspondingly the disagreements are found off-diagonal.

Additionally, the row and column proportions are noted with prow and pcolumn.

Rater 1

Category A B prow

Rater 2
A 20/50 5/50 25/50

B 10/50 15/50 25/50

pcolumn 30/50 20/50 N = 50

The standard error of κ is approximated by

SE =

√
pa(1− pa)

N(1− pc)2 , (3.5)

where N is the sample size. Now with sufficiently large N, the sampling distribution of κ

will approximate the normal distribution (Cohen 1960). Thus, the confidence interval can
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be calculated equivalently for large sample sizes. For example, the 95% confidence interval

(CI) is given by

κ ±1.96 SE. (3.6)

The coefficient described above is suitable for nominal variables as all disagreements are

treated the same. For ordinal scale variables, Cohen 1968 introduced weighted κ , allowing

the level of disagreement to be weighted differently, e.g., by distance.

3.2 Wilcoxon–Mann–Whitney two-tailed test

Let us assume samples of two independent groups, A and B. The Wilcoxon–Mann–Whitney

test (also called the U-test) (Wilcoxon 1945; Mann and Whitney 1947) can be used to answer

questions regarding the difference between the groups (Nachar et al. 2008). For example, if

the samples are height measurements of two groups, we could test whether the samples in

A are taller than samples in B or if the groups come from different populations (Nachar et

al. 2008). The former describes a one-tailed test, and the latter a two-tailed test. Next, we

will provide the details of the two-tailed test.

The null hypothesis H0 of the two-tailed test stipulates that the groups are homogeneous

and identically distributed, and the alternative hypothesis H1 specifies that the groups have

different distributions. Mathematically this is expressed by probabilities

H0 : p(ai > b j) =
1
2

H1 : p(ai > b j) ̸=
1
2
,

where ai and b j are observations of A and B, respectively (Nachar et al. 2008). Hence, we

will reject the null hypothesis if either A or B is stochastically larger than the other, i.e.,

the test statistic falls into either tail of the sampling distribution (Nachar et al. 2008). The

U-test is a non-parametric test based on comparing the rank sums of the two samples. Non-

parametric means the test does not assume any specific distribution, which is useful since the

samples can be non-normal and have small sample sizes. However, the samples are assumed

to be at least ordinal. The U-test, therefore, provides an alternative for the Student’s t-test

(Student 1908) when the assumptions are not met.
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First, the observation’s ranks (i.e., the ordering) must be determined. The rank sums for A

and B are calculated by sorting the pooled observation values and assigning ascending ranks

for each observation from 1 to N, where N is the total number of observations. The ranks

of each observation are then summed for both groups. For example, considering the ranks

already sorted in Table 2, the rank sums for the groups are

RA = 1+2+5+7+11+14+15+16 = 71

RB = 3+4+6+8+9+10+12+13 = 65,

where RA denotes the rank sum of group A and RB the rank sum of group B.

Table 2: Rank sum example: observations (measurements) from groups A and B are detailed

in the score column, and the corresponding rank of the observation is in the rank column.

Group Score Rank

A 21 1

A 23 2

B 25 3

B 29 4

A 30 5

B 32 6

A 33 7

B 35 8
...

...
...

Group Score Rank

...
...

...

B 36 9

B 37 10

A 38 11

B 41 12

B 43 13

A 46 14

A 49 15

A 52 16

When ties occur between the groups (i.e., observations from different groups are tied for a

rank), the average of the untied ranks is used for the tied observations (Nachar et al. 2008).

For example, if k observations are tied for rank r, the tied rank is

1
k

k

∑
i=0

r+ i.

Knowing the rank sums of the variables, we can calculate the U statistic for A by

UA = nAnB +

(
nA(nA +1)

2

)
−RA, (3.7)
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where nA,nB are the sample sizes of A and B, respectively and RA is the rank sum of A

(Nachar et al. 2008). The group statistic UA describes the number of times an observation

from A proceeded an observation from B (Nachar et al. 2008). The corresponding statistic UB

can be calculated equivalently, although knowing UA, the UB becomes deterministic (Nachar

et al. 2008). Knowing that RA+RB = 1+2+3+ · · ·+N = N(N+1)
2 , where N = nA+nB. The

statistic UB can be calculated by

UB = nAnB −UA, (3.8)

the intermediate steps of the derivation are detailed in Nachar et al. 2008. To obtain the test

statistic, we choose the smaller of UA and UB (Nachar et al. 2008), i.e.,

U = min(UA,UB). (3.9)

When nA,nB ≥ 8 the distribution of U is approximately normal (Mann and Whitney 1947),

the standard score is therefore

z =
U −µ√

σ2
, (3.10)

where µ is the mean and σ2 is the variance. The mean of U is defined as

µ =
nAnB

2
(3.11)

and the variance of U is defined as

σ
2 =

(nAnB)(N +1)
12

(3.12)

(Mann and Whitney 1947). If normal approximation cannot be justified, the distribution of

U should be used instead for finding the p-value (not presented in this work). When ties are

present in the ranks between the groups, the variance is adjusted by

σ
2 =

nAnB(N +1)
12

− nAnB ∑
e
i=1(d

3
i −di)

12N(N −1)
, (3.13)

where e is the number of unique observed values, and di is the number of each value, index-

ing from lowest to highest (Lehmann and D’Abrera 1998). For example, suppose that we

observed values 4, 5, 5, 5, 8, 8 then e = 3 and d1 = 1, d2 = 3, and d3 = 2.
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Example calculation

Using the data from Table 2, let us calculate the U statistic and find the p value for the

two-tailed test. The rank sums for both groups were calculated above. The rank sums were

RA = 71 and RB = 65. The statistic for A is

UA = nAnB +

(
nA(nA +1)

2

)
−RA

= 8×8+
(

8× (8+1)
2

)
−71

= 64+
72
2
−71 = 29

and correspondingly

UB = nAnB −UA = 64−29 = 35.

We choose the smaller statistic U = min(29,35) = 29. The sample size is sufficiently large

for normal approximation, therefore we can calculate the standard score. The mean is

µ =
nAnB

2
= 32

and the variance is

σ
2 =

(nAnB)(N +1)
12

=
64× (16+1)

12
=

272
3

≈ 90.67.

We calculate the standard score

z =
U −µ√

σ2
≈ 29−32√

90.67
≈−0.32.

Now we can find the p-value

P(Z ≤ |z|) = 2P(Z ≤ z)≈ 2P(Z ≤−0.32) = 2P(Z ≥ 0.32)

= 1−2P(Z ≤ 0.32) = 1−2Φ(0.32)≈ 1−2×0.1255 = 0.749,

where Z is a random variable following the standard normal distribution, i.e., Z ∼ N(0,1)

and Φ(·) denotes cumulative distribution function (CDF) of the standard normal distribution;

the Φ(0.32) = 0.1255 was found using tabled values. Suppose we use the standard level of

significance 0.05 for rejecting H0, then we would fail to reject the null hypothesis since

0.749 ̸< 0.05. Therefore, we did not find significant differences between groups A and B.
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3.3 Histogram equalization

An image with low contrast has its intensity values constrained to a small range, and high

contrast image has intensity values spanning a wide range (Gonzalez and Woods 2018); see

Fig. 2 for an example. Histogram equalization is a method for increasing the global contrast

of a grayscale image (Gonzalez and Woods 2018). The basic principle behind the method is

to adjust the distribution of the pixel intensities.

Image
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(a) Original image with low contrast.
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(b) Histogram equalized image.

Figure 2: Comparison between an image with a low contrast and histogram equalized image,

presented with histogram and a CDF of the histogram.

The distribution of intensity levels in an image can be represented with a histogram (see

Fig. 2(a)). Let I denote a grayscale image with pixel intensities ranging from 0 to L− 1,

where 0 corresponds with black and L−1 with white pixels. For example, in an 8-bit image,

L = 256. We denote the number of pixels with intensity k with nk, k = 0,1, . . . ,L− 1, i.e.,

the unnormalized histogram of I. The normalized histogram of I is defined as

pk =
nk

HW
, (3.14)
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where W is the image width and H the image height (Gonzalez and Woods 2018). The

histogram equalization transforms the pixel intensities k by the function

T (k) = round

(
(L−1)

k

∑
i=0

pi

)
, (3.15)

where the round function is used to get integers intensity values (Gonzalez and Woods 2018).

See Fig. 2(b) for an example of the transformation result.

We will now briefly outline how to derive the function in Eq. 3.15. Let us consider contin-

uous random variables X ,Y in a range [0,L− 1]. Want to find a transformation of intensity

values such that the histogram of the transformed image spans the whole range [0,L−1] of

intensity values and the distribution of intensities is uniform (Gonzalez and Woods 2018).

Such transformation is given by

Y = T (X) = (L−1)
∫ X

0
pX(u)du, (3.16)

where pX(x) is the probability density function (PDF) of X and the integral is the CDF of X

(Gonzalez and Woods 2018). Assuming that T is differentiable, then it can be shown that

pY (y) =
1

L−1
,

i.e., the transformation results in uniform PDF; see the proof in Gonzalez and Woods 2018.

The normalized histogram pk approximates pX(x), therefore, we can consider ∑
k
i=0 pi a CDF

(Gonzalez and Woods 2018). Thus Eq. 3.15 approximates the continuous transformation

3.16. Although the approximate transformation is not guaranteed to produce a uniform PDF,

as can be seen in Fig. 2(b). However, the approximation will flatten the distribution of the

intensity values increasing the contrast.

3.4 Classification criteria

Considering a binary classification (e.g., a test for a disease), the positive class is the detected

condition, and the negative class is the absence of the condition. We assign the negative

class integer label 0 and the positive class integer label 1; note that the choice of integers is

arbitrary. We denote feature vectors X = {x1,x2, . . . ,xN}, where xi ∈ Rm and corresponding

ground-truth labels Y = {y1,y2, . . . ,yN}, where yi ∈ {0,1}, and a classifier f : Rm → {0,1},
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that maps xi to yi. To assess the performance of the classifier f , we evaluate the classifier’s

predictions using a number of labeled samples, i.e., {xi,yi} pairs. The different outcomes for

the classification are the following (Runkler 2016):

1. True positive (TP): y = 1, f (x) = 1

2. True negative (TN): y = 0, f (x) = 0

3. False positive (FP): y = 0, f (x) = 1

4. False negative (FN): y = 1, f (x) = 0

FP is also referred to as a type I error, and FN as a type II error (Runkler 2016). The

classification result, i.e., the frequencies of the different outcomes, are typically collected in

a confusion matrix, like the one depicted in table 3.

Table 3: Confusion matrix for binary classification.

