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Abstract
We aim at modelling the appearance of distinct tags in a sequence of labelled objects.

Common examples of this type of data include words in a corpus or distinct species in a
sample. These sequential discoveries are often summarised via accumulation curves, which
count the number of distinct entities observed in an increasingly large set of objects. We
propose a novel Bayesian method for species sampling modelling by directly specifying the
probability of a new discovery, therefore allowing for flexible specifications. The asymp-
totic behavior and finite sample properties of such an approach are extensively studied.
Interestingly, our enlarged class of sequential processes includes highly tractable special
cases. We present a subclass of models characterized by appealing theoretical and com-
putational properties, including one that shares the same discovery probability with the
Dirichlet process. Moreover, due to strong connections with logistic regression models,
the latter subclass can naturally account for covariates. We finally test our proposal on
both synthetic and real data, with special emphasis on a large fungal biodiversity study in
Finland.

Keywords: Accumulation curves; Dirichlet process; Logistic regression; Poisson-binomial distri-
bution; Species sampling models.
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1 Introduction

Our goal is to develop a flexible procedure for modelling the appearance of previously unobserved

objects in a sequence. The sequential recording of distinct entities can be represented through

an accumulation curve, namely the cumulative number of distinct entities Kn within a collection

of n objects (Christen and Nakamura, 2000; Gotelli and Colwell, 2001). These entities can be

of various nature, including biological species (Good, 1953; Good and Toulmin, 1956), words

(Efron and Thisted, 1976; Thisted and Efron, 1987), genes (Ionita-Laza et al., 2009), bacteria

(Hughes et al., 2001; Gao et al., 2007) and cell types (Camerlenghi et al., 2020). The analysis

of accumulation curves has a rich history in statistics, as testified by the early contributions

of Fisher et al. (1943), Good (1953), and Good and Toulmin (1956). We refer to Bunge and

Fitzpatrick (1993); Gotelli and Colwell (2001) for a historical account. Several nonparametric

approaches have been developed, aiming at i) predicting the number of unseen entities (e.g. Shen

et al., 2003), or ii) estimating the probability of a new discovery (e.g. Chao and Shen, 2004;

Mao, 2004; Favaro et al., 2012). Similar tasks have also been dealt with in parametric ways (e.g.

Arrhenius, 1921; Soberon and Llorente, 1993; Flather, 1996; Diaz-Frances and Gorostiza, 2002).

Our work is inspired by the class of Bayesian nonparametric methods called species sampling

models (Pitman, 1996). In one of our motivating applications, we aim to assess how many of

the species present in a sample are missed when a given number of dna barcode sequences are

obtained. Let (Xn)n≥1 be a sequence of objects, such as fungal dna sequences in a single soil

or air sample (Abrego et al., 2020), taking values in X, which is the space of fungal species.

Among the first n observed objects X1, . . . , Xn, there will be Kn ≤ n distinct entities, or

species, representing the nth value of the accumulation curve. The values (Xn)n≥1 are randomly

generated in a sequential manner, so that the tag Xn+1 is either new or equal to one of the

previously observed objects. For instance, in the Dirichlet process case, the sequential allocation
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mechanism for any n ≥ 1 proceeds as:

(Xn+1 | X1, . . . , Xn) =

“new” , with probability α/(α + n),

Xi, with probability 1/(α + n), i = 1, . . . , n,
(1)

where α > 0 controls the rate of new discoveries; see also Blackwell and MacQueen (1973). We

refer to the quantity α/(α + n) as the discovery probability for the Dirichlet process.

The predictive scheme in (1) is restrictive in depending on a single parameter and in inducing

a logarithmic growth for the accumulation curve (Kn)n≥1. These limitations motivated the

development of random processes with more flexible growth rates. Notorious examples include

the two parameter Poisson–Dirichlet process of Perman et al. (1992), often called the Pitman–

Yor process when the number of species is assumed to be infinite or the Dirichlet-multinomial

process in the finite case (Pitman and Yor, 1997), and the general class of Gibbs-type priors

(Gnedin and Pitman, 2005). Under these models, the labels (Xn)n≥1 are exchangeable, meaning

their order of appearance is irrelevant for inferential purposes. While convenient, exchangeability

can be restrictive to obtain (Lee et al., 2013). For this reason, generalizations of species sampling

models that go beyond exchangeablility have been proposed (Berti et al., 2004; Bassetti et al.,

2010; Fortini et al., 2018; Cassese et al., 2019; Ascolani et al., 2021), often admitting (1) as

a special case. One flexible model is the beta-gos process (Airoldi et al., 2014), where the

allocation probabilities are functions of independent beta random variables.

Bayesian species sampling models induce a distribution forKn at every n, which arises from a

pure-birth inhomogeneous Markov process governed by the discovery probabilities. As such, they

are naturally endowed with in- and out-of-sample estimators for the accumulation curve, E(Kn)

and E(Kn+m | Kn = k), m ≥ 1. In line with the ecological literature (e.g. Gotelli and Colwell,

2001), we refer to these as model-based rarefaction and extrapolation estimators, respectively.

For Pitman–Yor and general Gibbs-type priors, extrapolations are available in closed form (Lijoi

et al., 2007; Favaro et al., 2009). However, such models are often too restrictive, as is evident
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from Figure 1, which shows in- and out-of-sample performance in estimating the number of

distinct fungi species in a given number of fungal dna-barcode sequences1. The Dirichlet process

performs poorly in sample, while the Pitman–Yor has good in-sample fit but inadequate out-

of-sample predictive accuracy. This is not surprising, as the Pitman–Yor process depends on

only two parameters and assumes that Kn →∞ almost surely as n→∞. As there are finitely

many fungi species, Kn should more realistically converge to a finite constant. Such is the case

for the Dirichlet-multinomial process, for which limn→∞Kn = K∞. However, its trajectory has

similar lack of fit as the Dirichlet process. The beta-gos process admits both K∞ = ∞ and

K∞ <∞ depending on the values of its parameters. Nonetheless, it often shows similar out-of-

sample behavior as the Pitman-Yor process. Potentially one could use a predictive scheme that

is more flexible than the Pitman–Yor, while also allowing finite K∞; recent examples include

Camerlenghi et al. (2018); Lijoi et al. (2020). However, such specifications involve cumbersome

combinatorial structures in the sampling mechanism, effectively preventing their application in

the types of large datasets that are routinely collected in our motivating application areas. For

example, in fungi biodiversity studies, it is common to obtain dna barcodes for millions of

sequences from 10,000s of species (e.g. Ovaskainen et al., 2020).

