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a b s t r a c t

Temporal Blind Source Separation (TBSS) is used to obtain the true underlying processes from noisy
temporal multivariate data, such as electrocardiograms. TBSS has similarities to Principal Component
Analysis (PCA) as it separates the input data into univariate components and is applicable to suitable
datasets from various domains, such as medicine, finance, or civil engineering. Despite TBSS’s broad
applicability, the involved tasks are not well supported in current tools, which offer only text-based
interactions and single static images. Analysts are limited in analyzing and comparing obtained results,
which consist of diverse data such as matrices and sets of time series. Additionally, parameter settings
have a big impact on separation performance, but as a consequence of improper tooling, analysts
currently do not consider the whole parameter space. We propose to solve these problems by applying
visual analytics (VA) principles. Our primary contribution is a design study for TBSS, which so far has
not been explored by the visualization community. We developed a task abstraction and visualization
design in a user-centered design process. Task-specific assembling of well-established visualization
techniques and algorithms to gain insights in the TBSS processes is our secondary contribution. We
present TBSSvis, an interactive web-based VA prototype, which we evaluated extensively in two
interviews with five TBSS experts. Feedback and observations from these interviews show that TBSSvis
supports the actual workflow and combination of interactive visualizations that facilitate the tasks
involved in analyzing TBSS results.

© 2022 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Multivariate measurements of a phenomenon are common in
any domains. Medical doctors place electrodes on a patient’s
ody to analyze processes such as brain activity, eye movements,
r heart rhythm. Civil engineers measure vibrations on different
arts of a structure, such as a bridge, to detect possible faults.
inancial managers invest money in stocks, which are in a way
ensors of economic processes, to gain wealth. Common to all
hese examples is the time-oriented data and the assumption that
ata from different sensors are in some way correlated and/or
nfluenced by noise. However, analysts are usually only interested
n the ‘‘true’’ underlying processes.

To obtain these processes, analysts turn to Blind Source Sep-
ration (BSS). BSS comprises established methods for signal sepa-
ation that were applied, among others, in the mentioned
omains of medicine (Comon and Jutten, 2010; de Lathauwer

∗ Corresponding author.
E-mail address: nikolaus.piccolotto@tuwien.ac.at (N. Piccolotto).
ttps://doi.org/10.1016/j.visinf.2022.10.002
468-502X/© 2022 The Authors. Published by Elsevier B.V. on behalf of Zhejiang Univer
C BY license (http://creativecommons.org/licenses/by/4.0/).
et al., 2000; Van Thanh et al., 2017), civil engineering (Amezquita-
Sanchez and Adeli, 2016) and finance (Oja et al., 2000). Temporal
Blind Source Separation (TBSS) refers to a subset of BSS methods
that specifically account for temporal correlation. TBSS is similar
to Principal Component Analysis (PCA) in the sense that (i) TBSS
methods work on any multivariate dataset with quantitative
variables, (ii) they work on measured data only (hence ‘‘blind’’)
and (iii) separate it into a linear combination of uncorrelated
components, like PCA. Unlike PCA, TBSS accounts for temporal
correlation and often requires complex tuning parameters. As
both TBSS and PCA can be considered forms of dimension re-
duction, analysts use TBSS and PCA for similar reasons, like data
analysis or modeling/prediction.

During these activities, it is at some point necessary to in-
spect components visually. Like with PCA, components are hidden
until the separation algorithm is executed, but TBSS’s complex
parameter space severely complicates the issue: It is known that
parameter settings greatly influence the result, but not in which
way a change in parameters translates to change in components.
Experts regard automated analysis by extensive sampling (Sedl-
mair et al., 2014) not a feasible option and there is little guidance
sity and Zhejiang University Press Co. Ltd. This is an open access article under the
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rom the literature, which parameters to pick. Because a ground
ruth is rarely available, TBSS analysis is inherently open-ended
nd exploratory as there are no known insights to confirm. The
orkflow of TBSS analysts can broadly be described as (i) pick a
arameter setting, (ii) see if obtained components are useful or
nteresting and if not, go to (i).

Some challenges make TBSS difficult to use in practice. De-
pite the important role of visualization in their workflow, the
urrent tool used by the analysts does not support them well
n this regard. Analysts need to manually program static vi-
ualizations, which requires time they could otherwise spend
n data analysis. Another challenge is the amount of compo-
ents. Each parametrization on a p-variate dataset yields a set
f p components that need inspection and comparison to pre-
ious sets. Analysts are, for example, interested in commonly
ound components, but very quickly confronted with hundreds
f components to consider. This is a common task in ensem-
le visualization (Wang et al., 2019), but made more difficult
y components appearing in sets instead of one by one. Also,
hen comparing multiple results, analysts will eventually find
ompeting options for their final choice. As there is usually no
round truth available to compare the result to, analysts need
etailed ways to compare individual results to make an informed
ecision.
Visual analytics (VA (Thomas and Cook, 2005)) as defined

y Keim et al. (2008) ‘‘combines automated analysis techniques
ith interactive visualizations for an effective understanding,
easoning and decision making on the basis of very large and
omplex data sets.’’ Considering the strong focus of BSS analysis
n visual inspection on multiple levels of detail, in combination
ith mentioned challenges, we propose applying VA principles
o overcome these. We designed TBSSvis according to Munzner’s
ested Model (Munzner, 2009) for the TBSS method ‘‘general-
zed Second Order Blind Identification’’ (gSOBI) (Miettinen et al.,
020). We chose gSOBI because it is recent and well suited to real-
orld datasets due to its flexibility (see Section 3). The source
ode of TBSSvis is available at https://github.com/npiccolotto/
bss-vis.

Our primary research contribution is a design study (Sedlmair,
016) for TBSS, which improves the visualization community’s
nowledge about an area that it did not explore so far. Specifically
e provide:

• A task abstraction for TBSS which we obtained through a
user-centered visualization design process with TBSS ex-
perts (Section 5).
• A VA design for gSOBI, a TBSS method, that supports the

abstracted tasks by combining visualizations, interactions,
and guidance methods (Section 6).
• Confirmation of the effectiveness of our design in two inter-

views with five TBSS experts (Section 8).

As part of this design study we put well-established visual-
zation techniques together to support the identified tasks. They
nclude a multivariate autocorrelation function plot and the appli-
ation of a slope graph to sets of time series. These, together with
set-aware clustering scheme (Section 6.3), are our secondary
ontribution.

. Related work

In the following, we elaborate on different approaches to
isualize and compare time series, ensembles, and models.
52
2.1. Time series visualization

Temporal data is ubiquitous in many domains such as finance,
health, or biology, and has been visualized for centuries since the
first line graph was introduced by Playfair (Tufte, 2001). Various
other visual encodings have been proposed afterwards, such as
tile maps, sparklines, or horizon graphs (Aigner et al., 2011). They
use different visual variables (Mackinlay, 1986) such as position,
color, or slope, and therefore exhibit different perceptual prop-
erties, which makes them suitable for different analysis tasks.
E.g., Gogolou et al. (2019) investigated the relation between dif-
ferent time series visualization idioms and perceived similarity.
They recommend to use horizon graphs when local variations in
temporal position or speed is important, while others (line graph,
color band) are better suited for notions of similarity where
amplitude is less important. As this is the case with TBSS, where
analysts look for patterns independent of amplitude, we show
time series as the familiar line graph.

When multiple time series are at hand, their respective visu-
alizations need to be composed. Two popular approaches to do
so are superposition and juxtaposition. Superimposed encodings
trade decreased usage of display space for legibility, as they do
not scale well after a couple of variables due to occlusion. An
example besides the well known superimposed line graph is the
braided graph (Javed et al., 2010), which superimposes multiple
area-based marks. Because of the varying data dimensionality
in TBSS, superimposition is generally not a promising strategy.
Multiple time series can also be composed with juxtaposition, as
is the case in LiveRAC (McLachlan et al., 2008). Various system
measures (columns) are displayed per machine (rows) in a space-
filling table design, using semantic zooming to change the level
of detail between color bars, sparklines, and labeled line graphs.
When not using all available space, one could use small multi-
ples (Tufte, 2001) in different arrangements. For instance, Stitz
et al. (2016) arrange small multiples of stocks by price and price
change in a user-selected time frame. Liu et al. (2018), on the
other hand, lay them out with a modified Multidimensional Scal-
ing (MDS) algorithm such that similar items are near each other.
These approaches proved to be very useful for individual time
series, but cannot be applied as such to TBSS, where sets of time
series are involved. In the experience of our collaborators only
some time series in TBSS will carry a signal and be interesting
for closer inspection. Our approach employs various strategies
to account for both facts, e.g., grouping time series by similarity
and sorting representatives by a user-selected degree-of-interest
function, or juxtaposing time series sets in a table-like design.