Predicted class

Positive Negative

True class
Positive TP FN

Negative FP TN

Numerous criteria can be computed based on the counts of the different classification out-

comes; some are detailed below. For a more detailed listing of classification criteria, refer to

Runkler 2016. Probably the most used criteria for classification is accuracy, defined by

accuracy =
T P+T N

T P+T N +FP+FN
(3.17)

(Runkler 2016). Accuracy is the proportion of the correct prediction counts to all predic-

tions. If we would prefer to favor one class over the others or would like to avoid false

positive errors if possible, we need to report more than simple accuracy. Otherwise, we

might misrepresent the performance of our classifier.

Often it is appropriate to report sensitivity and specificity (Yerushalmy 1947). Sensitivity or

true positive rate is defined as

sensitivity =
T P

T P+FN
(3.18)
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and specificity or true negative rate is defined as

specificity =
T N

T N +FP
(3.19)

(Runkler 2016). Sensitivity informs us of the probability of classifying the positive class as

positive, and specificity the probability of classifying the negative class as negative (Runkler

2016). Frequently a trade-off between sensitivity and specificity exists; by accepting lower

sensitivity, a higher specificity might be achievable. If we would like to know the probability

of a sample classified as positive is actually positive, e.g., a patient diagnosed as sick is sick,

we can calculate the precision defined by

precision =
T P

T P+FP
(3.20)

(Runkler 2016). Even a trivial classifier (e.g., a classifier that always predicts the negative

class) can produce impressive-looking results on a single criterion in the right circumstances.

For example, in the case of high class imbalance. Multiple performance metrics should be

reported as they characterize the classifier in different ways.

3.5 Feedforward neural networks

A feedforward neural network (FNN) is a function mapping ŷ = f (x,θ), where x is the in-

put tensor (a generalization of a vector in n-dimensional space), θ the parameters (usually

a tensor as well), and ŷ is the output (Goodfellow, Bengio, and Courville 2016). In the

case of classification, ŷ is a vector of class scores. In general, we want f to approximate

some true function f ′ mapping y = f ′(x) (Goodfellow, Bengio, and Courville 2016). As f

is an approximation, therefore, y ≈ ŷ. FNNs are trained by finding suitable values for θ that

produce an optimal approximation. The network is called feedforward as the information

flows in one direction through the network (unlike in recurrent neural networks) (Goodfel-

low, Bengio, and Courville 2016). The FNN are typically composed of multiple functions

f (x) = f ℓ
(

f ℓ−1 (...
(

f 1(x)
)))

, where f 1 is the first layer of the FNN. The layers between the

input and the output are often referred to as the hidden layers.

To understand better what kind of function f is, let us examine a single computational unit

in these layers, called a neuron or a perceptron (McCulloch and Pitts 1943; Hebb 1949;
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Rosenblatt 1958). The neuron calculates a linear combination of the elements of input vector

x ∈ Rm and adds an intercept term (often referred to as bias)

h =
m

∑
i=1

wixi +b, (3.21)

where wi is the weight corresponding with the element xi and b is the bias (Szeliski 2022).

Matrix notation is usually preferred for brevity, i.e., the Eq. 3.21 would be denoted with

h = f (x;w,b) = wT x+b,

where w ∈ Rm and b ∈ R. Note that the parameters θ in the case of the neuron are w

and b. The perceptron is a simple linear system, equivalent to a linear regression model

(Goodfellow, Bengio, and Courville 2016). This comes with drawbacks, e.g., the perceptron

is famously unable to learn the exclusive or (XOR) function (Minsky and Papert 1969).

FNNs are formed by stacking multiple layers of interconnected neurons in a chain (Szeliski

2022); see Fig. 3 for an example. The FNN structure comprises of an input and ℓ layers

performing matrix multiplications, where ℓ ≥ 1 and the last layer is the output layer. The

layers are connected so that the output of layer l − 1 is used as the input to the following

layer l, where l = 1, . . . , ℓ. When each neuron in a layer l is connected to each neuron in

layer l−1 the layer is called fully connected or dense (Szeliski 2022). Usually, an activation

function is added to introduce nonlinearity after the neuron output

ai = φ(hi), (3.22)

where φ(·) is nonlinear function applied elementwise (Goodfellow, Bengio, and Courville

2016). A typical choice for an activation function is the rectified linear unit (ReLU) (Nair

and Hinton 2010), defined as

φ(x) = max(0,x). (3.23)

With the introduction of nonlinear activation, FNN can approximate nonlinear functions

(Goodfellow, Bengio, and Courville 2016).

Let us consider a simple dense FNN presented in Fig 3. The network has an input size of

three and two hidden layers, the first with three neurons and the second with two neurons,
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Figure 3: A simple feedforward neural network. We denote the layer number with a super-

script and specify the unit with a subscript. Note that the bias is omitted in the graph.

followed by a single output. For simplicity, let us assume linear activations, the output ŷ is

given by

h1 = (W 1)T x+b1

h2 = (W 2)T h1 +b2

ŷ = (W 3)T h2 +b3,

where bl, l ∈ {1,2,3} is the bias vector, for layer l and W l is Nl−1 ×Nl matrix, where Nl

is the number of neurons in layer l. Note that the input layer size N0 = 3. The bias vector

bl ∈ RNl . We denote the output of hidden layers with h1, h2, and the output with ŷ. The

weight matrix W l is defined as

W j =




wl
11 wl

12 · · · wl
1Nl

wl
21 wl

22 · · · wl
Nl

...
... . . . ...

wl
Nl−11 wl

Nl−12 · · · wl
Nl−1Nl



.
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3.6 Training neural networks

This section explains how the parameters θ (e.g., weights and biases) of neural networks

are determined, usually referred to as training. Suppose we have a neural network model f

and data D = {xi,yi}N
i=1, where xi ∈ Rm. For classification, yi is usually a one-hot encoded

vector with k elements, where k is the number of classes. Let gt denote the index of the

ground-truth class of label i. One-hot encoding sets one element corresponding with the

ground-truth ygt
i = 1 and ygt

i = 0 for all j ̸= gt. We want the model to perform well on

some relevant performance measurement P (e.g., classification accuracy). However, P is not

optimized directly. Instead, the model is trained by minimizing a different criterion, a loss

function (also called the objective or error function) L(θ), by doing so, our goal is to increase

P indirectly (Goodfellow, Bengio, and Courville 2016).

In general terms, neural networks are trained by iteratively adjusting the parameters of the

network until we converge to a "suitable" set of values, i.e., a local minimum. Neural net-

works are typically non-convex functions; therefore, we cannot guarantee convergence to

a global minimum with iterative optimization methods (Goodfellow, Bengio, and Courville

2016). The parameters are optimized using example data D and a learning algorithm. We

call the model training supervised learning when D includes features x and labels y (Szeliski

2022). The scope of this thesis is restricted to supervised learning. Therefore, we will not

cover other machine learning tasks.

Usually, we divide D into a train, validation, and test subsets. The train samples are used,

as the name implies, to train the model, i.e., to find optimal θ that minimizes the loss L(θ).

The validation samples are used to tune the model hyperparameters (Goodfellow, Bengio,

and Courville 2016). Hyperparameters are design decisions and are not adapted by the train-

ing algorithm (Goodfellow, Bengio, and Courville 2016), e.g., the number of layers and the

number of neurons in each layer. The hyperparameter values can be determined through

experimentation or optimized by another algorithm. The generalization error or the model

performance, is estimated using the test samples not seen during optimizing model parame-

ters or hyperparameters (Goodfellow, Bengio, and Courville 2016).

During training, we would like to minimize the error made by our model, i.e., we would like
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to find θ such that the average of L for our data is small as possible (Szeliski 2022). Formally

we define the optimization problem as

min
θ

E(θ) =
1
N

N

∑
i=1

L( f (xi;θ),yi), (3.24)

i.e., we minimize the expected loss (Szeliski 2022). Most of the time (for nontrivial neural

networks), E is non-convex due to the nonlinear activations; thus, iterative methods are used

as we are unable to solve the optimization problem 3.24 analytically (Goodfellow, Bengio,

and Courville 2016). Moreover, due to the number of parameters, calculating the Hessian

matrix becomes prohibitively expensive (Szeliski 2022). Therefore, we need to settle for

first-order methods, i.e., gradient-based optimization algorithms.

To train our model, we apply gradient descent for updating the model’s parameters θ . We

start with some initial values of θ and evaluate the average loss given the data D (Szeliski

2022). To decrease the loss, we step towards the negative gradient of E(θ). We calculate the

update for timestep t +1 by

θt+1 = θt −α∇θ E(θt), (3.25)

where 0 < α ≤ 1 is the step size (Szeliski 2022). To find the gradient, we use the chain rule

of calculus to find the derivative of the loss with regard to each parameter, proceeding from

the outputs toward the inputs (Szeliski 2022). The backpropagation algorithm1 (Linnainmaa

1970, 1976; Werbos 1974; Rumelhart, Hinton, and Williams 1986) describes an efficient

method for calculating the gradient numerically (Szeliski 2022).

Usually, the loss is evaluated, and the parameters are updated for subsets of the training sam-

ples called mini-batches due to computational reasons (Goodfellow, Bengio, and Courville

2016). Effectively we replace the gradient with a noisy estimate. For optimizing a neural

network using mini-batches instead of the whole training data, the stochastic gradient de-

scent (SGD) is used (Goodfellow, Bengio, and Courville 2016). Loss for each mini-batch B

1. The backpropagation algorithm has been studied by a number of people. The algorithm was first described

by Linnainmaa 1970 in his master’s thesis. The algorithm was later studied in the context of neural networks

by Werbos 1974; Rumelhart, Hinton, and Williams 1986. The credit assignment in the field of deep learning

is inconsistent; for a more detailed summary of the history of deep learning, see the survey by Schmidhuber

2015.
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is calculated

J(θ) =
1

nB

nB

∑
i=1

L( f (xi;θ),yi), (3.26)

where nB is the sample size of the B; note that to get an unbiased estimate of the gradient,

the samples must be independent, i.e., drawn randomly (Goodfellow, Bengio, and Courville

2016).

In SGD, the parameters are updated iteratively until we converge to a local minimum, or

another stopping condition is reached. Due to the random sampling, the stochastic gradients

might have a high variance requiring a low learning rate, which can cause slow conver-

gence (Goodfellow, Bengio, and Courville 2016). The noise added by the gradient estimator

does not vanish even at the minimum (Goodfellow, Bengio, and Courville 2016). Therefore

it is common to decrease the learning rate gradually over time (Goodfellow, Bengio, and

Courville 2016). Additionally, saddle points,2 prevalent in high dimensional non-convex

problems present an issue for gradient descent (Dauphin et al. 2014).