We address the above limitations through a novel modelling framework, which is highly

flexible, analytically tractable, and computationally efficient. The key distinction compared to

species sampling models, such as (1), is that we directly specify a model for the accumulation

curve (Kn)n≥1, whereas the tags (Xn)n≥1 are regarded as nuisance parameters. Specifically, we

consider a collection of Bernoulli random variables (Dn)n≥1 representing whether at the (n+1)th

step a new entity has been discovered or not, namely

P(Dn+1 = 1) = P(Xn+1 = “new” | X1, . . . , Xn), n ≥ 1,

1Species are defined in this article based on genetic sequences being sufficiently distinct, but the terminology
used by ecologists is “operational taxonomic units” as determining species requires additional verification.
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Figure 1: Empirical and estimated accumulation curve in one air fungal dna-barcoding sample from
Finland. White dots indicate observed values. Left panel: the vertical line is the training-test set cutoff,
set to 1/3 of the total number of genetic sequences. The parameters of the Dirichlet, Pitman–Yor and
Dirichlet-multinomial are estimated on the training set via empirical Bayes, while estimation for beta-
gos relies on method of moments. Right panel: the curves are estimated using the full data. See the
Supplementary Material for further details on model parametrizations.

having setD1 = 1. The accumulation curve is obtained by summing over these binary indicators:

Kn =
∑n

i=1Di, n ≥ 1. Differently from general species sampling models, in our framework, the

Bernoulli indicators (Dn)n≥1 are assumed to be independent, albeit not identically distributed.

Hence, we aim at developing suitable formulations for the probabilities (πn)n≥1, with πn =

P(Dn = 1), for any n ≥ 1. It is natural to require these probabilities to be decreasing over n, so

that the discovery of a new entity is increasingly difficult the more data we collect. Moreover,

π1 = P(D1 = 1) = 1, since the first entity of the sequence is necessarily new. Both requirements

are satisfied by the Dirichlet process, where πn = α/(α+ n− 1). We propose a general strategy

for the specification of (πn)n≥1, relying on the notion of survival functions, and study the impact

of specific choices on the asymptotic behavior of Kn.
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A specific subclass of our framework is particularly appealing in terms of analytic and com-

putational simplicity, due to connections with logistic regression. This subclass includes the

Dirichlet process and naturally leads to covariate-dependent extensions. Existing covariate-

dependent species sampling models are typically complex to implement; refer to Quintana et al.

(2022) for an overview. In contrast, our approach simply involves implementing a constrained lo-

gistic regression. We illustrate the flexibility and computational tractability through application

to data on copepod and fungi biodiversity.

The paper is organized as follows. Sections 2-3 introduce our modeling framework, investigate

the theoretical properties and describe a subclass of models connected with logistic regression.

Inferential strategies together with a solution to order dependence are presented in Section 4.

In Section 5 we test our model on simulated scenarios. Section 6 details the applications to real

datasets. Concluding remarks are given in Section 7.

2 A general modelling framework for accumulation curves

2.1 Background on species sampling models

In this Section we review key concepts about species sampling models that will be used through-

out the paper. For a broader overview, refer to Pitman (1996) and De Blasi et al. (2015). For

generalizations that go beyond exchangeability, see Berti et al. (2021).

Let (Xn)n≥1 be a sequence of objects. Given the discrete nature of the data, there will

be ties among X1, . . . , Xn, comprising a total of Kn = k distinct entities X∗1 , . . . , X∗k , having

frequencies n1, . . . , nk, with
∑k

j=1 nj = n. Frequencies n1, . . . , nk are referred to as abundances

in the ecological literature (Gotelli and Colwell, 2001). One generalization of the sequential
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allocation scheme of the Dirichlet process in (1) is given by

(Xn+1 | X1, . . . , Xn) =

“new” , with probability πn+1,

Xi, with probability pi,n+1, i = 1, . . . , n,
(2)

for n ≥ 1, suitable probabilities
∑n

i=1 pi,n+1 = 1 − πn+1 and X1 = “new”. For Gibbs-type

processes (Gnedin and Pitman, 2005), πn+1 and pi,n+1 depend on previous values only through

k and the frequencies n1, . . . , nk, respectively. One example is the Pitman–Yor process, where

πn+1 = (α + σk)/(α + n), pi,n+1 = (1− σn̄−1
i )/(α + n), for i = 1, . . . , n, σ ∈ [0, 1) and α > −σ,

where n̄i is the frequency of the associated tag Xi within the sample; the Dirichlet process

is recovered with σ = 0. Another is the Dirichlet-multinomial, which has the same sampling

scheme of the Pitman–Yor but with σ < 0 and α = H|σ|, with H ∈ N the total number of

species. For the above examples, the law of (Xn)n≥1 is exchangeable, i.e. invariant to reordering

of the sequence, requiring strict conditions on pi,n+1 and πn+1 (Lee et al., 2013).

To relax exchangeability while maintaining certain desirable properties, Berti et al. (2004)

proposed conditionally identically distributed (cid) sequences. For cid sequences, the labels

Xn+m are identically distributed conditioned on X1, . . . , Xn for n,m ≥ 1. Examples include

generalized Poisson–Dirichlet and generalized Ottawa sequences (gos) (Bassetti et al., 2010),

and gos sequences with latent beta reinforcements (beta-gos) (Airoldi et al., 2014). For beta-

gos, the random allocation probabilities are πn+1 =
∏n

i=1Wi and pi,n+1 = (1−Wi)
∏n

j=i+1Wj,

where Wn ∼ beta(an, bn) are independent beta random variables for n ≥ 1. As we describe

in Section 5, the values for an and bn determine the asymptotic behavior of the sequence. The

sequential mechanism in (2) induces a law for the accumulation curve (Kn)n≥1.

Let K(n)
m denote the number of new entities in a future sample of size m conditioning on

training data X1, . . . , Xn. Under a Dirichlet process, both the prior mean for the accumulation

curve Km and the posterior mean for K(n)
m have simple expressions:
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E(Kn) =
n∑
i=1

α

α + i− 1
, E(K(n)

m | X1, . . . , Xn) =
m∑
i=1

α

α + n+ i− 1
. (3)

The Dirichlet process is the only exchangeable species sampling model for which such a simpli-

fication occurs (Lijoi et al., 2007). For beta-gos priors, the prior expected accumulation curve

also has a simple form: E(Kn) = 1 +
∑n−1

i=1

∏i
j=1 aj(aj + bj)

−1, n ≥ 2. However, beyond the

Dirichlet process, the posterior expectation of K(n)
m is typically complex.

2.2 The model

In species sampling models, the distribution of the accumulation curve (Kn)n≥1 is essentially a

byproduct of the specification for the values (Xn)n≥1. We propose a more direct formulation for

(Kn)n≥1 which avoids modelling of the sequence (Xn)n≥1.

Let (Dn)n≥1 be a collection of independent binary indicators, denoting the discoveries, with

probabilities (πn)n≥1. Moreover, let Kn =
∑n

i=1 Di for any n ≥ 1 be the accumulation curve.

