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Abstract

Yrjänheikki, Sami
The equivalent photon approximation in one- and two-photon exchange processes
Master’s thesis
Department of Physics, University of Jyväskylä, 2022, 91 pages.

In this thesis, the equivalent photon approximation and the associated equivalent
photon distribution are derived in one- and two-photon exchange processes using a
helicity-based method in the framework of quantum field theory. The derivations
are presented in more detail than is usually found in the literature. The general
forms of the photon distributions for spin-0 and spin-1

2 particles are examined
using the general vertex structure of quantum electrodynamics and scalar quantum
electrodynamics. A total of three photon distributions based on the dipole form
factors of the proton are derived and applied to muon-pair production in proton-
proton collisions. The invariant-mass spectrum of the muon pair obtained using
the equivalent photon approximation is compared to a full calculation of the same
observable at total center-of-mass energies

√
s = 200 GeV and

√
s = 13 TeV. The full

calculation is obtained at leading order without any approximations and numerically
integrated using Monte-Carlo methods, and is found to be in good agreement with
an experimental measurement by ATLAS. The results show that the distribution
neglecting both the mass and the anomalous magnetic moment of the proton gives
more accurate results than the distribution neglecting only the anomalous magnetic
moment of the proton. The results also indicate that the distribution including
both the mass and the anomalous magnetic moment of the proton overestimates the
full calculation by less than 4 %, thus providing an excellent approximation to the
calculation of the invariant-mass spectrum in the muon-pair production process at
both energies.

Keywords: Equivalent photon approximation, two-photon physics, lepton-pair pro-
duction
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Tiivistelmä

Yrjänheikki, Sami
Ekvivalentti fotoniapproksimaatio yhden ja kahden fotonivaihdon prosesseissa
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2022, 91 sivua

Tässä opinnäytetyössä johdetaan ekvivalentti fotoniapproksimaatio ja siihen liittyvä
ekvivalentti fotonijakauma yhden ja kahden fotonivaihdon prosesseissa helisiteet-
tipohjaista menetelmää käyttäen kvanttikenttäteorian viitekehyksessä. Johtamiset
esitetään yksityiskohtaisemmin kuin kirjallisuudessa yleensä. Fotonijakaumien yleisiä
muotoja tarkastellaan spin-0- ja spin-1

2 -hiukkasille käyttäen kvantti- ja skalaarikvant-
tisähködynamiikan yleisiä verteksirakenteita. Kolme protonin dipolimuototekijöi-
hin perustuvaa fotonijakaumaa johdetaan ja niitä sovelletaan myoniparituottoon
protoni-protoni-törmäyksissä. Ekvivalentin fotoniapproksimaation avulla saatua my-
oniparin invarianttia massaspektriä verrataan saman observaabelin tarkkaan laskuun
kokonaismassakeskipiste-energioilla

√
s = 200 GeV ja

√
s = 13 TeV. Tarkka las-

ku lasketaan ilman approksimaatioita johtavaan kertalukuun ja sitä integroidaan
numeerisesti Monte-Carlo-menetelmin, ja sen nähdään vastaavan hyvin ATLAS-
kokeessa saatuja tuloksia. Tulosten perusteella jakauma, jossa sekä protonin massa
että sen anomaalinen magneettinen momentti on jätetty huomiotta, on tarkempi
kuin jakauma, jossa vain protonin anomaalinen magneettinen momentti on jätetty
huomiotta. Tulokset osoittavat myös, että sekä protonin massan että sen anomaa-
lisen magneettisen momentin huomioiva jakauma yliarvio tarkkaa laskua alle 4 %,
tarjoten siten erinomaisen approksimaation invariantin massaspektrin laskemiseen
myoniparituotossa molemmilla energioilla.

Avainsanat: Ekvivalentti fotoniapproksimaatio, kahden fotonin fysiikka, leptonipar-
ituotto
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Preface

This thesis concerning the equivalent photon approximation is effectively a contin-
uation of my Bachelor’s thesis. In my Bachelor’s thesis, I derived the well-known
semiclassical formula for the equivalent photon distribution. Now, I will derive
both the factorization of electromagnetic cross sections and the equivalent photon
distribution using field-theoretical methods. As an example, I will also consider
muon-pair production and compare the equivalent photon approximation to a full
leading-order calculation.

I started working on this thesis during my summer internship at the physics
department at the University of Jyväskylä. I am grateful for that opportunity, as it
allowed me to solely focus on the thesis.

