Johanna Kaihlavirta

Time tracking in software maintenance service

Master’s Thesis in Mathematical Information Technology

November 8, 2022

University of Jyviaskyld

Faculty of Information Technology

Author: Johanna Kaihlavirta

Contact information: k jpelkonen@gmail.com

Supervisor: Antti-Jussi Lakanen and Ville Seppénen

Title: Time tracking in software maintenance service

Tyon nimi: Tuntiseuranta ohjelmistoylldpitopalvelussa

Project: Master’s Thesis

Study line: Specialisation in Software and Telecommunication Technology
Page count: 60+2

Abstract: Software maintenance takes a major part of the development life cycle for a sys-
tem in both time and money. Developers in maintenance teams are working with multiple
tasks parallel and interleaved. They report effort in timesheets which are then used for cus-
tomer invoicing and estimating future work - both which are important to get right. However,
the accuracy of time reports may vary. Literature identifies several reasons for inaccurate re-
ports but it is not researched how these reasons are solved in practice. Literature suggests a
way for setting up a time tracking system and use cases for gathered data, but doesn’t exam-
ine the actual use of a time tracking system, nor how companies can instruct developers to

report their time accurately.

This study proposes instructions aiding in task categorisation for time reporting in software
maintenance context. Design science research method was applied in a consultancy com-
pany and its software maintenance team to make the time tracking process easier. The team
took part in defining activities and mapping them to current categorisation. The defined ac-
tivities were used to construct an artifact of instructions in the form of a decision tree. The
tree provided sixty examples for task categorisation and it was evaluated in practical use by

interviewing team members.

This study concludes that the artifact was helpful for learning task categorisation rules ini-

tially. The study also confirmed claims from literature regarding obstacles in the time track-

ing process, namely, perceived stress in justifying time spent on internal work or when ex-
ceeding an estimated time frame for customer work items, and recalling daily activities and
time spent on each activity afterwards. However, the artifact designed in this study could
not answer these concerns. The main finding is that time tracking was perceived as the most
annoying part of the job. This observation reveals practical problems which need attention

in further research.
Keywords: time tracking, time reporting, software maintenance, timesheet, billables

Suomenkielinen tiivistelmé: Ohjelmistojen ylldpitovaihe vie suuren osan ohjelmiston koko
elinkaaren ajasta ja rahoituksesta. Ylldpidossa kehittdjit tyOstdvit yhtd aikaa monta rin-
nakkaista tehtdvidd. Kédyttdmédnsa ajan he raportoivat tuntiraportille, jota kdytetdidn asiakkaan
laskutukseen ja tulevan tyon tyomidrdarviointiin - molemmat hyvin tirkeitd asioita tehdd
oikein. Tuntiraporttien tarkkuus voi kuitenkin vaihdella. Kirjallisuudessa tunnistetaan vai-
htelulle useita syitd, mutta syiden ratkaisemista ei ole tutkittu. Tuntiraportointijdrjestelmén
luomiseen ja tuntiraporteilta saatavan tiedon kiyttdmiseen on kirjallisuudessa ehdotuksia,

mutta itse tuntiraportointijarjestelmin kéyttod tarkan tiedon saamiseksi ei ole tarkasteltu.

Tamai tutkimus ehdottaa ohjeistusta tyotehtivien luokitteluun tuntiraportointia varten ohjelmis-
toylldpitotyossd. Tutkimus toteutettiin suunnittelutiedemenetelmélld konsultointiyrityksen
ohjelmistoylldpitotiimissd. Tavoitteena oli helpottaa tuntiraportointiprosessia. Tiimi osal-
listui tehtdviensd kirjaamiseen. Kirjatut tehtdvidt muokattiin ohjeeksi pddtdspuun muotoon.
Ohje on tamin tutkimuksen ohessa tuotettu artefakti. Ohje auttoi tehtdvien luokittelussa ku-

udenkymmenen esimerkin kautta, ja sen kidyttod arvioitiin tiimildisten haastattelujen avulla.

Tutkimuksen lopputulokseksi saatiin vahvistettua artefaktin hyddyllisyys tehtdvien luokit-
telun opettelussa. Lisiksi tutkimus vahvistaa kirjallisuudesta poimitut havainnot tuntikir-
jauksen hankaluuksista: koettu ahdistus sisdisen tyon oikeutuksesta tai etukiteen arvioidun
aikaraamin ylittimisestd asiakastyOssd, sekd péivin aikana tehtyjen tyotehtdvien ja niiden
keston muisteleminen jdlkikdteen. Aftifakti ei pystynyt ohjeistamaan tyontekijoitd ndiden
huolten osalta. P#dloydos on, ettd tuntiraportointi koettiin tyon drsyttdvimmiksi osaksi.

Tamai havainto paljastaa kidytdnnon ongelmia, jotka vaativat selvitikseen jatkotutkimuksia.

Avainsanat: tuntikirjaus, tuntiraportointi, ohjelmistoyllédpito

il

List of Figures

Figure 1. Software maintenance types

Figure 2. Instructions to assign a change request

Figure 3. Research process and output

S et et e e

Figure 4. Process comparison for Design Science Research and Constructive Research

Approachcooeeiiiin
Figure 5. The beginning of the artifact

Figure 6. A part of the artifactt e

Figure 7. A part of the artifact showing triggers

List of Tables

Table 1. Maintenance activities and relative occurrence

Table 2. Categorisation for typical maintenance activitiesccoeuuuuunnnnnnn.

Table 3. Search result amounts for systematic database search
Table 4. Maintenance activities comparison between the literature and the case study

il

Contents

1
2

INTRODUCTION ... e Il
SOFTWARE MAINTENANCE ... e 4
2.1 Software maintenance life cycle ..o)
2.2 Maintenance aCtiVItIESoiuiertiitt ettt ettt et
2.3 Categorisation Of ACHIVILIESttt ettt et ettt e e 6
2.4 Outsourcing software maintenance SEIVICEcevverrrrrrreieeeereeeeeenn. 8]
2.5 Factors for successful ServiCe..........coovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie 9
2.6 Maturity models as gUidancCeoouuiiiiireiiiiiiiiiiie i (1]
TIME TRACKING ...ttt [14]
3.1 The purpose of time trackingooiiiiiiiiiiii i, 14
3.2 Case Shoukourian and Danielyan (2011): Setting up a time tracking system . .[L6]
3.3 Case April (2010): Categorising tasks for a time tracking system..............
3.4 Obstacles and pitfalls of time tracking ...,
RESEARCH METHOD ..ot e 211
4.1 Problem and research proCessoouuieeiiiiieeeiiin it eiiie i 211
42 Researchmethodoiuiiiiiii i e 22
4.3 LALETALUIE TEVIEW ... tnnettttteee e ettt e e e e et e e e e e eaaeeeeeanes
4.4 MAPPING EXCTCISE ...ttt et tttteee ettt ettt et e ettt e e e et eaaaeeens 23]
4.5 Construction of the artifact ..o 26
4.0 TIEETVIEWS ...ttt ettt ettt 26|
47 Evaluationoooeuiii i 28]
THE ARTIFACT: INSTRUCTIONS FOR TASK CATEGORISATION.............. 30)
RE S UL S e 33
6.1 Output of the MAPPING EXETCISE.ttt et ettt eeaiiaaeenns 33
6.2 Usage of the INStUCHONS ... e vttt ettt et eeiiiaaeenns B4
6.3 Insight of the time tracking processc.ccevviiiiiiiiiiiiiiiiiiiiinennn... 36|
DISCUSSION . . e 39
Tl SUMMATY ... e 39|
7.2 MAPPING EXETCISE .. vvtettt ettt et ettt et e et e et e et e et e e e eeeeeneans 39
80 T (T ot o) T 39l
7.4 Time traCKing PrOCESSttt ettt ettt ettt e e e e eaianeeens 41
7.5 LIMITAtIONS. .. oottt e 42
7.6 Furtherresearch ... 42
7.7 Implications fOr PraCctiCeuiiieiiimiitiiii et 43
7.8 Implications for management............ovviiiiiiiiiiiiiiiiiiieiieiieeieeeeeeenn. 43
CONCLUSION ..t e 451

v

BIBLIOGRAPHY ...

APPENDICES

A INEEIVIEW QUESTIONS eeettetttt ettt ettt ettt eeeeenn

1 Introduction

Time reports are a way for software maintenance providers to make effort visible to cus-
tomers (April 2010; Yakura |[2001)). However, time tracking is not a simple task (Sindhgatta
et al. 2010). Turning effort into a time report, or a timesheet, is not straightforward. One
developer can interpret an activity in several different ways for a timesheet, and two consul-
tants are likely to interpret the same activity differently in their respective timesheets (Yakura

2001)).

If effort is difficult to track for one project with only one customer, it is even harder in
software maintenance, where it is custom to work for several customers and projects simul-
taneously (Sindhgatta et al. 2010). Several reasons for incorrect timesheets are recognised
by Yakura (2001) and Sindhgatta et al. (2010)but literature does not provide much guidance

to solve those issues.

Two case studies address a topic of creating a time tracking system. Shoukourian and
Danielyan (2011)) present how to set up a time tracking system for a maintenance team and
how to prepare a team to use it. April (2010) explores maintenance task categorisation for
time reporting purposes to enable spotting trends to guide maintenance activities and manage

customer expectations.

However, neither of these studies address the use of a time tracking system. It is seen by April
(2010) as a managerial task to ensure that employees track time accurately, and they give an
example instructions. Their study does not examine reasons nor solutions for the problem
of inaccurate time tracking. Unfortunately, research among software maintenance overall is
scarce (Sharon Christa et al. 2017), and thus understanding the reasons for the complexity
of time tracking remains mostly unknown. Investigating human and organisational factors
in software maintenance is in-depth covered by Bhatt, Shroff, and Misra (2004)) and Bhatt,

Shroff, Anantaram, et al. (2006), but the research lacks the connection to time tracking.

Insight on what makes time tracking difficult and inaccurate could aid improving time track-
ing processes and making it less complex. Time tracking is a never-ending activity, and less

expensive if it is easy to do (Shoukourian and Danielyan 2011)). Inaccurate timesheet data

can result in under- or over-invoicing customers, and creates a wrong baseline for future

estimations (Sindhgatta et al. 2010; Yakura 2001)).

The research question for this study is: What kind of instructions would aid in the time

tracking process for software maintenance service?

Possible solutions to answer this question of instructions were sought from literature, and
two solutions were derived from case studies of April (2010) and Shoukourian and Danielyan
(2011). Design science research method was used to implement solutions in a market lead-
ing, Finland based IT consulting company in the field of cloud technologies. A software
maintenance team from the company acted as a target group. The author was a supervisor
in the team and collaborated closely with developers within this research context. With the
results of this thesis, the author hoped to ease the burden of her own team regarding time

tracking practices.

The first step towards instructions was to conduct a mapping exercise with the team. It was
inspired by Shoukourian and Danielyan (2011) to include the team to map activities to the
current time tracking categorisation. Data gathered from this exercise was used to create
detailed instructions in the form of a decision tree, as was done in the case study of April

(2010).

Categorisation instructions is the artifact which this research produced. It was presented as
a PDF file and freely available for the team. The tree asked what activity a user had had, and
answered which of the categories in the time tracking system was equivalent for the activity.
It was notably detailed: it listed sixty activities. The tree was divided into sections of related
activities to ease navigation. The tree also aided in building a metal model of categorisation
rules by questioning a trigger for certain activities, and guiding forward to an equivalent

category only after the user specified the trigger.

After the decision tree had been available for two months, eight employees from the team
were interviewed. They were asked about how maintenance work appeared to them, how
they tracked and reported their time, how the mapping exercise and decision tree had helped

them, and how they felt about time tracking in general.

The answers revealed that the detailed instructions were mainly useful for employees with
short tenure. They hadn’t yet built a mental model of time tracking categorisation, so instruc-
tions with lots of examples were aiding them considerably. However, employees with longer
tenure did not benefit from the instructions, because it did not bring new insight for them.
Instead of having a problem of categorisation, employees with longer tenure faced trouble
of justifying the used hours on an activity and recalling daily activities when it was time to

write time reports.

Time tracking was perceived as the most annoying part of the job in the team. It was ap-
parent from interviews that even with a complete mental model of time tracking, employees
felt stress about time reporting and experienced time tracking to be cumbersome. The author
feels the most important result from the research was to understand different problems for
time tracking and reasons for stress. Stress was caused by exceeding estimations, pressure
from management to include administrative work within customer work, and simply recall-
ing what tasks an employee had had during a day and how much time was spent on each

task.

We can say that the research provides one solution for one use case in time tracking context:
detailed instructions made time tracking easier for new employees to learn task categorisation
rules. The research provided more information in the problem domain and made possible for
designing new solution candidates to aid in other aspects of time tracking than learning the

task categorisation.

This thesis is structured as follows: in Chapter [2] we investigate literature to define software
maintenance, its activities and benefits of outsourcing. In Chapter[3] we examine literature to
define the purpose of time tracking and obstacles that can be faced while reporting time. The
research design is described in Chapter [4] and the resulting artifact is presented in Chapter
5] Research results are presented in Chapter[6] and the meaning of the results in the light of
literature and practice is described in Chapter[7] Chapter [§] concludes this study.