By being the sum of independent but not necessarily identically distributed Bernoulli trials,

Kn follows a Poisson-binomial distribution with parameters π1, . . . , πn. We denote it as Kn ∼

pb(π1, . . . , πn). The Poisson-binomial, often denoted as the Pólya frequency distribution or as

a convolution of heterogeneous Bernoulli, has been extensively studied in the literature, with

early contributions from Le Cam (1960); Hoeffding (1956) and Darroch (1964). See also Gleser

(1975); Pitman (1997); Xu and Balakrishnan (2011). When the probabilities (πn)n≥1 are all

equal, Kn has a binomial distribution. In our setting, πn > πn+1 for every n ≥ 1 with π1 = 1.

In addition, limn→∞ πn = 0, so the probability of making a new discovery eventually approaches

zero. A general strategy for constructing such a set of probabilities is described as follows.

Definition 1. Let T be a random variable on (0,∞) with strictly increasing cumulative dis-

tribution function F (t;θ) indexed by θ ∈ Θ ⊆ Rp. Moreover, let S(t;θ) = 1 − F (t;θ) be its
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survival function. The set of probabilities (πn)n≥1 are said to be directed by S(t;θ) if

πn = P(Tn > n− 1) = S(n− 1;θ), for any n ≥ 1, (4)

where (Tn)n≥1 are independent and identically distributed random variables following F (t;θ).

It is easy to check that a set of probabilities (πn)n≥1 directed by S(t;θ) satisfies the afore-

mentioned requirements. Indeed, one has that π1 = S(0;θ) = 1 for any θ ∈ Θ, since T is

supported on (0,∞). Moreover, πn = S(n − 1;θ) > S(n;θ) = πn+1, because by assumption

S(t;θ) is strictly decreasing. Furthermore, one has that limn→∞ πn = limn→∞ S(n−1;θ) = 0, as

desired, since S(t;θ) is a survival function. Each binary random variable Dn may be represented

as Dn = 1(Tn > n− 1), with 1(·) denoting the indicator function.

The discovery indicators can be alternatively viewed as the difference of two consecutive

points in the curve, namely Dn = Kn−Kn−1 for any n ≥ 2 with D1 = 1. Hence, the discoveries

(Dn)n≥1 and the accumulation curve (Kn)n≥1 carry the same information, having a one-to-one

relationship. Then, if the probabilities (πn)n≥1 are directed by S(t;θ), inferential statements

about the parameter vector θ ∈ Θ can be based on the likelihood function L (θ | D1, . . . , Dn)

or, equivalently, on L (θ | K1, . . . , Kn). The former is readily available as

L (θ | D1, . . . , Dn) ∝
n∏
i=2

S(i− 1;θ)Di{1− S(i− 1;θ)}1−Di , (5)

having excluded the degenerate term D1 = 1. A similar one-to-one relationship between

D1, . . . Dn and the set of labels X1, . . . , Xn is generally not true in species sampling models

and their generalizations; L (θ | X1, . . . , Xn) can be more informative than L (θ | D1, . . . , Dn)

in such cases. A notable exception (see below Theorem) is the Dirichlet process, where L (θ |

D1, . . . , Dn) is retrieved in our setting by assuming S(t;θ) = α/(α + t) with θ = α > 0.

Theorem 1. Let (Xn)n≥1 be a sequence of objects directed by a Dirichlet process as in (1)

and let (Dn)n≥1 be the associated discovery indicators. Then for a sample X1, . . . , Xn with
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Kn = k distinct values one has L (α | D1, . . . , Dn) ∝ L (α | X1, . . . , Xn) ∝ αk/(α)n, with

(a)n = a(a+ 1) · · · (a+ n− 1) denoting the Pochhammer symbol, for any a > 0 and n ≥ 1.

Hence, it is equivalent to base inferences on the Dirichlet process parameter α on the likeli-

hood (5) for the discovery indicators instead of the usual likelihood for X1, . . . , Xn. This occurs

because Kn =
∑n

i=1 Di is the minimal sufficient statistic for α in the Dirichlet process; see Lijoi

et al. (2007) for similar considerations. An implication is that the empirical Bayes estimate of

α, obtained by maximizing αk/(α)n, coincides with the maximizer of (5).

Remark 1. If a sequence of discoveries (D)n≥1 is directed by S(t;θ), the general predictive

scheme in equation (2) may be specified as

(Xn+1 | X1, . . . , Xn) =

“new” , with probability S(n;θ),

Xi, with probability pi(n;θ), i = 1, . . . , n,

with
∑n

i=1 pi(n;θ) = 1 − S(n;θ) = F (n,θ). As long as probabilities pi(n;θ) sum to the

cumulative distribution function of T , any choice for their functional form is valid. Hence, the

function S(t;θ) does not uniquely identify a sampling model for X1, . . . , Xn. Careful choices

of S(t;θ) and pi(n;θ) can lead to exchangeability (Lee et al., 2013) or conditional identity in

distribution (Berti et al., 2004). For example, when S(n;θ) = α(α + n1−σ)−1, with σ ∈ [0, 1)

and α > 0, letting pi(n;θ) = (i1−σ − (i − 1)1−σ)/(α + n1−σ) generates a cid sequence in the

family of generalized Ottawa sequences (Bassetti et al., 2010). However, the resulting likelihood

function lacks a simple analytical form. Given our focus on the sequence of discoveries, we focus

on likelihood (5), treating the labels (Xn)n≥1 as nuisance parameters.

2.3 Smoothing, prediction and posterior representations

In this Section, we present prior and posterior properties of Kn, which may be useful for both

smoothing and prediction. Supposing (πn)n≥1 is directed by S(t;θ), it immediately follows that
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Kn ∼ pb{1, S(1;θ), . . . , S(n− 1;θ)}. The probability mass function P(Kn = k) of the Poisson-

binomial is cumbersome to evaluate, especially for large n and large k; certain choices of S(t;θ)

greatly simplify P(Kn = k), as we clarify in Section 3.2.

However, moments are easily specified, with prior mean and variance equal to

E(Kn) =
n∑
i=1

S(i− 1;θ), var(Kn) =
n∑
i=1

S(i− 1;θ){1− S(i− 1;θ)}, n ≥ 1.

These formulas may be useful in choosing the parametric form of S(t;θ) and for prior elicitation

for θ. We refer to E(Kn) =
∑n

i=1P(Di = 1) as the rarefaction estimator for the accumulation

curve; this amounts to smoothing of the K1, . . . , Kn values observed in the training samples.

This expectation does not depend on the ordering of the data, at least for any fixed value of θ.

Similar considerations can be made for extrapolation. Suppose we are given a sample of

D1, . . . , Dn discoveries displaying Kn = k distinct entities and that we are interested in pre-

dicting future values of the accumulation curve Kn+1, . . . , Kn+m or in predicting the number of

new entities within a future sample of size m, K(n)
m = Kn+m −Kn =

∑n+m
i=n+1Di. The posterior

distribution of (K
(n)
m | D1, . . . , Dn) is available in closed form, namely

(K(n)
m | D1, . . . , Dn) ∼ pb{S(n;θ), . . . , S(n+m− 1;θ)}.

