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ABSTRACT

Seizure prediction using intracranial electroencephalogram
(iEEG) is still challenging because of complicated signals in
spatial and time domains. Feature selection in the spatial do-
main (i.e., channel selection) has been largely ignored in this
field. Hence, in this paper, a novel approach of iEEG channel
selection strategy combined with one-dimensional convolu-
tional neural networks (1D-CNN) was presented for seizure
prediction. First, 15-sec and 30-sec iEEG segments with an
increasing number of channels (from one channel to all chan-
nels) were sequentially fed into 1D-CNN models for training
and testing. Then, the channel case with the best classification
rate was selected for each participant. We tested our method
on the Freiburg iEEG dataset. A sensitivity of 89.03-90.84%,
specificity of 98.99-99.73%, and accuracy of 98.07-98.99%
were achieved at the segment-based level. At the event-based
level, we attained a sensitivity of 98.48-98.85% and a false
prediction rate (FPR) of 0-0.02/h.

Index Terms— Epilepsy, intracranial electroencephalo-
gram (iEEG), seizure prediction, channel selection, one-
dimensional convolutional neural networks (1D-CNN),

1. INTRODUCTION

Epilepsy affects nearly 50 million people worldwide. Since
the onset of seizures originates from abnormal synchronous
discharges of brain cells, electroencephalogram (EEG) is a
powerful technique in the diagnosis of epilepsy. However,
epileptic seizures have the characteristics of recurrence and
uncertainty, which makes epileptic patients miserable. Hence,
the prediction of seizures is significant becuase this can allow
people to take interventions to suppress the onset of seizures.

In the past two decades, many EEG-based data mining
techniques have been used for the analysis of seizure pre-
diction. In conventional machine learning methods, Support
Vector Machine (SVM) [1–4], Bayesian [5, 6], Backpropaga-
tion Neural Network [7], Multi-layer Perceptron (MLP) [8],
etc., were applied in seizure prediction and achieved remark-
able results. Recently, deep learning techniques have also
been widely used for seizure prediction. Deep learning meth-

ods, including One-Demensional Convolutional Neural Net-
works (1D-CNN) [9], Two-Dimensional Convolutional Neu-
ral Networks (2D-CNN) [10–13], Three-Dimensional Convo-
lutional Neural Networks (3D-CNN) [14], Long Short-Term
Memory (LSTM) [15–17], Deep Recurrent Neural Network
(DRNN) [18] and Generative Adversarial Networks (GAN)
[19], were utilized to effectively predict seizures.

In our previous study [9], we mentioned that many seizure
prediction studies commonly used EEG signals of all chan-
nels, ignoring the consideration of channel selection. Fea-
ture selection in the spatial domain (i.e., channel selection)
has been largely ignored in this field. Hence, our previous
study [9] presented a method of channel selection strategy
combined with 1D-CNN to forecast seizures, and the pro-
posed method was tested on the Freiburg intracranial elec-
troencephalogram (iEEG) dataset [20], in which each patient
has six channels. There are 63 channel cases (|C1

6 | + |C2
6 | +

|C3
6 |+ |C4

6 |+ |C5
6 |+ |C6

6 | = 63) that can be analyzed for each
patient. However, we only considered 9 channel cases for the
anlysis of seizure prediction for each patient in the study [9].
Consequently, in this study with the same dataset, all channel
cases are analyzed and discussed to select the best channel
case with the best classification rate for each patient. Then,
the best channel case can be applied for the seizure prediction
of the patient in the future. Another contribution of this work
is that, in preprocessing, iEEG segments are generated using
sliding windows of two different lengths (15-sec and 30-sec).
Therefore, the results of two different sample sizes are also
discussed in this study.

The rest of this paper is given as follows: materials and
methods in Section 2, results in Section 3, discussion and con-
clusion in Section 4.

