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Abstract—Deep learning for the automated detection of epilep-
tic seizures has received much attention during recent years. In
this work, one dimensional convolutional neural network (1D-
CNN) and two dimensional convolutional neural network (2D-
CNN) are simultaneously used on electroencephalogram (EEG)
data for seizure detection. Firstly, using sliding windows without
overlap on raw EEG to obtain the definite one-dimension time
EEG segments (1D-T), and continuous wavelet transform (CWT)
for 1D-T signals to obtain the two-dimension time-frequency
representations (2D-TF). Then, 1D-CNN and 2D-CNN model
architectures are used on 1D-T and 2D-TF signals for automatic
classification, respectively. Finally, the classification results from
1D-CNN and 2D-CNN are showed. In the two-classification and
three-classification problems of seizure detection, the highest
accuracy can reach 99.92% and 99.55%, respectively. It shows
that the proposed method for a benchmark clinical dataset can
achieve good performance in terms of seizure detection.

Index Terms—Electroencephalogram (EEG), seizure detection,
convolutional neural networks (CNN), deep learning, time-
frequency representation

I. INTRODUCTION

Epilepsy is a chronic noncommunicable disease of the brain,
which affects more than 50 million people worldwide. Clini-
cally intractable epilepsy is commonly associated with the risk
of fainting, injury, and death [1]. Electroencephalogram (EEG)
is a significant tool that has been widely used for the diagnosis
of epilepsy [2]. However, since the interpretation of EEG
signals by visual assessment is labor- and time-consuming, the
related research for EEG-based automatic seizure detection is
very active. Automated and accurate identification of epileptic
seizures based on EEG signals can improve work efficiency
and patient quality of life.

The data mining techniques with feature-based engineering
have been widely researched for the automated detection of
epileptic seizures. Most of them use hand-wrought features
extracted mainly from time domain [3], [4], time-frequency
domain [5], [6], nonlinear dynamics [7], [8], and sometime
in a combination of several domains [9] for seizures classi-
fication. However, these feature-based methods have several
main challenges. First, EEG is non-stationary signal and can
be susceptible to artifacts such as power-line interference,
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electrooculogram (EOG), electromyography (EMG) and white
environment noise. All these noise sources can change the
authenticity of features and hence seriously affect the perfor-
mance of seizure detection systems. Second, feature extraction
and selection has always been a time-consuming engineering.
This is because the EEG data need to be processed, or further
selected, to obtain desired features for classification.

Deep learning has proved its ability in image and au-
dio recognition tasks [10], [11]. For solving the limitations
mentioned above, convolutional neural network is used for
the automated detection of seizures, and it is a machine
learning technology based on representation learning. The
system automatically learns and discovers the features needed
for classification by processing multi-level input data [11].
In this work, one and two dimensional convolutional neural
networks (1D-CNN and 2D-CNN) are used for seizure de-
tection. Firstly, through preprocessing and continuous wavelet
transform (CWT), we obtain the definite one-dimension time
segments (1D-T) and two-dimension time-frequency repre-
sentations (2D-TF), respectively. Then, two models are used
on 1D-T and 2D-TF signals for classification, respectively.
Finally, the classification results from two models are given.
Two-classification and three-classification problems are dis-
cussed with the proposed method for seizure classification.

II. DATA

The opening EEG data (http://epilepsy.uni-freiburg.de/
database) collected by Andrzejak et al. [12] are used in
this research. After removing EEG contaminated by artifacts
(eye movements or muscle activity) through visual inspection,
five sets (denoted A-E) of EEG data were selected. Each
set contained 100 single-channel EEG segments of 23.6-sec
duration. Sets A and B consisted of scalp EEG of five healthy
volunteers with eyes open (A) and closed (B), respectively.
The EEG signals in sets C and D were recorded from five
patients during the seizure free intervals. Set C contained the
EEG signals measured in the hippocampus, while the EEG
signals of set D were measured in the epileptogenic zone.
The EEG signals that are recorded during seizures in the
epileptogenic zone were collected in set E. The sampling
frequency is 173.61Hz with using 12bit resolution. A bandpass
filter between 0.53 and 40Hz was used in the processing of
recording. More details can be found in [12]. Fig. 1 shows the
exemplary EEG signals of five sets A-E.

http://epilepsy.uni-freiburg.de/database
http://epilepsy.uni-freiburg.de/database
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Fig. 1. Examples of EEG signals from each of the five sets of Bonn University
EEG database.

