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ABSTRACT The use of artificial intelligence and machine learning is recognized as the key enabler for
5G mobile networks which would allow service providers to tackle the network complexity and ensure
security, reliability and allocation of the necessary resources to their customers in a dynamic, robust and
trustworthy way. Dependability of the future generation networks on accurate and timely performance of its
artificial intelligence components means that disturbance in the functionality of these components may have
negative impact on the entire network. As a result, there is an increasing concern about the vulnerability
of intelligent machine learning driven frameworks to adversarial effects. In this study, we evaluate various
adversarial example generation attacks against multiple artificial intelligence and machine learning models
which can potentially be deployed in future 5G networks. First, we describe multiple use cases for which
attacks on machine learning components are conceivable including the models employed and the data used
for their training. After that, attack algorithms, their implementations and adjustments to the target models
are summarised. Finally, the attacks implemented for the aforementioned use cases are evaluated based on
deterioration of the objective functions optimised by the target models.

INDEX TERMS 5G networks, adversarial machine learning, artificial intelligence, deep learning

I. INTRODUCTION

As artificial intelligence (AI) and machine learning (ML)
become a core part of almost every industry, including 5G
mobile networks, there is an increasing concern about the
vulnerability of AI/ML to adversarial effects. The problem
of learning in the presence of adversaries is the subject of
the study of adversarial machine learning that has received
increasing attention in many research domains, e.g. computer
vision and natural language processing [1]. As a rule, an
adversarial machine learning attack may take place during
the training or inference time. During the training time, the
goal of the adversary is to manipulate the training process by
either directly poisoning the training data or injecting pertur-
bations to the training samples such that the target model is
trained with erroneous features and thus it makes errors later
in the inference time [2]. During the inference time, the goal
of the adversary is most of the time to feed such features
to the target model that it returns a certain wrong output
[3]. Similar to the poisoning attacks, adversarial examples
can be either generated from scratch or via adding carefully
crafted adversarial perturbations to normal samples. As a

rule, the adversary focuses on the samples with output labels
that are closer to the decision region, allowing it to increase
the probability of error at the target model [4]. The attack
can be either non-targeted, when the adversary causes the
classifier to predict any incorrect label, or targeted, in which
case the adversary aims to increase the classifier’s prediction
probability to a particular output label. Depending on the in-
formation available to the adversary, the adversarial example
attacks can be classified into either white-box and black-box
category. The former includes cases when the adversary has
perfect knowledge of either the machine learning model or
the data used for its training or both of those. In the later
scenario, the adversary’s only capability is to observe labels
assigned by the model for the inputs supplied. The black-
box attacks are more practical for real-world adversaries with
knowledge about neither the model nor the training data [5].

On the adversarial defence side, two different strategies
can be considered: runtime detection of adversarial inputs
and model hardening. The former includes explicit detection
or rejection strategies for adversarial samples. Typically,
these defences are designed to work under the so-called
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manifold hypothesis which assumes that normal data samples
lie in a low-dimensional manifold embedded in a high-
dimensional space [6]. Such manifold-based defences work
by identifying adversarial points from their distance to the
manifold. If an input sample moves away from a class proto-
type, its support decreases. If the sample is not supported by
any class, then it is rejected [7]. Among the model hardening
methods, a widely explored approach is to augment the train-
ing data of the AI/ML model with adversarial examples [1].
Another approach is input data preprocessing, often using
non-differentiable or randomised transformation [8], trans-
formations reducing the dimensionality of the inputs [9], or
transformations aiming to project inputs onto the normal data
manifold [10]. Other model hardening approaches involve
special types of regularisation during model training [11], or
modifying elements of the classifier’s architecture [12].

The key element to measure the vulnerability of a classifier
with respect to particular attacks and to assess the effective-
ness of adversarial defences is a robustness metric. Typically
such metric quantifies the sensitivity of model outputs with
respect to changes in their inputs, or more specifically, the
minimal amount of perturbation that is required to cause a
misclassification [3]. Unfortunately, finding the global min-
imum adversarial perturbation is close to impossible in any
practical setting, and, therefore, heuristic attacks are often
employed to find a suitable approximation [13]. However,
employing such heuristics can fail, making one believe that a
model is robust [14] whereas in fact it is not [15]. Thus, the
best strategy is to employ as many attacks as possible, and
to use the minimal perturbation found across all the attacks
as an approximation to the true global minimum [16]. This
strategy can be implemented with the help of one of the ex-
isting frameworks which allow one to evaluate vulnerabilities
of an AI/ML model to various adversarial example genera-
tion algorithms. As a rule, these frameworks offer reference
implementations of multiple state-of-the-art white-box and
black-box attack algorithms, model hardening and manifold-
based detection methods as well as robustness metrics and
certifications [13], [16]–[20]. When crafting adversarial ex-
amples using such a framework, one can specify a target
model that takes an input and makes a prediction, a criterion
that defines what an adversarial perturbation is, a distance
measure that measures the size of the perturbation and an
attack algorithm that takes an input and its label as well as
the model, the adversarial criterion and the distance measure
to generate the adversarial perturbation. Thus, adversarial
robustness of an AI/ML model can be tested against known
adversarial example attacks before the model is deployed into
production. Since the model is tested against specific attacks
in specific settings, it does not guarantee full protection as
this research topic has recently attracted significant attention
and novel attack approaches are constantly emerging [21].
However, testing the target model against known attack ap-
proaches allows one to reduce the attack surface leaving the
adversaries with fewer ways to perform attacks and therefore
making it easier to implement a manifold-based detection and

rejection system to further protect the target model.
In our research, we focus on adversarial example at-

tacks that may take place in the inference stage in one
of the AI/ML-based components of future 5G networks.
These components may focus on channel estimation [22] and
symbol detection [23], automatic modulation classification
[24] and channel coding [25], beamforming [26] and power
allocation [27], scheduling [28] and routing [29], as well
as slicing [30] and caching [31]. Due to the shared and
open nature of wireless medium, these components may be
highly susceptible to adversaries that manipulate the inputs
to the AI/ML models during the inference stage over the
air. However, an adversary in the wireless domain as a rule
cannot directly collect the same input features as the target
AI/ML model, due to the different channel and interference
conditions. Furthermore, the adversary most of the time
cannot directly obtain the output label of the target model,
since it is used internally by the model and it is not available
to any other wireless node outside of the network. Finally, the
adversary is not able to directly manipulate the input data to
the target model, it can only add its own transmissions on top
of existing transmissions over the air to change the input data
indirectly [32].

The main goal of this study is to review potential appli-
cations of AI/ML in the next generation wireless networks
and identify potential attack vectors against these applica-
tions via adversarial example generation. The rest of the
document is organised as follows. Various AI/ML algorithms
and adversarial example generation attacks against these
algorithms are briefly summarised in Section II. Section III
presents multiple examples of potential AI/ML deployment
in different 5G frameworks found in recent scientific papers
and overviews several adversarial example generation attacks
proposed against these frameworks. Numerical simulation
results for some of the use cases are presented in Section IV.
Section V concludes the paper and outlines future work.

II. THEORETICAL BACKGROUND
A. AI/ML MODELS
The vast majority of the AI/ML applications proposed to be
deployed in the next generation wireless networks is based
on deep learning architectures trained in a supervised way.
A deep neural network consists of multiple layers of non-
linear processing units. The main idea behind deep learning
is using the first layers to find compact low-dimensional
representations of high-dimensional data whereas later lay-
ers are responsible for achievement of the task given, e.g.
regression or categorical classification. All the neurons of
the layers are activated through weighted connections. In
order for the network to be capable of approximating a
nonlinear transformation, a non-linear activation function is
applied to the neuron output. The learning is conducted by
calculating errors in the output layer and backpropagating
gradients towards the input layer. In a hidden or output layer
of a fully-connected neural network (FCNN), each neuron is
connected to all neurons of the previous layer with the output
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being calculated by applying the activation function to the
weighted sum of the previous layer outputs. Such layers have
few trainable parameters and therefore learn fast compared
to more complicated architectures described below, however
they may suffer when dealing with spatio-temporal data such
as images and time-series.