3.6.1 Adam and other variants of gradient descent

This section introduces Adam and a few other variants of gradient descent used for training

neural networks. For a more thorough overview of gradient descent variants, see Ruder 2016.

The convergence of the regular gradient descent might sometimes be slow due to small gradi-

ents in flat areas or oscillation in ravines. (R. Sutton 1986). The momentum method (Polyak

1964) was designed to accelerate the convergence of gradient descent and average out the

oscillation (Goodfellow, Bengio, and Courville 2016). We denote the gradient computed at

timestep t with gt = ∇θ J(θt). Momentum adds a velocity term v, which is an exponentially

decaying average of the negative gradient estimates, formally defined as

vt = βvt−1 −αgt , (3.27)

where β ∈ [0,1) is a hyperparameter controlling the decay factor and α is the step size

(Goodfellow, Bengio, and Courville 2016). The update is calculated by adding the velocity

term

θt+1 = θt + vt . (3.28)

2. Saddle points are critical points that are neither minima nor maxima.
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A global learning rate might not be inductive to learning infrequently appearing features

since they do not have a great effect on the cost (Duchi, Hazan, and Singer 2011). To this

end, Duchi, Hazan, and Singer 2011 introduced the Adaptive Gradient (AdaGrad) method

featuring an adaptable learning rate. The learning rate is adjusted by dividing the gradient

componentwise by the square root of the running sum of squared gradients (Goodfellow,

Bengio, and Courville 2016). The running sum of squared gradients is computed by

rt = rt−1 +gt ⊙gt , (3.29)

where ⊙ denotes elementwise product. The update is calculated by

θt+1 = θt −
α

ε +
√

rt
⊙gt , (3.30)

where ε is a small number added for numerical stability (Goodfellow, Bengio, and Courville

2016). Due to the scaling term, the parameters with the largest partial derivatives with respect

to the loss will have the fastest reduction of learning rate (Goodfellow, Bengio, and Courville

2016). Consequently, the parameters with lower magnitude partial derivatives have a slower

reduction in the learning rate. However, due to the accumulation of the whole gradient

history, the method might halt convergence prematurely (Goodfellow, Bengio, and Courville

2016).

The early halting problem is addressed in root mean square propagation (RMSprop) pro-

posed by Hinton 2012. RMSprop replaces the running sum of squared gradients of AdaGrad

with a decaying sum, defined by

rt = β rt−1 +(1−β )gt ⊙gt , (3.31)

where β is a hyperparameter controlling the impact of the gradient history and ⊙ denotes

elementwise product (Goodfellow, Bengio, and Courville 2016). The update is given by

θt+1 = θt −
α√

rt + ε
⊙gt . (3.32)

(Goodfellow, Bengio, and Courville 2016).

Adam (Kingma and Ba 2014) combines the adaptive learning rate with momentum; the name

derives from the phrase adaptive moment estimation. The learning rates for the parameters
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are computed from exponential moving averages of the gradient (m) and the squared gradient

(v), for timestep t:

mt = β1mt−1(1−β1)gt (3.33)

vt = β2vt−1(1−β2)gt ⊙gt , (3.34)

where β1 and β2 are hyperparameters controlling the decay rates of mt and vt , respectively

(Kingma and Ba 2014). The moving averages estimate the first moment (the mean) and the

second moment (centered variance), hence the algorithm’s name. Especially for the initial

timesteps, the estimates are biased due to initialization with zeros (Kingma and Ba 2014).

The bias is corrected by

m̂t =
mt

(1−β t
1)

(3.35)

v̂t =
vt

(1−β t
2)

(3.36)

(Kingma and Ba 2014). The update is calculated using the bias-corrected estimates

θt+1 = θt −
αm̂t√
v̂t + ε

, (3.37)

where α is the learning rate and ε is a small constant added for numerical stability (Kingma

and Ba 2014).

3.6.2 Cross-entropy

The loss function has a central role in neural network training as it describes the criterion,

which is optimized by gradient descent. The typical loss functions are derived from the prin-

ciple of maximum likelihood; in the case of classification, the loss function is cross-entropy

(Goodfellow, Bengio, and Courville 2016). Next, we briefly introduce the background of

cross entropy loss.

Our set of N independent examples X = {x1,x2, . . . ,xN} are drawn from a unknown distri-

bution p(x) and our parametric model f (X ;θ) describes a family of probability distributions

(Goodfellow, Bengio, and Courville 2016). We want f to estimate the true distribution p.

The maximum likelihood estimator for θ is the product over the individual probabilities
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(Goodfellow, Bengio, and Courville 2016), defined as

arg max
θ

f (X ;θ) = arg max
θ

N

∏
i=1

f (xi;θ). (3.38)

The product of many values is numerically inconvenient as it could either explode or vanish,

which is why we take the logarithm of the likelihood to get a sum instead (Goodfellow,

Bengio, and Courville 2016). This is why the cross-entropy is also called the log loss; see

the derivation in Goodfellow, Bengio, and Courville 2016.

The cross-entropy is defined as

CE =−
k

∑
j=1

y j log(ŷ j), (3.39)

where k is the number of classes, the ground-truth y is one-hot encoded vector with k ele-

ments and ŷ ∈ Rk is the vector of the prediction scores for each class (Szeliski 2022); note

that Eq.3.39 is defined for a single example. In classification, the softmax function is typi-

cally applied before calculating the loss. Softmax normalizes the raw neuron activations in

the [0,1] range so that they sum to one. This is why softmax’s output is usually thought of as

likelihoods (Szeliski 2022). The Softmax function is defined as

softmax(ŷ)i =
exp(ŷi)

∑
k
j=1 exp(ŷ j)

(3.40)

(Goodfellow, Bengio, and Courville 2016). Since the ground-truth is one-hot encoded, all

but one element of y are zero. Let us denote the non-zero index with gt. After applying the

softmax, the loss is simplified to

− log

(
exp(ŷgt)

∑
k
j=1 exp(ŷ j)

)
= log

(
k

∑
j=1

exp(ŷ j)

)
− ŷgt , (3.41)

i.e., normalized predictions corresponding with the correct class (Szeliski 2022).

3.6.3 Batch normalization

During model training, we evaluate the gradient of the average loss and compute the updates

for all parameters at once. Since the layers are functions composed together, the update can

cause unexpected results, as the parameter updates assume that the other functions would be
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constant (Goodfellow, Bengio, and Courville 2016). The inputs for the intermediate layers

depend on the layers before. The parameter’s updates change the distribution of the inputs

for the proceeding layers, requiring constant adaptation to the shift (Ioffe and Szegedy 2015).

Moreover, the small changes compound for the deeper layers of the network. Effectively the

shifts of the input distribution force us to use a low learning rate for deep models (Ioffe and

Szegedy 2015). The apparent downside is that the training will take longer. The batch nor-

malization (BN) introduced by Ioffe and Szegedy 2015 addresses the issue by reparametriz-

ing the inputs to the intermediate layers of a neural network.

Let AB = {a1, . . . ,anB} denote the activations (output of a previous layer) over a mini-batch

B, where the activations a j = (a j
1, . . . ,a

j
d). First, each element a j

i is normalized to have zero

mean and unit variance

â j
i =

a j
i −µi√
σ2

i + ε

, (3.42)

where µi is the mini-batch mean for element i

µi =
1

nB

nB

∑
j=1

a j
i ,

and σ2
i is the mini-batch variance

σ
2
i =

1
nB

nB

∑
j=1

(a j
i −µi)

2

and ε is a small positive number added for numerical stability (Ioffe and Szegedy 2015).

Finally, the normalized inputs are reparameterized by

BN(a j
i ) = γi â j

i +βi, (3.43)

where γi, βi are parameters learned through backpropagation (Ioffe and Szegedy 2015).

When training, we calculate new µi and σ2
i for each mini-batch, and when testing or in

production, we use running averages collected during training (Ioffe and Szegedy 2015).

In essence, BN normalizes and then scales and shifts the distribution of the input. The

BN procedure stabilized the distribution of the inputs by ensuring that the distribution is

determined solely by the γ and β parameters (Goodfellow, Bengio, and Courville 2016).

Crucially, BN was shown to allow the use of a greater learning rate and help the neural

networks to converge faster (Ioffe and Szegedy 2015).
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3.7 Convolutional neural networks

Convolutional neural networks (CNN) in their current form can be attributed to LeCun et

al. 1989, who applied the backpropagation algorithm for learning the kernels of a shift-

invariant neural network with a deep hierarchical structure named the neocognitron (Fukushima

1980; Fukushima and Miyake 1982). Goodfellow, Bengio, and Courville 2016 describe

CNNs as neural networks employing convolution instead of matrix multiplication in at least

one of the layers. We will start by defining convolution as a mathematical operation. In

section 3.7.1, we will describe the convolution operation performed in a CNN and how it

differs from the mathematical operation defined below.

Convolution of two real-valued functions f ,g describes a new function

( f ∗g)(x) =
∫

∞

−∞

f (t)g(x− t)dt, (3.44)

where t is a dummy variable for integration (Goodfellow, Bengio, and Courville 2016).

We replace the integral in Eq. 3.44 with a sum to get discrete convolution. In machine

learning terminology, suppose a convolution I ∗K, we denote the input I and the kernel K

(Goodfellow, Bengio, and Courville 2016). In machine learning applications, the data is

both discrete and finite. The discrete convolution for vectors I,K is defined as

G(t) = (I ∗K)(x) = ∑
t

I(t)K(x− t) (3.45)

(Goodfellow, Bengio, and Courville 2016).

If we assume a two-dimensional (2D) input I (e.g., a grayscale image described by a matrix

of intensity values), then K is correspondingly a matrix. 2D convolution is defined as

G(i, j) = (I ∗K)(i, j) = ∑
m,n

I(m,n)K(i−m, j−n) = ∑
m,n

I(i−m, j−n)K(m,n), (3.46)

where in the latter equality is due to the commutative property of convolution (Goodfellow,

Bengio, and Courville 2016). Many deep learning libraries like PyTorch (Paszke et al. 2019)

implement cross-correlation instead of convolution,3 which corresponds with convolution

without flipping the kernel (Goodfellow, Bengio, and Courville 2016). Whether the kernel is

3. See the PyTorch documentation for 2D convolution https://pytorch.org/docs/stable/generated/torch.nn.

Conv2d.html.

25

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html


flipped or not is irrelevant for CNN, as the kernel values are determined through backpropa-

gation. Cross-correlation is defined as

G(i, j) = (I ⋆K)(i, j) = ∑
m,n

I(i+m, j+n)K(m,n) (3.47)

(Goodfellow, Bengio, and Courville 2016).

Let us consider an example of valid 2D convolution (Eq. 3.46). Our input I is a grayscale

image shown in Fig. 4(a) and the kernel K is a vertical Sobel filter (Szeliski 2022):

K =
1
8




−1 0 1

−2 0 2

−1 0 1


 .