III. METHODOLOGY

A. Preprocessing

Firstly, the 100 single-channel EEG segments from each
set are integrated into one segment with length of 2360-
sec duration. For obtaining different sample sizes, we then
use two different sliding time windows (1-sec and 2-sec)
without overlap to cut out the integrated EEG segments for
attaining definite one-dimension time EEG fragments (1D-T)
with lengths of 1-sec and 2-sec, respectively. In total, five
integrated EEG segments A-E can obtain 11840 (1-sec) and
5920 (2-sec) samples, respectively.

B. Time-frequency representation

The changes of EEG signal are usually reflected in am-
plitude and frequency. Thus, time-frequency analysis is often
used in abnormal EEG signals for seizure detection [5],
[6]. Waveform transform is a commonly used time-frequency
analysis method. For a EEG fragment x(t), its time-frequency
representation can be generated by using continuous wavelet
transform (CWT), as follows:

TFRx = |CWTx(a, τ)|2

= | 1√
a

∫ +∞

−∞
x(t)ψ∗( t− τ

a
)dt|2

(1)

where ψ and ∗ are the mother wavelet and function of
complex conjugate, respectively. Parameters a and τ denote
the oscillatory frequency and shifting position of the wavelet,
respectively.

After attaining 1D-T signals by preprocessing, we then use
CWT on them to generate the scalograms in time-frequency
representation. In this paper, Morlet is used as mother wavelet
to generate EEG time-frequency representations [6]. The time-
frequency examples of EEG fragments from sets A-E are
showed in Fig. 2.

C. Convolutional neural networks (CNN)

Fig. 3 shows the whole process of the proposed seizure
detection system. Firstly, by preprocessing and time-frequency
transform, we obtain the 1D-T and 2D-TF signals, respec-
tively. Then, 1D-CNN is used for classifying 1D-T signals,
while 2D-CNN is used for classifying the 2D-TF signals.
Finally, the results from two CNNs are showed.

A CNN generally contains three types of layers: convolu-
tional layer, pooling layer and fully connected layer. For a
convolutional layer, it has a number of convolution kernels
(filters) which perform convolution calculations on the input
signals. Filtering results from convolution kernels are then
nonlinearized by activation functions, such as rectified linear
activation unit (ReLU) or Sigmoid functions. The output of
a convolutional layer is usually known as the feature maps.
Pooling layer is also called the down-sampling layer. Max-
pooling operation is currently often used on the output from
convolutional layer, it can preserve the most significant values
from feature maps and improve the distortion tolerance of the
model. After the operation of convolutional layers and pooling
layers, the output is entered into the full connected layer. The
results of classification are then achieved.

In this work, we use two different models (1D-CNN and
2D-CNN) and compare the results for exploring higher per-
formance of seizure classification. About 1D-CNN, it contains
three convolution blocks. Each convolution block consists of
a convolution layer with ReLU as activation function, a batch
normalization layer and a max-pooling layer. The three con-
volution layers have 16, 32 and 64 kernels, respectively, and
kernels of the three convolution layers with same size of 3×1
and same stride of 1. Each batch normalization layer follows
each convolution layer. Following each batch normalization
layer is the max-pooling layer, with pooling size of 2. After
the three convolution blocks, there are three fully connected
layers. The first and second fully connected layers have 128
and 60 neurons with ReLU activation functions, respectively.
The final layer is also known as output layer, and with 2 output
neurons (two classification problem) or 3 output neurons (three
classification problem). The Softmax activation function is
used in the final layer. As showed in Fig. 3(a).