2. MATERIALS AND METHODS

2.1. Data

The Freiburg iEEG dataset contained 21 patients, 87 seizures,
509 h of interictal and 73 h of preictal or ictal iEEG signals.
iEEG signals were recored at a sampling rate of 256 Hz, with
the 50 Hz notch filtering and the 0.5-120 Hz bandpass filter-



ing. Each patient had six channels: channels 1-3 (in-focal)
and channels 4-6 (out-of-focal) [20].

In EEG-based seizure prediction, two basic concepts,
namely seizure prediction horizon (SPH) and seizure oc-
currence period (SOP), need to be explained. SOP is defined
as the period during which a seizure is expected to occur. SPH
is the period from an alarm to the beginning of SOP [21]. In
this work, we discuss two preictal conditions: (1) SOP =
30 min and SPH = 5 min; (2) SOP = 60 min and SPH = 5
min. For the first preictal condition, seizures with at least
35-min preictal phase are selected. Seizures with at least
65-min preictal phase are selected for the second preictal
condition. The details of the selected iEEG signals for two
preictal conditions are summarized in Table 1.

Table 1. Details of the selected iEEG signals for each patient
in two preictal conditions
Patient Age Gender Interictal (h) #Seizuresa #Seizuresb

1 15 f 24 4 3
2 38 m 24 3 –
3 14 m 24 5 4
4 26 f 24 5 3
5 16 f 24 5 2
6 31 f 24 3 –
7 42 f 24.6 3 3
8 32 f 24.2 2 2
9 44 m 23.9 5 3
10 47 m 24.5 5 5
11 10 f 24.1 4 3
12 42 f 24 4 3
13 22 f 24 2 2
14 41 f 23.9 4 3
15 31 m 24 4 3
16 50 f 24 5 5
17 28 m 24.1 5 5
18 25 f 24.9 4 5
19 28 f 24.4 4 3
20 33 m 25.6 5 5
21 13 m 23.9 5 4
Total – – 508.1 87 66
a Preictal condition of SOP = 30 min and SPH = 5 min.
b Preictal condition of SOP = 60 min and SPH = 5 min.

2.2. Methodology

2.2.1. Preprocessing

In preprocessing, we used 15-sec and 30-sec sliding windows
to segment iEEG signals, respectively. Then, the iEEG seg-
ments were used as the inputs of 1D-CNN model. Since the
number of 15-sec iEEG segments is twice that of 30-sec iEEG
segments. Hence, our work also discusses the comparison of
results under two different sample sizes.

The problem of sample imbalance is a key issue that needs
to be solved during model training in this work. As shown in
Table 1, the number of seizures ranges from 2 to 5, and so the

duration of preictal iEEG signals is about 2 to 5 hours. How-
ever, the duration of interictal iEEG signals is about 24 hours
for each patient. To generate more preictal iEEG segments
and solve the problem of sample imbalance during model
training, sliding windows with the corresponding overlap ra-
tio are only used to segment the preictal iEEG signals which
are selected as the training set. The preictal iEEG signals
which are selected as the testing set and the interictal iEEG
signals are segmented by sliding windows without the over-
lap ratio. Fig. 1 shows the details of this preprocessing.

Preictal (training)

15 s OR 30 s 15 s OR 30 s

Interictal AND Preictal (testing)

15 s OR 30 s 15 s OR 30 s

iEEG

iEEG

Fig. 1. Preictal iEEG signals which are selected as the testing
set and interictal iEEG signals are segmented by sliding win-
dows without the overlap ratio. Preictal iEEG signals which
are selected as the training set are segmented by sliding win-
dows with the corresponding overlap ratio.

2.2.2. CNN

As shown in Fig. 2, the model architecture of 1D-CNN
consists of two parallel blocks (Block-1 and Block-2) and
two fully connected (FC) layers. Each block has the same
structure and includes four convolutional parts. Moreover,
each convolutional part contains a convolutional layer with
rectified linear activation unit (ReLU), a batch-normalization
(BN) layer and a max-pooling (MP) layer.