The outcome of I ∗K is a new image, presented in Fig. 4(b)), which describes vertical inten-

sity changes in I, i.e., borders and lines. The convolution describes a linear transformation

applied on a local region at each pixel position of I (excluding the borders).

(a) Original image. (b) Vertical Sobel filter output

Figure 4: A grayscale image convolved with Sobel filter. The input image is 374×374 and

the output is 372×372. The output of a valid convolution shrinks as the pixels on the border

of the input image are not processed.
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3.7.1 Convolutional layer

The convolutional neural network is somewhat of a misnomer as the operation performed

in CNN differs slightly from a valid convolution (Eq. 3.46). This section introduces the

convolutional layer and details how it operates in contrast to the valid convolution. The con-

volutional layer applies the convolution operation to some input with a number of different

kernels (Szeliski 2022), even though the operation is cross-correlation (Eq. 3.47), this the-

sis will follow the convention of calling the operation convolution. A number of different

kernels are used in one layer, as one kernel specifies one kind of linear transformation ex-

tracting only one type of information (like vertical lines extracted by the vertical Sobel filter,

presented in Fig. 4).

A convolutional layer consists of C2 kernels, each kernel is convolved with an input tensor,

and the layer’s output is a collection of C2 individual convolution outputs. For example, if

the input is RGB-image (i.e., a three-dimensional tensor where the channel axis corresponds

with the red, green, and blue intensity values), the kernels would be three-dimensional. Ker-

nels visits each spatial position of the input image, producing a weighted sum over the local

spatial and channel dimensions, all producing a 2D output (usually referred to as a feature

map) (Szeliski 2022). Formally, the output of a 2D convolutional layer is given by

A(i, j,c2) = ∑
m,n,c1

I(i+m, j+n,c1)K(m,n,c1,c2)+b(c2), (3.48)

where c1 iterates over the input channels and b(·) is a bias term (Szeliski 2022).

The number of parameters for a 2D convolutional layer can be determined by

(HK ×WK ×C1 +1)×C2, (3.49)

where HK is the kernel height, WK is the kernel width, C1 the number of input channels, and

C2 the number of kernels (Szeliski 2022); note that the addition of one is due to the bias

term added by each kernel. The spatial size of the kernel is typically smaller than the input.

Therefore the same kernel weights are used across the spatial dimensions of the input, i.e.,

the weights are shared between the inputs in a convolutional layer. The intuition is that if one

kernel is useful in one part of the image, it is useful everywhere. The weight sharing allows

CNNs to use fewer parameters and thus have lower memory requirements compared to dense
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networks (Goodfellow, Bengio, and Courville 2016), which is why the use of feedforward

neural network (FNN) for image data is impractical.

Let us consider a 64×64 grayscale image as an input. We can flatten the image to a vector

with 4,096 elements. In a dense FNN, this would result in 4,097 connections with each

neuron at the first hidden layer, i.e., 4,096 weight parameters and a bias. Using 100 neurons

on the first hidden layer yields 409,700 parameters to optimize on the first layer alone. For

example, a convolutional layer with a kernel size of 5×5 and the number of kernels C2 = 32

would require only 832 parameters.

Using valid convolution with a kernel of width WK will cause the output width to shrink by

WK − 1 pixels (equivalent for the height) since the kernel cannot process the border pixels.

Padding is used to offset the shrinking caused by convolution (Goodfellow, Bengio, and

Courville 2016). Typically zero padding is used. In zero padding, as the name suggests, the

input is padded with zero values (Goodfellow, Bengio, and Courville 2016). See Szeliski

2022 for other padding approaches. With padding, one can design arbitrary deep CNNs.

Suppose we want to extract more granular information from the input (i.e., downsample the

output of the convolution); this can be achieved by evaluating the convolution every s:th row

and column (Goodfellow, Bengio, and Courville 2016). The hyperparameter controlling the

movement of the kernel is called stride. Assuming we want the stride s to be symmetric, the

strided convolution can be defined as

A(i, j,c2) = ∑
m,n,c1

I((i−1)× s+m,( j−1)× s+n,c1)K(m,n,c1,c2)+b(c2), (3.50)

where the subtraction of one from i, j is due to the indexing starting from one (Goodfellow,

Bengio, and Courville 2016).

With the basic hyperparameters of the convolutional layer in place, we define how the con-

volutional layer alters the input volume. The output volume of the 2D convolutional layer

is determined by kernel size, input height Hin, input width Win, padding P, stride s, and the

number of kernels C2. The dimensions of the 2D convolution output is Hout ×Wout ×C2
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(Szeliski 2022), where
⌊

Hout =
Hin −HK +2P

s
+1
⌋
, and

⌊
Wout =

Win −WK +2P
s

+1
⌋
.

Note that we assume symmetric padding, and stride, for simplicity. Typical choices for

kernel size include 3×3, 5×5, and 1×1.

1 × 1 convolution (Lin, Chen, and Yan 2013) is a special case of the convolution layer.

When the stride s = 1 and the padding P = 0, the 1× 1 convolution is in essence a matrix

multiplication (Szeliski 2022), e.g., given an input tensor X with a size Hin ×Win ×C1, then

1×1 convolution is defined as

Ai, j =WdXi, j, (3.51)

where Wd is C2 ×C1 matrix and Xi, j ∈ RC1 denotes a vector-valued input pixel (Lin, Chen,

and Yan 2013). 1×1 convolution essentially projects the input pixelwise to C2 dimensional

space. 1 × 1 convolution can be used to manipulate the dimensionality of the channels.

Importantly, 1×1 convolution can reduce the dimensionality of the input and thus reduce the

computational cost before more expensive 3×3 or 5×5 convolutions (Szegedy et al. 2015).

Typically, CNNs are used for image classification, for which multiple 2D convolutional lay-

ers are combined (Krizhevsky, Sutskever, and Hinton 2012). The general idea is to create

progressively more complex feature maps by successive convolutions while shrinking the

spatial resolution of the representation. CNNs usually learn kernels extracting simple shapes

(e.g., lines and corners) at the initial layers; by combining the low-level features, CNNs are

able to extract high-level features at the late layers (Zeiler and Fergus 2014). After a num-

ber of convolutions, we have reduced the dimensionality of the data and extracted high-level

features. At this point, the transformed input is typically fed to a regular FNN for prediction

(Krizhevsky, Sutskever, and Hinton 2012).

3.7.2 Pooling

We have discussed strided convolutions and 1×1 convolutions that can be used to reduce the

input dimensionality. Pooling describes another way to downsample the input. In general,

29



pooling functions calculates summary statistics of an input in a local neighborhood (Good-

fellow, Bengio, and Courville 2016). For example, assuming 2D input, max pooling (Weng,

Ahuja, and Huang 1992, 1997; Riesenhuber and Poggio 1999) returns the maximum value

within a square window. When pooling is used with a stride greater than one, the output

is downsampled spatially. Max pooling is applied channelwise. Therefore only the spatial

dimensions are affected.

The pooling functions do not have to be optimized as they do not have parameters. How-

ever, max pooling has hyperparameters, such as window size and stride. Another benefit

of pooling is that it makes the CNNs invariant to small input shifts (Goodfellow, Bengio,

and Courville 2016). This is useful for object recognition since we are more interested in

knowing the presence of an object rather than its exact location. The results by Scherer,

Müller, and Behnke 2010 indicate that the max pooling is superior to subsampling in object

recognition.

Another widely used pooling function is the global average pooling (Lin, Chen, and Yan

2013), which averages the input tensor over the feature maps. Formally global average pool-

ing is defined as

Gc =
1

HW

H

∑
i=1

W

∑
j=1

Ac(i, j), (3.52)

where, Ac is the feature map with index c and i, j indexes the height and width, respectively

(Lin, Chen, and Yan 2013). This form of pooling is usually used after the last convolutional

layer. Without global average pooling, one would typically flatten the tensor after the last

convolutional layer and feed the resulting vector to a dense layer. Which required setting

a fixed input size since too large or small input would lead to a value error in the matrix

multiplication. The use of global average pooling makes the model robust toward the input

size since only the number of feature maps would need to be set. The global average pooling

can be used to replace the dense part of the CNN altogether. Doing so might even improve

the performance (Lin, Chen, and Yan 2013).
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3.7.3 ResNeXt architecture

ResNeXt is a CNN architecture introduced by Xie et al. 2017, bearing similarities to the

well-known Residual Network (ResNet) (He et al. 2016); hence the name. Specifically,

ResNeXt borrows the residual block architecture modifying it for increased efficiency (Xie

et al. 2017). The original ResNet architecture was introduced to solve the problem of training

deep neural networks. The intuition is that increasing the depth of the model should increase

the model’s learning capacity and, therefore, capability to overfit. However, the empirical

evidence pointed otherwise; increasing the model’s depth resulted in higher training error for

very deep models (He et al. 2016).

The solution proposed by He et al. 2016 was the residual block architecture. Let function

F(x,{θi}) denote a neural network’s block (a number of sequential layers with possible

nonlinear activations between). The residual block is formally defined as

a = F(x,{θi})+ x, (3.53)

where x is the input tensor and θi denotes the parameters of layer i (He et al. 2016), e.g., a

residual block with two dense layers with linear activations would be

F =W2(W1x+b1)+b2 + x.

Adding the input x to the output can be considered a skip connection (He et al. 2016). In

Eq. 3.53 the dimensions of x and F must be equal. For some types of neural networks, we

want to alter the dimensionality of the input (e.g., CNN typically increases the number of

feature maps). When the dimensions are not equivalent, we can perform a linear projection

(i.e., 1×1 convolution) to match the dimensions

a = F(x,{θi})+Wdx (3.54)

(He et al. 2016). The second design element in both architectures is the bottleneck block

design (Fig. 5). Another problem with deep CNNs is the computation of late convolution

layers becoming expensive as the number of feature maps expands (Szegedy et al. 2015). To

this end, the ResNet utilizes bottleneck blocks (Fig. 5) in the later layers (He et al. 2016). The

bottleneck block downsamples the input using 1× 1 convolutions before 3× 3 convolution

and restores the dimensionality afterward.
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BN + ReLU

BN + ReLU

ReLU

BN

Figure 5: ResNet bottleneck block, BN denotes batch normalization. The rectangles indicate

the convolutional layer, and the parameters are given in order: input channels, kernel size,

output channels (adapted from He et al. 2016).