Hence, E(K
(n)
m | D1, . . . , Dn) =

∑n+m
i=n+1P(Di = 1) =

∑m
j=1 S(j + n − 1;θ), so the posterior

distribution of K(n)
m given the discoveries D1, . . . , Dn is conjugate, being a Poisson-binomial

with updated parameters. The distribution of (Kn+m | D1, . . . , Dn) = K+K
(n)
m is then a shifted

Poisson-binomial, and we have the out-of-sample extrapolation estimator as

E(Kn+m | D1, . . . , Dn) = k + E(K(n)
m | D1, . . . , Dn) = k +

m∑
j=1

S(j + n− 1;θ),

which can be interpreted as the sum of discovery probabilities.

11



2.4 Asymptotic behavior of Kn

The limit of Kn as n → ∞ is often of inferential interest, representing the random number

of entities one would eventually discover. Depending on the choice of S(t;θ), two scenarios

can occur: i) the number of distinct entities diverges, as in the Dirichlet process case, so that

Kn → ∞ almost surely as n → ∞. In this regime, it is useful to study the growth rate of

Kn. Alternatively, we could find that ii) the number of distinct species converges to some non-

degenerate random variable Kn → K∞, almost surely, as n → ∞. Within ecology the random

variable K∞ is called the species richness (e.g. Colwell, 2009).

The asymptotic behaviour of Kn is controlled by the structure of the chosen survival func-

tion S(t;θ). Before stating our first result, let us define E(T ) =
∫∞

0
P(T > t)dt =

∫∞
0
S(t;θ)dt,

that is, the expectation of the latent variables in Definition 1.

Proposition 1. Let Kn ∼ pb{1, S(1;θ), . . . , S(n− 1;θ)}. Then, there exists a possibly infinite

random variable K∞ such that limn→∞Kn → K∞, almost surely, with E(K∞) =
∑∞

i=0 S(i;θ).

Moreover,

E(T ) ≤ E(K∞) ≤ E(T ) + 1. (6)

Equation (6) provides lower and upper bounds for the asymptotic mean, which can be used

to summarize the species richness. The expected value of E(T ) represents a simple tool to

determine whether the accumulation curve diverges or not, as the following clarifies.

Corollary 1. Under the conditions of Proposition 1, K∞ = ∞ almost surely if and only if

E(T ) =∞.

Let us consider the first asymptotic regime, corresponding to the K∞ = ∞ case. In this case,

the rate of growth is controlled by S(t;θ), as clarified in the following Theorem, which also

presents a central limit approximation.
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Theorem 2. Let Kn ∼ pb{1, S(1;θ), . . . , S(n − 1;θ)} and suppose K∞ = ∞ almost surely.

Then, as n→∞, Kn/sn → 1 almost surely, for sn =
∫ n

1
S(t− 1;θ)dt. In addition,

Kn − E(Kn)

var(Kn)1/2
→ N(0, 1), n→∞, in distribution.

Theorem 2 implies that the growth rate of Kn corresponds to sn =
∫ n

1
S(t− 1;θ)dt. In the

Dirichlet process case, sn = α log (α + n− 1)−α logα, corresponding to the well-known growth

rate α log n (Korwar and Hollander, 1973). The N(0, 1) limiting distribution allows one to assess

uncertainty inKn for large n. For similar results in generalized species sampling models settings,

see Bassetti et al. (2010).

Consider now the second asymptotic regime: K∞ <∞. Although the distribution of K∞ is

generally not available in closed form, the first two moments are well defined.

Corollary 2. Under the conditions of Proposition 1, if K∞ <∞ almost surely, then E(K∞) =∑∞
i=1 S(i− 1;θ) <∞ and var(K∞) =

∑∞
i=1 S(i− 1;θ){1− S(i− 1;θ)} <∞.

Hence, a natural estimator for the species richness is E(K∞), which may be numerically

approximated; for instance by truncating the infinite summation E(K∞) =
∑∞

i=0 S(i;θ). Al-

ternatively, one could exploit equation (6) and consider the arithmetic mean of the bounds,

obtaining the approximation E(K∞) ≈ E(T ) + 1/2, which is highly accurate when the number

of species is not small. Poisson-binomial conjugacy leads to a related estimator for the posterior

species richness, namely E(K∞ | D1, . . . , Dn). Consider E(Km+n | D1, . . . , Dn) and let m→∞.

Then, it is straightforward to see that E(K∞ | D1, . . . , Dn) = k + E(K
(n)
∞ | D1, . . . , Dn), where

E(K
(n)
∞ | D1, . . . , Dn) =

∑∞
j=1 S(j + n− 1;θ).

3 Logistic models
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3.1 The log-logistic distribution

The framework in the previous Section requires elicitation of S(t;θ). In this Section, we focus

on a class of survival functions, which lead to a generalization of the Dirichlet process, enjoy

appealing analytical and computational properties and result in natural covariate-dependent

extensions, as described in Section 3.3. In particular, we first consider a two parameter case

S(t;α, σ) =
α

α + t1−σ
, t ≥ 0, (7)

where α > 0 and σ < 1. The survival function S(t;α, σ) characterizes a two-parameter log-

logistic distribution, and therefore we will write T ∼ ll(α, σ). Clearly, when σ = 0, S(t;α, 0)

reduces to the Dirichlet process case. The parameter σ plays a similar role to the discount

parameter of the Pitman–Yor process and general Gibbs-type priors. For any σ < 0, one has

E(T ) =
α1/(1−σ)π

(1− σ) sin{π/(1− σ)}
,

implying that when σ < 0 the limiting distribution K∞ < ∞ is non-degenerate, thanks to

Corollary 1. Conversely, when 0 ≤ σ < 1, one has that both K∞ = ∞ and E(T ) = ∞.

The rate at which this occurs is logarithmic in the Dirichlet process case in which σ = 0. In

contrast, for σ > 0, one can show that the growth of Kn is polynomial, so that in the notation of

Theorem 2 one has sn =
∫ n

1
S(t;α, σ)dt = O(nσ). These considerations reinforce the parallelism

with Gibbs-type priors; see Gnedin and Pitman (2005) and De Blasi et al. (2015) for details.

In the next Section, we describe a three-parameter extension of the log-logistic distribution

and derive combinatorial tools and distributional properties that also apply to S(t;α, σ) in (7).

3.2 A three parameter log-logistic distribution

In this Section we extend the log-logistic specification by including an additional parameter,

denoted as φ, which forces Kn to converge to a non-degenerate distribution. This allows us to
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restrict focus to the second asymptotic regime. In particular, we let θ = (α, σ, φ) and

S(t;α, σ, φ) =
αφt

αφt + t1−σ
, t ≥ 0, (8)

with α > 0, σ < 1 and 0 < φ ≤ 1. The two parameter specification is recovered when φ = 1.