Most of the time, convolutional neural networks (CNNs)
are employed for automatic extraction of low-level features
such as edges, colour, gradient orientation in image related
problems [33]. The main building block of CNN is the con-
volutional layer which calculates an integral that expresses
the amount of overlap of the layer’s filter as it is shifted over
the input data. Similarly to the previous case, the integral
value is passed through an activation function to account for
non-linearity in data. As a rule, multiple convolutions are
performed on the input, each using a different filter. Resulting
feature maps are then stuck together and become the final
output of the convolution layer. CNNs can be employed to
handle data of any dimension, since the result of the con-
volution operation is always a scalar. CNNs usually consist
of several convolutional layers followed by standard fully-
connected layers. Stacking multiple convolutional layers al-
lows one to learn both basic features as well as higher level
representations to recognize objects in different shapes and
positions.

Temporal dependencies in the data can be extracted with
the help of recurrent neural networks (RNNs). In distinction
to a fully-connected and convolutional layers, a recurrent
layer assumes that input data samples are time-series. To
accommodate this fact, each recurrent layer has its own
internal state the value of which is calculated based on the
state value of the previous sample. The output of the recurrent
layer is essentially an activation of the weighted sum of the
previous layer outputs added to the weighted sum of the
previous state values. During the learning process, deriva-
tives are backpropagated through time, all the way to the
beginning or to a certain point. All the derivatives multiply
the same weight matrix which may result in either infinite
or vanishing update values. While gradient exploding can be
fixed by straight-forward clipping [34], dealing with gradient
vanishing requires an intelligent control over the state via
forget gates [35]. The most popular gate-based RNN layers
are based on gated recurrent units (GRUs) [36] and long
short-term memory (LSTM) [35].

Speaking of the supervised algorithms which are not based
on deep learning, there are several ones that are still used
by AI/ML researchers for classification and regression. For
example, k-nearest neighbours (k-NN) algorithm is a classifi-
cation algorithm, in which several closest training samples in
a dataset are used to predict the class for a new sample. K-NN
can also be used for regression tasks. In this case, the output
is the average of the values of its nearest neighbours. Another
simple regression method is linear regression which gener-
ates a sloped straight line describing the relationship within
two continuous variables. From the algorithmic point of view,
a linear regression model is simply a single-layer neural net-

work with linear activation function. Closely related to linear
regression and SVM algorithms is support vector regression
(SVR). The aim of SVR is to find such a linear model that
the norm of the weight vector is minimal under the constraint
that the points are within the decision boundary line. It can
be solved with the help of constrained optimization methods.
The next one is a random forest algorithm which uses an
ensemble of decision trees each of which aims to create a
training model that can be used to predict the class or value of
the target variable by learning simple decision rules inferred
from the training data. There are several popular algorithms
used for training decision trees. For example, in the ID3
algorithm, at each iteration, for a set of data samples, an
attribute which has the smallest entropy is selected and the
set is split by the selected attribute to produce new subsets
of the data samples. The random forest algorithm operates
by constructing a multitude of decision trees at the training
time and outputting the class that is the mean prediction of
the individual trees. Finally, gradient boosting is a machine
learning technique which builds a prediction model in the
form of an ensemble of weak learners, e.g. decision trees.

Unsupervised learning is also proposed to be applied for
enhancing various the next generation network components.
The most popular deep learning architecture trained in an
unsupervised way is called autoencoder. In general, an au-
toencoder consists of an input layer, several hidden layers,
and an output layer. The objective of the network is for the
output layer to be exactly the same as the input layer despite
the information bottleneck caused by the hidden layers. The
reconstruction error which is the difference between the input
and the output is often used as the loss function. The process
of going from the first layer to the hidden layer is called
encoding. The process of going from the hidden layer to
the output layer is called decoding. In this learning process,
the autoencoder essentially learns the format rules of the
input data. Another unsupervised deep learning approach
that is employed in several AI/ML applications in 5G as
well as in the attacks against those applications is based on
generative adversarial networks (GANs) [37]. In GANs, the
generator neural network takes a fixed-length random vector
as input and generates a sample in the domain. Another
neural network called discriminator generates an estimate
of the probability that a given sample is real or generated.
The discriminator is supplied with a set of samples which
include both real and generated ones and it would generate
an estimate for each of these inputs. The error between the
discriminator output and the actual labels would then be
measured by cross-entropy loss. The generator is updated
based on how well, or not, the generated samples fooled the
discriminator. Outside of the deep learning area, k-means,
which is a partitioning technique which classifies a dataset of
objects into a predefined number of clusters, is still broadly
used in research.

Finally, multiple studies propose to deploy reinforcement
learning (RL) algorithms in the future networking frame-
works. Deep Q-Network (DQN) proposed in [38] presents
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the most well-known deep RL model to learn control policies
directly from high-dimensional sensory input. The value
function of each action at each time step, Q-function, is
evaluated using the Bellman equation [39] that is proven
to converge to an optimal value [40]. DQN uses a deep
neural network as the function approximation to estimate
the value function. The network is trained by minimising
the loss function, which is essentially the difference between
the value of Q-function predicted in that particular time step
and the target value function that is evaluated using the real
reward value obtained from the environment. DQN is proven
to be a powerful tool that could deal with problems involving
low-dimensional, discrete observations and actions in the
mobile networking domain [30], [41]. Other RL algorithms
such as deterministic policy gradient (DDPG) [42], state-
action-reward-state-action (SARSA) algorithm [43], trust re-
gion policy optimization (TRPO) [44] and proximal policy
optimization (PPO) [45] are also proposed to be employed
for various 5G network applications [29], [46]–[48].

B. ADVERSARIAL EXAMPLE ATTACKS
With the success deep learning has reached in recent years
comes the price of the models that follow this approach to be
the most popular target for adversarial example attacks. As a
rule, deep neural networks have a differentiable loss function
and use a gradient-based optimizer during the training which
enables gradient-based adversarial example generation by
modifying an input sample in the direction of the gradient
of the loss function with respect to the input sample [1].
This allows one to craft an adversarial perturbation to carry
out a non-targeted attack in the white-box setting. Another
gradient-based attack called basic iterative method (BIM) is
introduced in [49]. It extends the fast gradient sign method
(FGSM) described above by applying it multiple times with
small step size, clipping values of intermediate results after
each step to ensure that the difference between them and the
original input does not exceed a predefined threshold value.
The size of this threshold value is the main parameter of
the attack algorithm and it depends on the particular attack
scenario. Further into the paper, we refer to this value as a
perturbation budget or perturbation size interchangeably.

Another white-box approach for generating adversarial
examples is introduced in [3]. In that study, adversarial
examples are defined as inputs that look very similar to
their real counterparts according to a distance metric, but
one that causes the target classifier to misclassify it. In
order to find such an input, one requires to solve a nonlin-
ear optimization problem with the objective function being
equal to the weighted sum of the adversarial perturbation
norm and the target model loss calculated for the perturbed
sample. Study [3] uses a non-linear gradient based numeri-
cal optimization algorithm called Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) to solve the resulting
minimization problem. Studies [50] and [51] propose various
improvements of this approach resulting in famous Carlini &
Wagner (CW) and DeepFool attacks.

In the black-box settings, the target model is assumed to be
unknown to the adversary. However, the adversary may have
an ability to query an input sample to the target classifier
in order to calculate the perturbation which results in the
input being misclassified. The first fundamental study in this
research area [52] proposes a transfer based attack approach
which relies on information about training samples without
the knowledge of the training model. The adversary’s strategy
is to learn a substitute for the target model using a synthetic
dataset carefully generated by the adversary and labelled by
observing the target model output. The adversary then uses
the information acquired to train the substitute model. After
that, a white-box attack is used to synthesise adversarial per-
turbations for the substitute model. The adversary expects the
target model to misclassify the resulting perturbed samples
due to transferability between AI/ML models. The approach
can therefore be employed against various AI/ML models
with different rates of success.

Several studies propose to search for the perturbation
without training a substitute model. As a rule, the attack that
follows this approach starts from a point that is already adver-
sarial and then performs a random walk along the boundary
between the adversarial and the non-adversarial region such
that it stays in the former while the distance towards the
target legitimate point is reduced. Both the length of the
total perturbation of the adversarial sample and the length of
the step towards the original input are adjusted dynamically
similarly to a trust region method. Such boundary attack is
introduced in [53] and further developed as HopSkipJump
attack algorithm in [54].