The parameters of the 1D-CNN model are given as fol-
lows. In Block-1, the four convolutional layers contain 32
kernels (size = n×3, where n ranges from 1 to 6, and stride
= 2), 32 kernels (size = 3 and stride = 2), 64 kernels (size
= 3 and stride = 2) and 128 kernels (size = 3 and stride =
1), respectively. The four MP layers have the same pooling
size of 3 and the same stride of 2. Compared to Block-1, the
differences in Block-2 are the kernel sizes of the four convo-
lutional layers. In Block-2, the kernels sizes are n×5, 5, 5
and 5, respectively (as shown in Fig. 2). Two blocks used in
this work are to learn more different features for classifica-
tion. Then, the outputs of these two blocks are concatenated
and globally averaged as the inputs of two FC layers. The first
FC layer has 128 neurons (ReLU). The second has 2 neurons
using Softmax activation function for classification. During
model training, the dropout rate in second FC layer is 0.25.
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Fig. 2. Architecture of the 1D-CNN model. M1@n×k1 or
M2@k2: M1 and M2 are the number of kernels, k1 and k2
are the sizes of kernels. s1 means pooling size and s2 means
stride. For the inputs, iEEG segments of 63 channel cases
(|C1

6 |+ |C2
6 |+ |C3

6 |+ |C4
6 |+ |C5

6 |+ |C6
6 | = 63) are fed into

the 1D-CNN model in turn.
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Round 1
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Round K

Fig. 3. The K-CV approach combined with the data augmen-
tation technique is applied during model training.

2.2.3. Model training

In this work, patient-specific model is trained for each patient.
K-fold cross validation (K-CV) is done during model training
(as shown in Fig. 3). In K-CV approach, model training is
performed K rounds, where K is the number of seizures per
patient. In each round, (K-1) preictal and (K-1) interictal parts
are used for training, and the remaining segments (one preic-
tal and one interictal part) are used for testing. As shown in
Fig. 3, during model training in each round, the size of pre-
ictal iEEG segments is augmented to balance samples using
sliding windows with overlap mentioned in preprocessing.

2.2.4. System evaluation

1) Segment-based level Sensitivity (Sen1), specificity (Spe)
and accuracy (Acc) are used to evaluate the classification
results. The three metrics are given as follows, Sen1 =

TP
TP+FN , Spe = TN

TN+FP , Acc = TP+TN
TP+FP+TN+FN , where

TP, FP, TN and FN indicate ture positive, false positive, true
negative and false negative, respectively.

2) Event-based level Event-based sensitivity (Sen2) and
false prediction rate (FPR) are calculated. The two metrics
are given as follows, Sen2 = Number of True Predictions

Number of Seizures ,

FPR = Number of False Predictions
Hours of Interictal iEEG . At the event-based

level, the condition to sound an alarm is that prediction la-
bels within 90 seconds are all positive. It means that six con-
secutive labels (for 15-sec iEEG segments) or three consec-
utive labels (for 30-sec segments) are all positive to satisfy
the requirement of sounding an alarm. We also compare our
method to the random predictor. The probability of random
predicting at least k out of K seizures can be expressed as fol-
lows, pv =

∑K
i≥k p

i(1− p)K−i, where p ≈ 1− e−FPR·SOP

(the probability of a random alarm) [22], k and K are the num-
ber of true predictions and all seizures, respectively. In this
work, the significance level is set at 0.05, and our method is
better than the random predictor if the pv is less than 0.05.

3. RESULTS

The whole algorithm runs twice, and the averaged results un-
der 63 channel cases (|C1

6 |+|C2
6 |+|C3

6 |+|C4
6 |+|C5

6 |+|C6
6 | =

63) are computed. At the segment-based level, an averaged
Sen1, Spe, and Acc are obtained. An averaged Sen2, and FPR
are given at the event-based level.