To keep features of long time series visible, designers often
turn to focus-and-context techniques, such as lenses (Tominski
et al., 2017). In the simplest case, a lens mainly enlarges an area of
interest, such as in SignalLens (Kincaid, 2010). But more complex
interactions are possible, such as in ChronoLenses (Zhao et al.,
2011), where users can combine and stack multiple lenses. As we
designed TBSSvis for analysts who are accustomed to text-based
interfaces, we took care to avoid complex interactions. Time
series may be enlarged up to a certain level of detail in discrete
steps and filtered to a contiguous subset of the currently visible
time interval with simple direct manipulation interactions. We
describe them in Section 6.1. We did not employ data reduction
methods, neither in a data-driven (Shurkhovetskyy et al., 2018)
nor visualization-driven way, e.g., by line simplification (Rosen
et al., 2020), as one risks that important features are removed.

2.2. Ensemble visualization

The goal in ensemble visualization is to make sense of a
set of similar complex data items, such as trajectories, often

https://github.com/npiccolotto/tbss-vis
https://github.com/npiccolotto/tbss-vis
https://github.com/npiccolotto/tbss-vis
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roduced by a simulation with perturbed parameter settings.
omponent sets obtained from different TBSS parametrizations
onstitute such an ensemble, where each ensemble member is
set of time series. Ensemble visualization has its origin in
eteorology (Potter et al., 2009), but since expanded to more do-
ains (Wang et al., 2019). Analytic tasks for ensemble data (Wang
t al., 2019) indicate popular strategies, such as comparing mem-
ers or grouping them by similarity, to support the stated goal.
xisting works (Hao et al., 2016; Ferstl et al., 2017) often use pop-
lar clustering techniques (with domain-specific distance func-
ions) to support the latter task. This is not straightforward in
BSS as one has to take care to not mix members of different
ets into the same cluster. We discuss our approach, a custom
lustering algorithm that respects this constraint, in Section 6.3.
Time is a common part of ensemble data, but not a require-

ent (Matkovic et al., 2009; Piringer et al., 2012; Matković et al.,
018; Xu et al., 2019). One possible case is when ensemble
embers are univariate time series, such as for Köthur et al.

2015), who encoded the correlation between members in a
eatmap to support comparison of two ensembles. More com-
only, other data types have an associated time dimension such
s multivariate data (Obermaier et al., 2016), particle data (Hao
t al., 2016), network security data (Hao et al., 2015), or spatial
ata (Buchmüller et al., 2019). However, ensembles of sets of time
eries, as in our case, are not thoroughly explored so far and our
aper presents a first step in that direction.

.3. VA for model construction

VA supported the construction and validation of various kinds
f models, such as linear regression (Mühlbacher and Piringer,
013; Zhao et al., 2014), logistic regression (Dingen et al., 2019),
imension reduction (Anand et al., 2012), classification (Choo
t al., 2010), or artificial neural networks (Zhang et al., 2019;
exler et al., 2020). Most works in the literature focus on non-

emporal data, Bögl et al. (2013) (univariate time series modeling)
nd Sun et al. (2020) (univariate time series forecasting) provided
wo exceptions. TBSSvis, supporting construction and comparison
f TBSS model alternatives, extends the state of the art as TBSS
orks on multivariate time series. During the construction step,
uestions of analysts pertain to which variables should be in-
luded, how many parameters should the model have, and which
ubgroups should be modeled. The latter question is closely re-
ated to model validation, where analysts, e.g., verify that a model
orks for diverse data cases, or how multiple models agree/differ
n outputs, such as predicted class labels. Established diagnostic
lots or data exist for several of these procedures, e.g., residual
lots in time series modeling (Bögl et al., 2013), or confusion
atrices in classification (Wexler et al., 2020). In contrast, the
uality of a TBSS model is solely defined by the presence of
omain-specific interesting features in the output, thus TBSSvis
ocuses on comparing multiple alternatives in terms of similarity
f their output and parameter settings. A complicating factor that
e tackle is that TBSS outputs are sets of time series.

. Temporal Blind Source Separation

The statistical analysis of multiple measurements taken at
ifferent times is a challenging task. Often, such multivariate
ime series are analyzed by transforming the data in certain sim-
le ways to uncover latent processes which generated the data.
robably the most used method for such a task is the classical
CA, which uses linear transformations of the data that result in
omponents which have highest variance and are uncorrelated.
ncorrelated components imply that the covariance between

he found linear combinations is zero. The linear combinations r

53
are given by diagonalizing the covariance matrix. Furthermore,
as the nature of the transformation is linear, interpretations of
the results can be carried out by the simple and well studied
loadings-scores scheme. However, PCA might not be the best
choice when the data at hand shows dependencies in time, as
the main source of information is in that case not covariance, but
rather serial dependence. Serial dependence is characterized by
autocovariance, i.e., covariance between measurements separated
in time by a given lag. In analogy to PCA it would be desirable
to find linear combinations of the multivariate time series data
which are not only uncorrelated marginally (zero covariance be-
tween variables at each time step), but also uncorrelated in time
(zero autocovariance between variables for any lag). TBSS is a
field of multivariate statistics that studies methods delivering the
former desired properties. Generally, BSS is a well established
model-based framework. It assumes that the observed data are a
linear mixture of latent components, which are considered usu-
ally easier to model and/or more meaningful for interpretation
than multivariate models. The goal of BSS is to recover these
components based on the observed data alone. BSS is formu-
lated and used for many types of data, as outlined in recent
reviews (Comon and Jutten, 2010; Nordhausen and Oja, 2018; Pan
et al.; Nordhausen and Ruiz-Gazen, 2022). In the following, we
outline the concept of TBSS.

The model of TBSS considered here is xt = Act , where xt
denotes the observed p-variate time series, A is the full-rank p×p
ixing matrix and c t = (c1,t , . . . , cp,t )⊤ is the set of p latent
omponents, which should be estimated. Thus the goal is to find
p × p unmixing matrix W = (w1, . . . ,wp)⊤, such that ct =
xt up to sign and order of the components in ct . To facilitate

he recovery, the assumption is made that the components in ct
ave Cov(ct ) = Ip and are uncorrelated (or independent) with
utually distinct serial dependence. This means, for example,

hat all cross-moment matrices, such as autocovariance matrices,
f ct are diagonal matrices.
A very first approach for TBSS is the Second-Order Blind

dentification (SOBI) algorithm (Belouchrani et al., 1997; Miet-
inen et al., 2014, 2016). It finds the linear combinations of the
ata which make autocovariance matrices for several lags as
iagonal as possible. Hence, found components are uncorrelated
arginally and uncorrelated in time. It is well known in the
tatistical analysis of time series data, that time series emerging
rom different scientific fields have different key characteristics.
or example, financial time series are not well characterized by
utocovariance matrices, but instead higher-order moments carry
he most information. This is denoted as stochastic volatility
nd in the TBSS literature it is shown that SOBI fails for such
ime series (Matilainen et al., 2017). Higher-order moments relate
ften to skewness and kurtosis and, for example in our context,
o the covariance of the squared data and are meant to detect
ore unusual observations (heavy tails). An intuitive notion of
igher-order moments is that they translate to quickly chang-
ng effects, such as stock prices that increase/decrease by large
argins within short time frames (high volatility). In such cases,
igher-order moments describe volatility better than second-
rder moments. To overcome this issue, a new TBSS method,
enoted as a variant of SOBI (vSOBI) (Matilainen et al., 2017),
as introduced. Similar to SOBI, vSOBI finds the latent time series
y diagonalizing matrices of lagged fourth moments. Uncovered
atent components are uncorrelated marginally and additionally
ave zero fourth-order dependence.
Generally, time series might carry information both in the