For 2D-CNN, it also contains three convolution blocks.
Each convolution block also consists of a convolution layer
with ReLU as activation function, a batch normalization layer
and a max-pooling layer. The first convolution layer has 16
kernels with size of 3×3 and stride of 1×2. The second and
third convolution layers have 32 and 64 kernels, respectively,
and kernels of the two convolution layers with same size
of 3×3 and same stride of 1×1. Each batch normalization
layer follows each convolution layer. Following each batch
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Fig. 2. Time-frequency representations of 1-sec EEG fragments from each of the five sets with using continuous wavelet transform.
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Fig. 3. Schematic diagram of the overall seizure detection approach with the preprocessing of 1-sec sliding time window. For simplicity, the batch normalization
layers between the convolutional layers and the max-pooling layers are not shown. There are three convolution layers, named C1, C2, and C3. MP means
max-pooling layer, and FC means full connected layer. The convolution kernel and stride are expressed as k and s, respectively.

normalization layer is the max-pooling layer, with pooling size
of 2×2. Following the three convolution blocks are also three
fully connected layers. The first and second fully connected
layers also have 128 and 60 neurons with ReLU activation
functions, respectively. The third layer has 2 output neurons
or 3 output neurons with the Softmax activation function. As
showed in Fig. 3(b).

D. Training and testing of CNN models

The ten-fold cross-validation method is used. All samples
are first randomly divided into ten equal parts. Then, nine parts
out of ten are used to train the CNN, while the remaining one
is used to test the performance of trained CNN. This strategy
is repeated ten times by shifting the test and training dataset.



TABLE I
THE CONFUSION MATRIX OF A VS. E ACROSS ALL TEN-FOLDS

Normal (A) Ictal (E) Normal (A) Ictal (E)
Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%) Predicted (2D-CNN, 1s) ACC (%) SEN (%) SPE (%)

Original
2359 9

99.75 99.87 99.62
2368 0 99.92 99.83 1003 2365 4 2364

Predicted (1D-CNN, 2s) Predicted (2D-CNN, 2s)
1184 0 99.92 99.83 100 1183 1

99.87 99.83 99.922 1182 2 1182

TABLE II
THE CONFUSION MATRIX OF C VS. E ACROSS ALL TEN-FOLDS

Interictal (C) Ictal (E) Interictal (C) Ictal (E)
Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%) Predicted (2D-CNN, 1s) ACC (%) SEN (%) SPE (%)

Original
2343 25

99.01 99.07 98.94
2352 16

99.16 98.99 99.3222 2346 24 2344
Predicted (1D-CNN, 2s) Predicted (2D-CNN, 2s)

1179 5
98.94 98.31 99.58

1177 7 99.28 99.16 99.4120 1164 10 1174

TABLE III
THE CONFUSION MATRIX OF A VS. C ACROSS ALL TEN-FOLDS

Normal (A) Interictal (C) Normal (A) Interctal (C)
Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%) Predicted (2D-CNN, 1s) ACC (%) SEN (%) SPE (%)

Original
2288 80

95.50 94.38 96.62
2243 125

93.69 92.65 94.72133 2235 174 2194
Predicted (1D-CNN, 2s) Predicted (2D-CNN, 2s)

1161 23 97.47 96.88 98.06 1151 33
96.66 96.11 97.2137 1147 46 1138

TABLE IV
THE CONFUSION MATRIX OF A VS. C VS. E ACROSS ALL TEN-FOLDS

Normal (A) Interictal (C) Ictal (E) Normal (A) Interictal (C) Ictal (E)
Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%) Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%)

Original

2292 76 0 96.26 96.79 95.99 2209 157 2 95.03 93.29 95.90
187 2171 10 95.99 91.68 98.14 191 2161 16 94.69 91.26 96.41
3 12 2353 99.65 99.37 99.79 3 13 2352 99.52 99.32 99.62

Predicted (1D-CNN, 2s) Predicted (2D-CNN, 2s)
1146 36 2 96.96 96.79 97.04 1148 36 0 96.93 96.96 96.92
70 1106 8 96.51 93.41 98.06 71 1107 6 96.59 93.50 98.14
0 10 1174 99.44 99.16 99.58 2 8 1174 99.55 99.16 99.75