III. ADVERSARIAL ML IN 5G
A. AI/ML IN 5G
Massive multiple-input and multiple-output (MIMO) has be-
come an essential element of wireless communication stan-
dards including 5G. AI/ML models are frequently suggested
to be applied to MIMO for channel estimation and symbol
detection. The common goal of such models is to reduce
feedback transmission overhead and delay required for the
channel state information (CSI) estimation. For example, in
[55], a deep neural network is used to map CSI at one set of
antennas and one frequency band is mapped to the channels
at another set of antennas and frequency band which allows
for significantly reducing the pilot training and feedback
overhead. Similarly, study [56] proposes a method based on
deep neural networks that predicts the CSI in the downlink
(DL) based on the past uplink (UL) measurements in an
orthogonal frequency-division multiplexing (OFDM) system
to eliminate the overhead caused by DL pilot transmissions.
It basically assumes that since DL and UL channels share
the same propagating environment, a data-driven approach
can be employed to extract an environment information from
the UL channel response to a latent domain and then transfer
this information from the latent domain to the DL channel.
In [23], a neural network is employed to estimate channels
implicitly and recover the transmitted symbols directly. Study
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[57] proposes a deep-learning-based CSI sensing and recov-
ery mechanism for OFDM MIMO systems in which an UE
uses an encoder network to transform channel matrices into
codewords, and once these codewords are returned to the next
generation NodeB (gNB), a decoder network at the gNB is
used to recover the original channel matrices. This allows
to reduce the dimensionality of the CSI matrices and which
leads to the overhead decrease.

Another application of AI/ML in 5G is automatic mod-
ulation recognition which enables adaptive transceivers to
automatically switch modulations based on the channel con-
ditions without the need for a feedback channel between the
transmitter and the receiver. For example, study [24] pro-
poses a deep neural network enabled modulation recognition
which can automatically learn to extract features from long
symbol-rate signals at low signal-to-noise (SNR) levels. In
[58], complex points representing the received signals are
transformed into constellation diagrams by mapping signal
samples into scatter points on the complex plane, and then an
AlexNet model [59] deployed at the receiver is used to derive
the modulation type employed at the transmitter.

Furthermore, recent studies devoted to application of
AI/ML to the next generation wireless networks aim to de-
velop deep learning-based channel coding schemes in order
to overcome the existing problems of conventional decoding
algorithms such as high decoding complexity and lack of
robustness against channel variations. The first fundamental
study in this area [25] proposes to interpret an end-to-end
communication system as an autoencoder, where both the
transmitter and receiver are implemented as deep neural
networks. An end-to-end reconstruction optimization task
using autoencoders allows one to jointly learn transmitter
and receiver implementations as well as signal encodings
without any prior knowledge. The autoencoder proposed
seeks to learn representations of the messages that are robust
with respect to the channel impairments mapping, i.e. noise,
fading and distortion, so that the transmitted message can
be recovered with small probability of error. Further studies
[60], [61] focus on the decoding problem with the neural
network being trained to minimise the error between its
output and the original codeword sent.

Multiple studies employ AI/ML for beamforming and
optimising MIMO antenna weights. For example, in [26], a
deep learning solution for fast and accurate initial access (IA)
in 5G mmWave networks is proposed. The IA time consists
of two components: time for beam sweeping, i.e. measuring
the received signal strengths (RSSs) for different beams, and
time for beam prediction, i.e. identifying the beam for a
given transmitter-receiver pair to communicate with. Since
the beam sweep time dominates the overall IA time, it is
essential to improve the IA time by utilising fewer beams.
The study attempts to solve this problem with deep learning.
In particular, it attempts to reduce the beam sweep time by
measuring RSSs from only a subset of all available beams
and mapping them to the best selection from the entire set of
beams. The model is a neural network trained by feeding the

RSS values from a subset of beams as the input. The output of
the network consists of the probabilities of being the optimal
beam calculated for each beam in the set. Another deep
learning based beamforming approach is proposed in [62]. It
uses uplink training pilot sequences for each beam coherence
time sent from UEs to several neighbouring gNBs to predict
the best beamforming vector with the highest achievable rate
for each of these gNB s.

In multiple studies, various AI/ML models are employed
for intelligent power allocation policies in order to minimise
the interference and reduce the energy consumption. For
example, study [63] considers the power allocation problem
for downlink communications from the gNB using multiple
different orthogonal subcarriers to communicate with several
UEs. A neural network is employed at the gNB in order
to deal with the complexity of the solution for the power
allocation optimization problem when using traditional solv-
ing methods. In order to carry out the power allocation
procedure, the gNB transmits pilot signals from each of its
subcarriers one by one, each UE served by the gNB estimates
the channel gains, and reports them back to the gNB. Based
on these channel estimations, the gNB allocates power to its
subcarriers to serve each of the UEs using the neural network
trained to output an optimal power allocation vector calcu-
lated using a traditional method. Another example of using
machine learning for optimal power allocation is described in
[64]. The AI/ML framework proposed uses a neural network
to learn the mapping between the positions of UEs and the
optimal power allocation policies.

Network slicing allows operators to offer a diverse set of
services over a shared physical infrastructure. Despite the
advantages it brings to network operators, network slicing
raises big challenges related to the optimal resource alloca-
tion. Several studies focus on deployment of AI/ML models
for dynamic resource allocation to radio access network
slices. There are two main approaches. The first approach
relies on employing RNNs to predict usage of each radio
access network (RAN) slice in order to adjust the resource
distribution [65], [66]. The second approach formulates the
resource allocation problem as a Markov decision process
(MDP) and a deep RL algorithm is applied to solve it [30],
[41], [48], [67]. The RL approach looks more promising
as the resulting policy optimises RAN resource distribution
directly and there is no need to predict each network slice
usage. In the majority of the studies mentioned the resources
available are assumed to be discrete physical resource blocks
(PRBs), and a deep Q-network is employed in order to find
an optimal policy. The policy decisions as a rule depend
on the numbers of requests arriving at each slice and their
priority, throughput, computational resources, and latency
requirements.

Furthermore, AI/ML provides automated means to capture
complex dynamics of wireless spectrum and support better
understanding of spectrum resources and their efficient utili-
sation. In particular, cognitive radio capabilities empowered
by machine learning allow for performing spectrum aware-
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ness and spectrum sharing. For example, in study [32], an
AI/ML model at an environmental sensing capability (ESC)
station detects citizens broadband radio service (CBRS) as
an incumbent user. If the incumbent user is not detected in a
channel of interest, the ESC allows a gNB to communicate
to UEs. Otherwise, the gNB cannot use this channel and
it is reconfigured to vacate this particular channel to avoid
interference with the incumbent signals.

Finally, AI/ML has been broadly applied for cyber security
in wireless communications. For example, in studies [68],
[69] systems for anomaly detection and cyber defence in the
context of a 5G mobile network architecture are proposed.
The systems are essentially network intrusion detection sys-
tems (IDSs) classifying network traffic flows as either normal
or malicious. In the RAN domain, AI/ML models are also
proposed to be employed for detection of jamming attacks
based on values of the UE state features such as energy
consumption, packets sent/received, distance to gNB and
several others [70], [71].

B. ADVERSARIAL EXAMPLES IN 5G
In this subsection, we describe how an adversary may try to
attack AI/ML-based network components described above.
In the channel estimation cases [55] and [56], the adversary
can aim crafting such a perturbation that would maximise the
error between the real DL CSI matrix and the one predicted
by the target model, whereas in the case of the framework
described in [23], the adversary would try to maximise the
difference between the transmitted symbols and the output of
the target model. In all of these attack scenarios, the adver-
sary would be required to have access to a dataset in order to
train a substitute model [5]. The attack approaches in which it
is required to query the target model with intelligently crafted
samples would be hard to carry out since the outputs of the
target models mentioned appear to be used internally by the
gNB for efficient use of frequency bands and energy by per-
forming various techniques, such as water-filling, appropriate
precoding and beamforming [56]. Another option would be
to craft a universal adversarial perturbation (UAP) [72].