utocovariance and in the higher-order time dependence, thus
combination of SOBI and vSOBI might deliver the best re-

ults. Indeed, Miettinen et al. (2020) proposed such a method,

eferred to as generalized SOBI (gSOBI), which we focus on in this
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anuscript. It diagonalizes several autocovariance matrices (SOBI
art) and several matrices of lagged fourth moments (vSOBI part).
his method has three rather involved tuning parameters. The
irst one b ∈ [0, 1] weighs SOBI versus vSOBI, where SOBI (b = 1)
nd vSOBI (b = 0) are the extreme cases. The second (k1) and
hird (k2) tuning parameters provide the sets of lags used for the
SOBI and vSOBI part, respectively. A lag is a time interval given
by a number of time steps, the size of which is determined by the
resolution of the underlying time series. For instance, a lag of 6
in an hourly observed thermometer refers to an interval of 6 h.
Common default values for gSOBI are b = 0.9, k1 = {1, . . . , 12}
nd k2 = {1, 2, 3} (Miettinen et al., 2020), but Miettinen et al. also

show that the selection of lag sets and weight has a huge impact
on the performance (Miettinen et al., 2020). Vague guidelines
for these tuning parameters exist in the community, such as lag
sets should not be too small or too large, and the lags should
be chosen so that the corresponding (cross-)moment matrices
for the latent components have diagonal values far apart. Thus,
parameter selection in the context of SOBI is a highly complex
problem with no practical solution yet (Tang et al., 2005; Taski-
nen et al., 2016). First steps for an informed trial & error routine
can be determined from those guidelines and by looking at the
data. As an example, if the time series at hand show substantial
volatility, then the b parameter (weight of second- vs. fourth-
order moments) would initially be chosen closer to 0. Otherwise,
volatility observed in the dataset might not be visible in latent
components. Lag sets generally can be chosen by observing how
long any visible patterns, like volatility, last. If they are rather
short, then short lags are more suitable than longer lags, and
vice versa. The interdependence between parameter choice and
the variation in the output depends a lot on the dataset at
hand, so much so that general statements about it would be
misleading. Instead we propose an advanced VA approach, which
allows defining alternative parameter choices and comparing the
respective outputs effectively, to discover such relations.

The R implementation of gSOBI used in the following is avail-
able in the package tsBSS (Nordhausen et al., 2021). We call
one execution of gSOBI a run. As outlined before it yields a
set of p univariate time series, which we call components. The
outcomes of multiple runs with varying parameter settings form
an ensemble, where each member corresponds to a single run.
A member has the used parameters k1, k2 and b associated, as
well as the output of gSOBI. The latter is either the component
set c t and the estimated unmixing matrix Ŵ , or nothing, in
case the (cross-)moment matrices could not be diagonalized in
a predefined number of iterations. We call a run succeeding or
ailing, depending on the outcome.

. Datasets

In this section we introduce two datasets, one from the fi-
ancial domain (Fig. 1(a)) and one from the medical domain
Fig. 1(b)), along with reasons why TBSS analysis of them can
e desired. Analysis of both datasets shares similar tasks. For
nstance, analysts are interested in relevant parameter subspaces,
ommon components and alternatives to them, as well as the
tability of obtained results. We formalize typical tasks and ques-
ions involved in TBSS analysis in Section 5.

.1. Financial data

Goods, currencies, and company stocks are traded every day
t high frequencies. In simple terms, investors make money by
uying something at a price X and selling it later at a price Y
arger than X. To maximize Y − X in a short time frame the

dea here is to find a volatile collection of currencies or stocks

54
(a portfolio), i.e., one that is subject to sudden and extreme
changes in value. To do so, we look at the daily exchange rate of
23 currencies to Euro between the years 2000–2012 (23 variables,
3139 time steps). We preprocess the data to get logarithmic
returns, a common measure in quantitative finance when the
temporal behavior of return is of interest. The first three variables
are shown in Fig. 1(a).

4.2. Medical data

An electrocardiogram (ECG) is a recording of the heart’s elec-
trical activity. To obtain it, electrodes are placed on the patient’s
skin. These electrodes detect small electrical changes which occur
due to muscle de- and repolarization. ECGs are important for
medical analysis as many cardiac abnormalities show deviations
to the normal ECG pattern. Analysis of fetal ECGs may detect
problems during fetal development, such as fetal distress. While
invasive methods exist to measure the fetal ECG directly, a non-
invasive method is often preferred as it does not harm neither
mother nor fetus. The fetal ECG is visible in the mother’s ECG,
but it is weak and mixed with, e.g., respiratory noise or frequency
interference (compare first three rows in Fig. 1(b)). Using TBSS on
ten seconds of the ECG of a pregnant woman (8 dimensions, 2500
time steps), we try to extract the fetal ECG following previous
work (de Lathauwer et al., 2000).

5. Task abstraction

In this section we present a task abstraction for TBSS. We
structure it according to the data-users-tasks triangle by Miksch
and Aigner (2014) and use the terminology by Brehmer and
Munzner (2013) for tasks. We developed the abstraction together
with the visualizations in an iterative design process following
Munzner’s Nested Model (Munzner, 2009) with three collabo-
rators, who are co-authors of this paper and experts in BSS.
In this user-centered design process model, we first conducted
unstructured interviews in order to understand their problems
and made ourselves familiar with literature they provided. After
that, we discussed our assumptions and ideas regularly with them
over a course of nine months. We discussed iteratively developed
prototypes ranging from hand-drawn sketches, to static digital
images, to an interactive application which is described in Sec-
tion 6. During these sessions, we also questioned our current
understanding of their tasks either implicitly through visualiza-
tion designs or explicitly through discussions. In the end, we
interviewed five TBSS experts, who did not collaborate with us
on the design, to further validate our abstracted tasks (Section 8).
The presented task abstraction is a reflection on this process.

We touched upon the involved data with TBSS in Section 3
and Section 4 already. These are a multivariate time series (input
data), one real and two sets of integers (TBSS parameters b, k1
and k2) and a set of univariate time series (latent components).
The temporal dimension is discrete and linear.

5.1. Users

Our users are data analysts or data scientists with formal edu-
cation in statistics/math and basic knowledge of BSS. They may
also be experts in a specific application domain, like medicine
or finance. They work mostly with R (Team, 2020), a language
and environment for statistical computation in which most BSS
researchers publish their implementations. The preferred work
environment is RStudio, a popular text-based development en-
vironment for R. Currently, they use built-in plotting function-
ality, and sometimes they use, for example, ggplot2 to build

customized visualizations. The output of either option is a static
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Fig. 1. Datasets in this paper.
Fig. 2. The existing analysis workflow (bottom) and the corresponding screens in TBSSvis (top). The new workflow automatically obtains initial results and analysts
can start exploring immediately.
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visualization, of which RStudio by default displays only one at a
time. Because of this, our users are accustomed to well known
static statistics visualizations such as histograms, line graphs, box
plots, etc.

5.2. Tasks

During this user-centered design process we identified the
ollowing tasks, which we describe using the abstraction termi-
ology by Brehmer and Munzner (2013).
The high-level workflow can be separated into three phases,

hich are depicted in Fig. 2: Analysts first inspect the raw input
ata, continue to find parameter settings, and then analyze ob-
ained components. Given the exploratory nature of their analysis
rocess, analysts switch between the latter two phases until they
eel they exhausted the parameter space or obtained a useful
esult.