3.1. SOP = 30 min and SPH = 5 min

The results of two different preprocessing conditions (15-sec
and 30-sec sliding windows) are discussed in the situation of
SOP = 30 min and SPH = 5 min. For example, as shown
in Fig. 4, the averaged results of 63 channel cases for pa-
tient 1 are given at both levels (segment- and even-based lev-
els) under two different preprocessing conditions. The case of
channel 3 is finally selected for two preprocessing conditions
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Fig. 4. In preictal condition of SOP = 30 min, the averaged results for patient 1 are showed after the whole algorithm runs twice.
In preprocessing of 15-sec sliding widows, classification results of 63 channel cases are given at the segment-based level (A1)
and the event-based level (A2). In preprocessing of 30-sec sliding widows, classification results of 63 channel cases are given
at the segment-based level (B1) and the event-based level (B2). The case of channel 3 is finally selected and the corresponding
results are summarized in Table 2.

Table 2. In the condition of SOP = 30 min, the selected channel cases and corresponding results for each patient.
15-sec sliding windows, SOP = 30 min 30-sec sliding windows, SOP = 30 min

Segment-based level Event-based level Segment-based level Event-based level
Patient Interictal (h) #Seizures Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv

1 24 4 3 70.31 99.79 97.25 100 0.00 0.000 3 68.13 99.91 97.47 100 0.00 0.000
2 24 3 46 97.67 99.91 99.72 100 0.00 0.000 46 93.33 99.95 99.56 100 0.00 0.000
3 24 5 1 84.75 99.89 98.46 100 0.00 0.000 2 79.00 96.02 94.42 100 0.17 0.000
4 24 5 1 91.92 100 99.24 100 0.00 0.000 1 91.83 100 99.23 100 0.00 0.000
5 24 5 16 91.42 98.22 97.58 100 0.00 0.000 14 84.83 99.25 97.89 100 0.00 0.000
6 24 3 12 85.83 99.97 99.13 100 0.00 0.000 12 94.44 99.93 99.61 100 0.00 0.000
7 24.6 3 16 93.19 99.90 99.51 100 0.00 0.000 16 83.33 99.92 98.96 100 0.00 0.000
8 24.2 2 1235 95.00 100 99.80 100 0.00 0.000 1235 99.17 100 99.97 100 0.00 0.000
9 23.9 5 1 or 5 100 100 100 100 0.00 0.000 1 or 5 100 100 100 100 0.00 0.000
10 24.5 5 3 96.92 99.77 99.51 100 0.00 0.000 3 99.17 99.86 99.80 100 0.00 0.000
11 24.1 4 2 98.54 99.93 99.82 100 0.00 0.000 2 99.17 99.98 99.92 100 0.00 0.000
12 24 4 3 98.65 99.93 99.83 100 0.00 0.000 3 98.13 99.90 99.76 100 0.00 0.000
13 24 2 5 50.00 99.95 97.95 50 0.00 0.000 5 50.00 100 98.00 50 0.00 0.000
14 23.9 4 3 97.71 99.99 99.81 100 0.00 0.000 3 99.38 100 99.95 100 0.00 0.000
15 24 4 2 97.29 99.27 99.54 100 0.00 0.000 2 99.17 99.77 99.73 100 0.00 0.000
16 24 5 45 96.83 99.84 99.55 100 0.00 0.000 45 96.50 99.86 99.54 100 0.00 0.000
17 24.1 5 45 95.33 100 99.56 100 0.00 0.000 45 97.67 99.95 99.73 100 0.00 0.000
18 24.9 5 345 81.83 99.98 98.33 100 0.00 0.000 245 78.50 100 98.04 100 0.00 0.000
19 24.4 4 2 76.46 99.13 97.41 100 0.00 0.000 2 77.92 99.61 97.96 100 0.00 0.000
20 25.6 5 35 87.17 99.88 98.75 100 0.00 0.000 35 94.00 99.79 99.27 100 0.00 0.000
21 23.9 5 3 87.67 99.01 97.94 100 0.04 0.000 3 86.00 99.63 98.34 100 0.00 0.000
Total 508.1 87 – 89.21 99.73 98.99 98.85 0.00 – – 89.03 99.68 98.91 98.85 0.01 –
Abbr: Cs, the selected channels (red numbers for the in-focus channels; blue numbers for the out-of-focus channels); Sen1, segment-based sensitivity; Spe, specificity;
Acc, accuracy; Sen2, event-based sensitivity; FPR, false prediction rate.