The ResNeXt block features a similar design to the ResNet bottleneck block, but the input is

divided into numerous parallel paths, where the input is transformed to low-dimensional em-

beddings and aggregated together with the linear path (Xie et al. 2017). We denote individual

transformation with Fi. The aggregated transformation is given by

a = x+
C

∑
i=1

Fi(x), (3.55)

where C (cardinality) is the number of parallel paths (Xie et al. 2017). The aggregated trans-

formation of Eq. 3.55 is realized as group convolutions (Krizhevsky, Sutskever, and Hinton

2012), where the number of groups is C (Xie et al. 2017). In grouped convolution, the input

is split channelwise by the number of groups, the separate input groups are convolved with

the corresponding group of separate kernels, and the outputs are concatenated channelwise

(Krizhevsky, Sutskever, and Hinton 2012; Xie et al. 2017). The ResNeXt block with group

convolution is illustrated in Fig. 6.

Now that we have introduced the design elements of ResNeXt, we can present the architec-

ture of the model used in the article (Patron et al. 2022). The modified ResNeXt-50-32x4d

architecture is presented in table 4. The ResNeXt architecture is composed by repeating

a different variety of block structures after the initial convolution and pooling layers. The

model uses batch normalization after each convolution operation followed by ReLU, except
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Concatenate

32 paths

(a) Block design with concatenation.

  group = 32

(b) Block design with group convolution.

Figure 6: The ResNeXt block illustrated by group convolution, both designs are equivalent

(adapted from Xie et al. 2017).

before adding the linear path ReLU is performed after the addition (similarly to as in Fig. 5)

(Xie et al. 2017). The configuration ResNeXt-50-32x4d was selected as the base of the archi-

tecture simply because it performed better than the alternatives. We also experimented with

ResNet (He et al. 2016), VGG (Simonyan and Zisserman 2014), and dense convolutional

network (DenseNet) (Huang et al. 2017) family of models.

33



Table 4: The modified ResNeXt architecture used in (Patron et al. 2022), adapted from Xie et

al. 2017. The convolution layer parameters are presented in the order of kernel size, and the

number of kernels and C denotes the number of grouped convolutions. A bracket followed

by × k indicates the block is repeated k times. The dense layer has an input size of 2048 and

an output size of two. The spatial output size of the block is presented in the middle column.

Block Output size Architecture

Conv1 112×112 7×7, 64, stride 2

Pool 56×56 3×3 max pool, stride 2

Block1 56×56

1×1, 128




×33×3 128, C= 32

1×1, 256

Block2 28×28

1×1, 256




×43×3 256, C= 32

1×1, 512

Block3 14×14

1×1, 512




×63×3 512, C= 32

1×1, 1024

Block4 7×7

1×1, 1024




×33×3 1024, C= 32

1×1, 2048

1×1 global average pool

Dense 2048, 2, softmax
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3.7.4 Transfer learning

The growing amounts of data and computational resources have enabled neural networks

to dominate on problems such as image classification (Krizhevsky, Sutskever, and Hinton

2012). However, in some domains, such as medicine, the data might be scarce or expensive

to collect, hindering the applicability of data-hungry deep learning approaches. It would

be desirable to transfer knowledge from one domain or task to another to improve the per-

formance of the deep learning algorithms. This is also known as transfer learning (Bengio

2012).

The definition for transfer learning is given hereafter using the notation of Pan and Yang

2010; Weiss, Khoshgoftaar, and Wang 2016. Let DS be the source domain and DT the

target domain, the corresponding task we denote with TS and TT , respectively. The domain

D = {X,P(X)} is composed of two parts, the feature space X and a marginal probability

distribution P(X), where the features X = {x1, . . . ,xn} ∈ X. The task is formally defined as

T = {Y, f (·)}, where Y is the label space and f (·) is a predictive function mapping between

feature vector label pairs {xi,yi}, where xi ∈ X and yi ∈ Y. The objective of transfer learning

is to improve the performance of the predictive function of the target task fT (·) by using DS

and TS, where DS ̸=DT or TS ̸= TT (Pan and Yang 2010; Weiss, Khoshgoftaar, and Wang

2016).

Given the above definition, the source domain in the paper (Patron et al. 2022) is the Ima-

geNet (Deng et al. 2009), and the source task is assigning a class label 0–999 to an image

(corresponding with various objects, animals, etc.). The target domain is knee radiographs

and the target task is to predict a binary spiking status. Therefore, DS ̸= DT and TS ̸= TT

since XS ̸= XT (radiographs instead of RGB images) and YS ̸= YT (binary labels instead

of [0,999]). The approach for transfer learning in the paper (Patron et al. 2022) was the

network-based deep transfer learning (Pan and Yang 2010), referring to transferring a num-

ber of layers from a neural network trained on the source domain to another neural network

used in the target domain. For medical image classification, the transferred layers can be

used as a feature extractor or fine-tuned for the target task (Litjens et al. 2017). The latter

procedure can potentially increase the performance of a deep learning model over training

solely on the target task samples (Yosinski et al. 2014).
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3.7.5 Gradient-weighted Class Activation Mapping

Gradient-weighted class activation mapping (Grad-CAM) (Selvaraju et al. 2017) is a method

for visualizing the most influential regions of the input, given the prediction of a CNN. Grad-

CAM can be considered a generalization of class activation mapping (CAM) proposed by

Zhou et al. 2016. Unlike CAM, Grad-CAM does not require the model to use global average

pooling and, therefore, can be applied for a broader variety of CNNs (Selvaraju et al. 2017).

Grad-CAM highlights the most influential regions for predicting class u in the input. The

output of Grad-CAM resembles a heatmap, usually presented over the input image.

Let us consider image classification. We denote some class with u and the score of u before

softmax ŷu. We compute the gradient of ŷu with regard to feature map activations of the

last convolutional layer Ak, i.e., we compute ∂ ŷu

∂Ak . The last convolutional layer is chosen as

we expect the final convolutional layer to produce the highest level feature extraction while

retaining the spatial information, unlike dense layers (Selvaraju et al. 2017). The gradients

are averaged over the spatial dimensions (i.e., we compute the global average pooling), pro-

ducing a vector containing the importance weights ρu
k for each feature map:

ρ
u
k =

1
HW

H

∑
i=1

W

∑
j=1

∂yu

∂Ak
i j
, (3.56)

where H,W are the height and width of Ak, respectively (Selvaraju et al. 2017).

To obtain the Grad-CAM heatmap, we calculate a linear combination of the importance

weights and the activation maps A followed by ReLU

ReLU

(
∑
k

ρ
u
k Ak

)
(3.57)

(Selvaraju et al. 2017). Taking the ReLU will make all negative pixels zero. We are only

interested in the positive pixels, i.e., the intensity of these pixels should be increased to

increase ŷu (Selvaraju et al. 2017). The negative pixels likely contain irrelevant information

for predicting class u and thus can be zeroed (Selvaraju et al. 2017). Finally, since the size

of the produced heatmap will correspond to the spatial resolution of A (which is likely very

small compared to the input), therefore the heatmap needs to be interpolated to the size of

the input (Selvaraju et al. 2017).
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4 Results

This chapter summarizes the results of the article (Patron et al. 2022). Before the following

chapters, the reader should see the article in appendix A. In the study, we used overall spiking

as the model ground-truth; the inter-rater reliability for the overall spiking was 0.48 (κ). The

reliability analysis results are presented in Table 5.

Table 5: Intra and inter-rater reliability (κ) for the original ratings including unsure, binary

ratings with unsure omitted (denoted with o), and overall spiking (denoted with OR) with

95% confidence interval (CI). Adapted from Patron et al. 2022.

Intra-rater κ (expert 1) Intra-rater κ (expert 2) Inter-rater κ

Medial 0.61 (0.58–0.64) 0.52 (0.50–0.54) 0.34 (0.33–0.35)

Medial (o) 0.78 (0.75–0.82) 0.94 (0.92–0.96) 0.59 (0.58–0.61)

Lateral 0.59 (0.56–0.62) 0.75 (0.73–0.76) 0.55 (0.55–0.56)

Lateral (o) 0.71 (0.67–0.74) 1.00 (1.00–1.00) 0.75 (0.74–0.76)

OR 0.53 (0.50–0.57) 0.69 (0.67–0.72) 0.48 (0.47–0.49)

In experiment A, we compared 913 knees with and without tibial spiking using the Wilcoxon–

Mann–Whitney test. The sample means for spiking and control groups with U-test p-values

are detailed in Table 6. The significant variables below the Bonferroni corrected p < 0.001

were KL-grade and BMI, and the variables below the corrected p < 0.01 were the medial

JSN and lateral tibia compartment osteophyte scores (Patron et al. 2022).

In experiment B, we fine-tuned a pre-trained CNN for identifying tibial spiking. We evalu-

ated the model using 191 samples. The model produced an accuracy of 0.869, sensitivity of

0.909, and specificity of 0.750 (Patron et al. 2022). More details on the model performance

can be seen in Table 7.
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Table 6: Mean values for spiking and control groups with U-test p-values (adapted from

Patron et al. 2022).

Spiking Control p-value

KL-grade 1.11 0.70 p < 0.001

WOMAC knee pain 2.14 1.62 0.032

BMI 29.09 27.46 p < 0.001

Medial JSN 0.38 0.25 p < 0.001

Lateral JSN 0.05 0.04 0.440

Tibia medial osteophytes 0.59 0.41 0.009

Tibia lateral osteophytes 0.40 0.21 p < 0.001

Femur medial osteophytes 0.48 0.27 0.007

Femur lateral osteophytes 0.41 0.22 0.009

Table 7: Classifier performance metrics computed for each data subsets (adapted from Patron

et al. 2022).

Accuracy Loss Sensitivity Specificity Precision

Train 0.872 0.300 0.882 0.851 0.925

Validation 0.869 0.399 0.929 0.745 0.883

Test 0.869 0.314 0.909 0.750 0.915
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5 Discussion

In the study, the knees were assessed for tibial spiking by subjective visual examination

(Patron et al. 2022). The subjectivity of the ratings is a concern since the raters were not

blinded to the details of the hypothesis on the tibial spiking being an early sign of knee

OA. The knowledge of the hypothesis could have influenced the ratings, as the raters could

have looked for confirmation from the other signs of knee OA. The experts were blinded

to the radiographic assessments extracted from the datasets (Patron et al. 2022). However,

the radiographs themselves contain information on JSN and osteophyte formation. The bias

could have been reduced by only providing an image of the tibial tubercles (e.g., by cropping)

instead of showing the whole knee joint to the experts.