Study [73] proposes an adversarial example generation
attack against the autoencoder based framework for CSI feed-
back described in [57]. In particular, the attack is performed
against the neural network which acts as the decoder. The
adversary aims to maximise the error between the real CSI
matrix and the one predicted by the decoder model. The
attack is white-box i.e. the adversary is required to know
the target decoder network. Moreover, in the attack scheme
described, the adversary somehow has access to the input
codeword which is essentially the DL CSI matrix encoded
at the UE. The former problem can be mitigated via training
a substitute autoencoder model [5]: since the target model is
unsupervised, the adversary would only need to get access
to a dataset of DL CSI matrices. The latter would require
the adversary to be able to eavesdrop the signal that contains
the CSI matrix encoded and then jam this signal in such an
intelligent way that a necessary perturbation is added to the

decoder input. Crafting a UAP would also be possible. As in
the previous case, the attacks that rely on querying the target
model’s public API do not look applicable in this scenario, as
the output of the decoder is not returned to the UE, but it is
used internally by the gNB.

Attacks against AI/ML-based modulation recognition
models is probably the most well-studied category of the
attacks against wireless communication systems based on
adversarial example generation [74]–[77]. In a real world
scenario, the adversary would have access to neither the
exact input of the receiver nor the modulation type selected
by the target model. It would also be fair to assume that
the adversary does not know the exact channel between the
adversary and the receiver, but several realisations of that
channel are available to the adversary [75], [77]. It can also
be assumed that the information available to the adversary
includes an arbitrary dataset of the received signals with
their corresponding modulation types. In such settings, the
adversary will be able to first train a substitute model [5]
and craft adversarial perturbations using one of the white-
box attack methods described in details in [75]–[77]. After
that, a universal perturbation can be generated.

To attack intelligent channel decoding frameworks, the
adversary can try to generate a perturbation that causes de-
coding errors at the receiver [74], [78]. In white-box settings,
this perturbation can be carried out e.g. by employing FGSM
and then projecting the resulting optimal perturbation on the
ball with the centre at the original sample and the radius
equal to the power budget available to the attacker [78]. In the
black-box settings, the attack can be carried out by training a
substitute model using the dataset generated for a similar task
since again there is no possibility to query the target model
with various test samples. Alternatively, a UAP can then be
crafted as it is proposed in [78].

In the case of AI/ML-driven beamforming, the adversary
may search for either a perturbation that causes any mis-
classification at the receiver’s classifier or such a perturba-
tion such that it not only causes a misclassification at the
receiver’s classifier, but also tries to change the beam to
one of the worst beams. In [79], such adversarial pertur-
bations are crafted in white-box settings with the FGSM
algorithm. In black-box settings, the adversary would again
most likely train a substitute model or search for a universal
perturbation since querying the target model does not appear
to be a feasible option due to the nature of the attack. An
adversarial example generation attack which targets the deep
learning model introduced in [62] is demonstrated in [80].
The adversary aims to maximise the error between the real
achievable rate and the one predicted by the model. The
attack implemented in [80] is white-box. Furthermore, the
study assumes the adversary has perfect knowledge of the
input feature vector for which the prediction is made. In other
words, the adversary most likely needs to have access to the
aforementioned cloud processing unit during the inference
stage to be able to perform this attack. In black-box settings,
a substitute model should be trained by the adversary and
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then used during the inference to craft an input-agnostic
adversarial perturbation.

In order to attack the power allocation model proposed in
[63], the adversary can try to jam the channels between the
gNB and the UEs in order to make the neural network at the
gNB output a non-optimal power allocation vector. In [63],
this attack is performed in white-box settings using FGSM
algorithm. In a realistic use-case scenario, the adversary
would first need to train a substitute model and then search
for a universal perturbation during the attack. In order to
attack the power allocation system described in [64], the
adversary perturbs the input that is fed to the target model
by employing one of the GNSS spoofing techniques [81].
The objective of the attacker is to compute the adversarial
perturbation of UEs positions in the direction of the gradient
to increase the loss function such that the power allocation
system outputs non-optimal power allocation vector. In [82],
such an attack is implemented in white-box settings using
FGSM and PGD algorithms. In black-box settings, a sub-
stitute model is suggested to be trained. In this use-case,
the UE positions are assumed to be known to the adversary.
Otherwise, an input-agnostic adversarial perturbation can be
crafted as it was done in the previous scenarios.

The adversary may also attempt to attack the network slic-
ing models proposed in [30], [41], [48], [67] by generating
such requests that would force the target RL model to make
incorrect resource distribution decisions. Study [83] proposes
such an attack against the RL-based resource allocation
model presented in [30] in black-box settings. In particular,
the adversary aims to determine resources to be specified by
fake requests for the most efficient flooding attack. If these
fake requests are selected and network resources are allocated
to them, fewer resources will be left for real requests from
legitimate users. The attack is based on Q-learning algorithm
with each state being the number of available PRBs, the
action being equal to the number of PRBs assigned for each
fake request, and the reward being calculated as the number
of served fake requests. It is assumed in the study that the
adversary may sense the spectrum in order to detect available
PRBs. It is also assumed that the adversary has information
whether the request sent has been served or not. Other black-
box algorithms also appear to be applicable in this use-
case scenario: the adversary may query the target model by
sending fake requests with various requirements in order to
find an optimal solution.

In [32], the adversary aims to compromise the integrity of
the target AI/ML model deployed for intelligent spectrum
sharing during the sensing periods to force the ESC into
making wrong transmit decisions. In particular, the adversary
attempts to fool the ESC to allow the gNB to transmit when
an incumbent user is present, and vice versa, to fool the
ESC to stop the gNB transmissions even though there are no
CBRS users. The attack proposed is black-box: the adversary
trains a substitute model by monitoring both CBRS radar
signals and whether the gNB transmits to its UEs. The former
acts as the input to the substitute model, whereas the latter is

used to provide ground truth labels for the model. However,
the adversary is still required to know the input to the ESC
and the channel between the adversary and the ESC for
crafting correct perturbations. As previously, algorithms for
crafting an input-agnostic perturbation can be employed in
order to resolve the aforementioned issues.

An adversarial example generation based attack can also
be carried out to craft adversarial network traffic flows that
would deceive the detection models proposed in [68], [69].
For example, study [84] attempts to craft such a perturbation
to a botnet related traffic flow that it is classified as a legit-
imate one. To achieve this goal in black-box settings, DQN
algorithm for crafting adversarial perturbations is employed,
as it allows the adversary to operate in the scenario when
its feature space is different from the one employed by the
target model, as the latter is assumed to be unknown to
the attacker. In theory, however, any black-box algorithm
that queries the target model with intelligently crafted input
samples can be used in this use-case, since both the input
sample and the model output can be derived by the attacker
assuming any malicious flow will be blocked by the IDS.
In the case of jamming attack detection, the adversary can
try to manipulate the signal parameters in order to make the
target model misclassify it as a legitimate UE. Under the
same assumption that the target model output, i.e. whether
the device is classified as normal or malicious, is known to
the adversary, any of the black-box adversarial perturbation
generation algorithms described previously in the study can
be used.

IV. NUMERICAL SIMULATIONS
A. USE CASES
First, we briefly summarise several use cases attacks against
which are evaluated in this study. The use case scenar-
ios include modulation recognition based on raw in-phase
/ quadrature (I/Q) samples [85], channel state estimation
based on the [55], optimal beam selection based on RSS
measurements for a subset of beams [26] and sub-6GHz
channels [86], decoding polar [60], convolutional and low-
density parity-check (LPDC) [61] coding schemes as well
as jamming detection [71]. We focus on these particular use
cases for three main reasons: first, there is a clear benefit of
AI/ML deployment in each of these use cases; second, the
corresponding study provides detailed information how to
implement and train the AI/ML model proposed; third, there
is a room for a adversarial example generation attack against
the resulting framework.

1. Modulation recognition. As it was mentioned in the
previous section, study [85] proposes a deep neural network
enabled modulation recognition which can automatically
learn to extract features from complex base-band time series
representation of the received signals at various SNR levels.
Time series of the received signal in I/Q format acts as the
input whereas the output is the modulation type.