Table 3. In the condition of SOP = 60 min, the selected channel cases and corresponding results for each patient.
15-sec sliding windows, SOP = 60 min 30-sec sliding windows, SOP = 60 min

Segment-based level Event-based level Segment-based level Event-based level
Patient Interictal (h) #Seizures Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv Cs Sen1 (%) Spe (%) Acc (%) Sen2 (%) FPR (/h) pv

1 24 3 3 75.69 99.38 96.75 100 0.00 0.000 3 78.19 99.93 97.52 100 0.00 0.000
3 24 4 2 90.73 86.61 87.20 100 0.27 0.000 2 88.02 87.73 87.77 100 0.38 0.000
4 24 3 1 93.47 100 99.27 100 0.00 0.000 1 93.00 100 99.26 100 0.00 0.000
5 24 2 156 88.65 99.05 98.25 100 0.00 0.000 156 93.75 98.94 98.54 100 0.04 0.000
7 24.6 3 16 86.39 99.90 98.43 100 0.00 0.000 16 83.19 99.95 98.13 100 0.00 0.000
8 24.2 2 1235 100 100 100 100 0.00 0.000 1235 100 100 100 100 0.00 0.000
9 23.9 3 5 96.11 99.98 99.55 100 0.00 0.000 5 95.97 100 99.55 100 0.00 0.000
10 24.5 3 3 98.50 99.79 99.57 100 0.00 0.000 3 98.17 99.66 99.41 100 0.00 0.000
11 24.1 3 2 97.64 99.67 99.45 100 0.00 0.000 2 99.58 99.25 99.29 100 0.00 0.000
12 24 3 4 96.94 99.77 99.45 100 0.00 0.000 4 94.72 99.79 99.23 100 0.00 0.000
13 24 2 5 49.79 99.99 96.13 50 0.00 0.000 5 50.00 100 96.15 50 0.00 0.000
14 23.9 3 6 95.76 99.88 99.42 100 0.00 0.000 6 99.31 100 99.92 100 0.00 0.000
15 24 3 4 82.99 99.05 97.26 100 0.00 0.000 46 82.50 99.69 97.78 100 0.00 0.000
16 24 5 12 98.46 99.83 99.59 100 0.00 0.000 12 99.92 99.91 99.91 100 0.00 0.000
17 24.1 5 45 90.42 99.58 98.01 100 0.00 0.000 45 93.58 99.62 98.58 100 0.00 0.000
18 24.9 5 1345 91.71 99.97 98.59 100 0.00 0.000 1345 86.42 99.98 97.71 100 0.00 0.000
19 24.4 3 2 98.13 99.44 99.30 100 0.00 0.000 2 98.06 99.64 99.47 100 0.00 0.000
20 25.6 5 235 93.29 99.67 98.63 100 0.00 0.000 235 95.50 99.74 99.05 100 0.00 0.000
21 23.9 4 2 93.75 99.33 98.53 100 0.00 0.000 2 95.73 99.44 98.91 100 0.00 0.000
Total 460.1 66 – 90.44 98.99 98.07 98.48 0.02 – – 90.84 99.12 98.22 98.48 0.02 –

simultaneously according to the results of both levels. Then,
the results of channel 3 for patient 1 are summarized in Table
2. Hence, after channel selection, Table 2 finally summarizes
the results of the best channel cases for each patient.

As shown in Table 2, after selecting the best channel cases
per patient, the results of two different preprocessing condi-
tions for each patient are given. (1) With the preprocessing
of 15-sec sliding windows, an overall 89.21% sensitivity,
99.73% specificity, and 98.99% accuracy are achieved at the
segment-based level. At the event-based level, 86 out of 87
seizures are finally predicted (except one seizure in patient
13). An event-based sensitivity of 98.85% and a FPR of 0/h
are obtained. (2) With the preprocessing of 30-sec sliding
windows, we achieve an overall 89.03% sensitivity, 99.68%
specificity, and 98.91% accuracy at the segment-based level.
We attain a same event-based sensitivity of 98.85% with a
FPR of 0.01/h at the event-based level. About the channel
case selected for each patient, most of patients (except pa-
tients 3, 5 and 18) have the same channel cases for both
preprocessing conditions. Moreover, the performance of our
method is better than that of the random predicting for each
patient according to the pv values in Table 2.