We found the samples from the spiking group to have significantly higher KL-grade com-

pared to the controls (Patron et al. 2022). This finding is in accord with Donnelly et al. 1996

and corresponds with the reported association with knee OA (Reiff, Heron, and Stoker 1991;

Unlu et al. 2006; Hayeri et al. 2010). We observed more severe medial JSN ratings in the

spiking group (Patron et al. 2022), which supports the findings of Donnelly et al. 1996, who

reported an association between the lateral tubercle angulation and medial JSN and Unlu

et al. 2006 who found medial spine height to correlate with medial cartilage defects. We,

however, found no difference in the lateral JSN (Patron et al. 2022), contradicting Donnelly

et al. 1996, who found the height of the medial tubercle to associate with the lateral JSN.

Additionally, we found an association between tibial spiking and osteophyte formation on the

lateral tibia compartment (Patron et al. 2022). Our results agree with Donnelly et al. 1996;

Unlu et al. 2006; Hayeri et al. 2010. We could not confirm the association between medial

osteophytes and tibial spiking reported by Donnelly et al. 1996. Alexander 1990 suggested

that tibial spiking could be a form of osteophyte formation. Our findings provide support for

the association between tibial spiking and osteophyte formation; therefore, the conjecture

might be correct. However, the underlying causality of spiking tibial tubercles is unknown

and should be investigated.

While the results for experiment B were promising, this study should be considered a proof-
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of-concept rather than a deployment-ready method. Firstly, the sample size of the study can

be considered limited. Despite the small sample size, the developed model was able to gen-

eralize quite well (Patron et al. 2022). However, the model should be evaluated with another

dataset since the ground-truth was only based on subjective visual assessment and, therefore,

might produce biased predictions. A grid-search was utilized for tuning the model hyperpa-

rameters (Patron et al. 2022), although random search provides better efficiency for optimiz-

ing neural network hyperparameters (Bergstra and Bengio 2012). Another point of concern

is the reliability of the ground-truth. Although the intra-rater reliability of the ground-truth

labels was similar to KL-grading (Patron et al. 2022), the label noise in the training data

should be ideally zero. Deep learning algorithms seem resistant to label noise for large

datasets (Rolnick et al. 2017). Our dataset was, however, relatively small. Especially the test

data should be as clean as possible to produce reliable results.

The model has a lower probability of grading non-spiking knees correctly than spiking knees,

indicated by lower specificity (Patron et al. 2022). The discrepancy might be explainable by

the class imbalance. Additionally, due to including the unsure ratings in the non-spiking

class, the non-spiking class might have included a greater quantity of borderline samples

that could have been classified as doubtful spiking (Patron et al. 2022), which could have

contributed to the lower specificity. The imbalance could be perhaps alleviated by using

class weighting in the loss function or equalizing the sampling of the different class examples

during training. Additionally, a different metric could have been chosen as the criterion in

the hyperparameter optimization.

The article provided Grad-CAM visualization examples to demonstrate decision-making of

the model (Patron et al. 2022). The heatmaps indicated that the model might be reliant on

JSN for assessing tibial spiking, which could cause misclassifications (Patron et al. 2022).

Perhaps a training scheme, where either medial or lateral condyle would be randomly cov-

ered, could force the network to not rely on features outside the tubercles themselves. Addi-

tionally, the Grad-CAM responses were high in bright areas of the radiographs, which might

be indicative of sclerosis. The Grad-CAM heatmaps should be evaluated by medical experts

to see if the model has learned sensible features for identifying tibial spiking.

Future studies should collect a larger quantity of samples to address the generalizability
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concerns. High care should be placed on the creation of ground-truth labels, especially for

clinical applications the data should consist of high-quality samples with high reliability.

Ideally, the grading should be performed by a committee of experienced raters. Universally

shared criteria for tibial spiking rating does not exist, to our knowledge. Therefore an atlas

for grading tibial spiking would be vital for the adoption of the feature.
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6 Conclusion

The article by Patron et al. 2022 examined a hypothesis on the spiking of tibial tubercles as

an early sign of knee osteoarthritis. The results of the study were found to support the hy-

pothesis (Patron et al. 2022). Therefore, adopting the feature for assessing early-onset knee

osteoarthritis holds promise. The results, however, should be verified by future work due to

limitations of the study by Patron et al. 2022. Currently, little is known about tibial spiking

in relation to osteoarthritis. Possible future research questions include the importance of the

finding, the causality, and the relation to other features of knee osteoarthritis. Additionally,

a classifier based on convolutional neural networks was developed and evaluated for tibial

spiking detection (Patron et al. 2022). The model was able to generalize regardless of the

small number of samples available. However, the generalizability of the model should be

validated using another dataset to rule out possible bias.
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Abstract: Efficient and scalable early diagnostic methods for knee osteoarthritis are desired due to
the disease’s prevalence. The current automatic methods for detecting osteoarthritis using plain
radiographs struggle to identify the subjects with early-stage disease. Tibial spiking has been hypoth-
esized as a feature of early knee osteoarthritis. Previous research has demonstrated an association
between knee osteoarthritis and tibial spiking, but the connection to the early-stage disease has not
been investigated. We study tibial spiking as a feature of early knee osteoarthritis. Additionally,
we develop a deep learning based model for detecting tibial spiking from plain radiographs. We
collected and graded 913 knee radiographs for tibial spiking. We conducted two experiments: ex-
periments A and B. In experiment A, we compared the subjects with and without tibial spiking
using Mann-Whitney U-test. Experiment B consisted of developing and validating an interpretative
deep learning based method for predicting tibial spiking. The subjects with tibial spiking had more
severe Kellgren-Lawrence grade, medial joint space narrowing, and osteophyte score in the lateral
tibial compartment. The developed method achieved an accuracy of 0.869. We find tibial spiking a
promising feature in knee osteoarthritis diagnosis. Furthermore, the detection can be automatized.

Keywords: knee joint; osteoarthritis; radiography; tibial spiking; convolutional neural networks

1. Introduction

Knee osteoarthritis (OA) is a highly prevalent chronic joint disease and a prominent
global cause of disability. In the Global Burden of Disease 2010 study, knee and hip OA
was ranked the 11th most common global cause of disability [1]. As the prevalence of OA
increases with age [2], due to population aging, the burden of OA is expected to rise. Early
detection of OA is imperative for maximizing the efficacy of interventions, lowering the
burden of the disease and the incidence of knee joint replacement surgery [3,4].

Plain radiography is a standard imaging modality for OA diagnosis and severity
assessment. Radiographic signs of knee OA include joint space narrowing (JSN), formation
of osteophytes, cysts, and subchondral sclerosis [5]. Plain radiography as an imaging
modality is insensitive to early signs of knee OA, such as cartilage damage and minor
osteophytes [6,7], which makes the radiographic diagnosis of early knee OA challenging.

The most common classification for radiological knee OA was described by Kellgren
and Lawrence (KL) [8]. KL classification consists of ordinal grades from 0 to 4, where 0
stands for no signs of OA, and each subsequent grade signifies increasing OA severity. KL
is a composite grading system, defining OA by the presence of JSN and osteophytes. The
definitions of KL-grades for the knee joint are the following [8,11]:

• Grade 0: No radiological signs of OA.
• Grade 1: Doubtful JSN, possible osteophytic lipping.
• Grade 2: Definite osteophytes, possible JSN.
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• Grade 3: Moderate multiple osteophytes, definite JSN, some sclerosis, possible defor-
mity of bone ends.

• Grade 4: Large osteophytes, marked JSN, severe sclerosis, definite deformity of bone
ends.

The KL system has been criticized for ambiguity, e.g., in cases where JSN is present, but
osteophytes are not [9]. Osteoarthritis Research Society International (OARSI) developed
another radiographic atlas for OA [10]. Unlike KL, OARSI contains individual grades for
JSN and osteophytes on a scale of 0–3.

To increase the reliability and objectivity of OA assessment, fully automatic methods
have been developed for assessing radiographic knee OA using plain radiographs. Oka
et al. [12] developed an automatic method for quantifying features of OA, such as minimum
joint space width and osteophyte area using filters and differentiation. Shamir et al. [13]
used various handcrafted features extracted from the plain radiographs together with a
weighted nearest neighbor classifier to predict the KL-grade. More recently, convolutional
neural networks (CNN) [14] have achieved success in medical image classification tasks
such as malignant skin lesion classification [15] or radiographic identifying of subjects with
arthroplasty [16].

Using CNNs for knee OA severity assessment from plain radiographs was initially
proposed by Antony et al. [17]. The recent state-of-the-art for predicting knee OA severity
using deep learning has been reviewed by Yeoh et al. [18]. CNN-based methods have been
reasonably successful in assessing severe KL-grades (i.e., grades 3 and 4), but for predicting
grades marking early OA, the accuracy is notably lower [17,19,20]. The limitations of
automation of early OA severity assessment using plain radiographs are likely multifaceted.
Firstly radiographs do not allow for direct visualization of the cartilage. Furthermore, the
current CNN-based methods are constrained by the KL system. As the current methods are
trained using noisy KL scores as the ground truth, the resulting models thus capture the
bias inherent to the KL classification. The results by Kim et al. [21] indicate that early OA
severity assessment with CNN can be improved by providing the model with additional
clinical information (e.g., age, sex, and body mass index (BMI)).

The limitations of early OA assessment could perhaps be alleviated further by con-
sidering additional radiographic features of OA not incorporated in the KL system, such
as the spiking of tibial tubercles that has been hypothesized as a sign of early knee OA
(hypothesis A). The spiking of tibial tubercles or tibial spiking refers to the tall and angular
appearance of the tibial spines (see Figure 1). The first mention of hypothesis A, to our
knowledge, is from a radiological textbook by Sutton [22]. However, the author provides
no evidence for the said hypothesis.

The feature was later studied by Reiff et al. [23], who examined radiographs from fifty-
five subjects with established knee OA and thirty-six controls. They found the lengthening
and sharpening of the peaks of the tubercles associated with knee OA. Donnelly et al. [24]
conducted a study with 950 subjects examining tibial spiking as a radiological feature of
OA. They found the sharpening of tibial spines to correlate with OA status (defined by KL
2 or higher) and osteophyte scores. They, however, concluded that tibial spiking is not a
reliable marker for knee OA in isolation due to a lack of clear independent association with
knee pain [24].

Unluet al. [25] studied the association between tibial spiking and cartilage defects
assessed via magnetic resonance imaging (MRI). The study involved seventy-six knees from
forty-seven subjects and thirty-one knees from sixteen controls. The subjects with knee
OA had significantly higher and sharper tibial spines than the controls. They observed
a correlation between cartilage defects and medial tubercle height but not with lateral
tubercle height [25]. Additionally, an association between the spiking of lateral tubercle
and osteophyte formation in the tibial compartments was found [25]. The latest study by
Hayeri et al. [26] considered tibial spiking from a paleopathological framework, where
thirty-five tibial bone specimens were directly examined for signs of OA. The study found
spiking of the lateral spine associated with osteophyte formation.
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Figure 1. Two knee radiographs rated for spiking of tibial tubercles are compared. The tubercles
rated as spiking are indicated by arrowheads.