We call the distribution of S(t;α, σ, φ) a three-parameter log-logistic, written T ∼ ll(α, σ, φ).

Proposition 2. Let Kn ∼ pb{1, S(1;θ), . . . , S(n−1;θ)}, with S(t;θ) defined as in equation (8).

Then for any 0 < φ < 1 it holds that Kn → K∞ <∞ almost surely as n→∞.

Proposition 2 ensures that for 0 < φ < 1 the species richness is always finite. For the

remainder of the Section, we discuss some combinatorial properties related to the law of Kn.

While having their own theoretical relevance, our results facilitate computation of the probability

mass function of Kn and draw further parallels with Gibbs-type priors.

Definition 2. Let α > 0, σ < 1 and 0 < φ ≤ 1. Then for any n ≥ 1 and 0 ≤ k ≤

n we define Cn,k(σ, φ) as the coefficients of the polynomial expansion
∏n−1

k=0(α + k1−σφ−k) =∑n
k=0 α

k Cn,k(σ, φ), having set C0,0(σ, φ) = 1.

In the special case φ = 1 and σ = 0 one recovers the definition of the signless Stirling

numbers of the first kind, namely Cn,k(0, 1) = |s(n, k)|; see Charalambides (2005). In addition,

the coefficients Cn,k(σ, φ) can be conveniently computed through recursive formulas.

Theorem 3. The coefficients Cn,k(σ, φ) of Definition 2 satisfy the triangular recurrence

Cn+1,k(σ, φ) = Cn,k−1(σ, φ) + n1−σφ−nCn,k(σ, φ),

for any n ≥ 0 and 1 ≤ k ≤ n + 1, with initial conditions C0,0(σ, φ) = 1, Cn,0(σ, φ) = 0, n ≥ 1,

Cn,k(σ, φ) = 0, k > n. Moreover, for any 1 ≤ k ≤ n and n ≥ 2, one has

Cn,k(σ, φ) =
∑

(i1,...,in−k)

n−k∏
j=1

i1−σj φ−ij ,
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where the sum runs over the (n− k)-combinations of integers (i1, . . . , in−k) in {1, . . . , n− 1}.

We can now state the main theoretical result, namely the probability mass function of Kn,

which can be expressed in terms of the coefficients Cn,k(σ, φ).

Theorem 4. Let Kn ∼ pb{1, S(1;α, σ, φ), . . . , S(n− 1;α, σ, φ)} for every n ≥ 1. Then,

P(Kn = k) =
αk∏n−1

i=0 (α + i1−σφ−i)
Cn,k(σ, φ).

Theorem 4 reduces to the distribution obtained by Antoniak (1974) when σ = 0 and φ = 1.

Gibbs-type priors enjoy a similar structure for the distribution of Kn, replacing Cn,k(σ, φ) with

generalized factorial coefficients; see Gnedin and Pitman (2005); De Blasi et al. (2015).

3.3 Covariate-dependent models

Under the three parameter log-logistic specification, the discovery probabilities are πn+1 =

P(Dn+1 = 1) = αφn(αφn + n1−σ)−1 for n ≥ 1 with π1 = 1. An interesting and practically useful

property of our model is the following representation

log
πn+1

1− πn+1

= logα− (1− σ) log n+ (log φ)n = β0 + β1 log n+ β2n, n ≥ 1, (9)

having set β0 = logα, β1 = σ − 1 < 0 and β3 = log φ ≤ 0. Equation (9) has the form of a

logistic regression for the binary indicators D2, . . . , Dn, with coefficients β2 and β3 constrained

to be negative. By letting β1 = −1 and β2 = 0 one recovers the discovery probability of the

Dirichlet process.

The logistic regression representation in (9) facilitates extensions to include covariates. Sup-

pose we are given a collection of L accumulation curves, (K1n)n≥1, . . . , (KLn)n≥1, representing

sequential discoveries at different sampling locations. Each location is associated with covariates

zT
` = (z`1, . . . , z`p) ∈ Rp for ` = 1, . . . , L. Let (D`n)n≥1 be the sequence of discovery indicators for
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the `th location, with probabilities (π`n)n≥1. The most flexible specification for K`n corresponds

to the case in which all the parameters are location-specific, so that for any n ≥ 1,

log
π`n+1

1− π`n+1

= β`0 + β`1 log n+ β`2n, (` = 1, . . . , L).

This specification can borrow information across locations via a hierarchical model on βl =

(βl0, βl1, βl2)T or by fixing certain parameters. Alternatively, systematic variation across loca-

tions can be modeled through including covariates z` via

log
π`n+1

1− π`n+1

= β`0 + β`1 log n+ β`2n = zT
` γ0 + (zT

` γ1) log n+ (zT
` γ2)n, (10)

for ` = 1, . . . , L, with γ0,γ1,γ2 ∈ Rp being vectors of coefficients such that zT
` γ2 < 0 and

zT
` γ2 ≤ 0. This specification is still in the form of a logistic regression and therefore inference

on the parameters γ0,γ1 and γ2 can be conducted through straightforward modifications of

standard algorithms.

4 Posterior computation

4.1 Estimation procedures

Consider the model in equation (9). The parameters θ = (α, σ, φ) can be estimated by maximiz-

ing the likelihood in equation (5), with S(t;θ) = S(t;α, σ, φ), β1 < 0 and β2 ≤ 0. In practice, it

may suffice to ignore these restrictions and apply routine algorithms for fitting logistic regres-

sion, as the maximum likelihood estimates typically satisfy the constraints. In this case, the

resulting estimate θ̂ has the following appealing property.

Proposition 3. Let θ̂ = (α̂, σ̂, φ̂) be the unconstrained maximizer of equation (5) under the

three-parameter specification in (8), if it exists. If Kn = k is the number of discoveries within

the data D1, . . . , Dn, then the expectation E(Kn), evaluated at θ̂, equals k.
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Hence, E(Kn) matches the total number of distinct labels observed in the sequence when

the parameters are estimated through unconstrained maximum likelihood. Although we can

obtain confidence intervals and standard errors for the parameters via maximum likelihood,

conducting inferences in this manner ignores the parameter constraints. In contrast, a fully

Bayesian approach can easily incorporate them through a prior, such as β ∼ N(µ,Σ)1(β1 <

0; β2 ≤ 0). The covariate-dependent regression in equation (10) can be implemented in a similar

manner; for details see the Supplementary Materials.

4.2 Removing order dependence

The construction of accumulation curves is inherently order-dependent (Gotelli and Colwell,

2001). As such, inference on the parameter θ ∈ Θ depends on the order of the observations.