At the beginning of the summer, I also tried to reconcile the photon distributions
obtained from the semiclassical and field-theoretical derivations, but the connection
between the two is non-trivial. While the overall behaviour is the same for both
distributions, obtaining the semiclassical distribution from the field-theoretical ap-
proach would likely require reworking the usual formula connecting cross sections
and invariant amplitudes to include dependence on the impact parameter. Due to
time constraints, I did not pursue this avenue further.

I want to thank my advisors for their guidance and time spent in helping me and
thinking through problems with me. I would also like to thank my friends for all
their support. Finally, I want to express my deepest gratitude to my parents.

Jyväskylä October 31, 2022

Sami Yrjänheikki
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1 Introduction

Quantum electrodynamics (QED) is one of the most successful physical theories and
an important building block of the Standard Model of particle physics. It is the
fundamental theory of electromagnetism, describing the interactions between photons
and leptons, and it has been stringently tested in experiments. [1] All electrically
charged particles are subject to electromagnetic interactions mediated by photons.
The QED Lagrangian and Feynman rules are briefly reviewed in Appendix B.

Quantum chromodynamics (QCD) is another piece of the Standard Model and it
describes the strong interaction. In addition to electric charge, strongly interacting
particles carry a color charge. In the Standard Model, quarks and gluons have a
color charge and are therefore subject to strong interactions mediated by gluons. [2]

The most common method of computing observables in quantum field theories,
such as cross sections and decay widths, is perturbation theory. Quantum electrody-
namics is very amenable to perturbation theory, which allows the computation of
accurate predictions with relatively little effort. [3] In QCD, factorization theorems
[4] are important tools that enable the use of perturbation theory, as they separate the
perturbative and non-perturbative aspects of scattering processes involving hadrons.
However, the convergence of the perturbative series is usually slower than in QED.

One example of factorization can be found in deep inelastic scattering (DIS)
e−p → e−X, where a virtual photon emitted by the electron interacts with the
proton and breaks it apart. The cross section can be factored into [3, §17.3]

σ(e−p → e−X) =
∑

f

∫
dξ ff/p(ξ)σ̂(e−qf → e−qf ), (1.1)

where ξ is the longitudinal momentum fraction of the proton. The function ff/p(ξ)
is called the parton distribution function (PDF) of the proton, and dξ ff/p(ξ) can
be interpreted as the differential probability of finding some constituent particle
f with longitudinal momentum fraction ξ inside the proton. These constituents,
which are summed over in Eq. (1.1), are called partons and are nowadays known to
be quarks, antiquarks, and gluons. The PDF contains the physics of long-ranged
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Figure 1. Deep inelastic scattering e−p → e−X in the parton model. The
photon emitted from the electron interacts with a quark (momentum ξP ) taken
from the proton (momentum P ).

interactions that cannot be completely determined from perturbative QCD. On the
other hand, the cross section σ̂ of the partonic subprocess e−qf → e−qf can be
calculated perturbatively. [2, 3]

The interpretation of Eq. (1.1) is that the photon emitted from the electron does
not interact with the proton as a whole, but rather with a quark taken from the
proton. The interaction between the electron and the quark, mediated by the photon,
is represented by the partonic subprocess e−qf → e−qf . The non-perturbative part,
which in this example is the distribution of quarks inside the proton, has been isolated
to the PDF. This interpretation is illustrated in Figure 1.

As another example, the cross section of the Drell–Yan process pp → e−e+X can
similarly be factored into [3, §17.4]

σ(pp → e−e+X) =
∑

f

∫
dξ1 dξ2 ff/p(ξ1)ff/p(ξ2)σ̂(qfqf → e−e+). (1.2)

Even though the PDFs cannot be calculated analytically using perturbation theory,
they can be determined numerically from experimental data. A key property of
PDFs is universality, which means that the PDFs are process-independent. [3, §17.3]
This implies that the PDF ff/p is the same in both Eq. (1.1) and Eq. (1.2).

The equivalent photon approximation (EPA) is the analog of collinear factorization
in QED. Instead of the proton (or any other charged particle) consisting of quarks and
gluons, it is considered as a source of photons in the equivalent photon approximation.
This is usually justified by a classical argument, where one notices that the electric
and magnetic fields of an ultrarelativistic charged particle resemble those of a pulse
of electromagnetic radiation [5, §11.10]. The charged particle can therefore be
interpreted as a cloud of photons. It is then these photons which mediate the
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interaction. Thus, the potentially complicated interaction of the proton with some
other charged particle, say, a lepton, can be replaced by an interaction between a
photon and the lepton.