TABLE V
THE CONFUSION MATRIX OF AB VS. CD VS. E ACROSS ALL TEN-FOLDS

Normal (AB) Interictal (CD) Ictal (E) Normal (AB) Interictal (CD) Ictal (E)
Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%) Predicted (1D-CNN, 1s) ACC (%) SEN (%) SPE (%)

Original

4550 183 3 96.12 96.07 96.16 4437 290 9 94.85 93.69 95.62
261 4446 29 95.18 93.88 96.04 299 4356 81 93.86 91.98 95.12
12 98 2258 98.80 95.35 99.66 12 57 2299 98.66 97.09 99.05

Predicted (1D-CNN, 2s) Predicted (2D-CNN, 2s)
2309 59 0 97.33 97.51 97.21 2283 83 2 96.96 96.41 97.33
93 2266 9 96.94 95.69 97.78 90 2260 18 96.28 95.44 96.85
6 20 1158 99.41 97.80 99.81 5 29 1150 99.09 97.13 99.58

IV. RESULTS

In this section, the results from two CNN models are
showed, and two-class classification problem and three-class
classification problem are discussed. For two-class classifi-
cation problem, there are three cases discussed, namely A

(normal) vs. E (ictal), C (interictal) vs. E (ictal), A (normal)
vs. C (interictal). For three-class classification problem, two
cases are discussed, namely A (normal) vs. C (interictal) vs.
E (ictal), AB (normal) vs. CD (interictal) vs. E (ictal). The
confusion matrix across all ten-folds in this paper is showed,
and the accuracy (ACC), sensitivity (SEN), and specificity



(SPE) values are calculated.

A. Two-classification problem

Table I reports the classification of A and E. As showed in
Table I, model 2D-CNN with preprocessing of 1-sec sliding
time window and model 1D-CNN with 2-sec sliding time win-
dow have the same top results that the accuracy, sensitivity and
specificity are 99.92%, 99.83% and 100%, respectively. For C
and E, Table II shows that model 2D-CNN with preprocessing
of 1-sec sliding time window has the best result with the
accuracy of 99.28%, sensitivity of 99.16% and specificity of
99.41%. Table III shows the top result from model 1D-CNN
with preprocessing of 1-sec sliding time window, it has the
accuracy of 97.47%, sensitivity of 96.88% and specificity of
98.06%, respectively. From the results, we can see that the
accuracy of A vs. E, C vs. E are all greater than 99%, while
A vs. C only has more than 97% accuracy.

B. Three-classification problem

We also study the performance of the proposed method in
classifying three distinct classes of EEG activities: normal,
interictal, and ictal. Table IV gives the results of A vs. C
vs. E. As it shows, the best overall classification result from
model 2D-CNN with preprocessing of 2-sec sliding time
window. It is observed that a high percentage of 96.96% of
normal EEG signals are correctly classified as normal EEG
signals with 3.04% of the EEG signals wrongly classified as
interictal (3.04%) and ictal (0%) classes. For interictal EEG
signals, only 93.50% of them are correctly classified as the
interictal EEG signals, and a small percentage of 6.00% and
0.50% of them are wrongly classified as normal and ictal,
respectively. Similarly, 99.16% of the ictal EEG signals are
correctly classified as ictal class with 0.84% wrongly classified
as normal (0.17%) and preictal (0.67%) classes.

The classification results of AB vs. CD vs. E are reported
in Table V. Unlike the three classifications mentioned above,
the normal (AB) and interictal (CD) groups have twice as
many samples as the ictal (E) group. Model 1D-CNN with
using 2-sec sliding time window for preprocessing has the
best overall performance. For the normal EEG signals, a high
percentage of 97.51% of them are accurately classified as
the normal class, and a small percentage of 2.49% and 0%
of them wrongly classified as the interictal and ictal classes,
respectively. It is also observed that 95.69% of the interictal
EEG signals are accurately classified as the interictal class
with 4.31% of them are wrongly classified as normal (3.93%)
and ictal (0.38%). Similarly, 97.80% of the ictal EEG signals
are accurately divided into the ictal class with 2.20% wrongly
classified as the normal (0.51%) and interictal (1.69%) classes.