2 Software maintenance

2.1 Software maintenance life cycle

Software maintenance is the activity to keep a software system alive and meet requirements
dictated by a customer or environment (Sharon Christa et al. 2017). It is one aspect in the
software life cycle, sustaining the software throughout its life. Its objective is to modify
existing software while preserving its integrity. (Bourque, Fairley, and IEEE 2014, p. 5-2;
IEEE 2022, p. 20-21).

The main purpose for software maintenance is to sustain the system’s capability to provide
a service (IEEE [2017, p. 103-104), to ensure that the software continues to satisfy user
requirements (Bourque, Fairley, and IEEE 2014, p. 5-3), and to extend the life of a software
system for as long as possible (Bourque, Fairley, and IEEE [2014, p. 5-5). The reliability and
quality of the system is to be achieved with minimum effort, cost and time (Sharon Christa

et al. 2017, p. 763).

Typically the maintenance phase in software life cycle lasts for many years. Software main-
tenance doesn’t only happen after a software system is published to production. Planning
for maintenance should begin when the decision to develop a new software system is made.
(Bourque, Fairley, and 1EEE 2014, p. 5-9). Development phase is the right place to pay
attention to maintainability aspects, for instance, documentation and test environments. This
will reduce maintenance costs after the development phase. (Bourque, Fairley, and IEEE

2014, p. 5-5).

Maintenance phase takes considerable amount of effort during the whole software life cycle
(Bhatt, Shroff, and Misra|2004), and a notable amount of budget compared to new software
development (IEEE 2022, p. vi) - over five times more than the development process (Sharon
Christa et al. 2017), or 60% of the whole IT budget for a company (Rahman et al. [2020).
However, software maintenance is not linear effort throughout time: on the contrary, it has
peaks due to external factors, and finally a steady state with lowered effort per day (Bhatt,

Shroff, and Misra 2004)).

Maintenance effort consists of many different activities, caused by many different sources.

We will investigate this in the next chapter.

2.2 Maintenance activities

Software maintenance includes all the activities and processes, and management of these
processes, which modify existing software (Chapin et al. [2001). Broadly, software mainte-
nance includes error corrections, changes and improvements to operational software (Bhatt,
Shroff, Anantaram, et al. 2006), although software doesn’t have to be deployed or delivered

to production to qualify as the target for maintenance activities (Chapin et al. 2001)).

The need for maintenance activities occurs from changes in the operational environment.
Changes can occur to e.g. interfaced systems or infrastructure. Evolving security threats
might be noticed or system elements might become technically obsolete. Need for correction
might arise from a detected error, or new or modified capability is required. (IEEE 2022, p.
20-21; 2017, p. 103—104; Bhatt, Shroff, and Misra 2004). As the world is changing, so are
requirements and enhancements for the software evolving (Sharon Christa et al. 2017)), and

it might cause the original requirements to be no longer applicable. (IEEE 2022, p. 20-21)

Maintenance is performed as a continuing series of prioritised work items (IEEE 2017, p.
103-104). It includes preparations, performing maintenance and logistics support, and man-
aging results of these activities (IEEE [2022}, p. 6). Activities in the maintenance process
include monitoring the system’s capability to deliver services, recording incidents for anal-

ysis, modifying code, records and information items, and confirming restored capability.

(IEEE 2017, p. 103—-104; 2022, p. 20-21).

Software maintenance is an industry separate from new software development (Bhatt, Shroff,
and Misra [2004)), albeit it has many activities in common with software development in
addition to several unique activities (Bourque, Fairley, and IEEE 2014, p. 5-6). Shared
activities include analysis, design, coding, testing and documentation (Bourque, Fairley, and
IEEE 2014, p. 5-8). Usually, maintenance activities start with a change request, created from
an issue raised by a customer (Sharon Christa et al. 2017)). The relevance is verified and then

the change request is passed for the maintenance team (Sharon Christa et al. 2017) or rejected

and redirected to a development team (Bourque, Fairley, and IEEE 2014, p. 5-8) - although
it is recommended to include new development activities in the maintenance contract (IEEE

2022).

For the change request, the maintenance team makes an impact analysis, fixes an issue or
estimates an enhancement (Sharon Christa et al. [2017; Bourque, Fairley, and IEEE 2014,
p. 5-8). Estimation is then forwarded to a customer who either approves or disapproves
the modification effort. Required resources are allocated, and finally, a report is generated.

(Sharon Christa et al.[2017).

Prior to working with a software system, a maintenance team first needs to gain understand-
ing in the software. This is usually done in a knowledge sharing activity during transition
from the development team to the maintenance team. The maintenance team might also work
in help desk activities, and it must comply with service level agreements (SLA’s) according

to a contract with a customer. (Bourque, Fairley, and IEEE 2014, p. 5-8).

To monitor and act on changes, companies use classification (Chapin et al. 2001). We will

examine different classifications in the next chapter.

2.3 Categorisation of activities

During the maintenance process, all proposed changes are recorded as modification requests.
A modification can be categorised as a correction or enhancement, which are further defined
in the list below. (IEEE 2022, p. 4). These types were originally developed by Lientz and
Swanson (1980), and later they became part of IEEE standard, although slightly inconsis-
tently compared to the original definition (Chapin et al. 2001]).

Current definitions from IEEE (2022)) are

* adaptive maintenance: modification to keep a software system usable in a changed or
changing environment

* corrective maintenance: modification to correct discovered problems

* perfective maintenance: modification to improve software, including features or in-

formation for users, and enhanced maintainability, performance, or other software at-

tribute

 preventive maintenance: modification to correct latent faults before they occur in the

live system

According to Chapin et al. (2001)), organisations use more detailed categorisation compared
to the four broad types of maintenance. This allows companies to report, budget, staff and
monitor activities in more detail. Chapin et al. (2001) defined twelve types of software
maintenance, depending on the required changes. The types are defined in Figure [I] The
figure shows how changes in source code functions might be caused by a need from technical
software properties or environment, or a need from changed business rules. If software
wasn’t changed, a different set of types is defined for documentation changes, and the final

set of types is defined for training, consulting or evaluating software. (Chapin et al. 2001)).

Start
l / Support interface \
" Was
for eiing? salhwem
) studied?
& Training Consultive Evaluative //
/ Documentation \‘\
-
Was source Was Was .
. documentation
coda documentation mads
7 7
changed? sl to neads? conforming?
Yas Yas Yas
\ Reformative Updative /

/Suﬂware proparties

Did change to
code avoid

Did change to
code alter

Was Mo

/_Business rules

Was No Was No
function function
reduced? fixed?

\ Reductive Corractive Enhancive

Figure 1. Types of software maintenance activities, adapted from Chapin et al. (2001, p. 10).

As we have seen, the maintenance process contains many activities. It all begins after the
operation or development process, and it can transition between either of these and the main-
tenance process during the life cycle, ending in either disposal or transition process (IEEE

2022, p. 6).

Maintenance service can be produced by the software developing organisation, or outsourced
to a third party. However, the same maintenance tasks prevail. (Sharon Christa et al. [2017).
In the next chapter we examine the benefits of outsourcing maintenance to a permanent

maintenance team.

2.4 Outsourcing software maintenance service

Software maintenance is not necessarily carried out by the team that developed the software
(Bourque, Fairley, and IEEE 2014, p. 5-6). Actually, Bhatt, Shroff, and Misra (2004) ob-
served that in every occasion of their target groups the maintenance team had nothing to do

with the design and development of the software.

Software maintenance suffers a bad reputation among software development life cycles. It
is a neglected part of software development in both the amount of research, and respect the
work enjoys among software developers. (Sharon Christa et al. [2017; Bourque, Fairley,
and IEEE 2014, p. 5-1; Bhatt, Shroff, and Misra 2004). Maintenance work is viewed by
developers as a less creative and high workload job (Sharon Christa et al.[2017; Bhatt, Shroff,
and Misra 2004). Thus, rotation of staff is frequent. (Sharon Christa et al. 2017).

However, a permanent maintenance team has several benefits over combined development
and maintenance teams. These benefits are, for instance, opportunities to specialise, estab-
lished communication channels, collegiate atmosphere, reduced dependency on individuals
and possibility for audit checks (Bourque, Fairley, and IEEE 2014, p. 5-6). Luckily, the
perception of software maintenance is now changing as companies focus on keeping soft-
ware operating as long as possible to get the most out of their investment in development.
Also, the open source paradigm has increased attention in maintaining software developed

by others. (Bourque, Fairley, and IEEE 2014, p. 5-1).

Outsourcing software maintenance has become a major industry. A large initial investment
is needed in determining the scope of maintenance and contractual details, including the
terms for service level agreements (SLAs). (Bourque, Fairley, and IEEE 2014, p. 5-6).
By offshore outsourcing, companies are looking forward to reducing overall maintenance
costs (Rahman et al. 2020). The organisation owning a software system and the company
providing maintenance services should agree upon maintenance service models. The types
of maintenance should be addressed, and new development included in the agreement. The
agreement can be either with a fixed price or with a time and materials (T&M) cost basis.

(IEEE 2022} p. 21).

On the T&M model the services are paid on the basis of effort or the number of engineers
engaged in maintenance. This was more common earlier, and now there’s a shift towards
SLA-based fixed-price services over a specified period. (Bhatt, K, et al.[2006). Many differ-
ent combinations of T&M and fixed price are possible, with extremes of a blanket contract
with fixed price for both maintenance and new development, and a specific contract for only

corrective maintenance without new development. (IEEE 2022, p. 21).

Rahman et al. (2020) has proposed ten critical factors for a successful software maintenance
outsourcing decision. The factors concern the customer, the provider, code base and pro-
cesses. These factors were later verified by Rahman et al. (2021). We will investigate some
of these factors and combine them with identified quality attributes of successful mainte-

nance teams by Bhatt, K, et al. (2006) and Sharon Christa et al. (2017) in the next chapter.

2.5 Factors for successful service

The skillset of the maintenance team plays a critical role in providing a maintenance service
successfully (Sharon Christa et al. 2017) and is one of the critical factors for an outsourcing
decision (Rahman et al. 2020). Investment in training employees indicates higher organi-
sational commitment, and along with good leadership leads to a more qualified and stable
maintenance team. Stronger leadership also increases training of end users, whereas under-

staffing the maintenance team decreases end user training. (Bhatt, K, et al. 2006).

Available documentation and knowledge transfer from the initial development team to the

maintenance team is important for a successful service (Sharon Christa et al. 2017). Knowl-
edge transfer can be arranged by involving initial developers in the maintenance team (Bhatt,
K, et al. 2006) or involving maintenance team members early in the development phase
(Bourque, Fairley, and IEEE [2014). Facilities, e.g. audio/video conference between de-
velopment and maintenance team, are found to support knowledge transfer (Bhatt, K, et

al. 2006)).

Communication is seen as cumbersome between separately located teams of a customer and
a software maintenance provider (Rahman et al. [2020). However, it’s a critical factor to
succeeding in outsourcing (Rahman et al. 2020) because the key to effective maintenance is
communication of the requirements from a customer to the maintenance team in a clear, con-
sistent and complete manner (Sharon Christa et al. 2017). Close partnership enables smooth
knowledge transfer, flow of information, and understanding the business requirements. Com-
munication takes a lot of time for software engineers, so proper management of knowledge

sharing and transfer is important for both parties. (Rahman et al. 2020).

Good cooperation between the maintenance team and the customer increases the mainte-
nance team’s capability via smoothness of knowledge transfer (Bhatt, K, et al. 2006). It’s
important for the customer to have IT knowledge to work smoothly with maintenance ser-
vice providers (Rahman et al. |[2020). Even the size of the maintenance team can be smaller

if the customer has an experienced IT team (Bhatt, K, et al. 2006).

The amount of end users, system complexity and strict service level agreements are proven
to affect maintenance effort. Lower tolerance for slippage increases the needed total size of
the maintenance team. These factors also affect organisational climate by the difficulty of
targets set for the maintenance team. Organisational climate can be observed in the form of

pressure and under-staffing of the maintenance team. (Bhatt, K, et al. 2006).

Critical success factors have partly changed in twenty years. Project management and matu-
rity level are more important factors for outsourcing decisions recently, in 2011-2020, than
in 2000-2010 (Rahman et al. 2020). Good quality software maintenance requires compe-
tence from people involved, and accurate estimation of effort, time and cost. It results in

high-quality software, which is dependable, understandable, and efficient and satisfying to

10

the customer. (Sharon Christa et al. 2017)).

There are several maturity models which aim at guiding a company to provide effective and

efficient maintenance service. We will have a look at them in the next chapter.

2.6 Maturity models as guidance

Software maintenance can be seen as a service, because the value of it is in the activities
which result in benefits for the customer. These benefits are, for instance, corrected faults and
new features. This is opposed to software development, which results in a product, namely
the developed system, that provides the benefits. The end result for the customer makes

software maintenance and development essentially different. (Niessink and Vliet 2000).

Niessink and Vliet (2000) cites Parasuraman, Zeithaml, and Berry (1985) about five identi-
fied gaps in software maintenance services, and compliments the list with their own findings

on activities to bridge the gaps:

1. Customer’s expected service vs. Service provider perceptions of expected service

* To bridge the gap: Managing commitments with service level agreements and
reviewing their accuracy to customer needs with the customer on a regular basis.

2. Service provider perceptions of expected service vs. Service designs and standards

* To bridge the gap: Planning maintenance services, e.g. staffing, scheduling and
identifying possible risks.

3. Service designs and standards vs. Service Delivery

* To bridge the gap: Tracking maintenance activity to provide this information to
a customer, monitor activities and take corrective actions if necessary.