The main objective of this thesis is to derive the factorization of electromagnetic
cross sections in processes involving one or two photon exchanges, which are analogous
to Eqs. (1.1) and (1.2), respectively. By doing this, we will also obtain the photon
distribution function fγ/p of the proton, and more generally of any charged spin-0 or
spin-1

2 particle. In the context of the equivalent photon approximation, this photon
distribution function is more often called the equivalent photon distribution or the
equivalent photon flux.

One can also take the analogy with parton distribution functions further. A
numerical photon distribution function of the proton, which includes both elastic
and inelastic contributions, has been obtained in Refs. [6, 7]. Evolution equations for
the photon and electron distribution functions can also be derived [3, §17.5]. These
aspects are outside the scope of this thesis and will not be further considered.

Historically, the equivalent photon approximation was independently discovered
by C. F. Weizsäcker [8] and E. J. Williams [9] in 1934 [5, §15.4]. Thus, the equivalent
photon approximation is also called the Weizsäcker–Williams method. Originally, the
equivalent photon distribution was derived semiclassically by Fourier-transforming
the electric and magnetic fields of an ultrarelativistic charged point-like particle;
see for example Refs. [5, §15.4] and [9, 10]. However, the focus of this thesis is in
applying field-theoretical methods to the equivalent photon approximation.

In high-energy physics, the equivalent photon approximation is often used in
studying hadronic interactions and heavy-ion collisions. For example, exclusive muon-
pair production in the process γγ → µ+µ− was studied by the ATLAS collaboration
[11] using proton-proton collisions. In this example, the photons which fuse to the
muon pair are emitted by the colliding protons. As another example, Drees and
Zeppenfeld [12] applied the equivalent photon approximation to the production
of supersymmetric particles in electron-proton collisions. More generally, particle
production in hadronic collisions is often modelled using the equivalent photon
approximation [13–15]. In addition, Monte-Carlo event generators, such as Pythia
[16] and STARlight [17], utilize the equivalent photon approximation.

In 2013, d’Enterria and Silveira [18] proposed using equivalent photons from
colliding lead ions to observe light-by-light scattering γγ → γγ experimentally. Light-
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by-light scattering is a purely quantum-mechanical process which occurs at one-loop
level in QED via fermion box diagrams, and has been proposed as a sensitive probe
for effects beyond the standard model [18, 19]. The equivalent photon approximation
gives a means of isolating the light-by-light scattering cross section σ(γγ → γγ) from
the lead-lead scattering cross section σ(Pb Pb → Pb Pb γγ). Direct observations of
the light-by-light scattering process were later obtained by the ATLAS [19–21] and
CMS [22] collaborations using lead-lead collisions.

Although it has been nearly a century since the initial development of the
equivalent photon approximation, the method has seen sustained interest in both
applications and further development of the method itself. Early derivations using
field-theoretical methods were done two decades later [23, 24] and helicity-based
methods another two decades later [25–27]. Numerous improvements have been
also been obtained, see for example Refs. [28, 29]. In 1984, Dawson [30] derived
an extension of the equivalent photon approximation to the electroweak sector.
Dependence on the impact parameter has also been considered in the context of
the classical field approximation [31, 32]. Very recently, in 2022, the validity of the
equivalent photon approximation was again considered in Ref. [33].

What is missing from the literature is a clear and detailed derivation of the equiv-
alent photon approximation. While the method has been derived in many references
using many different methods, it is often difficult to see what approximations have
been made and where, leading to a lack of clarity on the applicability of the method.
This thesis attempts to partially fill that gap by going through the derivation in
enough detail as to show the approximations that ultimately lead to the equivalent
photon approximation.

In this thesis, we use a helicity-based approach to derive the factorization of
scattering cross sections and subsequently the equivalent photon distribution. The
definitive source for the field-theoretical equivalent photon approximation is Ref.
[34], which we follow throughout this thesis. We start with the polarization of virtual
photons in Section 2. In Section 3, we derive the equivalent photon approximation
in processes with one photon exchange and in Section 4 generalize the derivation to
processes with two photon exchanges. In Section 5, we consider the general forms of
the photon distributions for spin-0 and spin-1

2 particles. In Section 6, we apply the
equivalent photon approximation to muon-pair production and compare it with a
full calculation. Finally, in Section 7, we give some concluding remarks.
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1.1 Notation and conventions

Cartesian vectors v = (vx, vy, vz) are denoted with a bold symbol. Components of a
four-vector u = (u0, u1, u2, u3) are denoted with upper Greek indices as in uµ, where
µ = 0, 1, 2, 3. Indices can be lowered with the metric tensor, vµ ≡ gµνv

ν . Repeated
indices are summed over according to the Einstein summation convention,

aµb
µ ≡ a0b

0 + a1b
1 + a2b

2 + a3b
3.