2. Channel estimation. Study [55] introduces a concept
of channel mapping in space and frequency, and it focuses
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on the use case when the uplink channels at a subset of
antennas are directly mapped to the downlink channels at all
the antennas significantly reducing the training and feedback
overhead. The channel mapping function is a deep neural
network. Channel matrix for a subset of antennas in the
uplink acts as the input to the network and the output is the
entire channel matrix in the downlink.

3. Beam selection based on an RSS subset. In [26], a deep
learning solution for fast and accurate initial access (IA) is
proposed. The model is a neural network trained by feeding
the RSS values from a subset of beams as the input. The
output of the network consists of the probabilities of being
the optimal beam calculated for each beam in the set.

4. Beam selection based on sub-6GHz channels. A similar
problem is studied in [86]. However, instead of using RSS
values received at a subset of beams, channel coefficients
of a sub-6GHz network which is assumed to be deployed
in the area act as the input to the AI/ML model. The model
used in the aforementioned study is a fully-connected neural
network.

5. Convolutional channel decoding. Study [61] aims to de-
velop a deep learning based channel coding scheme for con-
volutional codes in order to overcome the existing problems
of conventional decoding algorithms such as high decoding
complexity and lack of robustness against channel variations.
To generate training samples, a codeword is randomly picked
from the codebook set given and then the received vector is
obtained by performing channel encoding, the binary phase
shift keying (BPSK) mapping and simulated channel noise.
The received signal acts as an input to the neural network
whereas the decoded signal plays the role of the output.

6. LDPC channel decoding. The same study [61] also
applies this approach for decoding low-density parity-check
(LPDC) channels. As previously, the received signal acts as
an input to the AI/ML model and the decoded signal plays
the role of the output.

7. Polar channel decoding. A similar approach is studied
in [60] which involves training a neural network to guess
the original word encoded with polar codes based on the
signal received. Similar to the previous two cases, the output
for each input codeword is obtained by performing channel
encoding, BPSK mapping and adding simulated channel
noise.

8. Jamming detection. Study [71] focuses on deploying
an AI/ML based detection of jamming attacks on unmanned
aerial vehicles (UAVs) that operate using OFDM communi-
cation. In particular, authors attempt to detect and classify
multiple jamming attack types which include barrage, single
tone, successive-pulse (SP) or P-aware (PA). Input features
include average received signal and noise power.

B. DATA AND MODELS
In the modulation recognition use case, RadioML dataset
[87] is employed for training the neural network. This is a
synthetic dataset consisting of the received signals in I/Q
format for several modulation types at varying SNR levels.

Use case Input / Output Model Data
Modulation
recognition

RSS time-series
/ Modulation
type

CNN, 2 conv.
layers: 256, 80, 1
dense layer: 256

RadioML
dataset

Channel
estimation

Channel matrix
at the UL /
Channel matrix
at the DL

FCNN, 4 layers:
1024, 4096, 4096,
2048

DeepMIMO,
scenario I1

Beam
selection
(subset)

RSS for a subset
of beams / best
beam index

FCNN, 5 layers:
2048, 2048, 2048,
2048, 2048

DeepMIMO,
scenario
O1

Beam
selection
(sub-
6GHz)

Sub-6GHz chan-
nel RSSs / best
beam index

FCNN, 5 layers:
2048, 2048, 2048,
2048, 2048

DeepMIMO,
scenario
O1

Channel
decoding
(convolu-
tional)

Codeword
received
/ original
codeword

RNN, 1 LSTM
layer: 256

Synthetic
dataset

Channel
decoding
(LDPC)

Codeword
received
/ original
codeword

RNN, 1 LSTM
layer: 256

Synthetic
dataset

Channel
decoding
(polar)

Codeword
received
/ original
codeword

RNN, 1 LSTM
layer: 256

Synthetic
dataset

Jamming
detection

Signal and noise
power / signal
type

FCNN, 2 layers:
512, 512

Real equip-
ment data

TABLE 1: Data and models selected for evaluation of adver-
sarial example generation attacks.

The models employed are a FCNN and two CNNs. The
model that provides the best results in terms of the prediction
accuracy is the CNN with two convolutional layers of 256
and 80 filters followed by one fully-connected layer of 256
neurons. We used this neural network as the target model in
our experiments for the modulation recognition use case.

In order to generate data for numerical evaluations at the
channel estimation use case, DeepMIMO dataset is used [88].
This dataset is essentially a light-weight massive MIMO
mmWave simulator. Given a scenario and several input pa-
rameters, it generates channel matrices for each BS-UE ray-
tracing path. In the channel estimation use case, indoor
scenario I1 is used. The scenario comprises a 10 square
metre room with two tables and 64 antennas tiling up part
of the ceiling. 2.5 GHz is used as the operating frequency,
both the BS and UE antenna shapes are selected to be equal
to (1, 1, 1). Other input parameters such as the number of
OFDM subcarriers and the bandwidth can be found in [88].
Once the channel matrices have been generated, a subset of
antennas is randomly picked. This subset remains the same
for all the data samples during the training, validation and
inference stage. The selected channels act as the input data
to the AI/ML model in order to calculate the entire channel
matrix. Speaking of the size of the subset, the value of 8 is
selected. According to the results obtained in the original
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study [88], this is the minimal subset size which allows for
accurate channel estimation. The channel mapping function
is a FCNN which consists of 4 layers with 1024, 4096, 4096,
and 2048 neurons for each layer respectively.

At the beam selection use cases, outdoor scenario O1
from DeepMIMO dataset is used. One base station (BS 3)
is selected as the serving base station and UEs are assumed
to be located between rows 700 and 1300. The operating
frequency is 28 GHz whereas the BS and UE antenna shapes
are equal to (1, 64, 1) and (1, 1, 1) respectively. Other input
parameters can be found in [86]. For the beam subset use
case, channel values for randomly picked 25% of the beams
act as the input data. As previously, the subset is the same
for all the data samples. In the sub-6GHz case, additional
channel matrices for the same scenario but with the frequency
equal to 3.5 GHz are generated and they act as the input for
AI/ML beam selection. For each data point in both cases,
the mmWave beam in a codebook F which provides the
highest sum-rate for the channel matrix given is calculated.
The corresponding one-hot vector that indicates the index of
this optimal beam acts as the output data point. It is worth
mentioning that a simple quantized beam steering codebook
where the i-th beam for i = 1, 2, . . . , |F | is defined as
fi = a( 2πi|F | ), with a representing the mmWave array response
vector [86]. The model is a FCNN with 5 hidden layers of
2048 neutrons which is proposed to be used for the best beam
prediction in [86].

To train AI/ML models for channel decoding, three
datasets are generated, one for each type of codes: convo-
lutional, LDPC and polar. A sample in each such dataset in-
cludes the received vector and the true codeword transmitted.
Each codeword is randomly picked from the set of all pos-
sible binary vectors of the length given. In our experiments,
the length values are 50 for convolutional and LDPC codes
and 16 - for polar codes. The received vectors are then ob-
tained by performing channel encoding, BPSK mapping and
simulated channel noise [60]. Speaking of the noise, an SNR
value is first sampled uniformly from the range given and the
noise variance is set to be equal to one divided by this value.
After that, the noise vector is obtained by independently
sampling the noise distribution from the resulting Gaussian
distribution [61]. In [60], three neural network architectures
are tested: FCNN, CNN and RNN. Results of the numerical
experiments carried out by the authors show that the RNN
has the best decoding performance at the price of the highest
computational time. The RNN tested consists of one LSTM
cell of size 256.

Finally, in the case of the jamming detection problem,
the dataset is obtained by conducting experiments with real
equipment [71]. Input features in the dataset provided include
subcarrier spacing, symbol time, subcarrier length, cyclic
prefix length, average received power, threshold, average
signal power, average noise power, and SNR. In our ex-
periments, we only use the features that can be affected
by an adversary over the air, i.e. average received power,
average signal power, average noise power, and SNR. In the

Use case Evaluation metric Value
Modulation recognition Prediction accuracy 55.17%
Channel estimation Relative sum-rate 99.02%
Beam selection (subset) Relative sum-rate 98.21%
Beam selection (sub-6GHz) Relative sum-rate 87.04%
Channel decoding (convolutional) Bit error rate 4.09%
Channel decoding (LDPC) Bit error rate 7.81%
Channel decoding (polar) Bit error rate 10.94%
Jamming detection Prediction accuracy 100%

TABLE 2: Metrics for attack evaluation.

original study [71], several models are tested including neural
networks, k-NN and random forests. Each model is imple-
mented in two variants: two-class, which predicts whether
jamming is launched or not, and five-class, which detects
jamming presence and classifies its type. In our experiments,
we evaluate attacks only against a small two-class fully-
connected neural network. The datasets and models used for
the use cases selected are summarised in Table 1.