V. DISCUSSION AND CONCLUSION

In this study, we discussed two-classification and three-
classification problems in seizure detection. For exploring
performance of classification, two models (1D-CNN and 2D-
CNN) were used as classifiers. About two-classification prob-
lem, three cases, namely A (normal) vs. E (ictal), C (interictal)

vs. E (ictal), A (normal) vs. C (interictal), were discussed.
About three-classification problem, two cases, namely A (nor-
mal) vs. C (interictal) vs. E (ictal), AB (normal) vs. CD
(interictal) vs. E (ictal), were discussed. For C vs. E and A
vs. C vs. E, the performance of 2D-CNN was better than that
of 1D-CNN, while for A vs. C and AB vs. CD vs. E, the
performance of 1D-CNN was better. For A vs. E, the two
models had the same best performance of classification. As
shown in the five tables, A vs. E had the highest accuracy
of 99.92% in two-classification problem, while A vs. C vs. E
had the best overall classification result in three-classification
problem.

Through preprocessing with using two different sliding
windows (1-sec and 2-sec) for changing sample sizes, the
results showed that two models have the good generalization
and robustness in working well with the benchmark clinical
dataset. The application of CNNs also has minimum feature
engineering. All of these give medical staff more opportunities
to efficiently and accurately detect the seizures, and help
patients to improve the quality of life.

REFERENCES

[1] L. Kuhlmann, K. Lehnertz, M. P. Richardson, B. Schelter, and H. P.
Zaveri, “Seizure prediction—ready for a new era,” Nature Reviews
Neurology, vol. 14, no. 10, pp. 618–630, 2018.

[2] C. E. Elger and C. Hoppe, “Diagnostic challenges in epilepsy: seizure
under-reporting and seizure detection,” The Lancet Neurology, vol. 17,
no. 3, pp. 279–288, 2018.

[3] R. Meier, H. Dittrich, A. Schulze-Bonhage, and A. Aertsen, “Detecting
epileptic seizures in long-term human eeg: a new approach to automatic
online and real-time detection and classification of polymorphic seizure
patterns,” Journal of clinical neurophysiology, vol. 25, no. 3, pp. 119–
131, 2008.

[4] G. R. Minasyan, J. B. Chatten, M. J. Chatten, and R. N. Harner, “Patient-
specific early seizure detection from scalp eeg,” Journal of clinical
neurophysiology: official publication of the American Electroencephalo-
graphic Society, vol. 27, no. 3, p. 163, 2010.

[5] K. Fu, J. Qu, Y. Chai, and Y. Dong, “Classification of seizure based on
the time-frequency image of eeg signals using hht and svm,” Biomedical
Signal Processing and Control, vol. 13, pp. 15–22, 2014.

[6] Y. Yuan, G. Xun, K. Jia, and A. Zhang, “A multi-context learning
approach for eeg epileptic seizure detection,” BMC systems biology,
vol. 12, no. 6, pp. 47–57, 2018.

[7] L. Guo, D. Rivero, and A. Pazos, “Epileptic seizure detection using
multiwavelet transform based approximate entropy and artificial neural
networks,” Journal of neuroscience methods, vol. 193, no. 1, pp. 156–
163, 2010.

[8] S.-H. Lee, J. S. Lim, J.-K. Kim, J. Yang, and Y. Lee, “Classification
of normal and epileptic seizure eeg signals using wavelet transform,
phase-space reconstruction, and euclidean distance,” Computer methods
and programs in biomedicine, vol. 116, no. 1, pp. 10–25, 2014.

[9] S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr, “Mixed-band wavelet-
chaos-neural network methodology for epilepsy and epileptic seizure
detection,” IEEE transactions on biomedical engineering, vol. 54, no. 9,
pp. 1545–1551, 2007.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[12] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E.
Elger, “Indications of nonlinear deterministic and finite-dimensional
structures in time series of brain electrical activity: Dependence on
recording region and brain state,” Physical Review E, vol. 64, no. 6,
p. 061907, 2001.


	Introduction
	Data
	Methodology
	Preprocessing
	Time-frequency representation
	Convolutional neural networks (CNN)
	Training and testing of CNN models

	Results
	Two-classification problem
	Three-classification problem

	Discussion and Conclusion
	References