The mostly-minus signature is used for the metric, so that

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

With this signature, a · b ≡ aµb
µ = a0b0 − a · b = a0b0 − a1b1 − a2b2 − a3b3 and

p2 = m2, where p is the momentum of an on-shell particle with mass m.
Commutators are denoted with square brackets [A,B] ≡ AB −BA and anticom-

mutators with curly braces {A,B} ≡ AB +BA. The γ-matrices (see Appendix A)
are denoted by γµ with µ = 0, 1, 2, 3 and γ-matrices with lowered indices are defined
by γµ ≡ gµνγ

ν . Contractions of γ-matrices with four-vectors are denoted with the
slash notation /a ≡ aµγ

µ = aµγµ. The generator of Lorentz transformations is defined
as σµν ≡ i

2 [γµ, γν ]. Time flows from left to right in Feynman diagrams. When two
expressions a and b are required to be equal, the notation a

!= b is used.



16



17

2 Polarization of virtual photons

It is well known that real photons only have two polarization states, which are referred
to as the transverse polarization states [2, §6.9] For a virtual photon, however, we
will see that we need three polarization states. These states will play an important
role in the calculation of scattering cross sections in Sections 3 and 4. Thus, it is
useful to first consider these polarization states in detail.

2.1 Helicity eigenvectors

Consider an infinitesimal Lorentz transformation Λµ
ν = δµ

ν + ωµ
ν , where ω is

infinitesimal and δµ
ν is the Kronecker delta. The defining feature of a Lorentz

transformation Λ is g = ΛTgΛ, which follows1 from the transformation law of four-
vectors a′µ = Λµ

νa
ν and the required invariance of the inner product a′ · b′ != a · b.

To first order in ω,

gµν = Λµ
ρΛν

σg
ρσ = (δµ

ρ + ωµ
ρ)(δν

σ + ων
σ)gρσ

=
[
δµ

ρδ
ν
σ + δµ

ρω
ν
σ + δν

σω
µ

ρ + ωµ
ρω

ν
σ

]
gρσ

' gµν + gµσων
σ + gρνωµ

ρ = gµν + ωνµ + ωµν ,

which implies that ω has to be antisymmetric, ωµν = −ωνµ.
The most general form of ω reads

ωµ
ν =


0 b1 b2 b3

b1 0 −r3 r2

b2 r3 0 −r1

b3 −r2 r1 0

 ,

where bi corresponds to an infinitesimal boost along the i-axis and ri corresponds
to an infinitesimal rotation around the i-axis [35, §C.1]. Thus, the generator of

1Since a′ · b′ = gρσa′ρb′σ = gρσΛρ
µΛσ

νaµbν = (ΛT ) ρ
µ gρσΛσ

νaµbν != gµνaµbν = a · b, it follows
that ΛT gΛ = g.
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rotations along the z-axis is defined by2

S3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , (2.1)

since we can obtain the full rotation matrix by exponentiating −iθS3.
The helicity operator is defined as the projection of the spin in the direction of

momentum q,
h ≡ S · q

|q|
,

where S is the spin operator. Let us first consider the case where the particle is
moving along the z-axis. The helicity operator then reduces to h = S3, where S3

is given in Eq. (2.1). The eigenvalues of h = S3 are λ = 0,±1. For λ = ±1, the
corresponding normalized eigenvectors are

εµ
±1 = 1√

2
(0,∓1,−i, 0). (2.2)

The eigenvalue λ = 0 corresponds to two eigenvectors, (1, 0, 0, 0) and (0, 0, 0, 1). We
will see in Section 2.2 that it is useful to define their linear combination

εµ
0 = 1√

−q2 (|q| , 0, 0, q0), (2.3)

where
√

−q2 is a quantity representing the analog of mass of the virtual photon.
Normalization in this context means that

ελ · ε∗
λ′ = (−1)λδλλ′ . (2.4)

We can also notice that
q · ελ = 0, (2.5)

where qµ = (q0, 0, 0, qz). Since Eq. (2.5) is covariant, it holds in all frames, not just in
the frame where it was derived. The helicity vectors derived in Eqs. (2.2) and (2.3)
can be found in many textbooks, such as in Ref. [2, §6].