This can be problematic when only the frequencies n1, . . . , nk are available, as there are (n −

1)!/{(n − k)!(k − 1)!} curves that are consistent with these frequencies. This has motivated

the derivation of the individual-based rarefaction curve (Smith and Grassle, 1977; Colwell et al.,

2012),

K̄i = k −
(
n

i

)−1 k∑
j=1

(
n− nj
i

)
, i = 1, . . . , n, (11)

with Kn = k, where (11) represents the average accumulation curve over all the possible order-

ings of the discoveries, each having the same probability. This proves useful in our case, as we

can effortlessly apply our method relying on (11). Specifically, consider the auxiliary random

variables D̄i = K̄i+1 − K̄i with D̄1 = 1. We can estimate θ through the likelihood

L (θ | D̄1, . . . , D̄n) =
n∏
i=2

S(i− 1;θ)D̄i
{

1− S(i− 1;θ)
}1−D̄i , (12)

in place of equation (5). Inference about θ based on (12) will refer to the average accumulation

curve. This procedure can be regarded as the approximation of a suitable marginal likelihood
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E{L (θ | D1, . . . , Dn)}, representing the average likelihood over all the possible orderings of the

discoveries. Thus, by interchanging the expectation operator inside the likelihood function, we

obtain the approximation E{L (θ | D1, . . . , Dn)} ≈ L (θ | D̄1, . . . , D̄n).

5 Simulations

We test our log-logistic model on synthetic sequences generated from different asymptotic

regimes. In each simulation, we randomly generate one sequence of labels from a given model

and take the first n = 10, 000 observations as a training set. The remaining m = 20, 000 ob-

servations are used as a test set. We compare in- and out-of-sample performances of seven

different models: our one-, two- and three-parameter log-logistic models, labelled as ll1, ll2,

and ll3 henceforth, the two versions of the beta-gos detailed in Proposition 1 in Airoldi et al.

(2014), the Pitman–Yor model and the Dirichlet-multinomial model. Our ll1 coincides with

the Dirichlet process by Theorem 1.

When possible, model estimation proceeds via empirical Bayes on the training set. For the

log-logistic model we rely on the constrained logistic regression representation (9). Parameters

in the Pitman–Yor and Dirichlet-multinomial are obtained via maximization of the exchangeable

partition probability function (Pitman, 1996), setting an arbitrarily high upper bound on H in

the Dirichlet-multinomial equal to kn + 10, 000, with kn being the number of distinct species

observed in the training set at n = 10, 000. Lacking a tractable likelihood, beta-gos processes

are estimated via method of moments. Recalling that the discovery probability in beta-gos is

πn+1 =
∏n

i=1 Wi with independent Wn ∼ beta(an, bn), we employ two versions of the process.

The first, bg-1(a, b), lets an = a > 0 and bn = b > 0. In this case, the estimator for the

accumulation curve is E(Kn) = (1− ρn)/(1− ρ), with ρ = a/(a+ b) and thus K∞ <∞ almost

surely. We can estimate ρ by solving the equation E(Kn) = kn, with kn defined as above. In

the second version, bg-2(θ, β), we let an = θ + n − 1 and bn = β, with θ > 0 and β > 0. The

associated rarefaction is E(Kn) =
∑n

i=1(θ)β/(θ + i)β. This case admits both a finite and an
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dir-mult beta-gos-2 dirichlet pitman–yor
H = 500, σ = −1 θ = 500, β = 1.5 α = 10 α = 10, σ = 0.5

model train test train test train test train test

dp (ll1) 3, 011.3 3, 954.2 2, 500.5 6, 313.1 6.7 7.6 7, 358.2 3.3× 104

py 3, 011.3 3, 953.6 2, 500.5 6, 311.6 5.5 8.9 109.6 544.0
dir-mult 20.5 14.6 1, 266.7 2, 908.6 5.9 9.1 6, 857.1 3.5× 104

bg-1(a, b) 1, 633.4 138.5 9, 345.8 3, 905.5 171.1 58.6 4.1× 104 8.3× 104

bg-2(θ, β) 18.3 23.6 38.4 152.3 4.4 14.6 51.4 982.6
ll2 71.8 141.0 77.7 428.1 3.9 11.3 70.0 1, 087.4
ll3 11.8 50.1 22.5 452.2 3.1 16.1 67.3 1, 640.4

Table 1: Models performance for curves simulated from Bayesian nonparametric predictive schemes.
Values report average mean square error across 500 simulations of each scenario, with curves of length
30, 000. Training set consists of the first 10, 000 observations.

infinite species richness, as K∞ < ∞ when β > 1 and K∞ = ∞ when β ∈ (0, 1]. For further

details, see Airoldi et al. (2014). Method of moment estimates for θ and β can be derived as a

solution of the equations E(Kn) = kn and E(Kn/3) = kn/3.

Table 1 reports the average mean square error across 500 accumulation curves simulated via

Bayesian nonparametric predictive schemes. The first two scenarios, the Dirichlet-multinomial

and beta-gos, feature a finite species richness. The other two assume a divergent accumulation

curve. The purpose of our analysis is to compare the performance of our logistic models over

species sampling sequences with the true generating model as a competitor. The in-sample

average mean square error of ll3 is generally lower than other models, except in the Pitman–

Yor case, where bg-2(θ, β) performs better. This reconfirms the strong similarity between the

trajectories of the Pitman–Yor and beta-gos highlighted in the Introduction. Not surprisingly,

the best model is always the true generating one in the test set. In almost every case, however,

differences between the log-logistic specifications and the true model are small.

Following the same structure as above, Table 2 investigates the predictive performance of

the models in the misspecified case in which the species probabilities follow geometric or Zipf

distributions with or without truncation to finite support. We mirror the structure in Table 1,
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finite geom. finite zipf geometric zipf
H = 100, η = 0.95 H = 3000, η = 0.25 η = 0.1 η = 2

model train test train test train test train test

dp (ll1) 117.6 116.6 4.5× 104 5.8× 104 1.7 2.1 760.6 2, 165.5
py 117.6 116.6 4.5× 104 5.8× 104 1.7 2.1 405.1 105.7
dir-mult 5.1 4.3 192.1 1, 156.2 1.5 2.9 747.2 2, 181.8
bg-1(a, b) 85.4 0.2 803.9 1, 259.0 23.3 8.1 2, 847.9 3, 895.9
bg-2(θ, β) 9.0 2.4 140.3 1, 539.9 1.6 4.4 12.6 187.8
ll2 7.3 12.0 2062.0 8.3× 104 1.2 2.8 11.6 125.0
ll3 1.4 0.6 62.9 849.9 1.0 3.8 9.7 293.8

Table 2: Performance for curves simulated via independent samples from finite and infinite support
distributions. Values report average mean square error across 500 simulations of each scenario, with
curves of length 30, 000. Training set consists of the first 10, 000 observations.

with the first two models having K∞ < ∞ and the last two K∞ = ∞. Details are provided

in the Supplementary Material. ll3 achieves the best in-sample performance, and log-logistic

models perform particularly well in finite (truncated) cases. In the infinite cases, the Pitman-

Yor had good predictive performance, likely due to similar tail behavior between py and these

two distributions, but failed badly in-sample for the Zipf.