4. Service Delivery vs. External communications to customers

* To bridge the gap: Handle events in an organised way to ensure appropriate re-
sponse to all events that occur during software maintenance.

5. Customer’s Expected Service vs. Customer’s Perceived Service

11

* To bridge the gap: bridge all the above gaps.

To help bridge these gaps in maintenance service, a framework called IT service capability
maturity model (CMM) is established by Niessink and Vliet (2000). Their model targets
processes that are key to producing high quality IT services. This particular model has five
maturity levels, of which the first is "initial" ad-hoc services, the second is "repeatable"
where basic processes are established and past successes can be repeated, the third level
is "defined" where processes are documented and standardised and service is tailored for
customers, the fourth is "managed" where detailed measures of the process and it’s quality
are collected and used to control the services, and finally the fifth is "optimising" where
continuous improvement is enabled by quantitative feedback and piloting new ideas and

technologies.

For example, an organisation on level two implements two processes, according to Niessink

and Vliet (2000):

1. Service management: Planning, specification, tracking and evaluation of services
2. Service support: Processes that support the activities to deliver the services, e.g. mon-

itoring of the products and event management.

The benefits of the IT service CMM is its guidance to improving IT service processes. It
is quite heavy to implement in its entirety, and it’s not meant to be used as a checklist for

definite quality of IT services. (Niessink and Vliet|[2000).

The IT service CMM is used as one input among many maturity models for a model es-
tablished by April et al. (2005): the Software Maintenance Maturity Model (SMmm). This
particular model aims at providing a context for software maintainers specifically. Their
study includes a collection of studies for unique software maintenance activities and a clas-

sification of software process areas.
The model consists of four process areas:

1. Process Management
2. Request Management

3. Evolution Engineering

12

4. Support for Evolution Engineering
(April et al. 2005).

Each of the areas in the model by April et al. (2005) has four to five Key Process Areas
(KPA). An example of Request Management KPAs is presented in their study, with detailed
description for each goal in the process area. The model has five maturity levels, of which
the first is an ad-hoc maintenance process, the third is a state-of-the art maintenance process,

and the fifth is admitted to be currently technologically challenging to attain.

The Software Maintenance Maturity Model has proven to be difficult to validate. However,
it has been done with a small amount of case studies between the years 1995-2005. (April

et al. [2005).

Maturity models propose processes to guide a maintenance service. In addition, a way is
needed to demonstrate maintenance effort for customers to provide evidence for value gen-
erated for costs invoiced (April 2010). This is usually done with timesheets (Sindhgatta et

al. 2010) which we will investigate in the next chapter.

13

3 Time tracking

3.1 The purpose of time tracking

The relationship between time and money has deep roots in the Western culture - it has gained
a status of a social construct. The transformation of time into a commodity is displayed in
the world of consultants. Their work is difficult to value, so consulting services are often

measured in hourly units called billables. (Yakura [2001).

Likewise to consulting services, maintenance service is often provided on a base of invoicing
the time spent by developers doing maintenance activities (Sindhgatta et al. 2010). This
requires recording the effort in timesheets. Management support and a time tracking tool is
needed so that developers can fill in timesheets, often manually. A detailed report needs to
be available for both vendor and customer, who can validate the integrity and credibility of
it, and a customer can pay an appropriate payment - although checking validity of hours is
tedious for managers, because they usually don’t have the hands-on context, and would need

to dig into details impractically. (Sindhgatta et al. 2010; April 2010).

Timesheets provide transparency for a customer regarding the provided service, and thus it
prevents negative perception for value versus costs. The benefit of reporting hours in detail
is in the ease to see trends in time spent in each activity when historical data builds up. The
customer can see where the paid hours are spent, and the service provider can see which
customer requires the most effort, and where the team could improve in regards to high

volume of customer queries. (April 2010).

With detailed timesheet data, a company can identify bottlenecks and difficulties (Shouk-
ourian and Danielyan 2011). Data can reveal team members who are the most and least
loaded, or who continuously over- or underestimate their tasks. Discussions with said team
members will increase the accuracy of planning and help identify the future scope of work
precisely. Time reports can also be used as a control of workload by guiding staffing, for
instance, moving resources between projects, hiring and firing, or selling more business

(Yakura 2001). Transparent data builds the basis for correct processes for activities that are

14

part of a time tracking system (Shoukourian and Danielyan 2011)).

Literature review reveals several possible use cases for timesheet data:

» Estimate required effort for a maintenance task or process (Hira and Boehm 2018;
Chen et al. 2017; Chen et al. 2016; Mellegard et al. 2016; Sneed and Prentner 2016;
Choudhari and Suman 2014}, Fitzgerald, Counsell, and Peters 2013}; Leotta et al. 2013}
Kumar et al. 2012; Ricca et al. 2012; Al-ahmadi et al. 2011 Asghar et al. 2011}
Friedrich and Bergner 201 1; Shoukourian and Danielyan 201 1; Cavalcanti et al.|[2010;
Subramanyam, Weisstein, and Krishnan 2010; Nguyen, Boehm, and Danphitsanuphan
2009; Ooi and Soh 2003; Ruhe, Jeffery, and Wieczorek 2003 Abran, Silva, and
Primera 2002; Penny 2002; Rao and Sarda 2002} Bianchi et al. 2001; Krishnan et
al. 2000)

* Estimate cost for maintenance tasks (Ivan and Despa 2016; Martinez-ferndndez et
al. 2014; Buchmann, Frischbier, and Putz 2011)

» Evaluate developer productivity (Hira and Boehm|2018),2016; Shoukourian and Danielyan
2011} Sindhgatta et al. 2010; Aversano et al.|[2001)

* Provide data for how much time a maintenance task required (Friedrich and Bergner
2011} Desharnais and April 2010)

* Provide data for overall status of a software project (Napier, Mathiassen, and Robey
2011)

¢ Provide data for salaries (Bosch|[2009)

* Provide data for invoicing customers (Sindhgatta et al.|[2010)

* Provide data for studying effect of pressure on total time for delivering a software

system (Nan and Harter 2009))

To get an understanding of how a time tracking system might be set up for any of the above
mentioned purposes, we review two cases: one by Shoukourian and Danielyan (2011) and

another by April (2010).

15

3.2 Case Shoukourian and Danielyan (2011): Setting up a time track-

ing system

In this section we examine the study of Shoukourian and Danielyan (201 1)) about establishing
a time tracking process for an operations team. Data gathered from this process allowed

teams to work more systematically and made their effort visible to management.

Defining the process started with listing three facts: projects a department was working on,
activities performed when working on these projects, and the effort spent on these activi-
ties within a project. Knowing this allowed the team to identify bottlenecks and difficulties,
increase the accuracy of planning, identify scope of work, and implement processes for iden-

tified activities.

Shoukourian and Danielyan (2011)) noticed that the list of activities used in time tracking
must be limited to an optimal balance between detail and clarity. More precise list of activ-
ities gave more precise data, but made time tracking more laborious and less convenient for
a consultant. Time tracking was a continuous and never-ending practice, and thus keeping it

convenient was important - not only because it would be less expensive if it was easy to do.

Team leads aided in listing activities. This also prepared them for adopting time tracking
practices, and to guide their team members with questions. Listing daily activities formally
surfaced some problems, like ambiguous responsibilities for a team, or informal and thus
untraceable communication methods. The list evolved as the time tracking process was
taken into use and real-life activities thought absent did not find their counterpart in the list.

Some activities needed to be removed from the list as they were not being used in practice at

all.

Dashboards were used to visualise data collected in the time tracking process. Dashboards
revealed that operations work could be planned in iterations, and made workload visible per
team member. When combined with outputs of different processes, like release testing, the
efficiency of teams could be measured: if testing took a lot of time, it was expected to have
many defects logged. Dashboard also made visible if a team member spent a lot of their time

in other activities than what was their primary responsibility. Table |I| shows activities and

16

the percentage of time spent on each activity across all projects in a time period.

Table 1. Activities and relative occurrence on time spent across projects in a time period,

adapted from Shoukourian and Danielyan (2011}, p. 3).

Activity Percentage
Release Testing 50.67 %
System Testing 12.59 %
Meetings 7.74 %
Code and Unit Test 1.47 %
Documentation 1.22 %
Training Participation 0.69 %
Inspection 0.31 %
Performance Management 0.28 %
Inspection Issue Resolution 0.15 %
Investigation 0.06 %
Vacations 24.82 %

3.3 Case April (2010): Categorising tasks for a time tracking system

In this section we examine the study of April (2010) about introducing a categorisation for
maintenance activities. With this categorisation, a maintenance provider was able to cre-
ate a report to understand trends, justify suggested changes to supported software, and get

guidance in managerial tasks, e.g. budgeting and staffing.

Time tracking process began by categorising activities so that consultants could choose
proper items from a list. Typical maintenance activities found in the study are listed in Table
The most interesting categorisation for every request was determining if it was preventive,
corrective, perfective or adaptive work, as per ISO/IEC14764 categorisation. This led to an
ability to spot trends of work effort in each category. These trends could be analysed for how

well they matched what customers expected from the provider.

It was noticed to be a managerial task to ensure that team members tracked their efforts

17

Table 2. Categorisation for typical maintenance activities, adapted from April (2010, p. 354—

355)
Activity Definition
Administrative General Admin., housekeeping, office work, communi-

cation, reporting

Break / Nonproductive

Lunch, tea, personal work, non-productive task, sick-

ness

Classify and update work re-

Preventive, corrective, perfective, adaptive or customer

quest request for information
Analysis Search for causes, replicate/verify
Modification Code and unit test the change

Regression testing

Verification of fixes and changes

Migration & configuration man-

Source code moves, migrations

agement

Reviews Verification of change, surveillance days following
changes

Training Attending training, presentation & conference

Documentation Updating technical documentation and D/R

accurately to a time tracking system. To help in this task, a decision tree like in Figure [2] was
provided. Accuracy was important because software maintenance service levels were based
on it. To ensure reporting was accurate, time recording system and request tracking system

were integrated and it was ensured that personnel entered effort only once.

In addition to categorising tasks per type, tasks were to be categorised by a customer and a
system in service. This allowed tracking customer profitability, and created understanding
in what kind of activities were required for a certain type of software. This aided in the

management of software maintenance portfolio.

18

Call or Ticket to

Support Group
Raute requast to
New Yos aceount manager to
function in be assessed as
A E’:'Eh:g major enhancamant
Systam - or project.
i Change to Yea ADAPTIVE
anvironmeant Insarl in list of
axisling wiork reguest,
CORRECTIVE system? treat by priority.
Oparations Interrupl work to
failure (any attend o failure,
siza)? insart in list of work
after repair. e
Existing PERFECTIVE
+ syslam Insart in list of
_ ADAPTIVE oplimisation work reguest,
_ F”"':“““a:_n Insert in list of U treat by priority.
'mmp':::::_l; work request,
reat by priosity.
function? iana by
Latent PEEVENTIVE

Mo

arrar in
axisting
systam?

Insart in list of
wiork raguest,
treaal by pricrity.

Figure 2. Instructions to assign a change request, adapted from April (2010, p. 354).

3.4 Obstacles and pitfalls of time tracking

In this section we investigate expectations for timesheets and reasons which make time track-

ing difficult, as described similarly by Yakura (2001 and Sindhgatta et al. (2010), unless

otherwise mentioned.

Timesheets are by no means the most exact way of putting a price tag for hours spent. Two
distinct hours for one consultant are rarely equivalent, and an hour for two different consul-
tants are certainly not equivalent. There are many tools to facilitate time reporting, but none
of them solve the underlying issues of the act itself. It is tedious and error-prone to manually
enter time in timesheets. One of the reasons is that developers in maintenance often work
on multiple tasks in parallel, for example code reviews and learning activities along with
development tasks, or even multiple development tasks in parallel. It is hard to deduce time

spent for each activity afterwards.

Accurate data in time reports would be necessary to avoid damaging reputation or revenue,

19

and misguiding future work. Over-reporting hours will harm reputation if customers notice
it. This can happen by lack of specificity in timesheets, if it allows developers to report their
actual hours even though their time was spent on unrelated activities, for instance, sorting

out unclear expectations or waiting for a third party.

Under-reporting hours causes a company to lose revenue directly with fewer billable hours,
and creates a wrong baseline for estimating future work. With inaccurate data, new fixed
priced projects might be poorly estimated, and customers might build unrealistic expecta-
tions for delivery. If a team tries to meet these expectations, the quality of delivery might be
damaged. In addition, April (2010) and Shoukourian and Danielyan (2011) base their trend

analysis on assumption of accurate data in timesheets.

In the worst case, timesheets can be used only to make numbers look good. Either a de-
veloper can inflate hours to report what is expected, or not report exceeding hours at all -
techniques called padding and discounting. Reporting a much different number from the
original estimate might cause uncomfortable conversations between a developer and a man-
ager, and developers tend to avoid this. Developers can also be directly ordered to mark
hours within some established rules or practices regardless of real time spent. Sometimes
developers might feel bad for reporting an exceeding amount of hours because of their own

expectations of the time they should have needed to solve an issue or provide a solution.

In addition to invoicing, timesheets can be used internally to track effort and developer pro-
ductivity. When used as a performance measure, the more a developer bills, the better he
or she is seen. Moreover, time is valued differently: customer work is seen as more valu-
able work, whereas administrative tasks are seen as the least valuable. When there’s lots of
work, developers have an opportunity to bill as many hours as they want to. When work is
scarce, management chooses which developer gets the work, and that causes a cycle of those

in demand being seen as better employees simply by virtue of being in demand.