2The choice r3 = i is ultimately fixed by the form of the commutation relation [Si, Sj ] = iεijkSk.
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2.2 Polarization tensors

We now choose the polarization vectors of a virtual photon with momentum q to be
helicity eigenstates. Thus, in the case where the photon travels along the z-axis, the
polarization vectors are given by Eqs. (2.2) and (2.3). However, instead of working
directly with these polarization vectors, we will derive manifestly covariant forms for
the expressions ∑λ=±1 ε

µ
λ(εν

λ)∗ and εµ
0 .

Consider the collision γ(q) + A(k) → B(k′) of the virtual photon γ with another
particle A in their center-of-mass frame, where the momentum of each particle is
shown in parenthesis. Furthermore, we choose the axes in such a way that the beam
axis and the z-axis coincide. In this frame, qµ = (E, 0, 0, qz) and kµ = (Ẽ, 0, 0,−qz).
Consulting Eq. (2.2), we see that k · ε±1 = 0.

We consider first the transverse polarization vectors ε±1. These satisfy the
orthogonality relations

q · ε±1 = k · ε±1 = 0 (2.6)

as well as the normalization condition (see Eq. (2.4))

ε±1 · ε∗
±1 = −1. (2.7)

We only need to consider the form appearing in the squared invariant amplitudes,
which is the sum

P µν ≡
∑

λ=±1
εµ

λ(εν
λ)∗. (2.8)

Requiring P µν to be real, we get that

P µν = (P µν)∗ = P νµ. (2.9)

Since this sum can only depend on the momenta k and q, the most general symmetric
form of P is

P µν = agµν + bkµkν + cqµqν + d(kµqν + qµkν), (2.10)

where a, b, c, and d are scalar functions of k and q. From the orthogonality require-
ments in Eq. (2.6) it follows that

qµP
µν = kµP

µν = 0, (2.11)



20

which in turn give the pair of equations


(a+ cq2 + d(q · k))qν + (b(q · k) + dq2)kν = 0,

(a+ bk2 + d(q · k))kν + (c(q · k) + dk2)qν = 0.

Since these must hold for any k and q, the coefficients of kν and qν must vanish
separately, yielding

a+ cq2 + d(q · k) = b(q · k) + dq2 = a+ bk2 + d(q · k) = c(q · k) + dk2 = 0. (2.12)

The solution of Eq. (2.12) is

b = aq2

(q · k)2 − q2k2 ,

c = ak2

(q · k)2 − q2k2 ,

d = − a(q · k)
(q · k)2 − q2k2 .

(2.13)

Substituting Eq. (2.13) into Eq. (2.10),

P µν = a [((q · k)2 − q2k2)gµν + q2kµkν + k2qµqν − (q · k)(kµqν + qµkν)]
(q · k)2 − q2k2 . (2.14)

The normalization condition in Eq. (2.7) translates to

gµνP
µν =

∑
λ=±1

ελ · ε∗
λ = −2. (2.15)

Applying this to Eq. (2.14) gives a = −1 and so

P µν = −gµν + (q · k)(kµqν + qµkν) − q2kµkν − k2qµqν

(q · k)2 − q2k2 , (2.16)

which gives us a manifestly covariant form for the transverse polarization sum.

Using the orthogonality qµP
µν = kµP

µν = 0,

PµρP
ρν = Pµρ

(
−gρν + (q · k)(kρqν + qρkν) − q2kρkν − k2qρqν

(q · k)2 − q2k2

)

= −Pµρg
ρν = −P ν

µ .

(2.17)
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From this and Eqs. (2.9) and (2.15) it also follows that

PµνP
µν = gνρPµνP

µ
ρ = gνρPνµP

µ
ρ = −gνρPνρ = 2. (2.18)

Equation (2.17) describes, up to a sign, an idempotent operator. That is, applying
P twice is the same as applying −P once. Apart from the sign difference, this is
characteristic of a projection operator. Furthermore, for any vector vµ = aqµ + bkµ,
we have again that Pµνv

ν = 0. Based on these observations, we can interpret P as a
sign-reversing projection operator to the subspace orthogonal to the vectors q and k.

Next we consider the longitudinal polarization vector ε0. In addition to the
orthogonality q · ε0 = 0, the longitudinal polarization vector is orthogonal to the
transverse polarization vectors:

q · ε0 = ε0 · ε±1 = 0. (2.19)

The normalization follows from Eq. (2.4):

ε0 · ε∗
0 = +1. (2.20)

Denoting
Rµ ≡ εµ

0 , (2.21)

we can parametrize it by
Rµ = akµ + bqµ. (2.22)

Equation (2.19) can then be cast into the form

qµR
µ = 0; RµP

µν = 0. (2.23)

It should be noted that the parametrization (2.22) automatically satisfies RµP
µν = 0.