3.2. SOP = 60 min and SPH = 5 min

In the situation of SOP = 60 min and SPH = 5 min, patients
2 and 6 are removed because the duration of preictal phase
is less than 65 min. The results of two different preprocess-
ing conditions are also discussed. As shown in Table 3, we
summarize the results of two different preprocessing condi-
tions for each patient after the best channel cases selected.
(1) Under the preprocessing of 15-sec sliding windows, at the
segment-based level, an overall sensitivity, specificity, and ac-
curacy are 90.44%, 98.99% and 98.07%, respectively. At the
event-based level, 65 out of 66 seizures are correctly predicted

(except one seizure in patient 13). An overall event-based
sensitivity and a FPR are 98.48% and 0.02/h, respectively.
(2) Under the preprocessing of 30-sec sliding windows, an
overall 90.84% sensitivity, 99.12% specificity, and 98.22%
accuracy are attained at the segment-based level. A same
98.48% sensitivity with 0.02/h FPR is achieved at the event-
based level. For the selected channel case per patient, each
patient has the same channel case for both two preprocessing
conditions. According to the pv values in Table 3, our method
also shows a better performance than the random predicting
for each patient.

4. DISCUSSION AND CONCLUSION

With the same iEEG dataset, the results of our work and pre-
vious studies using deep learning techniques are given and
compared in Table 4. As shown in Table 4, the studies [10]
and [11] used 2D-CNNs for the analysis of seizure prediction
and attained a sensitivity of 81.4-90.8% with a FPR of 0.03-
0.08/h. Our previous work [9] used 1D-CNN for the predic-
tion of seizures and achieved a sensitivity of 98.48-98.85%
with 0.01/h FPR. In this work, 1D-CNN was also used for
the analysis of the same iEEG dataset. In the situation of
SOP = 30 min and SPH = 5 min, an event-based sensitivity of
98.85% and a FPR of 0-0.01/h were obtained. In the situation
of SOP = 60 min and SPH = 5 min, an event-based sensitivity
of 98.48% and a FPR of 0.02/h were attained. Compared to
the results of previous studies in Table 4, we could see that
our method shows remarkable performances.

In this paper, the method of channel selection combined
with 1D-CNN was further analyzed for seizure preidction.
Based on the Freiburg iEEG dataset (21 patients, 87 seizures),
our method finally predicted 86 seizures (except one seizure
in patient 13) and achieved a high event-based sensitivity of
98.48-98.85% with a low FPR of 0-0.02/h. A segment-based



Table 4. List of previous studies using deep learning methods for seizure prediction based on the Freiburg iEEG dataset.
Authors Features Classifier #Patients #Seizures SOP SPH Sen2 (%) FPR (/h)
Truong et al. (2018) [10] STFT time-frequency maps 2D-CNN 13 59 30 min 5 min 81.4 0.03
Truong et al. (2019) [19] STFT time-frequency maps GAN 13 59 30 min 5 min – –
Wang et al (2020) [11] DTF channel-frequency maps 2D-CNN 19 82 30 min 5 min 90.8 0.08
Wang et al (2021) [9] 30-sec time-channel iEEG maps 1D-CNN 21 87 30 min 5 min 98.85 0.01

19 66 60 min 5 min 98.48 0.01
This work 15-sec or 30-sec time-channel iEEG maps Channel-based 1D-CNNs 21 87 30 min 5 min 98.85 0.00-0.01

19 66 60 min 5 min 98.48 0.02

sensitivity of 89.03-90.84%, specificity of 98.99-99.73%, and
accuracy of 98.07-98.99% were attained at the segment-based
level. The proposed method also showed a better performance
better than the random predictor for all patients. From these
results, we could see that our method had a remarkable per-
formance in seizure prediction, and the channel selection for
each patient was meaningful.
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