20

4 Research method

4.1 Problem and research process

The organisation faced the same problems with time tracking that were identified in research.
They had detailed categorisation for maintenance activities and there was a need to commu-
nicate it clearly to employees to avoid mistakes (April 2010). Time was spent by manage-
ment to verify time reports and amend wrongly submitted hours (Sindhgatta et al. [2010).
The complexity of time tracking was well known in the case organisation. For example,
verifying validity of hours resulted in several recalled reports weekly due to wrongly chosen

assignments, and reminding employees to submit hours in the first place.

This study created new instructions in the form of a decision tree, in addition to existing
instructions the case organisation already had. Both new and old instructions aided in task
categorisation for time reports. This study evaluated the perceived usefulness of new instruc-
tions within a software maintenance team. The aim of the research was to help employees

categorise tasks correctly.

The research process started with literature review, which inspired a mapping exercise with
the team. The data from this exercise was used to create instructions in the form of a decision
tree. Instructions were given for the team as additional help for categorising tasks for the time
tracking system. Finally, interviews were conducted regarding software maintenance, time

tracking, and usefulness of the instructions. The process of research is depicted in Figure 3]

-

= -

c D D)

Ideas for the

format of . . Feedback of
Hteralufe Dinstructions | MaPPIng Current Constuelon instructions | Interviews othe

{decision daily for instructions,

tree) and tasks for each categorising insight of ime

how to category tasks in the tracking

involve (basis for the forma process

employees decision tree) decision tree beyond

{mapping categorisation

exercise) E G

Figure 3. Research process, and the output from each of the step during the process

21

4.2 Research method

We used the Design Science Research (DSR) method. DSR is an iterative research and de-
sign process to solve an important problem (Hevner et al. [2004). Another guiding method
for this research was Constructive Research Approach (CRA). It is introduced by Kasanen
(1993) with the core of solving a practically relevant problem in collaboration with practi-

tioners.

We did not see conflicts in following both of these methods. CRA can be seen as a subset
of DSR with relevant distinction for this study that DSR puts more emphasis on evaluating
produced artifacts than CRA does (Piirainen and Gonzalez [2013)). Both methods proceed
from understanding the problem towards possible solutions and developing and evaluating

one of the solutions, as can be seen in Figure @

The Constructive Ressarch Approac

L T Y T ' T S "y
Phase | Phase Il Phase Phase IV Phase V Phase V1 Phase Vi
Finding a Salling up a Analysing the Innovating an Implamanting Reflacting upon ldentifying,

problem with jaint project target org., tha [artifact] the arifact to tha applicability analysing, and
high practical tearm with problem, and togathar with the and positioning of
relevance and practitioners previous tha organisation, generalisability the theoretical
theoratical from the target resaarch on practitivners to tasting aof the af the artifact cantribution to
interest organisation the subject in salve the funclionality earlier research
N N datail o problam N
Orientation / Design Euamaﬁun\ Dissemination
Phase | Phase Il Phase Il Phase IV Phase V

Devaloping awareness Finding suggestad Building, testing and Evaluation of the Conclusion and

of problem and a solutions and forming devaloping of (partial) perfarmance of communication of the
proposal for definition tentative design solution artifacts (alternative) artifacts results
and possible design
5 itarations)

Design Science Research

Figure 4. Process comparison for Design Science Research and Constructive Research Ap-

proach, adapted from Piirainen and Gonzalez (2013, p. 211)

We chose DSR because its goal is to increase knowledge and understanding of a previously
unsolved or sub-optimally solved and important business problem so that development and
implementation of new technology-based solutions becomes possible for the problem by

creating an artifact (Hevner et al. 2004).

Keeping time tracking convenient is important because it is a never-ending activity and less

22

expensive if it is easy to do (Shoukourian and Danielyan 2011). The organisation had ex-
perienced the time tracking process being inconvenient. Thus, this problem was important
and sub-optimally solved in this organisation. It fulfilled the requirement for a problem as is

described in the second DSR guideline (Hevner et al. 2004).

Close collaboration with practitioners was an inherent part of how the research was con-
ducted. The author was employed by the organisation for which the research was done. Thus
the core of CRA, collaboration with practitioners (Kasanen |1993)), was strongly present in

this research.

4.3 Literature review

Problem awareness was built on the author’s experience and supplemented by studying pre-
vious research. The goal was to build a general and comprehensive understanding of the
topic (Kasanen 1993). The purpose of this thesis was to aid the time tracking process in
software maintenance context. To be able to propose a solution, the terms and practices were

first defined for software maintenance and time tracking.

To start finding literature, we first used Google Scholar with search words "software mainte-
nance" and "timesheet", and search phrase "Filing timesheets in software maintenance". This
allowed us to find some initial articles to fine-tune search words. In the result, "timesheets"
got an alternative of "billables" and "software maintenance" got an additional term "mainte-
nance service". Search criteria for search words were limited to articles published after the

year 2017 to include at most five year old papers due to rapid evolving of the IT industry.

When suitable articles were found, we reviewed both references and citations to find new
relevant articles - the technique known as snowballing. This led to source material circling
around the initial question. Suitability of an article or other source material was defined by
its validity to software maintenance field, describing software maintenance or the the tasks
included, or describing time reporting in IT consultant context. Articles diving into technical
implementations of systems managing maintenance workload or tasks were rejected because
they did not answer questions about time tracking practices. Academic articles, conference

papers and standards were accepted as source material. To decide whether to include a paper,

23

we read the abstract and if still in doubt, read the rest of the paper to find out if it was suitable

for this research.

The databases used to search for articles, and to retrieve articles found in snowballing, are:
ACM Digital Library, Google Scholar, IEEE Xplore, ProQuest, SAGE Journals, Springer-
Link, Taylor & Francis Online, and Wiley Online Library.

To make an overall inspection of research around the topic a systematic search was conducted
in aforementioned databases. The purpose was to find papers regarding either timesheet
usage or time tracking process within software maintenance. Search clauses for two separate

searches were:

1. timesheet AND "software maintenance"

2. ("time tracking" OR "time reporting") AND "software maintenance"

Search was conducted between 8th and 12th June, 2022, except for Google Scholar on 14th,
20th and 21st August, 2022. As Google Scholar gives hundreds of results, only the first
four pages were examined, and thus 40 results total for both search clauses. Suitability was
determined by investigating if an article answered any of the following questions: "How to
communicate effort in timesheets?", "How to categorise time in a time tracking system?"
and "How to make it easier to report time?". Articles before the year 2000 were rejected due
to the rapid evolution in the IT industry. If a resource wasn’t freely available through the

university login, it was not accepted as material.

Results of the systematic search are described in Table [3] With the second search clause in
SpringerLink all efforts to limit the search resulted in an error "Bad Message 431, reason:
Request Header Fields Too Large". Thus the size of the result set is so large and yet there

are no selected articles.

As the scarcity of selected articles show, time tracking and reporting in software maintenance
context is not widely researched. Most of the databases did not find many articles with given
keywords. Google Scholar was an exception but it remains unknown if further results after
four pages would give the same portion of selected articles. Overall, roughly third of the

results were selected. From those, only a handful contributed to time tracking from the

24

Table 3. Search result amounts for systematic database search. *Limiting results for

SpringerLink gave an error, and thus search could not be conducted.

timesheet AND ... ("time tracking" OR...

Database Results | Selected articles | Results | Selected articles
ACM 10 4 24 5
Google Scholar 377 (40) 17 518 (40) 12

IEEE Xplore 0 0 5 1
ProQuest 3 1 18 4

SAGE Journals 3 0 2 0
SpringerLink 1 0 3688 0*
Taylor & Francis Online 3 0 7 0

Wiley Online Library 9 1 21 2

process point of view. Majority were researches using timesheets as source data for different

measures.

Quality of found research papers is good because they are obtained from respected databases.
Quality of search clauses cannot be proved by this research only. Maybe there were other
articles which used slightly different keywords. However, these searches found two key
articles the author had found previously, namely April (2010) and Sindhgatta et al. (2010),

and one new key article, Shoukourian and Danielyan (2011).

Reliability of the search results relies on the understanding and any bias the author might
have towards the topic and how she interpreted articles at the given moment. Results of the
systematic search are listed in Chapter 3.1 but the reader cannot derive from which database
each result is coming from. However, search is repeatable because the search clauses and

databases are listed.

4.4 Mapping exercise

Both April (2010) and Shoukourian and Danielyan (2011) identified the need to standardize

software maintenance activities in an organisation. The latter also provided a comprehensive

25

description for how this standardisation was done, as described in Chapter [3.2] Following
this process the author asked her whole team to map their daily tasks to current task cate-
gorisation given by the employer. Thus knowledge of theory enabled this step in the design
process (Peffers et al. 2008).

The exercise was held in a remote team meeting and facilitated by the author in an online
Miro board. During thirty minutes, the attendees filled in a total of 67 sticky notes individu-
ally in a template pre-populated with the current categories and one additional column for an
"Unknown" category. Sticky notes written by team members included actions like "Customer

meetings", "Responding to invoice queries" and "Pairing up/rubber duck debugging".

Ten team members attended the exercise. It was voluntary and attendees could choose to an-
swer anonymously. Data gathered this way was somewhat unique, because it would produce
slightly different results if the exercise would be repeated again. Attendees relied mostly
on their recollection of their daily activities. However, daily activities were a fact and thus

answers wouldn’t differ much in the second workshop.

4.5 Construction of the artifact

Reusing the example from April (2010), the author created instructions in the form of a
simple decision tree by combining meaningfully all the listed activities from the mapping
exercise. To make the list complete of activities in addition to those listed by the team, she
gathered tasks listed in the existing time reporting instructions. The decision tree became
sixty items long, with every decision symbol suggesting an activity and directing the user to

either a correct category or to the next decision symbol.

The tree was the artifact produced in this research. It is described in more detail in Chapter

4.6 Interviews

To understand how the artifact was perceived, and to understand the problem domain better,

semi-structured interviews were conducted. It took four weeks to interview chosen team

26

members. The first person was interviewed after the artifact had been available for two
months. The delay was partly due to summer holidays, and partly to allocate time for team
members to use the decision tree. The lengthy period for using the instructions was allowed
because time tracking was mandatory in a one week cadence, so two months enabled team

members to use the instructions about nine times at minimum.

The author interviewed eight team members individually. She interviewed three developers
and three senior developers, one junior application specialist and one application specialist.
Among these were three squad leaders responsible for three to six person teams and their

respective customers. Five of the interviewees had attended to the mapping exercise.

The shortest tenure within interviewees was under six months and the longest almost four
years. Average tenure at the time of interview was 1,5 years and median one year and four
months. The shortest interview lasted for 23 minutes, and the longest 52 minutes. Average
interview length was 32 minutes and median 26 minutes. Interviews were conducted and
recorded as remote meetings in Google Meet in the Google Workspace of the author’s em-

ployer and later transcribed by the author. Transcriptions were used to analyse the answers.

Interviews were conducted mainly in English, although it was not the native language for any
of the participants nor the author. When Finnish was the native language for the interviewee,
Finnish was used. Participants lived in Finland and other European countries, and came
from six different cultures. This could have affected how interviewees communicated and
expected others to communicate. The author considered these concerns minor due to having
worked together in the same team and using English as everyday business language for a

long time with the interviewees. Finnish was the author’s native language.

The author had short questions prepared for the interviews, and then trusted the conversation
to continue seamlessly. She also asked for clarification when she did not fully understand, or
asked an interviewee to tell her more. This gave room for interviewees to explain themselves
in their own words. Even though discussions were unique, a prepared template with ques-
tions would guide a repeated interview into the roughly same direction and thus answers are

reliable. Prepared questions can be seen in Appendix [Al

The author was a supervisor for five of the interviewees and a leader for all of the interviewed

27

team members. This posed a question of power balance and how honest in their answers
interviewees felt comfortable to be. The author had a reason to believe the interviewees
were honest in their responses and data gathered was well qualified. Time tracking was a
frequent topic in team communication in the form of instructing how to do it and criticising
how complex it was to do. From the author’s side she felt the relationship with interviewees
was egalitarian, decisions were made seeking consensus, and she could confront each other
professionally with all of the interviewees. The author had at least weekly collaboration
with most of the interviewees and at least monthly with all of them. This ensured open
collaboration in interviews, which is one key aspect to quality data gathering in the evaluation

phase (Piirainen and Gonzalez 2013)).

4.7 Evaluation

Evaluation of the artifact, the decision tree, was done once with the help of answers from
interviews after all interviews were conducted. Interviewing is classified as an observational
evaluation method by Hevner et al. (2004), and it suggests that the artifact is examined in
depth in the business environment. Among the evaluation methods Hevner et al. (2004
propose, it is the best suited for this research. To compare, experimental or descriptive
methods weren’t needed because there was a real environment to test the artifact instead of
an artificial environment or written scenarios, and we did not need to create arguments based
solely on past research. Testing and some forms of analytical methods weren’t suitable

because the artifact was not an information system but instructions for a process.

A question can be raised for how well an interview suited to evaluate claims from literature
regarding time tracking in software maintenance, and how it evaluated the utility of the
artifact. This study was a qualitative research and the interviews verified many observations
from literature. The perceived usefulness of the artifact was made clear by the interviewees,

albeit the small size of the case team.