Now, applying qµR
µ = 0 to Eq. (2.22) yields

qµR
µ = a(q · k) + bq2 = 0,

the solution of which is b = −a(q · k)/q2. We now have the overall form of R,

Rµ = a

(
kµ − qµ q · k

q2

)
.
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The normalization scalar a can be fixed with Eq. (2.20), which is equivalent to
RµR∗

µ = +1. This gives

RµR∗
µ = |a|2

(
k2 − (q · k)2

q2

)
= 1. (2.24)

By choosing a to be real and positive, we obtain a =
√

−q2

(q·k)2−q2k2 from Eq. (2.24),
and therefore

Rµ =

√√√√ −q2

(q · k)2 − q2k2

(
kµ − qµ q · k

q2

)
. (2.25)

Since a was chosen to be real, Rµ is also real.

Using Eqs. (2.16) and (2.25), we can calculate the total polarization sum

∑
λ=0,±1

(−1)λεµ
λ(εν

λ)∗ = −P µν +RµRν

= gµν − (q · k)(qµkν + kµqν) − q2kµkν − k2qµqν

(q · k)2 − q2k2

+ −q2

(q · k)2 − q2k2

(
kµ − qµ q · k

q2

)(
kν − qν q · k

q2

)

= gµν − (q · k)(qµkν + kµqν) − q2kµkν − k2qµqν

(q · k)2 − q2k2

−
q2kµkν − (q · k)(qµkν + kµqν) + (q·k)2

q2 qµqν

(q · k)2 − q2k2

= gµν − (q · k)2qµqν

q2 ((q · k)2 − q2k2) + k2qµqν

(q · k)2 − q2k2

= gµν − qµqν

q2 ,

(2.26)

which we recognize as the tensor structure of the photon propagator in the Landau
gauge [3, Eq. (9.58)]. This observation ultimately justifies our choice of the three
polarization vectors in Eqs. (2.2) and (2.3) for the polarization of virtual photons.

As a sanity check, we can return to the center-of-mass frame, where qµ =
(E, 0, 0, qz) and kµ = (Ẽ, 0, 0,−qz). In this case,

q · k = EẼ + q2
z (2.27)
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and

(q · k)2 − q2k2 = (EẼ + q2
z)2 − (E2 − q2

z)(Ẽ2 + q2
z) = (E + Ẽ)2q2

z . (2.28)

Using Eqs. (2.2), (2.3), (2.27), and (2.28),

P µν = −gµν + (q · k)(qµkν + kµqν) − q2kµkν − k2qµqν

(q · k)2 − q2k2 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



= 1
2


0
1

−i
0


(
0 1 i 0

)
+ 1

2


0

−1
−i
0


(
0 −1 i 0

)
=

∑
λ=±1

εµ
λ(εν

λ)∗

and
RµRν = −q2

(q · k)2 − q2k2

(
kµ − qµ q · k

q2

)(
kν − qν q · k

q2

)

= − 1
E2 − q2

z


q2

z 0 0 Eqz

0 0 0 0
0 0 0 0
Eqz 0 0 E2

 = 1
−q2


qz

0
0
E


(
qz 0 0 E

)

= εµ
0ε

ν
0 = εµ

0(εν
0)∗.

Furthermore, in the real photon limit q2 → 0 where E =
√
q2 + q2

z → qz, an explicit
calculation shows that

−gµν + qµq̃ν + q̃µqν

q · q̃
=



−1 + 2E2

E2 + q2
z

0 0 0

0 1 0 0
0 0 1 0

0 0 0 1 − 2q2
z

E2 + q2
z



→


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 = P µν ,

(2.29)
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where q̃µ ≡ (E, 0, 0,−qz) is the space-reflected version of qµ = (E, 0, 0, qz). The
polarization tensor shown on the left-hand side of Eq. (2.29) is another form of the
polarization tensor for real photons and can often be found in textbooks; see for
example Ref. [36, Eq. (8.59)].
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3 Equivalent photon approximation in one-photon
exchange processes

In this section, we consider the equivalent photon approximation in a generic process
AB → BX with one photon exchange. The idea of the equivalent photon approxima-
tion is that instead of considering the entire process AB → BX (Figure 2a), we can
consider only the photon absorption process γA → X (Figure 2b). The total cross
section σ(AB → BX) is then the photon absorption cross section σ̂(γA → X) folded
with the photon distribution fγ/B. The goal of this section is to derive the photon
distribution fγ/B from the virtual photon emission process B → Bγ (Figure 2c) and
to see how the factorization of σ(AB → BX) into σ̂(γA → X) and fγ/B arises.