Generally, analysts want to discover observations or derive
modified dataset with reduced dimensionality. There are two
ain targets of analysis. Components, which are mostly analyzed
s sets, are one target. Still, analysts want to discover and explore
nteresting components, whatever interesting means in the data
omain. Parameters are the other analysis target. Analysts look
or a ‘‘stable’’ result, i.e., one that can be obtained with rather di-
erse parameter settings. The assumption is that its components
re then more likely to represent real processes. To this end, they
eed to compare components and parameters of different runs.
s an additional obstacle, when lacking intuition and/or domain
nowledge, analysts struggle to select (lookup, locate) parameters
nd need guidance support (Ceneda et al., 2017) so they can
rowse and explore parameter settings in an informed way. All
hese observations lead us to some low-level query actions:

I1: Identify used parameters. Analysts want to see values of
xisting parametrizations. In case of lag sets they inspect the
istribution of chosen lags and if one lag set contains more lags
han the other.

I2: Identify unmixing matrix. Analysts turn to the unmixing
atrix to interpret components and to understand how they were
ormed. They look for large absolute values per component. i
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I3: Identify cross-moment diagonality. Analysts want to inspect
uns on a technical level that is currently inconvenient to ob-
ain and difficult to quantify. If the TBSS model holds, then all
ross-moment matrices are exactly diagonalized by the unmixing
atrix estimate. For real data, this is, however, rarely the case and

hus analysts are interested in the impact of the parameters on
he diagonality of the different cross-moment matrices.

I4: Identify components. In a single component, analysts look
or interesting features like outliers or uncommon changes in
hape. They thereby also check the absence of features (noisi-
ess). Analysts are further interested in the stability of a com-
onent, i.e., in how many ensemble members the component is
resent.
C1: Compare success. First of all, prior to any comparisons,

nalysts must know what can be compared. If a run did not
ucceed, only parameters could be compared as no components
ere found.
C2: Compare parameters. To carry out sensitivity analysis, an-

lysts need to compare parameters between runs. They mainly
ook at differences in lag distribution and amount.

C3: Compare unmixing matrices. Before inspecting factors of
ndividual components, analysts investigate the similarity of un-
ixing matrixes by means of a custom metric (MD-Index (Ilmo-
en et al., 2010)).
C4: Compare component sets. This task mostly relates to mem-

ership, which, however, is difficult to assert with complex ob-
ects, such as time series, where one usually speaks of similarity
nstead of equality. Analysts compare components only between
ets and want to know which component exists in multiple sets,
nd if so at which ranks, and if not which is the most similar
omponent, plus in which time frames components disagree.
C5: Compare possible parameters. When choosing a new

arametrization, analysts need guidance through the parameter
pace and the ability to compare possible parameters in some
eaningful way to find promising settings.

. Visualization design & justification

In this section, we present the visualization design we ob-
ained based on the task abstraction (Section 5) and implemented
n a web-based prototype for gSOBI. A design goal was to make
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Fig. 3. Display of and interaction with time series. (A) A time series is displayed with a line graph, an optional label, and an optional bar to its left. The bar encodes
a DOI function of a time series. (B) Typical vertical arrangement of multiple time series in TBSSvis. The user enlarged the first and last time series to different sizes
and hovered over the third, thus its X axis labels are shown.
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TBSSvis generic enough to allow its use in many application do-
mains, because, like PCA, TBSS is a domain-independent method.
After a cursory literature search of TBSS applications and con-
sidering the available amount of pixels on common screen sizes,
we designed TBSSvis for inputs with the length of up to 5000
time steps, and up to 50 dimensions in mind. These limits do
not accommodate extreme cases we found, like EEG data (128
dimensions, 1.2 million time steps (Tang et al., 2005)), but are
suitable to financial (40 dimensions, 140 time steps (Oja et al.,
2000)) or civil engineering (3 dimensions, 9000 time steps (Liu
et al., 2019)) use cases we found. Our design guidelines denote
soft limits of an interactive TBSS application: The quality of visu-
alizations will gradually decline with data of higher complexity
and the execution time of the used TBSS algorithm will increase.

While we implemented visualizations for all abstracted tasks,
for brevity we will focus on an illustrative subset of those. Specif-
ically, we will discuss visualizations for tasks that pertain to

• identifying and comparing components (or sets thereof),
• identifying and comparing used parameters, and
• comparing possible parameter settings.

TBSSvis consists of three screens, which are depicted with
their connection to analysis phases in Fig. 2. The Input Visual-
ization screen shows the raw input data, a feature requested by
our collaborators. The Ensemble screen allows exploration of pa-
rameter settings and components. Finally, the Parameter Selection
screen is used to select new parameter settings. We will focus
on the latter two. How presented visualizations work together is
illustrated in the usage scenarios (Section 7).

6.1. Time series visualization and interactions

Time series are plotted vertically aligned to facilitate compar-
ison and ordered by variable name (for input variables) or by
an interestingness function (for latent components, see below).
The display of and interaction with all time series in TBSSvis is
handled by the same logic as shown in Fig. 3. Due to the length
and amount of time series, we employ semantic zooming and at
first save display space by drastically shrinking their Y axis and
omitting any labels by default. This can be changed with interac-
tion: On hover, we display axis labels for the hovered time series.
The Y axis of an individual time series can be enlarged in discrete
steps by another interaction (pressing hotkey on keyboard and
clicking). If an analyst is interested in a contiguous subset of
the time series, it is possible to zoom in with brushing, which
will affect all time series in the application. Both the semantic
and temporal zoom can be reset with interactions recommended
by Schwab et al. (2019).

As described in Section 3, the order of components is not
defined. In practice, this means that analysts use measures which
are sign-independent to compare components, such as absolute
56
Pearson correlation, and impose an order by sorting compo-
nents according to a function. We will call this a degree-of-
interestingness function (DOI), and require it to be any function
f : Rn

→ R that maps a time series of length n to a scalar.
ecause TBSS is a domain-independent method, many DOI func-
ions could be useful (Fu, 2011) depending on what the domain’s
nteresting features are. E.g., for detailed cardiac analysis, dif-
erent widths and types of ECG wave patterns could be mined.
ased on discussions with our collaborators we use the absolute
hird (skewness) and fourth moment (kurtosis) in TBSSvis. These
re useful to find the most skewed components and those with
he most outlying values, as the first two moments (mean and
ariance) of all components are identical. We added a measure
or periodicity (Vlachos et al., 2005) after our user studies. The
OI function can be changed in the toolbar, and all views that
how component-related data will update as the set members are
orted in descending order based on the new DOI function values.

.2. Color

According to Mackinlay (1986), color is the most effective
isual variable for nominal data after position, and, therefore,
ften used to encode different data classes. In multiple views,
he same classes should be encoded with the same palette (Qu
nd Hullman, 2018). Because humans can only reasonably dis-
inguish a few different colors, we cannot statically assign colors
o all ensemble members. We, therefore, use a user-controlled
ynamic assignment of colors of a qualitative palette to encode
ata related to user-selected members. The available colors are
isplayed in the toolbar and can be reordered with drag & drop.
hen hovering over an unselected member, the next free color

left to right) is (a) used to highlight its related data in all views
nd (b) associated to the member when selected. As one color is
lways needed for highlighting, the last free color cannot be used
or selection. The color order determines the plotting order in all
omparison views.

.3. Tasks I4/C4: Identify/compare components (sets)

We precompute initial parameter settings automatically, to
llow immediate exploration of the output space: Variations of
SOBI’s R package’s defaults (3 settings), a recommendation from
he literature (Tang et al., 2005) (1 setting), and an additional
ser-defined number of random settings. This overcomes initial
esitation towards parameter setting choice and may give an
stimate of what the relevant parameter subspace is.
Each successful run (Section 3) produces a set of time series.

lready at the start of the analysis after precomputation, the
mount of components to consider might be in the hundreds.
lustering is an established approach to counteract this, where
ata cases are grouped by similarity. This allows an analyst to
ocus on representative elements of the clusters. Many clustering
echniques exist (Xu and Wunsch, 2005; Xu and Tian, 2015),
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ut using them with all components from all sets has a major
rawback: The clustering scheme will put components from the
ame set into the same group, which our collaborators found
ndesirable. The grouping should respect the set structure in
he data and group components only between sets, not within
hem. Additional requirements we gathered for the clustering
cheme are that it should not depend on a distance metric (unlike,
.g., k-means) and produce an existing data case as cluster rep-
esentative (again unlike, e.g., k-means). The former is related to
he similarity measure for components suggested by our collab-
rators, the difference in absolute Pearson correlation distcor =
− |cor(ci, cj)|. Since we do not know if it supports the trian-

gle inequality, we should not rely on it. The latter requirement
stems from the design principle to show actual data over visual
abstractions.