Albeit the research question seeking several kinds of instructions, only one solution can-
didate was produced. The solution candidate wasn’t improved iteratively: it was built and

evaluated once. As DSR is inherently iterative, being a search process for a design (Hevner

28

et al. 2004), this guideline wasn’t followed in this research. To respect a meaningful scope
for this study only one iteration for one solution candidate was done. The iteration already
included three actions: the mapping exercise, construction of the instructions, and interview-

ing users. The results of these actions provide the first step for further studies.

With current knowledge, some of the interviews should have been done before the map-
ping exercise and construction of the instructions. It was also the suggestion of Kasanen
(1993) to gain general and comprehensive understanding on the topic. The viewpoint and
experience from the author and ideas from literature alone did not count as comprehensive
understanding. Interviewing team members early would have provided more information on

the problem domain and could have changed the plans for solution candidates completely.

The intrinsic expectation that evaluating the artifact’s utility would prove the attached theory
to be valid can be questioned (Piirainen and Gonzalez|2013). The linked theory in the artifact
is the need for managerial attention and clear instructions in the form of a decision tree (April
2010), and inviting team members to categorise activities to prepare them for time tracking
practices (Shoukourian and Danielyan 2011). These theories can be proved in one use case

within this research: when a new employee learns time tracking practices.

29

5 The Artifact: Instructions for task categorisation

The artifact designed and constructed in this research is instructions in the form of a decision
tree guiding in categorising tasks correctly in time reports. The form of the decision tree was
chosen to imitate instructions described in April (2010). For the author, it felt comfortably
logical for a developer like herself. It was a styling chose, and style is an inherent part of

design (Hevner et al.|[2004).

The tree had sixty decision symbols, each pointing to a correct category or to the next deci-
sion symbol. Categories were highlighted with different colors, so the user could recognise

a category from the color without reading the label. Parts of the tree can be seen in Figures

Bland 6l
I'm ...

L

-_....-" IE-IJI{II'I'I'.-II'I-.P'”:J ‘_':h|'| "-.....,_
-—es approved ticket on the T
. Customer backlog? "

Development S
=CUstamer=
No

|
Figure 5. The beginning of the decision tree stating how a development task should be

categorised.

The tree was structured logically by combining tasks related to similar activities and labelling
the group on the right of the decision tree. These groups were, for example, Development,

Customer meetings, On-boarding, Estimation, Incident management, and Learning.

Some answers in the tree had further conditions because a task might belong to several
categories depending on its initiating force. In such a case, a question of a trigger for the

task was asked, and each trigger pointed to the correct category. For example, an internal

30

-'-... H.'-
-'-. l\-\..'-

-~
v Learning related o .
- ———— ‘ 3
.. Personal growth plan? -~
-.__\. L
- o

-H-\"-_ -
'\-\._[
Mo
..__.' '\-\._...
" .t
- e,
-~ Studying for T
L . adcoud cenificaion?
H ..-'"'.'-
H-"'\-\. '-.
'\-\. S -
GLOBAL
—= Training Ha
< C-INT RIC A
A
- e,
e =

Figure 6. A part of the decision tree, stating how personal development and training activities

should be categorised.

meeting might have been held because a new team member was introduced to a project, or
obstacles needed to be solved to continue developing an approved ticket. Time spent would

be categorised differently in these cases.

Triggers can be seen in Figure [7] Lines leaving from a solution are visible, with a trigger
specific to each line. These lines pointed to solutions in the tree at the same level where a
similar activity was defined. Such an arriving arrow from the left can be seen in Figure [6]
This structure was aimed to build meaningful connections between related activities and help
in task categorisation in the future, as a trigger was questioned and the user was guided to a

similar activity.

The reason for including so many tasks in the decision tree was to decrease abstraction level

and aid in categorising a task by the help of examples. Existing time reporting instructions

31

Preparing for
mzetings

Discussion on an
approved ticket

M }"x/[

Hnowiedge
iransier
Approved ticket
I .
=
s
=
Service request
<~
-
Backlag
grooming

Figure 7. A part of the decision tree showing how triggers are used to further categorise a

task

of the company had higher abstraction level and only some tangible examples of activities.

Depends an
a ingger:
knowdedge
transler,
discussion on
an approved
Bcket,
preparing lor
meatings?

Depends on
a tnigger:
service
regjuest,
approved
ticket,
backlog
grooming?

32

a———'0

e L

-—"

Internal meeting related
to & customer?

Daing customer
preparaton work?

Clarifying unclear things?

6 Results

6.1 Output of the mapping exercise

Before the artifact was created, a mapping exercise was conducted with the team. In the
exercise, the team members were asked to map their daily activities to current time tracking
categorisation. The exercise resulted in 67 individual sticky notes with an activity on each
note. The amount of tickets revealed the multitude of activities a developer might have
in a maintenance team. Employees with short tenure experienced the exercise useful as it
answered some of their questions regarding task categorisation when they saw how other
team members mapped the activities. The following quote, as all quotes in this chapter, are
from interview transcriptions. Fill words are removed when they did not bring more value

and only hindered readability.

It [the mapping exercise] was very useful from my perspective. It helped me
to better define the hours, or it answered some of my questions where to put

something. (Application specialist #1)

The activities written by the team were used by the author to build the artifact. During the
mapping exercise, some activities were mapped wrong by team members. The author also
included these activities in the tree and mapped them to correct categories. She did not
highlight wrong mapping, but enforced correct mapping by including the activity in the tree.
She disregarded one activity because it wasn’t relevant for the team and she did not want
to highlight its importance by including it in the decision tree. For the same reason, and to
protect individual privacy, we don’t tell more about the discarded activity in this study. As
irrelevant activities go, "going to gym" was written by the team and this was a reminder for

the author to include a task of longer breaks and respective categorisation in the tree.

The activities in the tree followed closely the definition of Chapin et al. (2001): there were
activities regarding modifications, e.g. changes in source code or documentation, and other
activities, e.g. evaluating software and consulting. Only customer training was not among

the activities in the decision tree. Besides these types of activities which Chapin et al. (2001)

33

listed, it was also visible the team was working on many activities seen as part of successful

maintenance service by Bhatt, K, et al. (2006) and Sharon Christa et al. (2017), e.g. training

employees or communicating requirements with a customer. Examples can be seen in Table

Al

Table 4. Activities identified in the literature compared with the results of the current study

Activity in the literature

Activity listed in the current study

Activities by
al. (2001):

Chapin et

Change in source code

"Actual development tasks with tickets approved"

Change in documentation

"Updating a runbook regarding an implemented ticket"

Consulting

"Discussing with a colleague about a task or issue in the

project and try to find a solution"

Evaluating software

"Onboarding a project"

Activities by Bhatt, K, et

al. (2006):

Training employees

"Studying for a cloud certification"

Knowledge transfer with a cus-

tomer

"Customer communication about incidents"

Activities by Sharon Christa et
al. (2017):

Communication of require-

ments with a customer

"Daily, weekly, bi-weekly or monthly meeting with
customer, or preparation for it or writing a memo af-

terwards"

Knowledge transfer within the

team

"Transferring or receiving knowledge inside the team in

case of new team members in a customer project"

6.2 Usage of the instructions

This study set out to find what kind of instructions would aid in the time tracking process.

The produced artifact was one kind of instruction which was evaluated with the help of

34

interviews.

The result of this study is that the decision tree aided when a new employee learned the rules
of task categorisation. The tree was perceived as easy to use and answered many questions a

newcomer might have.
I have used it [the decision tree] practically every week. (Developer #1)

There is quite [a] lot of information [in the tree] and that’s a really good thing
because we try to cover as many scenarios as possible. Everything is included
and anyone who’s trying to figure it out, it’s easier for them. And it’s actually
well structured, so also[a] good thing. I think after a year [..] you can memorise

this. (Developer #4)

The tree was very detailed and that was perceived as beneficial. The tree covered many ac-
tivities and edge cases, only missing some administrative tasks. It was experienced to be
logically structured. Labelled groups on the right were found useful for skimming through
the tree. Occasionally defined triggers for certain activities were thought to aid in clarifying
principles of time tracking and building a lasting mental model of the task categorisation
rules. For an employee with short tenure the tree answered many questions about categori-
sation. An employee with longer tenure still found the tree useful to shorten the time to find

answers to edge cases.

So first I usually check the right part, for example on-boarding, or knowledge
transfer, and then I look [at] those diamonds. If something I want to describe
is there [..] then I see on the left [for] these squares. So that’s the way I'm

proceeding. (Application specialist #1)

The tree revealed the complexity of time tracking in a tangible and even surprising way. Em-
ployees admitted they were not thinking about the many peculiarities of time tracking after
they had built a mental model of the rules. Neglecting details in everyday task categorisation
did not prevent them from submitting correct time reports. A possibility to misuse the tree
by following the rules to the letter and avoiding any creativity in categorisation was concern-

ing for some employees. It was suggested the information in the tree would be used for an

35

algorithm which would categorise tasks automatically given an input. A program using the
algorithm would reduce the need to transfer the knowledge in the tree to every employee

separately.

I feel that when people try to follow processes step by step without giving it
much of a thought, it limits how somebody can react. I also feel that it doesn’t
improve one’s ways of working if he’s just [following the protocol blindly] with-

out giving it much of a thought. (Squad leader #2)

6.3 Insight of the time tracking process

Time tracking was perceived to be the most annoying part of the job. The purpose of time
tracking was recognised but it was seen as the "mandatory evil," non-trivial activity. Time
tracking process was compared to a field of art, as employees needed creativity to figure
out the correct category for an activity, and on top of that favouring customer work related
categories whenever possible. Employees did not see ways to influence time tracking for the

better, so they were just trying to live with it.

Filling in timesheets is - well, it is not that difficult for now, I'm used to it, but it

still feels like [an] extra thing to do, so it’s a bit annoying. (Developer #4)

When the others advised me, they made it [time tracking] sound easy, but for me

it was extremely confusing - I don’t remember why. (Squad leader #3)

Time tracking was seen to get easier by time, as the mental model of categorisation rules
formed. However, even after one and half year tenure a developer was still making occa-
sional mistakes with categorisation. The decision tree aided in learning the categorisation
and building a mental model of the categorisation rules. After employees had created a men-
tal model for categorisation, using the tree was not seen as sustainable anymore. It would
have been too slow to find every task from the tree every time it occurred. Instead, the focus
shifted to other problems in time tracking, namely, reporting non-billable hours, exceeding
time estimations, and recalling tasks done throughout a day or a week. We will examine

these three problems in detail in the following paragraphs.

36

Reporting billable hours was considered as an essential part of consulting business, and it was
even recognised as a key performance indicator. Developing internal tools was perceived
to be respected, but organisational and administrative tasks, or tasks related to thinking,
learning and conversations, were experienced to be hard to categorise. A developer had
a feeling of being frowned upon if they reported too much time on categories related to

internal work.

I feel there is a push towards billable assignments, the customer work. I do feel

that those are valued more highly. (Squad leader #2)

Exceeding time estimations occasionally caused developers to feel guilty. They felt pressure
to stay within an estimated time frame and to report only the estimated amount of hours
to a customer work related category. If they had exceeded the estimated time frame, they
sometimes hid the exceeding effort by distributing it to other, mostly internal work related
categories. Estimating a needed time frame in advance was seen as difficult due to the nature
of software maintenance work, as the systems in service were not thoroughly familiar for
the developers. Learning to do better estimations was expected to require a feedback loop
of following realised time spent and comparing it to estimations, and this was lacking for
many systems. Regardless of the balance for estimated and realised effort, the employees

experienced the company was encouraging them to report the actual working hours honestly.

For sure, sometimes if this is supposed to take [a] few hours and you spend half
a day, you kind of feel bad but still that’s the amount of work it took to complete,
so I’'m putting down that. (Developer #2)

Recalling tasks done throughout a day or a week after time had passed was seen as really
difficult or even impossible. Developers were serving several customers and working often
with several tasks in parallel. Developers acknowledged the need to keep prompt notes on
tasks at hand and the time that was spent on a task during the day. However, note keeping
was seen as an additional task which needed to be remembered to do, and some employees
struggled with it. Tooling was seen related to the problem of following promptly with a task
and the amount of time it took. The current time tracking system was experienced to be

cumbersome to use and missing a timer feature for easily tracking time spent on an activity.

37

Developers thought that if they were able to choose the tool of their choice they could be

more timely and accurate with their time reports.

If you don’t do it [time tracking] straight away it’s often a problem of simply

recalling what you did. (Developer #2)

It can be that I did fifteen minutes this, half an hour that - ten different assign-
ments per day. Sometimes we have ideal weeks so that I can focus mainly on

one customer’s development tickets. (Developer #1)

There are a lot of people who use 3rd party tools to manage their own time, and
then they move this to [the time tracking tool]. I would say that maybe figuring
out how to integrate 3rd party tools with what we have [...] would allow people

to track their own time more accurately. (Squad leader #2)

38

7 Discussion

7.1 Summary

The research problem was to study what kind of instructions would aid in the time tracking
process for software maintenance service. It was found that detailed instructions for cate-
gorising activities was helpful for new employees. The level of detail was concerning only
in the case it would guide employees to follow instructions to the letter and avoid any cre-
ativity. Additionally, a major revelation rose unexpectedly from the research: time tracking

was perceived as the most annoying part of the job.