Once the datasets necessary have been obtained, each of
them is divided into three parts: training (50%), validation
(20%) and inference (30%). The training parts are used to
train the corresponding AI/ML models, whereas the main
function of the validation parts is to control the models’
overfitting. The inference parts are then used to evaluate the
models. Each trainable layer in the neural network models
trained is followed by a dropout layer in order to reduce
overfitting. In addition, early stopping is employed in order
to stop training when the validation loss starts increasing.
Speaking of the loss function, standard categorical cross-
entropy is used for the classification models at the modulation
recognition and beam selection use cases whereas the mean
absolute error and mean squared error are used for training
the channel estimation and the channel decoding models
respectively. In all the cases, the training is carried out in
batches of 512 with learning rate 0.0025.

C. ATTACKS AND METRICS
In our experiments, we test several white-box and black-
box attacks from the adversarial example generation frame-
works: Cleverhans [89], Adversarial Robustness Toolbox
(ART) [17], Foolbox [16] and Advbox [20]. The list of
the algorithms available in the frameworks mentioned in
addition to already described FGSM [1], BIM [49], CW
[50] and DeepFool [51] include implementations for such
powerful white-box attack algorithms as projected gradient
descent (PGD) [90], momentum iterative method (MIM)
[91], NewtonFool [92], Jacobian-based saliency map attack
(JSMA) [4], and ElasticNet attack [93]. Speaking of the
black-box attacks other than aforementioned boundary and
HopSkipJump, we employ the following attack algorithms
against the target models selected: simultaneous perturbation
stochastic approximation (SPSA) [94], the attack based on
genetic algorithm (GenAttack) [95], ZOO [96], simple black-
box adversarial (SimBA) [97] and Square attack [98]. We test
the aforementioned attacks with three different perturbation
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budget sizes that are relative to the strength of the input signal
and equal to ||X||, 0.1||X|| and 0.01||X||, where ||X|| is the
average second norm for the samples of the corresponding
dataset.

The attack efficiency is evaluated based on the effect it
produces upon the component that uses the target AI/ML
model under attack. In the modulation recognition and jam-
ming detection use cases, the attack efficiency is evaluated
by comparing the prediction accuracy before and after the
attack has been carried out. The less accurate the target model
predictions once the attack has been carried out the more
efficient the attack algorithm. In the channel estimation and
beam selection use cases, the evaluation metric is the theoret-
ical achievable data sum-rate. In the channel estimation use
case, the sum-rate is calculated as r = log2(1+H∗T b), where
H is the true channel matrix and b is the weight calculated
via conjugated beamforming based on the channel estima-
tions Ĥ derived with the target AI/ML model as follows:
b = 1

diag(Ĥ∗T Ĥ)
Ĥ as described in the original study [55].

In the beam selection use case, the data rate is calculated as
r = log2(1 + H∗T f), where H is the channel matrix and
f is a column vector from the codebook F described in the
previous section. In both cases, the sum-rate is calculated
relative to the perfect metric value, i.e. when the channel
is estimated with 100 % accuracy and the true best beam
selected for communication. The less the relative sum-rate
for a perturbed sample the more efficient the corresponding
attack algorithm. Finally, in the channel decoding use cases,
the difference in the bit error rate (BER) acts as the attack
efficiency metric as the adversary aims to increase the BER
value. Table 2 summarises the metrics used for attack evalua-
tion and their values obtained when applied the target models
trained to the inference parts of the datasets at each of the use
cases selected.

D. RESULTS AND DISCUSSION
All the attack evaluation results for the use cases selected
can be respectively found in Tables 3-10 and Figures 1-16.
In the tables, values of the metric selected are compared to
each other for different attacks and adversarial perturbation
budget values. Each table is divided into three parts, the
first of which shows the effect of a perturbation generated
randomly in the result of a jamming attack. The second
and the third parts correspond to white-box and black-box
adversarial example generation attacks respectively. All the
values presented are calculated as percentages of the baseline
metric value when there is no attack that can be found in
Table 2. As one can see, adversarial example attacks impact
on the target model performance is much more significant
compared to the random perturbations. At the same time,
white-box algorithms provide for noticeably better results on
average, even though the black-box algorithms tested are not
far behind for high values of the perturbation budget. Below
we summarise the attack evaluation results for each use case.

As one can notice when looking at the results presented
in Table 3 as well as Figure 1, in the modulation recognition

Attack algorithm Perturbation budget (% of the signal strength)
1 10 100

Random 0.00176991 -0.02831858 -0.75398230
FGSM -0.15044248 -0.79469027 -0.94690265
PGD -0.20884956 -0.95398230 -1.00000000
BIM -0.20707965 -0.96283186 -1.00000000
MIM -0.04070796 -0.57876106 -0.88849558
CW -0.21415929 -0.94513274 -1.00000000
JSMA -0.01061947 -0.12035398 -0.85132743
DEEPFOOL -0.20000000 -0.87079646 -0.98761062
NEWTONFOOL -0.13982301 -0.66194690 -0.72566372
ELASTICNET -0.07610619 -0.48849558 -0.99646018
SPSA -0.00530973 -0.04955752 -0.75221239
GEN -0.00884956 -0.07256637 -0.77345133
HOPSKIPJUMP -0.06902655 -0.64955752 -0.91858407
BOUNDARY -0.05663717 -0.55398230 -0.92743363
ZOO -0.00884956 -0.06725664 -0.79469027
SIMBA -0.00530973 -0.05132743 -0.74336283
SQUARE -0.00530973 -0.04955752 -0.74690265

TABLE 3: The detrimental effect of the adversarial pertur-
bation on the modulation recognition accuracy for different
attack algorithms and perturbation budget values (the less the
value the more efficient the attack).

Attack algorithm Perturbation budget (% of the signal strength)
1 10 100

Random -0.00000124 -0.00017702 -0.10716894
FGSM -0.00070614 -0.01926888 -0.84461592
PGD -0.00073591 -0.03383005 -0.21015514
BIM -0.00073630 -0.03677270 -0.37127251
MIM -0.00073607 -0.04176789 -0.81183656
CW -0.00066852 -0.01888006 -0.02988577
JSMA -0.00016670 -0.00450827 -0.03356486
DEEPFOOL -0.00067968 -0.01785903 -0.83505510
NEWTONFOOL -0.00065657 -0.01831213 -0.02263343
ELASTICNET -0.00024949 -0.00607235 -0.05657986
SPSA -0.00000345 -0.00016276 -0.26241590
GEN -0.00001047 -0.00103772 -0.64394562
HOPSKIPJUMP -0.00011782 -0.01295305 -0.02742713
BOUNDARY -0.00015525 -0.01413878 -0.01629002
ZOO -0.00008233 -0.00171015 -0.06725237
SIMBA 0.00000373 0.00003059 0.00008974
SQUARE -0.00000016 -0.00038680 -0.21063616

TABLE 4: The detrimental effect of the adversarial perturba-
tion on the average sum-rate with the beam calculated based
on the channel estimations for different attack algorithms
and perturbation budget values (the less the value the more
efficient the attack).

use case, the most efficient white-box attack algorithms for
high values of the perturbation budget are PGD and BIM,
which are essentially two variations of the same algorithm in
which a gradient step is taken in the direction of the greatest
loss and then the resulting perturbation is projected into the
ball with the centre at the original sample and the radius
equal to the power budget available to the attacker [90].
For the lowest perturbation size, CW attack provides for the
highest impact on the target metric. As mentioned in Section
II, this is a minimization attack algorithm similar to the L-
BFGS attack, i.e. it aims to find the minimal perturbation
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Attack algorithm Perturbation budget (% of the signal strength)
1 10 100

Random 0.00000000 0.00031647 -0.01184631
FGSM -0.00210116 -0.04235788 -0.51644550
PGD -0.00236081 -0.06897709 -0.59297667
BIM -0.00236081 -0.06898766 -0.52865036
MIM -0.00028415 -0.05717071 -0.57654884
CW -0.00210116 -0.04578858 -0.45842743
JSMA 0.00000000 0.00034313 -0.21801578
DEEPFOOL -0.00237815 -0.04978454 -0.48192342
NEWTONFOOL -0.00000786 -0.05183348 -0.42880927
ELASTICNET 0.00000000 -0.00956221 -0.43331060
SPSA 0.00000000 -0.00019772 -0.14912850
GEN 0.00000000 -0.00203163 -0.02978095
HOPSKIPJUMP 0.00000000 -0.04307449 -0.84302100
BOUNDARY -0.00026460 -0.04565825 -0.82165714
ZOO -0.00005614 0.00008188 -0.18433698
SIMBA 0.00000000 0.00002999 -0.14791272
SQUARE 0.00000000 -0.00019481 -0.07379259

TABLE 5: The detrimental effect of the adversarial perturba-
tion on the average sum-rate with the beam selected using the
beam subset for different attack algorithms and perturbation
budget values (the less the value the more efficient the
attack).