6.3.1. Clustering algorithm
We developed a custom clustering scheme to achieve our

requirements. Starting from the realization that we basically want
k-medoids, as it does not need a distance and produces existing
representatives (medoids), we looked for a way to constrain the
clustering process to obey the set structure. Constrained versions
exist for k-means (Wagstaff et al., 2001), but we did not find
one for k-medoids. However, it was possible to adapt it using
a k-means-like formulation of k-medoids (Park and Jun, 2009).
Constraints in our case are of the type cannot-link, i.e., they
xpress which data cases must not be grouped into the same
luster. We add one cannot-link constraint per pair of elements
hat belong to the same set. For m sets, each containing p data
ases, this amounts to mp(p− 1)/2 constraints in total.
Algorithm 1 shows pseudocode of our custom clustering

cheme. The initial medoids are obtained by an unconstrained
-medoids algorithm (Schubert and Rousseeuw, 2019) on line
. Following (Park and Jun, 2009) we use the sum of distances
rom all data cases to their medoids as cost function (line 3) and
ompute it for the initial clustering. Then, while constraints are
iolated, i.e., there is a cannot-link constraint for any two data
ases assigned to the same medoid, we update the clustering (line
). If there are no violated constraints, there is nothing to do as
he initial clustering is a valid solution. Otherwise, we first select
he most central of data cases assigned to same medoid (i.e., with
mallest sum of distance to other data cases in that cluster) as a
ewmedoid (line 6). Data cases are then reassigned to the nearest
edoid that does not already contain another data case for which

here exists a cannot-link constraint (line 7). These are steps 2 and
in the k-means-like formulation for k-medoids (Park and Jun,
009). We update the cost for the current clustering (lines 8–9)
nd repeat this loop (lines 5–12) until no constraints are violated
nymore. Small necessary checks, e.g., whether or not there are
till violations after the loop, were left out for brevity.

.3.2. Clustering quality and number of partitions
The constrained k-medoids clustering takes one user-provided

arameter, which is the desired number of clusters. We use a
cented widget (Willett et al., 2007) to allow setting this param-
ter in an informed way (Fig. 4A). The bar chart in the widget
hows the average cluster separation as a clustering quality mea-
ure for a given number of clusters. Therefore, values with high
ars suggest the number of meaningfully different components in
ll currently available sets.

.3.3. Component overview
The cluster medoids are shown underneath the Clustering

uality visualization, vertically aligned in a list, sorted by the DOI
ank of the medoid (Fig. 4B). To further support Task C4, we show
histogram to the left of the medoid. The histogram shows the
57
Data: Dissimilarity Matrix D, constraints C , medoids M ,
assignments of data cases to medoids A, number of
partitions k

1 Function constrainedPAM(D, C, k) is
2 M, A← FastPAM(D, k)
3 cost ← getCost(A, D)
4 cost ′ ← cost
5 while violatesConstraint(A, C) or

cost − cost ′ > ϵ do
6 M ′ ← findNewMedoids(A, D, k)
7 A′ ←

assignToNearestPossibleMedoid(M’, C, D)
8 cost ← cost ′
9 cost ′ ← getCost(A’, D)

10 A← A′
11 M ← M ′

12 end
13 return (M, A)
14 end
Algorithm 1: Pseudocode of constrained k-medoids, with
which we obtain a clustering on sets of time series (Sec-
tion 6.3.1).

rank distribution of the contained components in their respective
sets. Additionally, we encode distcor to the cluster medoid with
opacity. This way, stable (stacked bars with high opacity) and un-
stable (scattered bars with low opacity) components have distinct
histogram shapes.

Analysts can inspect components in a cluster by clicking the
‘‘eye’’ icon, after which the list item expands and lists contained
components in the same fashion as cluster medoids. Clicking a
bar in the histogram or a time series label selects the associated
ensemble member.

6.3.4. Slope graph
Components of selected sets are visible in a separate view,

again vertically aligned and sorted by DOI (Fig. 4C). Each selected
set has a unique assigned color and all associated data is shown
in this color. Multiple selections are juxtaposed horizontally in
columns, which can be rearranged by the analyst. Analysts can
inspect components visually as they are, or they can also display
a slope graph between columns. Lines of the slope graph connect
similar components, and thickness encodes similarity from high
correlation (thick) to low. This way, it is easy to see stable (thick,
single, mostly straight lines) and unstable components (no or
thin, multiple, tilted lines), their rank changes and set similarity
at a glance.

6.4. Tasks I1/C2: Identify/compare used parameters

Parameter space analysis (Sedlmair et al., 2014) is another
important task for BSS experts, where they are mainly interested
in sensitivity analysis and partitioning. We facilitate these tasks
with tailored visualizations (Fig. 5).

6.4.1. Similarity views
Similarity of so far obtained component sets, as well as se-

lected parameters, are shown in three separate dimensionally-
reduced views. Marks that are close to each other suggest sim-
ilar components and k1/k2 parameters. Multidimensional Scaling
(MDS) is an appropriate dimension reduction technique for global
cluster analysis according to recent publications (Nonato and Au-
petit, 2019; Xia et al., 2022). We use non-metric MDS (Venables
and Ripley, 2010) as we do not always have a distance metric. As
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Fig. 4. Ensemble screen of TBSSvis (medical data) configured to facilitate comparison and inspection of components and sets thereof. Left part shows the Clustering
Quality (A), which suggests an optimal clustering with 8–10 partitions. Medoids of the 10 clusters are listed underneath (B). The fourth list item readily shows the
fetal heart signal and was expanded to show cluster members. Two component sets (red and blue) were selected for detailed comparison (right half). The Slope
Graph (C) highlights similar components, their rank changes and set similarity overall.
Fig. 5. Ensemble screen of TBSSvis (medical data) configured to facilitate comparison and inspection of parameters. Three failing runs were selected. Left column
shows a tabular overview (A). Middle column shows DR projections of component and parameter similarities (B). Right column shows detailed comparison views
to facilitate parameter comparison (C). It is apparent that failing runs had a weight parameter b of 0.25–0.6 and k1/k2 lag sets that span the whole range, which
suggests that this parameter subspace should be avoided.
MDS will project elements with same values in high-dimensional
space to the same low-dimensional points, we would soon run
into an occlusion problem—consider an analyst who keeps lag
sets the same, but varies only the weight. There are a couple of
ways to deal with occlusion, most notably lenses (Tominski et al.,
2017). However, our users are not used to complex interactions,
so we changed the tradeoff between position accuracy and oc-
clusion. As an implementation of CorrelatedMultiples (Liu et al.,
2018) was not available, we only rasterize the MDS plot and move
58
overlapping points to the next free cell. When hovering over a
point, the other points will change their size proportionally to
the original dissimilarity, thereby allowing analysts to investigate
projection errors.

6.4.2. Parameter comparison
To compare weights of different parametrizations, we encode

triangle marks on a shared axis. Triangles are stacked if they
would otherwise completely occlude each other. To compare lag
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Fig. 6. Interweaved histograms encoding two lag sets A and B facilitate comparison. The base version encodes the presence of a lag by filling the corresponding
rectangle with color hue. The condensed version, which is the default, omits lags that are in no lag set. Finally, when increasing the bin size (pictured: to 2), the
analyst sees the aggregated view, where rectangles are transformed in small bar charts.
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sets, we use interweaved histograms where the color saturation
of a bar encodes the lag size to give an additional visual hint
of the lag distribution, and to be consistent with the encoding
in the lag selection (Section 6.5.1). Fig. 6 shows how they are
generated. First, individual bars are positioned in a grid such that
bars of the same lag set are in the same row, and bars represent-
ing the same bin are in the same column (base view). To save
display space, empty columns are hidden by default (condensed
view), but can be shown after user interaction. Increasing the
bin size leads to familiar histogram shapes (aggregated view).
Interweaved histograms show distinct images for same (bars
align vertically and have similar height) and different lag sets
(bars appear interweaved).