7.2 Mapping exercise

To begin with a time tracking system, listing activities in software maintenance service was
recommended by Shoukourian and Danielyan (2011). It was said to prepare team members
for time tracking practices and to reveal problems, like untraceable communication methods.
In the case study, the exercise did not raise awareness of any problems within current activ-
ities. The exercise was useful for creating the artifact because the team provided so many
examples of activities to be included. The exercise itself had value for employees with short
tenure. However, as the tree had all the same activities that were produced in the exercise, it
would be enough for new joiners to use the tree only and not participate in another mapping

exercise.

7.3 Instructions

The artifact, the instructions, followed the same format as was presented by April (2010).
Another possible way to format and present instructions would have been a table with cate-
gories in the first column and possible actions belonging to the category in the second. The
table would possibly have worked with the same data that was used in the decision tree, al-
though the question would have been presented in the opposite order - instead of thinking

about the task at hand and finding a category for it, the user would have needed to think: "If I

39

use this category, my task should be similar to those listed here". The table could have been

implemented in the same web page as the previous instructions in the organisation were.

The second alternative for the decision tree would have been a format of "Frequently Asked
Questions (FAQ)". The activities could have been the questions and categories the answers.
The FAQ format might have been better than the table because it could have been arranged
to similar sections as the tree was structured, for example headlines regarding on-boarding
activities or customer backlog related tasks. Under the headlines the activities could have
been formatted to descriptions of a situation where such an activity would have happened.

This format would have been easy to embed in the existing web page for instructions.

Presenting the information in a web page instead of presenting the tree in a PDF file would
have supported faster search functions from a web browser compared to a PDF file. Also, the
instructions would have been all in the same page as compared to now two different sources.
A benefit for the PDF file was that users could download it to their own computer for faster

access.

With additional program supporting interactions, the decision tree format could have been
taken further. The first question could have asked for the group of activities and then revealed
the activities within that group only. This approach would have hidden the size of the tree

and possibly made it more appealing to use.

In practice it was experienced that the tree lacked examples for administrative tasks and com-
munication. Employees faced difficulties in categorising time spent in reading and replying
email or instant messages, and tasks regarding thinking, learning and preparations. The deci-
sion tree did not guide in building a mental model for categorising these activities to neither
customer nor internal work. An iteration for the tree would have been necessary to document

the context the organisation wanted employees to tie these activities into.

The tree was made very detailed to be the opposite of the rather abstract instructions the
company previously had. While doing this, an advice for finding a balance between detail
and clarity from Shoukourian and Danielyan (2011)) was forgotten. As they stated, a precise
list of activities would make time tracking more laborious, and that would not be ideal since

time tracking was a never-ending activity. However, the decision tree did not increase the

40

amount of categories for time tracking - it only provided more examples for categorising

activities.

The detailed tree provided enough examples for new joiners to find matching activities to
tasks they were reporting. For this use case, the artifact was useful and helpful. We can say
it had utility (Hevner et al. 2004). The artifact would continue to provide correct answers
as long as the underlying categorisation wouldn’t change. In case the categorisation rules
changed, the tree should have been updated accordingly. As the tree was not implemented in
the same web page as the existing instructions in the organisation, it would be less likely to
be updated. Thus, the sustainability, in other word the fitness (Gill and Hevner 201 1)), of the
artifact was not certain. To ensure needed updates, the information in the tree would have

been better to implement in the web page.

7.4 Time tracking process

The artifact lost its utility when an employee had learned the categorisation rules. The prob-
lem of time tracking changed when the rules were memorised and thus the same instructions
did not aid developers anymore. Developers felt stress due to unclear context for administra-
tive tasks, and when they needed more time to finish a development ticket than they initially
estimated. The organisation was perceived to value customer work over internal work, but to
avoid disappointing customers with an expensive bill, developers under-reported their hours
to customer related work and over-reported them in internal work categories when in doubt
of context or exceeding the estimated time frame. Under-reporting was called padding by
Yakura (2001)), and she, too, witnessed developers being ashamed of billing the whole time

in case they thought they should have implemented a solution sooner.

Another source for stress was the need to keep a note of ongoing tasks for time reporting.
Developers were working with multiple tasks parallel or interleaved, and found it hard to
separate time spent for each activity afterwards. This is exactly as Sindhgatta et al. (2010)
observed software maintenance work to be: developers working with many tasks parallel
and facing difficulties in separating a day in thirty minute increments. Keeping prompt notes

is not solvable by the same instructions that aid in categorisation - the problem in this case

41

would be of not knowing the activity in the first place. For this problem, entirely different
instructions or even managerial intervention might be needed. As April (2010) notes, it is a

managerial problem to ensure employees track their time accurately.

7.5 Limitations

This study has several limitations. First, the focus is on one team within one organisation.
The contribution might be generalisable to other software maintenance teams based on the
similarities within the results from the interviews of the target team and research in the
matter. However, generalisability was not the goal of this research, but rather providing

in-depth knowledge of time tracking practices in a software maintenance team.

Second, only one solution candidate and one iteration was done in this study. Thus, this
study cannot comment on how other kinds of instructions would aid in time tracking besides
the constructed artifact. The results from this research are the first step in a larger process to

understand the problem domain and find solutions for it.

Third, the information was gathered via interviews. There was a notable power imbalance
in the interviews due to the role of the author as a supervisor or leader for the interviewees.
Despite the power imbalance, interview answers demonstrated uniformly how the artifact

was used and how time tracking was perceived.

This research validated some observations from previous research and contributes one case

study to the so far scarce research of time reporting in software maintenance context.

7.6 Further research

To answer the question of what kind of instructions would aid in time tracking, more solution
candidates and iterations would be needed. At least two separate problems were revealed in
this study: to learn the time tracking rules, and to infer the context for activities. The further

research could seek suitable instructions for these problems.

Further research could address the managerial problem of guiding employees so that they

42

did not need to feel guilt for time they spent on activities. Effect of a feedback loop from

estimated and realised time frame, or feedback from customers regarding time reports could

be investigated.

Further research could study possible solutions for keeping track of tasks throughout a day.

Possibilities to aid in note keeping via coaching or tooling could be a path for further re-

search. It would be interesting to study how longer than half an hour increments would

affect customer invoicing and employee experience of time tracking.

7.7

7.8

Implications for practice

. Time tracking is tedious, as was confirmed in this research in the context of a small

case study. It’s a never-ending activity (Shoukourian and Danielyan 2011)) and it takes
time to learn it. This study found that detailed instructions with many examples of real
life activities help in learning the time tracking rules. Give yourself the time to learn

the rules.

. The need to seek guidance from instructions was seen to lessen within time in this

case study. The time tracking rules were learnt and developers were able to deduce
a category for an activity by heart. Aim to understand the principles of time tracking

and task categorisation to enable categorising tasks easily without instructions.

. It’s difficult to separate time spent for activities afterwards (Sindhgatta et al. 2010). In

this case study it was suggested to find your own way of keeping notes on a task and
its duration as an inherent part of the task. Seek support from peers and management

to find alternative tools and practices.

Implications for management

. A company could avoid losing money by supporting developers in reporting their hours

correctly and avoiding under-reporting. This study confirmed the finding of Yakura
(2001)) about developers under-reporting their hours when they felt guilty or unsure of

justification for reporting hours in customer work categories.

. Detailed instructions were seen to aid in learning time tracking rules in this research.

43

However, the instructions weren’t always enough to aid in learning the principles for
deciding a category between internal and customer work for those activities that were
not directly related to customer requirements, for example thinking and learning. Man-
agers might need to coach developers in deducing the right context for an activity
despite having detailed instructions.

. If reported hours are not accurate, it could result in incorrect future estimations and
too high customer expectations (Sindhgatta et al.|[2010). Coaching developers in cor-
rect categorisation might reduce under-reporting and ensure correct baseline for future

estimations.

44

8 Conclusion

This study set out to discover what kind of instructions would help time tracking in software
maintenance context. Software maintenance is a neglected part of the development life cycle
in research (Sharon Christa et al. 2017). The literature review in this study reveals how time
reports are used as source data in several research papers. In practice, time reports are used
for invoicing customers and estimating future work (Yakura 2001} Sindhgatta et al. [2010).
However, time reports were seen subject to inaccurate data (Yakura 2001} Sindhgatta et
al. 2010)and there was a gap in literature exploring how companies can ensure and increase

the accuracy.

Based on a design science research in a consultancy company we found that detailed in-
structions aided employees to initially learn the categorisation rules of activities for time
reporting. The detailed instructions were presented as the artifact of the study. The artifact
was instructions in the format of a decision tree, aiding a user to categorise an activity with
sixty examples of activities and their correct category. The data for the tree was gathered
from the team in an exercise where team members could write any of their daily activities

and map them to current categorisation.

The tree had utility because it was perceived as an useful aid when learning to categorise tasks
initially. Its use was not seen sustainable after about a year because reporting time was faster
when a developer remembered task categorisation by heart. Different solution candidates

would be needed to solve problems in time tracking after learning the categorisation.

The research revealed unanticipated problems regarding time tracking. After memorising
the categorisation rules, the hardest thing was perceived to relate to justification of used
hours on an activity: developers felt guilt when exceeding the estimated time frame for
a customer work item, and when they used considerable time on internal work instead of
customer work. Another problem was related to simply recalling daily activities. In software
maintenance, developers usually worked with several parallel and interleaved tasks, so it was
hard to separate time spent on each task afterwards (Sindhgatta et al. 2010). Necessity but

tediousness of keeping prompt notes arose in this research. All in all, time tracking was

45

perceived as the most annoying part of the job.

Our research contributes to the scarce research of time tracking processes in software main-
tenance by documenting experience in one company and showing how detailed instructions
can help to learn task categorisation rules for time reporting. We confirmed additional ob-
stacles in the time tracking process that were previously identified by Yakura (2001) and
Sindhgatta et al. (2010). The results cannot answer these obstacles but build the first step for

further research in the topic.

Further research is encouraged to propose more solution candidates for instructions to aid in
time tracking process. This research gives basis for developing detailed instructions further
and understanding the problem domain better to address, for example, note keeping habits

or experienced guilt in time reporting.

46

Bibliography

Abran, Alain, Ilionar Silva, and Laura Primera. 2002. “Field studies using functional size
measurement in building estimation models for software maintenance”. Journal of Software
Maintenance and Evolution: Research and Practice 14 (1): 31-64. 1SSN: 1532-0618. https:
//doi.org/10.1002/smr.245.

Al-ahmadi, Haneen, Rodziah Atan, Abdul Azim, Abd Ghani, Masrah Azrifah, and Azmi
Murad. 2011. Agent-Based Cmmi for Software Maintenance Process Measurement Model.
Visited on August 21, 2022. http://worldcomp-proceedings.com/proc/p2011/SER2172.pdf.

April, Alain. 2010. “Studying Supply and Demand of Software Maintenance and Evolu-
tion Services”. In 2010 Seventh International Conference on the Quality of Information and

Communications Technology, 352-357. https://do1.org/10.1109/QUATIC.2010.65.

April, Alain, Jane Huffman Hayes, Alain Abran, and Reiner Dumke. 2005. “Software Main-
tenance Maturity Model (SMmm): the software maintenance process model”. Journal of
Software Maintenance and Evolution: Research and Practice 17 (3): 197-223. 1SSN: 1532-
0618. https://doi.org/10.1002/smr.311.

Asghar, M Zubair, Imran Ali Khan, Waqas Anwar, and Bashir Ahmad. 2011. “Systemized
Approach for Software Corrective Maintenance Effort Reduction”, 8. Visited on August 14,
2022. https://www.academia.edu/download/63213694/J._20Basic._20Appl._20Sci1._20Res.
__201101356-1362__202011.pdf.

Aversano, L., S. Betti, A. De Lucia, and S. Stefanucci. 2001. “Introducing workflow manage-
ment in software maintenance processes”. In Proceedings IEEE International Conference on
Software Maintenance. ICSM 2001, 441-450. ISSN: 1063-6773. https://do1.org/10.1109/
ICSM.2001.972757.

Bhatt, Pankaj, Williams K, Gautam Shroff, and Arun K. Misra. 2006. “Influencing factors in
outsourced software maintenance”. ACM SIGSOFT Software Engineering Notes 31 (3): 1-6.
ISSN: 0163-5948. https://doi.org/10.1145/1127878.1127883.

47

https://doi.org/10.1002/smr.245
https://doi.org/10.1002/smr.245
http://worldcomp-proceedings.com/proc/p2011/SER2172.pdf
https://doi.org/10.1109/QUATIC.2010.65
https://doi.org/10.1002/smr.311
https://www.academia.edu/download/63213694/J._20Basic._20Appl._20Sci._20Res.__201101356-1362__202011.pdf
https://www.academia.edu/download/63213694/J._20Basic._20Appl._20Sci._20Res.__201101356-1362__202011.pdf
https://doi.org/10.1109/ICSM.2001.972757
https://doi.org/10.1109/ICSM.2001.972757
https://doi.org/10.1145/1127878.1127883

Bhatt, Pankaj, Gautam Shroff, C. Anantaram, and Arun Kumar Misra. 2006. “An influence
model for factors in outsourced software maintenance”. Journal of Software Maintenance
and Evolution: Research and Practice 18 (6): 385-423. 1SSN: 1532-0618. https://doi.org/10.
1002/smr.339.