3.1 Kinematics

We consider the process A(k) + B(p) → B(p′) + X(k′) shown in Figure 2a. The
momentum of each particle is indicated in parenthesis and the conservation of
momentum reads

k + p = p′ + k′. (3.1)

For each momentum vector, we introduce the notation

k = (k0,k),

k′ = (k′0,k′),

p = (E,p),

p′ = (E ′,p′).

We will assume that the particle B stays intact, so that

p2 = M2 = (p′)2, (3.2)

where M is the mass of particle B. This does not apply to particle A, where a fixed
but arbitrary n-particle final state X is allowed. The total momentum of the final
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A(k)

...

X1(k′
1)

X2(k′
2)

Xn(k′
n)

B(p)

B(p′)

γ(q)

X(k′)

(a) Total scattering AB → BX.

A(k)

...

X1(k′
1)

X2(k′
2)

Xn(k′
n)

γ(q)

X(k′)

(b) Virtual photon absorption γA → X.

B(p)

B(p′)

γ(q)

(c) Virtual photon emission B → Bγ.

Figure 2. Feynman diagrams related to the AB → BX scattering. The
momentum of each particle is denoted in parenthesis. The final state X(k′)
consists of n particles, each with momentum k′

i such that k′ = ∑n
i=1 k

′
i.

state is denoted by k′, while the individual momenta of the final-state particles are
denoted by k′

i, where i = 1, 2, . . . , n. Thus, in general3

m2 = k2 6= (k′)2 = (k′
1 + k′

2 + · · · k′
n)2,

where m is the mass of particle A.

The momentum-transfer vector q ≡ (q0,q) ≡ p−p′ = k′ −k gives the momentum
of the intermediate-state photon. Using Eq. (3.2),

q2 = (p− p′)2 = p2 − 2p · p′ + (p′)2 = 2p2 − 2p · p′ = 2p · (p− p′) = 2p · q (3.3)

3There are of course situations where k2 = (k′)2 holds, such as when n = 1 and X = A, but in a
general setting we cannot assume anything about such a relation.
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and similarly
q2 = 2(p′)2 − 2p · p′ = 2p′ · (p′ − p) = −2p′ · q. (3.4)

The Mandelstam s for the entire process AB → BX is given by

s = (p+ k)2 = (p′ + k′)2. (3.5)

We also define a corresponding Mandelstam s for the subprocess γA → X with

ŝ = (q + k)2 = (k′)2. (3.6)

Since4 q2 ≤ 0, it is then useful to define

Q2 ≡ −q2 ≥ 0.

For further use, we define the kinematical invariant

y ≡ q · k
p · k

. (3.7)

In the target rest frame, where k = 0,

y = q0k0 − q · k
Ek0 − p · k

= q0

E
= E − E ′

E
= 1 − E ′

E
. (3.8)

Thus, we see that in this frame, y gives the fractional energy loss of the projectile
particle B. Since5 0 ≤ E ′ ≤ E, it then follows from Eq. (3.8) that

0 ≤ y ≤ 1. (3.9)

Now,
ys = q · k

p · k
(p+ k)2 = q · k

p · k
(
M2 + 2p · k +m2

)
(3.10)

and
ŝ = (q + k)2 = q2 + 2q · k +m2. (3.11)

4In any frame, q2 = (p − p′)2 = 2M2 − 2EE′ + 2p · p′. In the brick-wall frame where p = −p′

and E = E′, we have q2 = 2
(

M2 − E2 − |p|2
)

= −4 |p|2 ≤ 0.
5The statement E′ ≤ E is equivalent, by Eqs. (3.7) and (3.8), to q ·k ≥ 0. Since ŝ = (q+k)2 ≥ m2,

Eq. (3.11) and −q2 ≥ 0 imply that 2q · k ≥ 0.
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By neglecting the masses m and M , and the virtuality q2, Eqs. (3.10) and (3.11)
together imply that

ŝ ' 2q · k ' ys. (3.12)

Similarly, we find that

q2 = (p− p′)2 = 2M2 − 2p · p′ ' −2p · p′, (3.13)

when M ' 0. In the limit q2 → 0, Eq. (3.13) implies that p · p′ ' 0. Since the mass
M has been neglected, E = |p| and E ′ = |p′|, which gives