The previous research indicates that tibial spiking might be associated with knee OA
and osteophyte formation [23–26], however, the feature might not be a reliable marker of
knee OA in isolation [24]. Although osteophyte formation is one of the primary signs of
radiographic OA, therefore tibial spiking might be a beneficial feature in assessing knee OA
in cases where no evident osteophytes can be detected. With automatic methods, the cost
of assessing radiographs for markers of OA is negligible and therefore provides a different
value proposition compared to general clinical adoption. Provided that tibial spiking is
identifiable by human experts, an automatic method can be developed, provided sufficient
data (hypothesis B).

The aim of the present study was to evaluate the hypothesis on tibial spiking as an
early sign of knee OA (hypothesis A). While the previous work on the subject indicates that
tibial spiking might be a feature of knee OA [23–26], the research is still lacking. Especially
whether tibial spiking is connected with the early knee OA is unclear. Furthermore,
we examined the feasibility of identifying tibial spiking automatically by developing a
method for assessing the feature from plain radiographs (hypothesis B), which has not
been considered previously.

2. Materials and Methods
2.1. Radiographic Data

The present study utilized data from the Osteoarthritis Initiative (OAI) [27] and the
Multicenter Osteoarthritis Study (MOST) [28]. OAI and MOST are longitudinal cohort
studies of OA and include radiographs assessed for signs of OA at multiple time points.
OAI dataset includes data from 4607 participants between ages 45–79 at baseline. MOST
baseline dataset contains data from 3026 participants between ages 50–79.

We collected bilateral PA (posterior-anterior) fixed flexion knee radiographs with
KL-grades 0–2 from OAI and MOST baseline datasets. The radiographs were selected
randomly with an approximately equal number of samples from each KL-grade. We
collected 722 radiographs from OAI and 191 radiographs from MOST, from which we
used only the right knee. The collected knees with regard to the KL-grade can be seen
in Table 1. Additionally, we collected assessments of radiographic knee OA, including
KL-score, OARSI osteophyte and JSN scores, Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) knee pain score, and the subject BMI for each sample.

Table 1. Collected knees with regard to KL-grade.

KL0 KL1 KL2

OAI 243 248 231
MOST 65 61 65
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2.2. Data for Experiment A

As the tibial spiking was not assessed in OAI or MOST cohorts, we collected the
assessments manually for all 913 knees. The assessments were performed by two physi-
cians, a radiology resident with three years of experience in radiology (expert 1) and an
experienced orthopedic surgeon (expert 2). Each knee was assessed by a single expert,
blinded to the OA assessments and clinical details. Prior to grading the knees, the experts
had a single session to establish a uniform view of the spiking criteria. Each spine (medial
and lateral) was rated for spiking by subjective visual inspection of angulation, size, and
other deformities. No angle or height measurements of the tubercles were performed in
this study. The spines were graded on a binary scale of 0–1 with the possibility of giving an
“unsure” rating. The unsure rating was warranted as the tibial spines might be occluded
by the femur or otherwise difficult to judge, e.g., due to poor exposure. The spines were
also rated unsure in borderline cases (i.e., doubtful spiking). We defined overall spiking
(i.e., spiking on medial or lateral side) as

spiking := (lateral spiking = 1) ∨ (medial spiking = 1). (1)

2.3. Reliability

We evaluated inter-rater reliability using a subset of 205 radiographs rated by both
experts in separate sessions, blinded to the assessments made by the other party. Intra-rater
reliability was assessed with a subset of the knees re-rated by the same expert, blinded
to the previous rating. The duplicate radiographs used for evaluating reliability were
mixed among the set of regular radiographs. Additionally, the experts were blinded to
the existence of duplicate radiographs. Sample sizes for evaluating intra-rater reliability
were 53 and 68 for experts 1 and 2, respectively. The inter- and intra-rater reliability were
measured using Cohen’s κ (Kappa) [29]. For calculating κ scores we used implementation
in Python (ver. 3.10.0) [30] library scikit-learn 1.0.1 [31].

The reliability analysis was performed for the original 3-way ratings (including the
unsure ratings), binary (0–1) ratings where the unsure assessments were omitted, and
overall spiking (defined in Equation (1)). The rating pairs were omitted if either contained
an unsure rating. The sample sizes for assessing the intra-rater reliability of unsure omitted
ratings were 41 and 42 for experts 1 and 2, respectively, and 124 for inter-rater reliability.

2.4. Experiment A

To evaluate the hypothesis on tibial spiking as a feature of early OA (hypothesis A),
we conducted experiment A, where the differences were tested between groups with tibial
spiking and a control group (i.e., subjects without tibial spiking). Given hypothesis A, we
would expect the group with tibial spiking to have a higher KL-score, osteophyte-score,
JSN-score, and knee pain. We combined the samples from OAI (722) and MOST (191), for
913 samples in experiment A.

We defined the inclusion criteria for the spiking group identically to overall spiking;
see Equation (1). Consequently, the control group included all the samples with negative
or unsure ratings. In total, 630 samples were assigned to the spiking group and 283 to
the control group. For testing the group differences, we used two-tailed Mann-Whitney
U-test [32]. We used the Scipy 1.7.3 [33] implementation for calculating the U-test values.
To counteract the multiple comparisons problem, we applied the Bonferroni correction [34].
With significance levels α = (0.05, 0.01, 0.001) and the number of tests n = 9, the corrected
significance level α′i is

α′i =
αi
n

. (2)

Some radiographs in the original OAI and MOST data were missing some OARSI
assessments (JSN or osteophytes grade). We omitted the samples containing missing values
for the calculations, which reduces the sample size for these variables. Sample sizes for the
variables containing missing information are the following: BMI: spiking 629 and control
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283, OARSI JSN variables: spiking 618 and control 281, and OARSI osteophyte variables:
spiking 432 and control 145.

2.5. Data for Experiment B

We used 80% of OAI data (577 images) for model training and 20% (145 images)
for model validation. All 191 images from MOST were used as the final test data. For a
breakdown of each dataset split with regard to the tibial spiking rating, refer to Table 2. As
the ground truth, we used the definition for overall spiking (see Equation (1)). We used the
assessments from a single expert chosen randomly for the images graded by both experts.

Table 2. Tibial spiking data frequency tables for medial, lateral, and overall spiking (medial or lateral;
OR). Zero indicates the absence of spiking, while one indicates the presence of spiking. The question
mark indicates the unsure rating.

Medial Lateral OR

0 1 ? 0 1 ? 0 1

Train 216 281 80 253 279 45 188 389
Validation 57 71 17 53 77 15 47 98
Test 66 108 17 59 116 16 48 143
Total 339 460 114 365 472 76 283 630

The image data in the OAI and MOST datasets were stored as Digital Imaging and
Communications in Medicine (DICOM) image format. We used pydicom 2.2.2 [35] for
reading the DICOM pixel data. The original bilateral PA images were first localized to
the region of interest (ROI), i.e., the right knee joint area. The images were localized by
manually annotating a center point in the valley between medial and lateral tibial tubercles
and calculating square ROI of size 300 × 300 from the center point. For annotating the ROI
centers, we used labelme 5.0.1 [36]. Finally, we downsampled the ROI images to an input
size of 224 × 224 by bilinear interpolation.

Following the localization, we inverted the pixel values of images with
MONOCHROME1 photometric interpretation (i.e., we converted black-on-white images to
white-on-black). We performed histogram equalization using OpenCV Python library [37]
to improve the image contrast. All image sample pixel intensities were normalized by
subtracting the mean and dividing by the standard deviation, which were calculated from
the set of training samples.

We replaced the original training samples with augmented samples in a one-to-one
fashion. The augmentations included flipping the images horizontally with a probability
of 0.5 and performing random affine transformation (i.e., scaling, spatial translation, and
rotation) to introduce variance among the training samples. The degree of rotation was
sampled from a range of (–12, 12). The degree of spatial translation was sampled from
(–11.2, 11.2) and (–2.24, 2.24) for the horizontal and vertical axis, respectively. The scale
factor was sampled from (0.8, 1.2). The augmentations were resampled for each training
iteration. For an illustration of the data processing pipeline, see Figure 2.



6 of 14

Histogram
equalization

and 

augmentation

Data pre-processing

ROI localization
CNN model Assessment




Figure 2. Tibial spiking assessment pipeline: the bilateral PA view radiographs are localized to the
ROI, histogram equalization, augmentations (when applicable), and normalization are performed
before feeding the data to the model.

2.6. Experiment B

We developed and evaluated a model for identifying tibial spiking from plain radio-
graphs to determine whether tibial spiking is detectable with automatic methods (hypoth-
esis B). For the classification model, we fine-tuned (i.e., domain adapted) a CNN model
ResNeXt-50-32x4d introduced by Xie et al. [38] pre-trained on around 1.2 million color
images from ImageNet [39] challenge [40] for assessing tibial spiking. The CNN model
implementation from Torchvision [44] version 0.12.0 was used. We modified the model
by replacing the dense layer with two dense units, followed by softmax. We, therefore,
initialized the weights for all other layers pre-trained on ImageNet. The motivation for the
procedure is to improve the performance of CNN by utilizing the features learned from
another dataset [41].

The CNN model architecture is detailed in Table 3. The bottleneck blocks, i.e., BN1–4 in
Table 3 featured a shortcut connections [38] similar to He et al. [42]. The shortcut connection
for a block B is defined as

y = B(x) + x, (3)

where y is the output and x is the input. Note that the dimensions of the block B and the
identity x must be equal in Equation (3). When this is not the case, a linear projection Wdx
is used to match the dimensions before adding the identity [42]. We used the standard
cross-entropy as the loss function, optimized with Adam [43] with following parameters
α = 0.0002, β1 = 0.9, β2 = 0.999, ϵ = 10−8. PyTorch 1.11.0 [44] was used as the model
training and testing framework.

Table 3. The architecture of the used model consists of sequential bottleneck (BN) blocks after the
initial convolution and max pooling. The convolution layer parameters are presented in the order of
kernel size, and the number of kernels and C denotes the number of grouped convolutions. A bracket
followed by × k indicates the block is repeated k times. The dense layer has an input size of 2048 and
an output size of two. The spatial output size of the block is presented in the middle column.

Block Output Size Architecture

Conv1 112 × 112 7 × 7, 64, stride 2

Pool 56 × 56 3 × 3 max pool, stride 2

BN1 56 × 56
1 × 1, 128



× 33 × 3, 128, C = 32

1 × 1, 256

BN2 28 × 28
1 × 1, 256



× 43 × 3, 256, C = 32

1 × 1, 512



7 of 14

Table 3. Cont.