Bhatt, Pankaj, Gautam Shroff, and Arun K. Misra. 2004. “Dynamics of software mainte-
nance”. ACM SIGSOFT Software Engineering Notes 29 (5): 1-5. 1SSN: 0163-5948. https:
//do1.org/10.1145/1022494.1022513.

Bianchi, A., D. Caivano, F. Lanubile, and G. Visaggio. 2001. “Evaluating software degrada-
tion through entropy”. In Proceedings Seventh International Software Metrics Symposium,

210-219. ISSN: 1530-1435. https://do1.org/10.1109/METRIC.2001.915530.

Bosch, Jan. 2009. “From software product lines to software ecosystems”. In Proceedings
of the 13th International Software Product Line Conference, 111-119. SPLC ’09. USA:
Carnegie Mellon University. Visited on June 11, 2022.

Bourque, Pierre, R. E Fairley, and IEEE. 2014. SWEBOK: guide to the software engineering
body of knowledge. OCLC: 880350861. ISBN: 978-0-7695-5166-1.

Buchmann, Irene, Sebastian Frischbier, and Dieter Putz. 2011. “Towards an Estimation Model
for Software Maintenance Costs”. In 2011 15th European Conference on Software Mainte-
nance and Reengineering, 313-316. ISSN: 1534-5351. https://doi.org/10.1109/CSMR.2011.
45.

Cavalcanti, Yguarata Cerqueira, Eduardo Santana de Almeida, Carlos Eduardo Albuquerque
da Cunha, Daniel Lucrédio, and Silvio Romero de Lemos Meira. 2010. “An Initial Study
on the Bug Report Duplication Problem”. In 2010 14th European Conference on Software
Maintenance and Reengineering, 264-267. ISSN: 1534-5351. https://doi.org/10.1109/
CSMR.2010.52.

Chapin, Ned, Joanne E. Hale, Khaled Md Khan, Juan F. Ramil, and Wui-Gee Tan. 2001.
“Types of software evolution and software maintenance”. Num Pages: 28 Publisher: Wiley-
Blackwell, 111 River Street Hoboken NJ 07030-5774 USA, Journal of Software Mainte-
nance and Evolution: Research and Practice 13 (1): 3-30. 1SSN: 1532-060X. https://doi.org/
http://dx.doi.org/10.1002/smr.220.

48

https://doi.org/10.1002/smr.339
https://doi.org/10.1002/smr.339
https://doi.org/10.1145/1022494.1022513
https://doi.org/10.1145/1022494.1022513
https://doi.org/10.1109/METRIC.2001.915530
https://doi.org/10.1109/CSMR.2011.45
https://doi.org/10.1109/CSMR.2011.45
https://doi.org/10.1109/CSMR.2010.52
https://doi.org/10.1109/CSMR.2010.52
https://doi.org/http://dx.doi.org/10.1002/smr.220
https://doi.org/http://dx.doi.org/10.1002/smr.220

Chen, Celia, Reem Alfayez, Kamonphop Srisopha, Barry Boehm, and Lin Shi. 2017. “Why
Is It Important to Measure Maintainability and What Are the Best Ways to Do 1t?” In 2017
IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C),
377-378. https://do1.org/10.1109/ICSE-C.2017.75.

Chen, Celia, Reem Alfayez, Kamonphop Srisopha, Lin Shi, and Barry Boehm. 2016. “Eval-
uating Human-Assessed Software Maintainability Metrics”. In Software Engineering and
Methodology for Emerging Domains, edited by Lu Zhang and Chang Xu, 120-132. Com-
munications in Computer and Information Science. Singapore: Springer. ISBN: 978-981-10-

3482-4. https://do1.org/10.1007/978-981-10-3482-4_9.

Choudhari, Jitender, and Ugrasen Suman. 2014. “Extended iterative maintenance life cycle
using eXtreme programming”. ACM SIGSOFT Software Engineering Notes 39 (1): 1-12.
ISSN: 0163-5948. https://doi.org/10.1145/2557833.2557845.

Desharnais, Jean-Marc, and Alain April. 2010. “Software maintenance productivity and ma-
turity”. In Proceedings of the 11th International Conference on Product Focused Software,
121-125. PROFES ’10. New York, NY, USA: Association for Computing Machinery. ISBN:
978-1-4503-0281-4. https://doi.org/10.1145/1961258.1961289.

Fitzgerald, Guy, Steve Counsell, and Jason Peters. 2013. “A Study of Web Maintenance in
an Industrial Setting”. In 2013 17th European Conference on Software Maintenance and
Reengineering, 391-394. ISSN: 1534-5351. https://doi.org/10.1109/CSMR.2013.56.

Friedrich, Jan, and Klaus Bergner. 2011. “Formally founded, plan-based enactment of soft-
ware development processes”. In Proceedings of the 2011 International Conference on Soft-
ware and Systems Process, 199-203. ICSSP ’11. New York, NY, USA: Association for Com-
puting Machinery. ISBN: 978-1-4503-0730-7. https://doi.org/10.1145/1987875.1987908.

Gill, T. Grandon, and Alan R. Hevner. 2011. “A Fitness-Utility Model for Design Science
Research”. In Service-Oriented Perspectives in Design Science Research, edited by Hemant
Jain, Atish P. Sinha, and Padmal Vitharana, 237-252. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer. ISBN: 978-3-642-20633-7. https://do1.org/10.1007/978-3-642-
20633-7_17.

49

https://doi.org/10.1109/ICSE-C.2017.75
https://doi.org/10.1007/978-981-10-3482-4_9
https://doi.org/10.1145/2557833.2557845
https://doi.org/10.1145/1961258.1961289
https://doi.org/10.1109/CSMR.2013.56
https://doi.org/10.1145/1987875.1987908
https://doi.org/10.1007/978-3-642-20633-7_17
https://doi.org/10.1007/978-3-642-20633-7_17

Hevner, Alan R., Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. “Design Science
in Information Systems Research”. Publisher: Management Information Systems Research
Center, University of Minnesota, MIS Quarterly 28 (1): 75-105. 1SSN: 0276-7783. https:
//doi.org/10.2307/25148625.

Hira, Anandi, and Barry Boehm. 2016. “Using Software Non-Functional Assessment Pro-
cess to Complement Function Points for Software Maintenance”. In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
1-6. ESEM ’16. New York, NY, USA: Association for Computing Machinery. ISBN: 978-1-
4503-4427-2. https://doi.org/10.1145/2961111.2962615.

. 2018. “COSMIC Function Points Evaluation for Software Maintenance”. In Pro-

ceedings of the 11th Innovations in Software Engineering Conference, 1-11. ISEC *18. New
York, NY, USA: Association for Computing Machinery. 1SBN: 978-1-4503-6398-3. https:
/ldoi.org/10.1145/3172871.3172874.

IEEE. 2017. “ISO/IEC/IEEE International Standard - Systems and software engineering —
Software life cycle processes”. Conference Name: ISO/IEC/IEEE 12207:2017(E) First edi-
tion 2017-11, ISO/IEC/IEEE 12207:2017(E) First edition 2017-11, 1-157. https://doi.org/
10.1109/IEEESTD.2017.8100771.

. 2022. “ISO/IEC/IEEE International Standard - Software engineering - Software life
cycle processes - Maintenance”. Conference Name: ISO/IEC/IEEE 14764:2022(E), ISO/IEC/IEEE
14764:2022(E), 1-46. https://doi.org/10.1109/IEEESTD.2022.9690131.

Ivan, Ton, and Mihai Liviu Despa. 2016. “Estimating Maintenance Cost for Web Applica-
tions”. Num Pages: 10 Place: Bucharest, Romania Publisher: INFOREC Association, Infor-
matica Economica 20 (4): 34—43. 1SSN: 1453-1305. https://doi.org/10.12948/issn14531305/
20.4.2016.06.

Kasanen, Eero. 1993. “The Constructive Approach in Management Accounting Research”,

23.

50

https://doi.org/10.2307/25148625
https://doi.org/10.2307/25148625
https://doi.org/10.1145/2961111.2962615
https://doi.org/10.1145/3172871.3172874
https://doi.org/10.1145/3172871.3172874
https://doi.org/10.1109/IEEESTD.2017.8100771
https://doi.org/10.1109/IEEESTD.2017.8100771
https://doi.org/10.1109/IEEESTD.2022.9690131
https://doi.org/10.12948/issn14531305/20.4.2016.06
https://doi.org/10.12948/issn14531305/20.4.2016.06

Krishnan, M. S., C. H. Kriebel, Sunder Kekre, and Tridas Mukhopadhyay. 2000. “An empir-
ical analysis of productivity and quality in software products”. Management Science 46 (6):
745-759. 1SSN: 00251909. https://www .proquest.com/abicomplete/docview/213173985/
abstract/3BAEES5597CFF4AFBPQ/1.

Kumar, Sheo, Sugandha Chakraverti, S Agarwal, and Ashish Chakraverti. 2012. “Modified
Cocomo Model For Maintenance cost Estimation of Real Time System Software”. Inter-
national Journal of Computer Science and Network 1. Visited on August 21, 2022. https:
//www .researchgate . net/profile/ Ashish - Chakraverti/publication/265186401 _Modified _
Cocomo_Model _For_Maintenance_cost_Estimation_of _Real _Time_System_ Software/
links / 56¢c2068508ae44da37ff50e8 / Modified - Cocomo - Model - For - Maintenance - cost -

Estimation-of-Real-Time-System-Software.pdf.

Leotta, Maurizio, Filippo Ricca, Giuliano Antoniol, Vahid Garousi, Junji Zhi, and Guen-
ther Ruhe. 2013. “A Pilot Experiment to Quantify the Effect of Documentation Accuracy
on Maintenance Tasks”. In 2013 IEEE International Conference on Software Maintenance,

428-431. ISSN: 1063-6773. https://do1.org/10.1109/ICSM.2013.64.

Lientz, B. P, and E. B. Swanson. 1980. “Software Maintenance Management”. Addison

Wesley, Reading MA.

Martinez-fernandez, Silverio, Claudia P. Ayala, Xavier Franch, Helena Martins Marques,
and David Ameller. 2014. “Towards guidelines for building a business case and gathering
evidence of software reference architectures in industry”. Journal of Software Engineering

Research and Development 2 (1): 1-27. https://doi.org/10.1186/s40411-014-0007-5.

Mellegard, Niklas, Adry Ferwerda, Kenneth Lind, Rogardt Heldal, and Michel R. V. Chau-
dron. 2016. “Impact of Introducing Domain-Specific Modelling in Software Maintenance:
An Industrial Case Study”. Conference Name: IEEE Transactions on Software Engineer-
ing, IEEE Transactions on Software Engineering 42 (3): 245-260. 1SSN: 1939-3520. https:
/ldo1.org/10.1109/TSE.2015.2479221.

Nan, Ning, and Donald E. Harter. 2009. “Impact of Budget and Schedule Pressure on Soft-
ware Development Cycle Time and Effort”. IEEE Transactions on Software Engineering 35
(5): 624—-637. 1SSN: 00985589. https://doi.org/10.1109/TSE.2009.18.

51

https://www.proquest.com/abicomplete/docview/213173985/abstract/3BAEE5597CFF4AFBPQ/1
https://www.proquest.com/abicomplete/docview/213173985/abstract/3BAEE5597CFF4AFBPQ/1
https://www.researchgate.net/profile/Ashish-Chakraverti/publication/265186401_Modified_Cocomo_Model_For_Maintenance_cost_Estimation_of_Real_Time_System_Software/links/56c2068508ae44da37ff50e8/Modified-Cocomo-Model-For-Maintenance-cost-Estimation-of-Real-Time-System-Software.pdf
https://www.researchgate.net/profile/Ashish-Chakraverti/publication/265186401_Modified_Cocomo_Model_For_Maintenance_cost_Estimation_of_Real_Time_System_Software/links/56c2068508ae44da37ff50e8/Modified-Cocomo-Model-For-Maintenance-cost-Estimation-of-Real-Time-System-Software.pdf
https://www.researchgate.net/profile/Ashish-Chakraverti/publication/265186401_Modified_Cocomo_Model_For_Maintenance_cost_Estimation_of_Real_Time_System_Software/links/56c2068508ae44da37ff50e8/Modified-Cocomo-Model-For-Maintenance-cost-Estimation-of-Real-Time-System-Software.pdf
https://www.researchgate.net/profile/Ashish-Chakraverti/publication/265186401_Modified_Cocomo_Model_For_Maintenance_cost_Estimation_of_Real_Time_System_Software/links/56c2068508ae44da37ff50e8/Modified-Cocomo-Model-For-Maintenance-cost-Estimation-of-Real-Time-System-Software.pdf
https://www.researchgate.net/profile/Ashish-Chakraverti/publication/265186401_Modified_Cocomo_Model_For_Maintenance_cost_Estimation_of_Real_Time_System_Software/links/56c2068508ae44da37ff50e8/Modified-Cocomo-Model-For-Maintenance-cost-Estimation-of-Real-Time-System-Software.pdf
https://doi.org/10.1109/ICSM.2013.64
https://doi.org/10.1186/s40411-014-0007-5
https://doi.org/10.1109/TSE.2015.2479221
https://doi.org/10.1109/TSE.2015.2479221
https://doi.org/10.1109/TSE.2009.18

Napier, Nannette P., Lars Mathiassen, and Daniel Robey. 2011. “Building contextual am-
bidexterity in a software company to improve firm-level coordination”. European Journal of

Information Systems 20 (6): 674—690. 1SSN: 0960085X. https://do1.org/10.1057/ej1s.2011.32.