6.5. Task C5: Compare possible parameters

To obtain a new result, analysts need to select parameters.
hey consist in the case of gSOBI of two lag sets and one weight
Section 3).

To facilitate this selection process, we used the guidance de-
ign framework (Ceneda et al., 2020) to design appropriate guid-
nce (Ceneda et al., 2017). Analysts do not know which lags to
elect and are generally aware of this knowledge gap. As discussed
n Section 5.2, the analysis goal is to obtain a new/interesting
esult. Issues occur in the phase of lag selection, because the
pace of possible lag sets is huge. Analysts currently do not use
dditional information about lags, mostly due to time constraints.
he knowledge gap lies in the execution and relates to the input
ata. We opt for orienting guidance, because analysts select lags
lso based on past experience and domain knowledge, so stronger
uidance could be detrimental, and because our guidance input
s not (cannot be) the ‘‘true’’ data: We compute it from the
nput data, which are per BSS model a linear combination of the
omponents we are interested in. Based on the input data, we
alculate guidance output per lag that help relate them to each
ther:
Guidance Output (GO) 1: Calendar relation. We compute which

ag fits best to intervals in bigger calendar granules. The benefit
f this is two-fold. First, lags are abstract and do not consider the
alendar used in the data, so thinking in terms of days, weeks,
tc., is a more intuitive alternative for someone familiar with the
ata. Second, it allows us to organize lags by filtering to those
hich correspond to a difference in a given calendar granule,
hereby reducing the amount of lags to reason about.

GO2: Largest autocorrelation in input time series. White noise is
serially uncorrelated process, i.e., does not exhibit autocorrela-
ion, so this measure indicates a latent component might not be
hite noise.
GO3: Eigenvalue difference in autocovariance matrices. The ana-

ysts use it to learn more about the input data and it can inform
he parameter selection as lags should be chosen such that this
igenvalue difference is big (see Section 3).
 c
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GO4: Cross-moment matrix diagonality. This can only be com-
uted when a parametrization of a successful run is refined,
.e., an unmixing matrix estimate exists. It shows the analyst
hich selected lags had an impact on the diagonality of auto-
ovariance and fourth cross-cumulant matrices. It can be under-
tood as feedback into the guidance system.

.5.1. Lag selection
We support selection of a single lag set with multiple coor-

inated views (see Fig. 7). The lag size is encoded with color
aturation, to make long, medium, and short lags distinguishable
n all views, which is roughly how analysts reason about lag sets.

A parallel coordinates plot (PCP) displays all lags correspond-
ng to a selected calendar granule (Fig. 7A), which can be con-
igured by the user. Its dimensions are GO1–4, and values of
elected lags are displayed as triangle marks next to the axes. The
CP supports common interactions such as inverting dimensions,
eordering dimensions, and brushing. It is used to reduce the
arameter space to a manageable subset. This subset is then visu-
lized in a multivariate autocorrelation function plot (MACF), so
nalysts can view the temporal structure of all variables (Fig. 7B).
he MACF shows all univariate autocorrelation function plots,
omposited through nesting: One box contains the autocorrela-
ions of all variables at a given lag. Autocorrelations are encoded
s bars, as in the univariate version, and can be sorted by variable
ame or by value. The latter is the default because it shows
he distribution of autocorrelation values. Hovering over a box
ighlights the lag, which affects the next view below it. Clicking
box adds or removes the lag from/to the selection, which is

hown in the right column in the same fashion as interweaved
istograms (Fig. 6).
Underneath the MACF we display a user-selected input time

eries as line graph, and a scatterplot of the time series’ values
s. the values lagged by the currently highlighted lag (Fig. 7C).
his allows the analyst to find correlation patterns which are not
urfaced by the MACF or the time series itself. A line on top of
he time series shows the extent of the currently highlighted lag
n context.

These views allow the analyst to interactively explore possible
ags. Should they exactly know what they want to select, or rather
ot use an interactive system because they are used to static
ools, they can enter the desired lags in the input box in the right
olumn (Fig. 7D) in a format similar to R’s seq shorthand syntax
nd proceed.

.6. Task C3/I2: Compare unmixing matrices

We support this task (I2) by showing the factors as a heatmap
here a univariate color scale encodes the absolute value in a row
ith white (low value) to black. When analysts see interesting
atterns, they can select cells, and the respective input data and

omponents will be shown underneath the matrices (Fig. 8H).
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Fig. 7. The Lag Selection view (ECG data): Lag size is encoded with color saturation. Lags are filtered to those corresponding to a temporal difference of multiple
seconds in the underlying calendar. The PCP (A) further narrows them down to those with high autocorrelation. A MACF plot (B) shows the autocorrelation of input
data at brushed lags. Lags can be selected by clicking and highlighted by hovering in the MACF plot. A user-selected input time series is shown underneath (C) next
to a scatterplot of the datapoints of the series at the currently highlighted lag. The right-most column (D) allows analysts to skip the interaction, and shows the
current selection.
Fig. 8. Usage scenario on financial dataset, see Section 7.1 for details.
s
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his allows to investigate the relationship between inputs and
omponents. Task C3 is also supported, for which we encode
BSS-specific similarity measure (Ilmonen et al., 2010) in a

eatmap with a univariate color scale.

. Usage scenarios

In this section we describe how the designed visualizations
Section 6) provide insights into the presented datasets
Section 4). The financial dataset was used in our user studies
Section 8), while we added the medical dataset ourselves to
rovide broader context to the reader. The usage scenarios we
escribe are based on what we learned during aforementioned
ser studies and also during discussions with our collaborators.
60
7.1. Financial data

We load the financial dataset (Section 4.1) of 23 currency
exchange rates to Euro into TBSSvis and start with 10 param-
eter settings. From the Component Similarity View (Fig. 8A, Sec-
tion 6.4.1) we can immediately see that two component sets are
very similar as they are very close to each other (purple highlight)
and hovering does not change their relative sizes. Selecting them
reveals that one of them did not use the k1 lag set at all (Fig. 8B),
uggesting that this parameter’s influence is small and we should
ocus on k2 when selecting parameters. This is in line with our
xpectations of financial data (Section 3). Looking at the cluster-
ng visualizations, no clear picture emerges. The Clustering Quality
(Section 6.3.2) increases slowly with the number of clusters, but
there is no distinctive peak (Fig. 8C). Thus, we expect that all
components are somewhat similar to each other. Inspection of
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he Component Overview (Section 6.3.3) confirms that, as many
components share a similar pattern: They are very noisy with
more extreme values during the years 2008–2009 (Fig. 8D, purple
highlight marks years 2008–2009). This was the time of the global
financial crisis. We try to obtain an alternative result and go to the
Parameter Selection. We set the weight b to zero and do not use
OBI part (k1 parameter) at all, following our initial hypothesis.
n the Lag Selection (Fig. 8E, Section 6.5.1) for k2 we quickly select
ags that correspond to 1–3 days, 1–4 weeks, 1–3 months and 1
ear intervals in the underlying calendar. We do it this way be-
ause available guidance outputs do not seem informative due to
he amount of noise in the dataset. E.g., the autocorrelation (GO2)
f weekly lags is very low (at most 0.06). The newly computed
esult is colored green in TBSSvis and automatically selected.
e look at its components and compare it to the two identical

esults. The Slope Graph (Fig. 8F, Section 6.3.4) shows many thick
ines that connect identical components (purple highlight). As we
ant to find currencies to invest in, we turn to the Component
verview again. The histograms show stacked and saturated bars,
hus suggesting that the first couple of components are stable
nd common in all results (Fig. 8G). We, therefore, pick three that
ave volatile segments outside of 2008–2009 to rule out a global
inancial crisis as the cause for volatility. The Unmixing Matrix
isualization (Section 6.6) shows which currencies are associated
ith these components (Fig. 8H, black time series). We will ask
ur financial advisor about investing in Thai bhat, US dollars,
urkish lira, or Philippine pesos.