Block Output Size Architecture

BN3 14 × 14
1 × 1, 512



× 63 × 3, 512, C = 32

1 × 1, 1024

BN4 7 × 7
1 × 1, 1024



× 33 × 3 1024, C = 32

1 × 1, 2048

1 × 1 global average pool

Dense 2048, 2, softmax

We performed a grid search to determine suitable hyperparameters for fine-tuning
the classification model. As the model selection criteria, we used validation accuracy. The
parameter space used in the grid search can be seen in Table 4. The best-performing model
was trained for ten epochs with a batch-size four and a learning rate (α) of 0.0002. The
learning rate was decayed every four epochs by a factor of 0.115.

Table 4. Grid search parameter space. Step-size defines the interval for decaying the learning rate
specified by gamma.

Values

Epochs 1, 2, 3, . . . , 23, 24, 25
Batch-size 4, 5, 6
Learning-rate 7 × 10−3, 8 × 10−3, 9 × 10−3, 10−4, 2 × 10−4, 3 × 10−4, 4 × 10−4

Step-size 4, 5, 6
Gamma 0.115, 0.12, 0.125

We used Gradient-weighted Class Activation Mapping (Grad-CAM) [45] implemen-
tation TorchCAM (ver. 0.3.1a0) [46] for visualizing the model predictions. Grad-CAM
provides visual explainability by highlighting the regions from the input image strongly
influencing the output [45]. The heatmaps generated by Grad-CAM provide transparency
into the model prediction-making and enable the developers to determine how the model
is able to discern the classes or fails to do so. For the users, the visual explanations enable
the building of trust in the classifier system. The study workflow and the methodology
are summarized in Figure 3. The analysis code and the trained model for detecting tibial
spiking have been made available on GitHub: https://github.com/AI-hub-keskisuomi/
AI_hub_keskisuomi/tree/main/WP3_knee_osteoarthritis/tibial_spiking_grading.
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Figure 3. Flowchart of the study methodology. The processes or methods are denoted with rect-
angles, datasets with cylinders, data with parallelograms, and the models with rectangles with
rounded corners.

3. Results and Discussion
3.1. Reliability

The reproducibility of tibial spiking grading is detailed in Table 5. According to
a frequently used scale reported by Landis and Koch [47] for interpreting κ values, the
range 0.21–0.40 represents fair agreement, 0.41–0.60 moderate agreement, 0.61–80 substan-
tial agreement, and 0.81–1.00 almost perfect agreement. Albeit, the ranges are arbitrary
according to Landis and Koch [47] but are often used to discuss reliability analysis results.

Table 5. Intra and inter-rater reliability (κ) for 3-way ratings, binary ratings with unsure omitted
(denoted with o), and overall spiking (denoted with OR) with 95% confidence interval (CI).

Intra-Rater
Reliability (Expert 1)

Intra-Rater
Reliability (Expert 2)

Inter-Rater
Reliability

Medial 0.61 (0.58–0.64) 0.52 (0.50–0.54) 0.34 (0.33–0.35)
Medial (o) 0.78 (0.75–0.82) 0.94 (0.92–0.96) 0.59 (0.58–0.61)

Lateral 0.59 (0.56–0.62) 0.75 (0.73–0.76) 0.55 (0.55–0.56)
Lateral (o) 0.71 (0.67–0.74) 1.00 (1.00–1.00) 0.75 (0.74–0.76)

OR 0.53 (0.50–0.57) 0.69 (0.67–0.72) 0.48 (0.47–0.49)

Inter-rater reliability for the lateral spiking was in the moderate range, similar to
the KL-grade reliability evaluated in previous studies [48,49]. However, the inter-rater
reliability of the medial side assessments was only fair. The medial spiking ratings con-
tained more unsure ratings, indicating that the medial spines were more challenging to
assess. The proximate cause for the discrepancy can only be conjectured. Nevertheless, the
medial tibial tubercles are more prominent and thus are more likely to be occluded by the
femur. After omitting the unsure ratings, the inter-rater reliability was comparable to the
KL grading reliability.
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The intra-rater reliability of both experts was moderate to substantial for the 3-way
ratings. The intra-rater reliability of expert 2 was lower for the medial side. However,
expert 1 was equally consistent in assessing the lateral and the medial sides. The disparity
in the ratings of expert 2 seems to be explainable by the unsure ratings. The ratings for the
knees graded twice of expert 2 contained 38% unsure ratings, while assessments of expert 1
contained 23% unsure ratings. The intra-rater reliability of expert 2 was near-perfect after
omitting the unsure ratings.

Overall, the intra-rater reliability for assessing tibial spiking was comparable to KL
grading (0.50 weighted κ with 95% confidence interval (CI) of (0.25–0.75)) [48]. After
removing the unsure ratings, the intra-rater reliability of expert 2 exceeded the κ reported
by Gossec et al. [48]. Although, intra-rater reliability of assessing tibial spiking seems
less reliable than KL grading when compared against the KL intra-rater reliability of 0.97
weighted κ with 95% CI of (0.92–1.0) reported by Culvenor et al. [49]. After omitting the
unsure ratings, the intra-rater reliability of expert 2 was comparable to the weighted κ
obtained by Culvenor et al. [49].

3.2. Experiment A

The sample means for spiking and control groups jointly with U-test significance levels
are detailed in Table 6. After applying the Bonferroni correction, the significant variables
below p < 0.001 were KL-grade and BMI, and the variables below p < 0.01 were OARSI
Medial JSN and tibia lateral osteophytes score.

Table 6. Mean values for spiking and control groups with U-test significance levels (without Bonfer-
roni correction * p < 0.05; ** p < 0.01; *** p < 0.001).

Spiking Control

KL-grade *** 1.11 0.70
WOMAC knee pain * 2.14 1.62

BMI *** 29.09 27.46
Medial JSN *** 0.38 0.25

Lateral JSN 0.05 0.04
Tibia medial osteophytes ** 0.59 0.41
Tibia lateral osteophytes *** 0.40 0.21

Femur medial osteophytes ** 0.48 0.27
Femur lateral osteophytes ** 0.41 0.22

We found significant group differences supporting hypothesis A. Higher KL, OARSI
medial JSN and lateral tibia osteophyte grades in the spiking group support the previously
reported evidence for the association between tibial spiking and knee OA [23,26]. However,
there was no difference in the less prominent [5] lateral JSN. Considering the spiking
group’s higher mean KL-grade, the higher BMI in the spiking group is consistent with the
literature on the risk factors of knee OA [50]. Our results partly confirm the association
between tibial spiking and osteophytes reported previously [24–26]. However, we could
not confirm an association between tibial spiking and knee pain.

3.3. Experiment B

We evaluated the top model from the grid search using 191 samples from the MOST
dataset. The model produced an accuracy of 0.869 with sensitivity of 0.909 and specificity
of 0.750. More details on the model performance can be seen in Table 7. Confusion matrix
for the test data is presented in Figure 4.
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Table 7. Classifier performance metrics.

Accuracy Loss Sensitivity Specificity Precision

Train 0.872 0.300 0.882 0.851 0.925
Validation 0.869 0.399 0.929 0.745 0.883

Test 0.869 0.314 0.909 0.750 0.915

spiking no spiking
Predicted label

spiking

no spiking
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ue

 la
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12 36

20

40
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Figure 4. Confusion matrix for the test dataset.

The developed model obtained lower specificity than sensitivity, meaning the model
suffers to a greater extent from type I error (i.e., the model predicted spiking when none
was present), which might reflect the class imbalance in the training samples. Additionally,
due to how the ground truth was constructed, the no-spiking class might have contained
more borderline cases (a subset of the unsure ratings could have been regarded as doubtful
spiking). In future studies, more data should be accumulated to address the asymmetry.

Like knee OA severity grading, automating tibial spiking detection lacks the “ideal”
ground truth (i.e., 100% reliable labels). Consequently, the models derived will be con-
strained by the quality of data available. The ground truth’s inter-rater reliability (κ) was
0.48, i.e., moderate. Currently, a universally agreed-upon atlas for assessing tibial spiking
does not exist. The lack of shared criteria for grading tibial spiking casts doubt on the
generalizability of the model developed in the present work, as different experts might
have divergent views on how the spiking of tibial tubercles manifests in the radiographs.
Nevertheless, the results of experiment A indicate that the spiking the model was trained
to detect is associated with the other signs of knee OA.

It should be emphasized that calling the feature tibial “spiking” is somewhat imprecise
in the present work, as the feature was graded based not only on the angulation of the
spines but also on the length and bony growth on the spine peaks. Therefore, the feature
might be more explicitly considered as “osteophytic” abnormalities in the tibial tubercles.
Alexander [51] speculated that tibial spiking might be a type of osteophyte formation. Our
results give some support for the theory. However, more research on the topic is required
as the exact mechanism behind tibial spiking is unknown.

We visualized the model predictions for the validation data using Grad-CAM. By
visualizing the failed predictions of the model, we can gain information on the reasons
behind the failures, e.g., in Figure 5a, the network concentrates on the narrow joint space
instead of on the tubercles. However, in Figure 5b, the model concentrates on the medial
tibial tubercle predicting spiking while the ground truth was non-spiking. The heatmap
indicates a strong influence of the medial tubercle; the assessments could be re-evaluated
in cases where the model has an apparent disagreement with the expert. The model used
in this manner can provide a second opinion for a physician.
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(a) (b)

Figure 5. Grad-CAM visualizations for incorrect predictions. In subfigure (a), the model rates the
knee spiking based on the narrow appearance of the medial joint space, which indicates that the
model has learned the association between tibial spiking and medial JSN. In subfigure (b), the model
makes a spiking assessment based on the medial tubercle.

The successful predictions can be visualized to identify how the model is able to
discern the spiking samples from the non-spiking samples. In Figure 6a, the model has
concentrated on the vicinity of the lateral tubercle. In Figure 6b, the model could not
identify any spiking features and consequently predicted non-spiking.

(a) (b)

Figure 6. Grad-CAM visualizations for correct predictions. In subfigure (a), the lateral tubercle had
the highest contribution to the prediction. In subfigure (b), no influential region was found from a
non-spiking sample, as can be observed from the blank heatmap.

4. Conclusions

Our results indicate an association between the spiking of tibial tubercles and early
knee OA. Adopting spiking of tibial tubercles as additional information in the diagnosis
of knee OA seems promising. Although, additional research on the characteristics of
tibial spiking and guidelines for assessing the feature is needed. The model developed for
automatically identifying tibial spiking was able to generalize despite the modest number
of training samples. The analysis using Grad-CAM revealed that the developed method is
somewhat reliant on the JSN, which could lead to misclassifications. In the future, more
data on tibial spiking should be acquired to develop better tools for healthcare.
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