Nguyen, Vu, Barry Boehm, and Phongphan Danphitsanuphan. 2009. “Assessing and Es-
timating Corrective, Enhancive, and Reductive Maintenance Tasks: A Controlled Experi-
ment”. In 2009 16th Asia-Pacific Software Engineering Conference, 381-388. ISSN: 1530-
1362. https://doi.org/10.1109/APSEC.2009.49.

Niessink, Frank, and Hans van Vliet. 2000. “Software maintenance from a service perspec-
tive”. Journal of Software Maintenance: Research and Practice 12 (2): 103—-120. 1SSN:
1096-908X. https://doi.org/10.1002/(SICI) 1096 - 908X (200003/04) 12:2<103 :: AID -
SMR205>3.0.CO;2-S.

Ooi, Ginny, and Christina Soh. 2003. “Developing an activity-based costing approach for
system development and implementation”. ACM SIGMIS Database: the DATABASE for Ad-
vances in Information Systems 34 (3): 54-71. 1SSN: 0095-0033. https://doi.org/10.1145/
937742.937748.

Parasuraman, A., Valarie A. Zeithaml, and Leonard L. Berry. 1985. “A Conceptual Model of
Service Quality and Its Implications for Future Research”. Publisher: American Marketing
Association, Journal of Marketing 49 (4): 41-50. 1SSN: 00222429. https://doi.org/10.1177/
002224298504900403.

Pefters, Ken, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee. 2008. “A De-
sign Science Research Methodology for Information Systems Research”. Journal of Man-
agement Information Systems 24 (3): 45-77. 1SSN: 0742-1222. https://doi.org/10.2753/
MIS0742-1222240302.

Penny, D.A. 2002. “An estimation-based management framework for enhancive mainte-
nance in commercial software products”. In International Conference on Software Main-
tenance, 2002. Proceedings. 122—130. ISSN: 1063-6773. https://doi.org/10.1109/ICSM.
2002.1167759.

52

https://doi.org/10.1057/ejis.2011.32
https://doi.org/10.1109/APSEC.2009.49
https://doi.org/10.1002/(SICI)1096-908X(200003/04)12:2<103::AID-SMR205>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-908X(200003/04)12:2<103::AID-SMR205>3.0.CO;2-S
https://doi.org/10.1145/937742.937748
https://doi.org/10.1145/937742.937748
https://doi.org/10.1177/002224298504900403
https://doi.org/10.1177/002224298504900403
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1109/ICSM.2002.1167759
https://doi.org/10.1109/ICSM.2002.1167759

Piirainen, Kalle A, and Rafael A Gonzalez. 2013. “Constructive Synergy in Design Sci-
ence Research: A Comparative Analysis of Design Science Research and the Construc-
tive Research Approach”, 29. Visited on August 14, 2022. https://www . researchgate .
net/profile/Kalle - Piirainen/publication/262198751 _Constructive _Synergy _in_Design _
Science _ Research _ A _ Comparative _ Analysis _ of _ Design _ Science _ Research _and _
the _ Constructive _Research _ Approach/links/02e7e539t4ccf19t88000000/ Constructive -
Synergy - in - Design - Science - Research - A - Comparative - Analysis - of - Design - Science -

Research-and-the-Constructive-Research- Approach.pdf.

Rahman, Hanif Ur, Mushtaq Raza, Palwasha Afsar, and Habib Ullah Khan. 2021. “Empirical
Investigation of Influencing Factors Regarding Offshore Outsourcing Decision of Applica-
tion Maintenance”. Conference Name: IEEE Access, IEEE Access 9:58589-58608. ISSN:
2169-3536. https://do1.org/10.1109/ACCESS.2021.3073315.

Rahman, Hanif Ur, Mushtaq Raza, Palwasha Afsar, Habib Ullah Khan, and Shah Nazir.
2020. “Analyzing Factors That Influence Offshore Outsourcing Decision of Application
Maintenance”. Conference Name: IEEE Access, IEEE Access 8:183913—-183926. ISSN: 2169-
3536. https://doi.org/10.1109/ACCESS.2020.3029501.

Rao, B.S., and N.L. Sarda. 2002. “Applicability of IEEE maintenance process for correc-
tive maintenance outsourcing-an empirical study”. In International Conference on Software
Maintenance, 2002. Proceedings. 74—83. ISSN: 1063-6773. https://do1.org/10.1109/ICSM.
2002.1167754.

Ricca, Filippo, Maurizio Leotta, Gianna Reggio, Alessandro Tiso, Giovanna Guerrini, and
Marco Torchiano. 2012. “Using UniMod for maintenance tasks: An experimental assessment
in the context of model driven development”. In 2012 4th International Workshop on Mod-
eling in Software Engineering (MISE), 77-83. ISSN: 2156-7891. https://doi.org/10.1109/
MISE.2012.6226018.

Ruhe, Melanie, Ross Jeffery, and Isabella Wieczorek. 2003. “Cost estimation for web ap-
plications”. In Proceedings of the 25th International Conference on Software Engineering,
285-294. ICSE °03. USA: IEEE Computer Society. ISBN: 978-0-7695-1877-0, visited on
June 11, 2022.

53

https://www.researchgate.net/profile/Kalle-Piirainen/publication/262198751_Constructive_Synergy_in_Design_Science_Research_A_Comparative_Analysis_of_Design_Science_Research_and_the_Constructive_Research_Approach/links/02e7e539f4ccf19f88000000/Constructive-Synergy-in-Design-Science-Research-A-Comparative-Analysis-of-Design-Science-Research-and-the-Constructive-Research-Approach.pdf
https://www.researchgate.net/profile/Kalle-Piirainen/publication/262198751_Constructive_Synergy_in_Design_Science_Research_A_Comparative_Analysis_of_Design_Science_Research_and_the_Constructive_Research_Approach/links/02e7e539f4ccf19f88000000/Constructive-Synergy-in-Design-Science-Research-A-Comparative-Analysis-of-Design-Science-Research-and-the-Constructive-Research-Approach.pdf
https://www.researchgate.net/profile/Kalle-Piirainen/publication/262198751_Constructive_Synergy_in_Design_Science_Research_A_Comparative_Analysis_of_Design_Science_Research_and_the_Constructive_Research_Approach/links/02e7e539f4ccf19f88000000/Constructive-Synergy-in-Design-Science-Research-A-Comparative-Analysis-of-Design-Science-Research-and-the-Constructive-Research-Approach.pdf
https://www.researchgate.net/profile/Kalle-Piirainen/publication/262198751_Constructive_Synergy_in_Design_Science_Research_A_Comparative_Analysis_of_Design_Science_Research_and_the_Constructive_Research_Approach/links/02e7e539f4ccf19f88000000/Constructive-Synergy-in-Design-Science-Research-A-Comparative-Analysis-of-Design-Science-Research-and-the-Constructive-Research-Approach.pdf
https://www.researchgate.net/profile/Kalle-Piirainen/publication/262198751_Constructive_Synergy_in_Design_Science_Research_A_Comparative_Analysis_of_Design_Science_Research_and_the_Constructive_Research_Approach/links/02e7e539f4ccf19f88000000/Constructive-Synergy-in-Design-Science-Research-A-Comparative-Analysis-of-Design-Science-Research-and-the-Constructive-Research-Approach.pdf
https://www.researchgate.net/profile/Kalle-Piirainen/publication/262198751_Constructive_Synergy_in_Design_Science_Research_A_Comparative_Analysis_of_Design_Science_Research_and_the_Constructive_Research_Approach/links/02e7e539f4ccf19f88000000/Constructive-Synergy-in-Design-Science-Research-A-Comparative-Analysis-of-Design-Science-Research-and-the-Constructive-Research-Approach.pdf
https://doi.org/10.1109/ACCESS.2021.3073315
https://doi.org/10.1109/ACCESS.2020.3029501
https://doi.org/10.1109/ICSM.2002.1167754
https://doi.org/10.1109/ICSM.2002.1167754
https://doi.org/10.1109/MISE.2012.6226018
https://doi.org/10.1109/MISE.2012.6226018

Sharon Christa, V. Madhusudhan, V. Suma, and Jawahar J. Rao. 2017. “Software Mainte-
nance: From the Perspective of Effort and Cost Requirement”. In Proceedings of the Inter-
national Conference on Data Engineering and Communication Technology, edited by Suresh
Chandra Satapathy, Vikrant Bhateja, and Amit Joshi, 759—-768. Singapore: Springer. ISBN:
978-981-10-1678-3. https://doi.org/10.1007/978-981-10-1678-3_73.

Shoukourian, Arsen, and Emma Danielyan. 2011. “How to measure “soft” things?” In 2011
7th Central and Eastern European Software Engineering Conference (CEE-SECR), 1-4. htt
ps://doi.org/10.1109/CEE-SECR.2011.6188466.

Sindhgatta, Renuka, Nanjangud C. Narendra, Bikram Sengupta, Karthik Visweswariah, and
Arthur G. Ryman. 2010. “Timesheet assistant: mining and reporting developer effort”. In
Proceedings of the IEEE/ACM international conference on Automated software engineering,
265-274. ASE *10. New York, NY, USA: Association for Computing Machinery. ISBN: 978-
1-4503-0116-9. https://doi.org/10.1145/1858996.1859049.

Sneed, Harry M., and Wolfgang Prentner. 2016. “Analyzing Data on Software Evolution Pro-
cesses”. In 2016 Joint Conference of the International Workshop on Software Measurement

and the International Conference on Software Process and Product Measurement (IWSM-

MENSURA), 1-10. https://do1.org/10.1109/IWSM-Mensura.2016.013.

Subramanyam, Ramanath, Fei Lee Weisstein, and M. S. Krishnan. 2010. “User participation
in software development projects”. Communications of the ACM 53 (3): 137-141. ISSN:
0001-0782. https://do1.org/10.1145/1666420.1666455.

Yakura, Elaine K. 2001. “Billables: The valorization of time in consulting”. Num Pages: 20
Place: Thousand Oaks, United States Publisher: SAGE PUBLICATIONS, INC. The Ameri-
can Behavioral Scientist 44 (7): 1076—-1095. 1SSN: 00027642. https://doi.org/http://dx.doi.
org/10.1177/00027640121956665.

54

https://doi.org/10.1007/978-981-10-1678-3_73
https://doi.org/10.1109/CEE-SECR.2011.6188466
https://doi.org/10.1109/CEE-SECR.2011.6188466
https://doi.org/10.1145/1858996.1859049
https://doi.org/10.1109/IWSM-Mensura.2016.013
https://doi.org/10.1145/1666420.1666455
https://doi.org/http://dx.doi.org/10.1177/00027640121956665
https://doi.org/http://dx.doi.org/10.1177/00027640121956665

Appendices

A Interview questions

General questions, arising from literature:

. How do you feel about filling timesheets? What challenges do you face with time

tracking?

. Do you often work with multiple tasks in parallel, (like code review and learning ac-

tivities along with development tasks, or several development tasks at the same time)?

. Is it hard to deduce time spent for each activity afterwards?

. We estimate tickets for customers. Sometimes the estimate isn’t met and we have been

working a lot shorter or longer with a ticket than estimated. Do you feel the need to
fill in exactly the same number of hours than was estimated? Is there consequences for

not doing so?

. Do you think different categories of hours are valued differently?

Specific questions about the artifact:

1. Have you used the decision tree?
2. Do you find it useful?

3.
4

What would make it better?

. Did you attend the mapping exercise where we wrote our tasks or activities on each

category we have for time tracking? Did you find that exercise helpful for determining
which category suits a specific activity?
Have you noticed some task is missing from the instructions? Is there some tasks that

you thought would be common but hasn’t actually occurred at all in practice?

. Has there been less need for you to fix your hours after you started using the instruc-

tions?

. What do you think about our existing instructions?

. Has the new instructions changed your feelings about time tracking?

Additional questions for persons responsible for checking the validity of hours:

55

. How do you feel about your weekly task of checking reported hours?

. Has transparency of sharing hours with an invoice to a customer benefited your rela-
tionship with the customer, or how customer perceives our efforts?

. Have you used hour reports to spot trends - like workload balance, accuracy of estima-

tion, effort per customer, and effort per service request type - and acted upon them?

56

	1 Introduction
	2 Software maintenance
	2.1 Software maintenance life cycle
	2.2 Maintenance activities
	2.3 Categorisation of activities
	2.4 Outsourcing software maintenance service
	2.5 Factors for successful service
	2.6 Maturity models as guidance

	3 Time tracking
	3.1 The purpose of time tracking
	3.2 Case shoukourianhow2011: Setting up a time tracking system
	3.3 Case aprilstudying2010: Categorising tasks for a time tracking system
	3.4 Obstacles and pitfalls of time tracking

	4 Research method
	4.1 Problem and research process
	4.2 Research method
	4.3 Literature review
	4.4 Mapping exercise
	4.5 Construction of the artifact
	4.6 Interviews
	4.7 Evaluation

	5 The Artifact: Instructions for task categorisation
	6 Results
	6.1 Output of the mapping exercise
	6.2 Usage of the instructions
	6.3 Insight of the time tracking process

	7 Discussion
	7.1 Summary
	7.2 Mapping exercise
	7.3 Instructions
	7.4 Time tracking process
	7.5 Limitations
	7.6 Further research
	7.7 Implications for practice
	7.8 Implications for management

	8 Conclusion
	Bibliography
	Appendices
	A Interview questions