.2. Medical data

We load the ECG dataset (Section 4.2) from a pregnant woman
nto TBSSvis. Looking at the raw inputs in the Input Visualization
e can confirm that the fetal heart signal is visible in the mother’s
CG (Fig. 9A, purple highlight). We start with 10 precomputed
arameter settings, 7 of which succeed. The Clustering Quality
Fig. 9B, Section 6.3.2) suggests that 8–11 meaningfully different
omponents were obtained, as the height of bars steadily declines
fterwards. We set the clustering to 10 partitions. A healthy fetus
as a heart rate of 110–160 beats/minute on average, which is
igher than that of an adult (60–100). A candidate component for
he fetal heart signal, which shows peaks of increased frequency,
s readily visible as 4th (sorted by kurtosis) in the Component
verview (Fig. 9C, Section 6.3.3). The rank histogram next to the
luster medoid shows that components in the cluster are very
imilar, as all boxes are quite black, and it can be confirmed by
ooking at components directly (Fig. 9C). We select a couple of
esults containing this component to compare their parameters.
e see that the parameters vary wildly (Fig. 9D), and the fetal
eart signal was found using long and short lags for either lag
et with different weights. This, along with the absence of other
andidate components, suggests that we found the correct signal.
medical doctor would be able to inspect the obtained fetal

CG wave patterns in detail and determine whether or not it is
ealthy.
Looking at the values of the three parameter settings that did

ot produce results, we can also form an initial hypothesis about
he useful parameter subspace (Fig. 9E). The weight b alone did
ot seem to play too much of a role as values span a wide range
0.11–0.94) and we do have several successful results within that
ange. But an apparent difference to those parameter settings is
hat both lag sets in failing results had lags that were distributed
ver the whole range instead of sticking to either the short or
ong end. This can be seen from Fig. 9D and E, as lags of the former
ppear blocked, whereas they are more interweaved in the latter.
hus, when trying to find new parameters for this dataset, we
ould steer clear of such lag sets.
 o
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8. Evaluation

To assess the usefulness of our visualization design, we con-
ducted two interviews with five TBSS experts external to the
project. Our research questions were:

RQ1 What are advantages and disadvantages of TBSSvis in com-
parison to their current tools?

RQ2 Does TBSSvis in fact support the analysis tasks?
RQ3 What are possible improvements to TBSSvis?

We decided for an Expert Review (Elmqvist and Yi, 2015)
using interviews, as no comparable tool for a quantitative eval-
uation exists and qualitative data allows much deeper insights.
Two interview cycles were conducted: In the first we gathered
initial external feedback and supporting evidence for our task
abstraction, and in the second we verified that this feedback was
integrated accordingly. They lasted 2.5 h and 1 h, respectively.

8.1. Participants

Participants were the same for both interviews and previ-
ous collaborators of our co-authors. They participated voluntarily
without promised benefits, financial or other. All are adults and
not dependent on any author, be it financially, professionally or
personally.

Our five experts (E1–E5) all hold a Ph.D. degree in mathe-
matics or statistics. Four obtained their Ph.D. with research in
BSS somewhat recently, while the other researches BSS already
for 10 years. Therefore, they more than fit the basic knowledge
of BSS and formal education in math/statistics requirements from
our user characterization (Section 5.1). Since participants applied
(T)BSS on diverse datasets and collaborated with various domain
experts both in the context of (T)BSS (e.g., genome biology, cancer
research) as well as outside of it (e.g., ecology, neurology), we
think they are very well suited to answer our research questions.
Although they cannot provide us with deep data-related insights
as they are not application domain experts, they are our pri-
mary intended users and bring sufficient experience and a broad
perspective to our research questions around TBSS analysis and
involved tasks. This helps us to keep TBSSvis generic, yet effective,
as was our design goal (Section 6).

No participant uses visual-interactive tools regularly. Their
self-assessed experience in visualization is ‘‘basic’’, as E4 put it:
‘‘I only use what R has to offer, like ggplot and the base graphics
(...) scatterplots, time series plots, (...) box plots. I tend to stick
with these basic kinds of plots (...)’’.

8.2. Methodology

The interviews were conducted and recorded via Zoom with
explicit consent by participants.1 Two researchers were involved
in each interview, one tasked with moderation and one took
notes. Participants used TBSSvis on their own machines and
shared their screen during usage. We used Zoom annotations to
point out relevant parts of TBSSvis when necessary.

Both sessions were structured the same. We compiled a text
explanation with images of TBSSvis, so that participants can fa-
miliarize themselves with it beforehand. The tutorial document
was sent to participants together with the consent form ahead of
the interview. Steps during the interview were as follows:

1 As of manuscript submission, the TU Wien has a Pilot Research Ethics
ommittee. Approaching it for peer review of research with human participants
s not required by the TU Wien, and its response is non-binding. Therefore we
o not provide an official ethics approval. Nonetheless, we believe we conducted
ur research adhering to sufficient ethical standards.
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Fig. 9. Usage scenario on medical dataset, see Section 7.2 for details. Note that (D) and (E) show different parameter settings.
w

1. (Only in first session.) We conducted a structured inter-
view about their background and experiences with (T)BSS
(15–30 min).

2. We gave participants a structured introduction to inter-
actions and visualizations in TBSSvis (up to 1–hour). The
dataset used was synthetic and unfamiliar to them. We
asked participants to solve small tasks to practice what we
explained. We skipped these tasks when we either saw that
they understood it, or when we were short on time.

3. (Optional.) Participants were allowed to further use TBSSvis
for some minutes on their own.

4. We asked participants to conduct an open analysis on the
dataset used in Section 4.1, which most have worked on
in the past, and articulate their thoughts and plans (‘‘think
aloud’’). We pointed out parts of TBSSvis they did not use
or consider so far. This step took around 30–minutes.

5. We discussed tasks, visualizations, interactions and possi-
ble further improvements in an unstructured fashion (15–
30 min). Before we finished the session, we encouraged
participants to use TBSSvis more without our supervision.

To answer RQ2 we found it sufficient to check whether or not
participants can interpret our visualizations, and if visualizations
show the necessary data in the right moment to support their
tasks. To do so, we analyzed the recorded video and notes after
each session. We looked for articulated suggestions, discussions,
and situations where users interacted with visualizations. These
instances were transcribed and grouped by tasks (Section 5.2).
Feedback and possible issues of participants were noted, dedupli-
cated, and presented to our collaborators. Subsequent discussions
then informed changes to the first design, which we confirmed in
the second interview.

The interview guide, tutorial documents, datasets, and our
transcripts of the interviews are available as supplementary ma-
terial.

8.3. Expert feedback

We describe evidence for our research questions in this sec-
tion.
 ‘
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8.3.1. RQ1: Advantages and disadvantages
Our participants agreed that TBSSvis has clear advantages

compared to current tools used and greatly improves the analysis
process. E5 even said that TBSSvis is ‘‘an absolute time saver’’ and
‘‘very useful for applied work.’’ The majority of them mentioned
that it is easier than in RStudio to compare components, matrices,
and parameters. The same outcomes can be achieved faster in
TBSSvis and it provides useful new visualizations they could not
have in RStudio, such as the component overview/comparison.
All participants mentioned to enjoy playing with TBSSvis. Even
in our limited time we saw indications how TBSSvis can change
the way they work. We observed E4 in the open session to pursue
an analysis process resembling binary search, toggling individual
lags on and off. Asked about it later, E4 mentioned to be ‘‘not
sure if I’d have thought about [this approach] just with RStudio.’’
E5 was very eager to get hold of TBSSvis, as the intention was to
recommend it to their students. E1 stated that better supported
comparison tasks give more structure to the analysis process, so
all this suggests that TBSSvis allows new or more streamlined
analyses.

As for disadvantages, there is one very basic: RStudio allows
more flexible and specialized computations than TBSSvis. How-
ever, this was not explicitly mentioned by participants. Some said
it took time to put everything together, but all our participants
managed to do so quickly. A few plots were difficult to under-
stand at first, but after explanations it was relatively easy to use
for all participants. In addition, we observed some participants
having trouble with idioms that are common and popular in the
visualization community, such as PCPs and multiple linked views,
which could be overcome by visual literacy efforts.