Attack algorithm Perturbation budget (% of the signal strength)
1 10 100

Random 0.00251647 -0.00814643 -0.35613440
FGSM -0.05190932 -0.55312208 -0.86470818
PGD -0.06856508 -0.59341468 -0.85622746
BIM -0.06893219 -0.63114235 -0.82954778
MIM -0.01820554 -0.57098431 -0.86487392
CW -0.04356013 -0.47813089 -0.64286774
JSMA -0.00355423 -0.02379815 -0.43157811
DEEPFOOL -0.05637219 -0.57340684 -0.78358361
NEWTONFOOL -0.02406948 -0.52673829 -0.70463417
ELASTICNET -0.00670147 -0.16613535 -0.63283885
SPSA -0.00309886 -0.02568962 -0.54937794
GEN -0.00029334 -0.02238263 -0.27463939
HOPSKIPJUMP -0.01514570 -0.48588337 -0.66091992
BOUNDARY -0.01617411 -0.22238425 -0.60739140
ZOO 0.00074514 -0.11269332 -0.75748890
SIMBA 0.00353810 -0.01950014 -0.54099457
SQUARE 0.00005900 -0.00272400 -0.61858067

TABLE 6: The detrimental effect of the adversarial per-
turbation on the average sum-rate with the beam selected
using the sub-6GHz channels for different attack algorithms
and perturbation budget values (the less the value the more
efficient the attack).

size which results in a misclassification. Therefore, when
the perturbation budget is limited to a low value, it is not
a surprise that the minimization algorithms outperform the
ones that move straight towards the direction of the greatest
loss. In the case of black-box attacks, the HopSkipJump
algorithm provides the best results for lower perturbation
budget values. This is an iterative algorithm similar to the
boundary attack, it starts from a point that is already ad-
versarial and then at each iteration the following three steps
are carried out: estimation of the gradient direction, step-size

Attack algorithm Perturbation budget (% of the signal strength)
1 10 100

Random 0.00142928 0.05764655 7.01429267
FGSM 0.08480232 0.98189609 10.30633682
PGD 0.20533585 2.61362550 13.24964313
BIM 0.20485951 2.65316823 11.41162420
MIM 0.05574083 1.19485470 3.36493586
CW 0.01953310 0.36207720 10.86803255
JSMA 0.00000000 0.02953792 10.75035741
DEEPFOOL 0.13434968 1.28060979 10.36398291
NEWTONFOOL 0.03001434 0.53168184 10.71319692
ELASTICNET 0.03668416 0.56646029 12.05383530
SPSA 0.01000481 0.05955217 8.57122421
GEN 0.01238686 0.06765127 14.24059063
HOPSKIPJUMP 0.00952838 0.06574564 10.73034797
BOUNDARY 0.05526440 1.19866613 10.74940437
ZOO 0.00000000 0.02286801 10.36064837
SIMBA 0.00000000 0.02953792 10.76465008
SQUARE 0.00000000 0.03001434 10.75512188

TABLE 7: The detrimental effect of the adversarial pertur-
bation on the convolutional codes decoding average bit error
rate for different attack algorithms and perturbation budget
values (the greater the value the more efficient the attack).

Attack algorithm Perturbation budget (% of the signal strength)
1 10 100

Random 0.00349921 0.04023996 2.36290949
FGSM 0.03299184 0.38815304 5.70182519
PGD 0.11322176 1.07273191 6.21894523
BIM 0.11322176 1.07173214 5.49212724
MIM 0.03174208 0.38715327 1.05823549
CW 0.01374664 0.17870537 5.51162234
JSMA 0.00824798 0.08023002 0.10897278
DEEPFOOL 0.07273182 0.85053747 6.45588628
NEWTONFOOL 0.04173962 0.51662092 7.26568371
ELASTICNET 0.02974263 0.33116722 0.61659593
SPSA 0.00499877 0.03999006 3.23444152
GEN 0.01349665 0.13046742 5.55411202
HOPSKIPJUMP 0.01099731 0.07473136 3.29017748
BOUNDARY 0.05198705 0.75031246 3.01474660
ZOO 0.00324921 0.02449396 3.46263460
SIMBA 0.00199955 0.02899275 4.29717599
SQUARE 0.00199955 0.02699330 4.27943026

TABLE 8: The detrimental effect of the adversarial pertur-
bation on the LDPC codes decoding average bit error rate
for different attack algorithms and perturbation budget values
(the greater the value the more efficient the attack).

search via geometric progression, and boundary search via a
binary search. This algorithm is computationally expensive
and takes a long time to execute. For this reason, during
experiments we had to adjust its default parameters in order
to obtain results in a reasonable amount of time. In the case of
the highest perturbation size, the boundary attack algorithm
outperforms other black-box alternatives as one can see also
from Figure 2.

In the channel estimation use case, the most straightfor-
ward algorithm FGSM provides the best results in terms of
the sum-rate decrease for the highest perturbation size value
available as one can see from Table 4 and Figure 3. MIM
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Attack algorithm Perturbation budget (% of the signal strength)
1 10 100

Random 0.00000000 0.01115449 2.27607362
FGSM 0.03067485 0.24149470 3.37534858
PGD 0.05298383 0.49302844 5.07863915
BIM 0.05242610 0.49581707 4.46012270
MIM 0.00948132 0.12827663 2.29726715
CW 0.00000000 0.00780814 3.26938093
JSMA 0.00000000 0.00000000 0.00000000
DEEPFOOL 0.01784718 0.15337423 3.38036810
NEWTONFOOL 0.00446180 0.04238706 3.60736196
ELASTICNET 0.00000000 0.00780814 0.01450084
SPSA 0.00446180 0.02342443 2.61349693
GEN 0.00725042 0.02398215 5.52147239
HOPSKIPJUMP 0.00167317 0.01728946 4.13943112
BOUNDARY 0.00223090 0.04573341 5.61461238
ZOO 0.00000000 0.00000000 0.00000000
SIMBA 0.00446180 -0.00557724 3.42219743
SQUARE 0.00000000 -0.00055772 -0.00055772

TABLE 9: The detrimental effect of the adversarial perturba-
tion on the polar codes decoding average bit error rate for
different attack algorithms and perturbation budget values
(the greater the value the more efficient the attack).