The values for the parameters of the generating models we have chosen in this Section are

intended to simulate representative trajectories for the accumulation curves, both in converg-

ing and diverging cases. For an extended analysis on more scenarios and varying parameters,

including plots of the generated curves, refer to the Supplementary Material.

6 Applications

6.1 Copepod species counts

We test our model on a dataset of abundances of distinct copopod species from the Southampton

National Oceanography Centre, available in the R package untb (Hankin, 2007). The data
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Figure 2: Performance of ll3 on the copepod species counts data. Circles: individual-based rarefaction
curve. Grey line: predicted in- and out-of-sample accumulation curve computed by averaging over
posterior samples of E(Kn) and E(Kn | D1, . . . , Dn), respectively. Black dashed lines indicate the
posterior 95% posterior predictive credible interval, obtain by simulating one posterior trajectory for
each sample. The black vertical line indicates the training-test cutoff.

consist of n = 1, 829, 767 observations divided into 378 species, with 10 appearing only once, 3

appearing twice and the most abundant species appearing 503, 319 times. As depicted by the

circles in Figure 2, the individual-based rarefaction curve seems close to convergence, facilitating

assessments of model performance that attempt to predict the later part of the curve and species

richness based on an initial part of the curve.

We compare the models of Section 5 by considering two training-test settings, taking random

subsets of one-fifth and one-third of the data as training sets. We extrapolate the fitted curves for

the remaining samples. Model fitting proceeds with a fully Bayesian approach when possible,

initializing the chain at the maximum likelihood estimate and performing 10, 000 iterations

after a 5, 000 burn-in. For the Pitman–Yor process we adopt normal priors centered at 0 with

a standard deviation of 10 for γ1 = log(α + σ) and γ2 = log{σ(1 − σ)−1}, and apply Adaptive

Metropolis (Haario et al., 2001) keeping one sample every 10 iterations. A similar procedure is
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applied to the Dirichlet process with β0 = logα ∼ N(0, 10), but saving every iteration. For the

log-logistic models we use equation (9), and impose the constraints with truncated normal priors

as in Section 4. Posterior samples for ll2 and ll3 are obtained via the Metropolis adjusted

Langevin algorithm (Roberts and Rosenthal, 1998) with the proposal covariance equal to ε2Σ̂,

where Σ̂ is the inverse of the Hessian of the model evaluated at the maximum likelihood estimate

and ε2 is a scaling parameter iteratively tuned to reach an acceptance rate of 0.576.

All the samplers had effective sample sizes between 2, 000 and 6, 000. Finally, we sample

from the posterior of the Dirichlet-multinomial by discretizing σ into 5, 000 equally spaced values

between −0.005 and −3, fixing an upper bound on H equal to 5, 000 plus the observed Kn and

setting a discrete uniform prior over each interval. For the beta-gos models, the absence of a

simple form for the likelihood limits the availability of posterior samplers. Thus, we estimate

the parameters via method of moments by solving the linear systems described in Section 5,

taking kn to be the nth value of the individual-based rarefaction in equation (11).

Table 3 compares in- and out-of-sample performance. The mse columns report the mean

square error between the individual-based rarefaction curve K̄n+m and the model-based rar-

efaction estimator, obtained by averaging E(Kn) over posterior samples. In both cases, ll3

shows the best in-sample performance. To test out-of-sample performance, we first compute

the individual-based rarefaction curve for the test set, K̄n+m, by averaging across 5, 000 ran-

domly sampled orders of appearance in the test set. Then, we extrapolate by simulating one

trajectory Kn+m | D1, . . . , Dn, m ≥ 1, for each sample drawn from the posterior distribution

of the parameters. This is straightforward for the species sampling and log-logistic models, but

problematic for beta-gos due to prohibitive computational cost for large n. Fortunately, for

large n, the variance of the discovery probability is typically small and goes to 0 as n→∞ when

β ≥ 1. This implies that fixing the discovery probabilities to their average values when sampling

one accumulation curve induces only a minor reduction in uncertainty. For more details, see

the Supplementary Material. In both cases, the 95% posterior predictive credible interval for

Kn+m | D1, . . . , Dn for ll3 contains the true value K̄n+m, and the posterior predictive mean
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train=1/5 train=1/3
n = 365, 953; Kn = 358 n = 609, 922; Kn = 368

mse m = n/2 m = n m = 4n mse m = n/4 m = n m = 2n

K̄n+m 365.16 368.87 378 370.32 373.97 378
dp (ll1) 50.41 373.93 385.21 421.15 130.99 376.56 394.47 409.87

(367, 382) (375, 397) (405, 439) (371, 383) (385, 406) (397, 424)

py 60.91 374.56 386.35 424.03 131.21 376.66 394.83 410.45
(367, 384) (376, 399) (406, 446) (371, 383) (385, 406) (397, 425)

dir-mult 41.60 373.01 383.47 416.95 90.85 375.97 392.54 406.69
(366, 381) (374, 394) (401, 434) (371, 382) (383, 403) (394, 420)

bg-1(a, b) 2703.71 358 358 358 2101.28 368 368 368
(358, 358) (358, 358) (358, 358) (368, 368) (368, 368) (368, 368)

bg-2(θ, β) 73.8 369.72 377.79 402.40 95.25 372.97 382.94 391.04
(364, 377) (370, 387) (390, 416) (369, 378) (376, 391) (382, 401)

ll2 125.22 376.48 389.73 432.85 178.23 377.04 396.08 412.58
(368, 386) (378, 408) (410, 459) (372, 384) (385, 409) (397, 430)

ll3 1.59 363.70 365.91 367.80 3.52 370.17 372.40 372.93
(359, 371) (359, 377) (360, 384) (368, 374) (368, 380) (368, 381)

Table 3: Model performances and out-of-sample predictions on the copepod species counts data. The
columns under mse report in-sample the mean square error of E(Kn). Values in brackets report the
95% posterior predictive credible interval for the extrapolation estimator.

E(Kn+m | D1, . . . , Dn) slightly underestimates the truth. This is further confirmed by looking

at the whole trajectory, as depicted in Figure 2. The species sampling models do not correctly

capture the average out-of-sample trajectory of the test set. This is expected in the Dirichlet

and Pitman-Yor processes, as both assume a divergent Kn. However, the Dirichlet-multinomial

also performs badly, likely due to the behavior resembling the Dirichlet process for values of σ

close to 0 and large values of H. For beta-gos-2, the out-of-sample trajectory is captured only

for values close to the training-test cutoff. Finally, beta-gos-1 performs poorly due to the lack

of flexibility of the underlying exponential behavior of the model. For more results on the data,

including plots, posterior estimates of the parameters and additional training-test splits, refer

to the Supplementary Material.
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6.2 Fungal biodiversity

We analyze data from a fungi biodiversity study in Finland (Abrego et al., 2020). Each sample

contains a large number of fungal dna barcode sequences obtained either from air samples or

soil samples. As it is too expensive to barcode all the fungi spores in a sample, it is important

to be able to predict how many species are missed when sequencing a particular amount. The

goal of our analysis is to answer this question.