8.3.2. RQ2: Supported tasks
In this section, we discuss how TBSSvis supports analysis

tasks (Section 5). We provide quotes from participants to let
them speak for themselves, but their sentiment is shared by the
majority and not an isolated opinion.

Identify used parameters (I1): The tabular overview (Fig. 5A)
as considered ‘‘really useful’’ (E2) and participants thought it
‘makes a lot of sense’’ (E4).
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Identify unmixing matrix (I2): Participants could easily identify
imilar matrices and dominant factors of components. Viewing
nvolved time series (Fig. 8H) was considered useful.

Identify cross-moment diagonality (I3): It is ‘‘something I don’t
sually have the time and energy to compute’’ (E5) and ‘‘very
nteresting’’ (E1), but also something they do not regularly use
or their analysis today.

Identify components (I4): Our participants found the added
nteractivity compared to RStudio very useful.

Compare success (C1): They had no trouble with visual encod-
ngs, but participants sometimes forgot that failure is an option.

Compare parameters (C2): While the interweaved lag
istograms were easy to interpret, it took some time for par-
icipants to realize that it is a regular histogram with hidden
ins (Fig. 6). Similarity projections of parameters (Fig. 5B) were
arely used by our participants. A possible explanation is because
istograms show more data and participants worked with only
–7 parametrizations, they could use their working memory. We
elieve their benefits would have become apparent with more
arametrizations.
Compare unmixing matrices (C3): Some (E3–E5) mentioned that

nterpreting the MD-Index for other than extreme values is not
asy as it depends on the data dimensionality. While both visual-
zations were used by all, some participants seemed to prefer the
D-Index (E3, E4) over the factors (E2) to compare matrices.
Compare component sets (C4): Participants understood the

lope graph (Fig. 4) easily and immediately saw its benefits. E3
entioned that using it is ‘‘easier than looking at a correlation
atrix.’’ The projection view was in fact used to see how similar
nsemble members are. For this purpose participants also appre-
iated the component overview (‘‘you can very fast get an idea of
ow similar different methods are’’, E3), although most did not
hange the initial clustering parameter.
Compare possible parameters (C5): After we introduced partic-

pants to individual views and interactions, they learned quickly
ow to use it and found it useful and convenient. They un-
erstood how and why to filter visualized lags, but were not
ure about the data-driven calendar-based approach, presumably
ecause they currently analyze data detached from any calen-
ar. Participants appreciated the PCP with its dimensions, even
hough they sometimes did not know right away how to interpret
ll of them: For example, E2 asked what the eigenvalue metric
eans, what the optimal choice is, and if lower or higher is
etter. Participants were also sometimes irritated by the number
f dimensions, as they depend on the outcome of the refined run.

.3.3. RQ3: Possible improvements
When asked about improvements to TBSSvis, we got responses

ainly pertaining to the parameter selection. E4 would prefer if
he syntax to directly select lags matched commands available
n R. E2–E4 often ended up with an empty selection in the
CP because they expected brushes to be combined with union
nstead of intersection. They also want to select all filtered lags
nd remove all selected lags at once. Aside from the lag selection
mprovements, more DOI functions would be appreciated. We
dded one measure for periodicity (Vlachos et al., 2005) following
he suggestion of one participant. E5 suggested to support loading
recomputed results, possibly from other TBSS methods. E2 asked
or more legends, explanations, and a stronger guidance degree
n general. E1 suggested the ability to freely reorder components
verywhere, and providing alternative color palettes. With E1 we
lso discussed the option of showing correlations between input

ata in the Input Visualization screen as another sanity check.
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9. Reflection and discussion

Reflecting on our findings and lessons learned during our
design study with experts in BSS, we claim that TBSSvis supports
tasks involved with TBSS analysis (Section 5) and encourages
usage of TBSS in various application domains. Despite differences
in what an application domain considers interesting in latent
dimensions (e.g., doctors might search for specific wave patterns,
while investors look for sudden and extreme changes), many
tasks are the same. We showed this transferability to financial
and medical datasets in Section 7. We developed and evaluated
TBSSvis with TBSS experts, who are our primary intended users.
They worked with many domain experts in the past to apply
TBSS in their respective fields. Their practical experience with
different use cases for TBSS informed our visualization design
(Section 6). Therefore, based on the mostly positive feedback by
our interview participants, we expect that TBSSvis can be useful
in many application domains.

In line with the design study methodology (Sedlmair et al.,
2012), we used well known visualization idioms and data mining
algorithms, applied them in a new context and extended them
as necessary. As a consequence, individual parts of TBSSvis will
be useful to other visualization researchers and designers. For
instance, a slope graph usually shows categorical data cases and
their change of rank by line slope. We adapted it to time series
by encoding similarity in line thickness. In our user studies it
was considered an easy-to-understand visualization to visually
compare sets of time series. The clustering scheme (Section 6.3)
is useful whenever members of sets should be clustered and
set membership must be taken into account. It works with any
dissimilarity measure because it is based on k-medoids. Set-typed
data is prevalent (Alsallakh et al., 2016), so we expect this to be
useful to others.

9.1. Design process

Following the recommendations of the data-users-tasks design
triangle (Miksch and Aigner, 2014) our proposed visualizations
are close to what TBSS experts are used to and therefore quite
simple. We also did not include more advanced interactions than
highlighting, filtering, hovering, or brushing because TBSS experts
come from a text-based software where even these do not ex-
ist. Looking back, we think this was a good decision, as in our
interviews some participants had initially trouble using, e.g., the
PCP.

What was difficult for us visualization researchers during the
design is the domain-independence of TBSS. Our goal, therefore,
was to make TBSSvis applicable in a wide range of domain-
specific contexts, e.g., in medicine or finance. But both size and
complexity of the data vary considerably among the domains, as
do the definitions of ‘‘interesting’’ features and the location and
role of TBSS in the data processing pipeline (von Landesberger
et al., 2017). Therefore, we opted in the end for simple interac-
tions and generic/extendable approaches, such as the use of DOI
functions, to avoid a ‘‘lock-in’’ to any specific application domain.

9.2. Limitations and future work

We discuss some limitations in our paper. Most study par-
ticipants used the financial dataset (Section 4.1) at some point
in the past to test varying TBSS methods. Although participants
fit well to our user description (Section 5.1), they were not as
intimately familiar with the dataset as it is often the case in
visualization-related evaluations. Had this been the case, we may

have found additional analysis goals and insights. Nevertheless,
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e maintain that our study methodology and participant selec-
ion was sufficient and appropriate to investigate how TBSSvis
mpacts involved tasks (Section 5.2). Participants used TBSSvis
n both interviews for in total around 45 minutes on their own
erms. More time using it may have surfaced additional necessary
nalysis tasks or improvement suggestions.
As part of our future work, we would like to integrate the

uggested improvements by our experts, support larger datasets
nd allow provision of custom DOI functions.

0. Summary and conclusion

We presented TBSSvis, a VA solution for TBSS. TBSS is in a way
imilar to PCA, in that it can be used to analyze suitable datasets
rom any application domain, such as biomedical analysis, fi-
ance, or civil engineering. Unlike PCA, TBSS properly accounts
or temporal correlation and requires complex tuning parameters.
ecause of these parameter settings, TBSS analysis is inherently
pen-ended and exploratory as there are no known insights to
onfirm. TBSSvis is based on a task abstraction and visualization
esign that we developed together in a user-centered design
rocess with TBSS experts. We evaluated the final interactive
rototype with five other TBSS experts, who did not participate
n the design process, by conducting two interviews. Feedback
rom these shows that TBSSvis supports the actual workflow and
ombination of interactive visualizations that facilitate the tasks
nvolved in analyzing TBSS results—this process was previously
laborious back-and-forth for which analysts had to manually
rogram static visualizations and data mining algorithms. TBSSvis
lso provides guidance to facilitate the analysis of the data at
and and informed parameter selection, which was previously
ostly a guessing game.
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