Attack algorithm Perturbation budget (% of the signal strength)
1 10 100

Random 0.00000000 -0.07812500 -0.46484375
FGSM 0.00000000 -0.12402344 -1.00000000
PGD 0.00000000 -0.43359375 -0.50585938
BIM 0.00000000 -0.59082031 -1.00000000
MIM 0.00000000 -0.12402344 -0.36230469
CW 0.00000000 -0.05761719 -0.44335938
JSMA 0.00000000 -0.00292969 -1.00000000
DEEPFOOL 0.00000000 -0.33398438 -1.00000000
NEWTONFOOL -0.44238281 -0.44238281 -0.44238281
ELASTICNET 0.00000000 -0.05761719 -0.44335938
SPSA 0.00000000 -0.08203125 -0.41015625
GEN 0.00000000 -0.44238281 -0.44238281
HOPSKIPJUMP 0.00000000 -0.59082031 -1.00000000
BOUNDARY 0.00000000 -0.27343750 -0.50878906
ZOO 0.00000000 0.00000000 0.00000000
SIMBA 0.00000000 -0.00097656 -0.00097656
SQUARE 0.00000000 0.00000000 0.00000000

TABLE 10: The detrimental effect of the adversarial pertur-
bation on the jamming detection accuracy for different attack
algorithms and perturbation budget values (the less the value
the more efficient the attack).

outperforms alternatives for the lower perturbation size value.
This algorithm is based on the momentum method which
is a technique for accelerating gradient descent algorithms
by accumulating a velocity vector in the gradient direction
of the loss function across iterations. The memorization of
previous gradients helps to barrel through narrow valleys,
small humps and poor local minimums or maximums. For the
lowest perturbation budget value, BIM remains the most effi-
cient algorithm. Concerning black-box attacks, the boundary
algorithm again provides good results for lower perturbation
sizes as shown in 4. In addition, the attack based on a genetic
algorithm is the most efficient method when the perturbation

budget is the highest. It is worth noticing that this algorithm
requires the target classifier to return scores, i.e. probabilities
of belonging to each of the classes [95]. This poses additional
requirements on the information available to the adversary.

In the beam selection use case, PGD, BIM and MIM
algorithms remain among the most efficient ones for higher
budget values as can be seen in Tables 5 6 as well as Figures
5 and 7. For the lowest budget size in the case when the best
beam is selected based on a subset of RSSs, the perturbation
can be generated with the DeepFool algorithm. Similarly to
CW, it is a minimization attack method, at each iteration of
which the target classifier is linearized around the current
point and the minimal perturbation of the linearized classifier
is computed. Speaking of the attacks in black-box settings
for this use case, HopSkipJump is again the most efficient
one for the highest perturbation budget value as one can
also notice from Figure 6. In the case, when the best beam
is selected based on the RSS values obtained from sub-
6GHz channels, ZOO algorithm outperforms analogues for
the highest perturbation budget value. This black-box attack
algorithm is based on the CW attack. However, in distinction
from the CW algorithm, ZOO computes an approximate gra-
dient using a finite difference method instead of actual back
propagation on the targeted model, and solves the resulting
optimization problem via zeroth order optimization. In the
case of lower budgets, the boundary attack algorithm shows
promising results in both of the beam selection use cases
analysed.

In the case of attacks against the channel decoding models,
according to the results presented in Table 7, 8 and 9 as well
as Figure 9, 11 and 13, PGD and BIM are among the most
efficient white-box algorithms as they allow for the highest
bit error rate increase. As one can notice, when the size of
the perturbation allowed is high enough, the effect of these
algorithms is noticeable at each of the SNR levels considered.
In the case of LDPC codes decoding, NewtonFool algorithm
provides for the biggest drop in the BER value. This algo-
rithm tries to decrease the probability of the original class
by performing gradient descent with the step of this descent
being calculated in a certain way. Speaking of the black-
box attacks, in convolutional and LDPC channel cases, the
genetic algorithm provides the best results for the highest
perturbation budget value and the boundary attack algorithm
is the most efficient one for lower perturbation sizes as can be
seen from Figures 10 and 12. In the case of polar codes, the
situation is the opposite: the genetic algorithm outperforms
other algorithms in case of the lowest perturbation budget
value whereas the boundary attack provides for the best
results in case of lower perturbation sizes as one can also see
from Figure 14.

Finally, in the jamming detection use case, several attack
algorithms would allow an adversary to achieve 100% accu-
racy reduction in the case of the highest perturbation budget
value. As one can see from Table 10, these algorithms are
already mentioned in previous use cases: FGSM, BIM and
DeepFool. Another algorithm which provides for the perfect
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result is JSMA. This white-box algorithm requires evaluating
the network’s forward derivative in order to construct an ad-
versarial saliency map that identifies the set of input features
relevant to the adversary’s goal. The adversary can use this
saliency map to either reduce the probability of the true class
or increase the probability of other classes. NewtonFool is
the only white-box attack algorithm that allows to reduce the
jamming detection accuracy. As one can notice from Figure
15, this reduction comes from the normal signals being
misclassified as the ones related to jamming. Speaking of the
black-box attacks, the HopSkipJump algorithm outperforms
analogues in terms of the evaluation metric selected for
higher perturbation size values. When the perturbation size
is the lowest, none of the black-box attack algorithms allows
the adversary to reduce the jamming detection accuracy.

V. CONCLUSION
In this study, we evaluated various adversarial example gen-
eration attacks against machine learning models which can
be deployed in future 5G networks for intelligent modulation
recognition, channel estimation, beam selection and chan-
nel decoding. First, we summarised each of the problems
formulated and discussed the data generation process. After
that, the AI/ML model training and evaluation procedures
were overviewed. Finally, multiple white-box and black-box
attacks using various adversarial perturbation budget values
were employed against the target models and evaluated using
the metrics selected.

Despite the significant negative impact the attacks tested
may achieve when employed against the target AI/ML-based
5G network components selected, unless there is a serious
flaw in the component security, the adversary should be able
to neither have access to the exact inputs of the target model,
due to the different channel and interference conditions, nor
obtain the output label, since it is most of the time used
internally by the model and it is not available to any other
wireless node outside of the network. For these reasons, the
adversary has the best chance to fool the target model by
crafting an input-agnostic adversarial perturbation. For this
reason, in our future work, we are planning to focus on
algorithms for crafting universal input-agnostic adversarial
perturbations that can be employed when the information
about neither the user inputs to the model nor the resulting
outputs is available to the attacker.
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FIGURE 1: Dependence of the modulation recognition accuracy on the SNR level when employing various white-box attack
algorithms with different adversarial perturbation budget limit values.
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FIGURE 2: Dependence of the modulation recognition accuracy on the SNR level when employing various black-box attack
algorithms with different adversarial perturbation budget limit values.
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FIGURE 3: Dependence of the sum-rate CDF on the beam calculated based on the channel estimations when employing various
white-box attack algorithms with different adversarial perturbation budget limit values.
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FIGURE 4: Dependence of the sum-rate CDF on the beam calculated based on the channel estimations when employing various
black-box attack algorithms with different adversarial perturbation budget limit values.
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FIGURE 5: Dependence of the sum-rate CDF on the beam selected based on the beam subset when employing various white-
box attack algorithms with different adversarial perturbation budget limit values.
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FIGURE 6: Dependence of the sum-rate CDF on the beam selected based on the beam subset when employing various black-
box attack algorithms with different adversarial perturbation budget limit values.
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FIGURE 7: Dependence of the sum-rate CDF on the beam selected based on the sub-6GHz channels when employing various
white-box attack algorithms with different adversarial perturbation budget limit values.
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FIGURE 8: Dependence of the sum-rate CDF on the beam selected based on the sub-6GHz channels when employing various
black-box attack algorithms with different adversarial perturbation budget limit values.
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FIGURE 9: Dependence of the convolutional codes decoding BER value on the SNR level when employing various white-box
attack algorithms with different adversarial perturbation budget limit values.
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FIGURE 10: Dependence of the convolutional codes decoding BER value on the SNR level when employing various black-box
attack algorithms with different adversarial perturbation budget limit values.
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FIGURE 11: Dependence of the LDPC codes decoding BER value on the SNR level when employing various white-box attack
algorithms with different adversarial perturbation budget limit values.
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FIGURE 12: Dependence of the LDPC codes decoding BER value on the SNR level when employing various black-box attack
algorithms with different adversarial perturbation budget limit values.
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FIGURE 13: Dependence of the polar codes decoding BER value on the SNR level when employing various white-box attack
algorithms with different adversarial perturbation budget limit values.
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FIGURE 14: Dependence of the polar codes decoding BER value on the SNR level when employing various black-box attack
algorithms with different adversarial perturbation budget limit values.
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FIGURE 15: Dependence of the jamming detection accuracy on the signal type when employing various white-box attack
algorithms with different adversarial perturbation budget limit values.
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FIGURE 16: Dependence of the jamming detection accuracy on the signal type when employing various black-box attack
algorithms with different adversarial perturbation budget limit values.
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