The data consist of 174 different samples from different sites across five cities in Finland.

For each site, fungi samples are collected on the same dates at two urban areas, one at the core

and one at the edge of the city, and two nearby natural areas, again with one at the core and

one at the edge. Two different sampling methods were used: i) through air, via a cyclone trap

and continuously for 24 hours, and ii) through soil, gathering a small portion of soil close to

the air trap. We exclude samples with less than 10, 000 sequences, as in such cases the samples

lacked sufficient numbers of spores for more comprehensive barcoding. This leaves us with a

total of 150 samples. An issue in pre-processing the data is reliable identification of singletons,

otus that have been identified only once within a given sample. Ecologists often discard such

singletons from the analysis, leading to significant bias. In the Supplementary Materials we

instead propose a simple imputation approach.

The average number of barcoded dna sequences per sample is 124, 271 and the average num-

ber of species discovered is 2, 161. As a first step, we compare the in-sample performances of

four different models: Pitman-Yor, beta-gos-2 and two- and three- parameter log-logistic mod-

els. We exclude beta-gos-1, Dirichlet-multinomial and Dirichlet/one-parameter log-logistic, as

they showed very poor performance. Model fitting and prediction proceeded exactly as in Sec-

tion 6.1.

Figure 3 displays in-sample performance of the models across the 150 samples. Each point

represents the percentage absolute error between E(Kn), obtained by averaging the model rar-

efaction across the posterior samples, and K̄n at a given fraction of a curve. All models perform
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Figure 3: In-sample performance in the Finnish fungal biodiversity data. The in-sample estimator
E(Kn) is computed by averaging model rarefaction across posterior samples. The value of K̄n indicates
the individual-based rarefaction curve at n.

well overall, deviating from the true values of K̄n by less than 1%. The Pitman–Yor is the least

flexible in-sample. beta-gos-2 yields perfect fit at fractions 0.33 and 1 due to the estimates

of θ and β being the solution of E(Kn/3) = k̄n/3 and E(Kn) = k̄n, with n the total length of a

given curve. The consequence of this choice is that the beginning of the curve, namely fraction

0.1, shows more error variability. For the log-logistic models, the high accuracy at fraction 1 is

an indirect consequence of Proposition 3 and vague priors over the regression coefficients.

Although the above models fit well, only ll3 estimated a convergent K∞. For beta-gos2

all curves estimated β < 1, implying K∞ =∞. Thus, we rely on ll3 in performing inferences on

i) the sample species richness, which is the total number of species that can be detected through

barcoding within a sample, and ii) whether dna barcoding has reached saturation at different

sites, meaning that only very few species are missed. To address i), we estimate the posterior

mean E(K∞ | D1, . . . , Dn) for each individual sample, which is guaranteed to be finite. The

results are reported in the left panel of Figure 4, which displays the expected sample species

richness for each of the 150 samples across site characteristics. Air samples tend to contain
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Figure 4: Left panel: distribution of the posterior mean species richness for the 150 samples. Center
panel: distribution of the posterior mean sample saturation for the 150 samples. Right panel: additional
number of samples (in percentage) required to reach a target posterior saturation of 0.95.

more species, and there is some evidence of greater species richness in natural environments, as

reported by Abrego et al. (2020).

For task ii), let Cn = Kn/K∞ ≤ 1 represent the saturation level of a given sample after n

barcoded sequences. Differences across sites can be evaluated via E(Cn | D1, . . . , Dn), which

represents the posterior expected saturation level of a sample. Figure 4, right panel, summarizes

posterior mean saturation stratified by sampling site characteristics. While there is some vari-

ability across sites, most of them have a ratio around 0.5. The results suggest that if additional

dna sequences are barcoded there is the opportunity to detect approximately 20 − 50% more

species in each sample. Urban soil samples seem to have a systematically higher saturation than

their Air counterparts. Finally, we can estimate the number m of additional sequences that

would need to be barcoded to reach a desired saturation level Cn+m. This is reported in the

right panel of Figure 4, where the target saturation level is 95%. This confirms the fact that

generally all samples require a high barcoding effort to detect almost all the species.
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7 Discussion

In this paper we proposed a novel method for predicting the appearance of previously unobserved

objects in a sequence. We showed that our procedure generalizes the discovery probability of

the Dirichlet process. Finite sample and asymptotic properties of the number of distinct species

Kn were extensively studied. In addition, we showed that a subclass of models is linked to

a logistic regression with constrained coefficients. This has major computational advantages

compared to existing Bayesian nonparametric procedures, which allowed us to implement our

modelling strategies in large datasets. All of our estimators are based on moments of the Poisson-

binomial distribution. Despite its rather complex shape (Chen, 1975), this distribution admits

several approximations (e.g. Goldstein, 2010; Hong, 2013). These may be useful in obtaining

approximations to the distribution of K∞.

From a Bayesian nonparametric perspective, our species discovery framework enriches the

increasingly large literature on models beyond exchangeability (e.g. Berti et al., 2004; Airoldi

et al., 2014; Fortini et al., 2018; Ascolani et al., 2021; Berti et al., 2021). Indeed, the construction

of an accumulation curve is intrinsically a non-exchangeable procedure, because the sequential

discoveries necessarily depend on the chosen ordering (Gotelli and Colwell, 2001). We solved the

order dependence by applying our framework to the individual-based rarefaction curve, which

is the average accumulation curve for given abundances (Smith and Grassle, 1977). As detailed

in Remark 1, choices for the allocation probabilities under a sequential discovery model without

exchangeability may still retain certain convenient properties (Bassetti et al., 2010). Urn-based

non-exchangeable models are particularly promising for sequential and dynamic data.

Instead of taking a Bayesian nonparametric perspective, similar methodology and theoretical

conclusions could have been achieved by modelling the trajectory in the distinct species as the

output of a discrete time pure-birth in-homogeneous Markov process with birth probability

S(t;θ). The link between pure-birth processes and accumulation curves has long been known

(Soberon and Llorente, 1993; Diaz-Frances and Gorostiza, 2002). We chose to focus on the
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Bayesian nonparametric viewpoint due to the rich statistical literature on species sampling

taking this perspective.

We extensively investigated in Section 3 the logistic subclass of models, which has appealing

theoretical and computational properties. However, different survival functions S(t;θ) may be

considered (e.g. exponential, Weibull, Gompertz) to accommodate different shapes and growth

rates. For example, one can impose S(t;θ) to be equal to the average discovery probability of

the beta-gos-2 with β ≥ 1. Indeed, our results of Section 2 are fully general and can be readily

specialized to any survival function. This is an interesting research direction.

SUPPLEMENTARY MATERIAL

The Supplementary Material includes the proofs of the theorems and the propositions stated

above, some extended simulations and additional details on the data preprocessing and on the

general results on the application section.
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