0 ' p · p′ = EE ′ − p · p′ ' EE ′(1 − cos θ), (3.14)

where θ is the angle between p and p′. It follows from Eq. (3.14) that cos θ = 1,
which means that p and p′ are parallel. Assuming that p is along the z-axis so that
p = (0, 0, E) and p′ = (0, 0, E ′), Eq. (3.8) gives

p′ = (E ′,p′) ' (E ′, 0, 0, E ′) = (1 − y)(E, 0, 0, E) = (1 − y)p,

and therefore
q = p− p′ ' p− (1 − y)p = yp. (3.15)

In general, we have

Q2 = −(p− p′)2 = −2M2 + 2p · p′ = −2M2 + 2(EE ′ − |p| |p′| cos θ), (3.16)

where θ is the angle between p and p′. From Eq. (3.16) we see that if cos θ = 1, then
the minimum value Q2

min of Q2 is obtained. That is to say,

Q2
min = −2M2 + 2(EE ′ − |p| |p′|). (3.17)

In order to derive an invariant expression for Q2
min, we work in the center-of-mass

frame of the incoming particles A and B such that k = −p. Using Eq. (3.5),

s = (p+ k)2 =
(
(E,p) + (k0,−p)

)2
= (E + k0)2

=
(√

M2 + |p|2 +
√
m2 + |p|2

)2
.

(3.18)
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With Eq. (3.18), we can write |p|2 in terms of s, m2 and M2. The result is

|p|2 = 1
4s
(
s− (m−M)2

) (
s− (m+M)2

)
. (3.19)

Similarly, by using Eq. (3.6),

ŝ = (q + k)2 =
(
(E − E ′,p − p′) + (k0,−p)

)2
= (E − E ′ + k0)2 − |p′|2

=
(√

M2 + |p|2 −
√
M2 + |p′|2 +

√
m2 + |p|2

)2
− |p′|2 .

(3.20)

Solving Eq. (3.20) for |p′|2 and using Eq. (3.19), we find

|p′|2 = 1
4s

(
s−

(√
ŝ−M

)2
)(

s−
(√

ŝ+M
)2
)
. (3.21)

Then, using Eqs. (3.19) and (3.21),

E2 = M2 + |p|2 = M2 + 1
4s
(
s− (m−M)2

) (
s− (m+M)2

)
= 1

4s
(
s−m2 +M2

)2
(3.22)

and

(E ′)2 = M2 + |p′|2 = M2 + 1
4s

(
s−

(√
ŝ−M

)2
)(

s−
(√

ŝ+M
)2
)

= 1
4s
(
s− ŝ+M2

)2
.

(3.23)

Plugging Eqs. (3.19) and (3.21)–(3.23) into Eq. (3.17),

Q2
min = −2M2 + 1

2s
(
s−m2 +M2

) (
s− ŝ+M2

)
− 1

2s
√

(s− (m−M)2) (s− (m+M)2)

×
√(

s− (ŝ−M)2
) (
s− (ŝ+M)2

)
= −2M2 + 1

2s
(
s−m2 +M2

) (
s− ŝ+M2

)
− 1

2s
√

(s− (m−M)2) (s− (m+M)2)
√

(s− ŝ−M2)2 − 4ŝM2.

(3.24)
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Neglecting the mass of the particle A by setting m = 0, Eq. (3.24) reduces to

Q2
min ' −2M2 + 1

2s(s+M2)(s− ŝ+M2)

− 1
2s(s−M2)

√
(s− ŝ−M2)2 − 4ŝM2,

(3.25)

which has been obtained in Ref. [12, Eq. (2.8)] and Ref. [33, Eq. (21)].
Another useful approximation for Q2

min can be derived in the target rest frame
where Eq. (3.8) holds. Following Ref. [37, §2] and expanding to first order in M2,

Q2
min = −2M2 + 2(EE ′ − |p| |p′|)

= −2M2 + 2EE ′

1 −
√

1 − M2

E2

√√√√1 − M2

(E ′)2


' −2M2 + 2EE ′

(
1 −

(
1 − M2

2E2

)(
1 − M2

2(E ′)2

))

= −2M2 + 2EE ′
(
M2

2E2 + M2

2(E ′)2 − M4

4E2(E ′)2

)

' −2M2 + 2EE ′
(
M2

2E2 + M2

2(E ′)2

)

= −2M2 +M2(1 − y) + M2

1 − y

= M2y2

1 − y
.

(3.26)

In particular Q2
min ∝ M2. It should be noted that Eq. (3.26) can also be obtained by

substituting ŝ = ys (see Eq. (3.12)) into Eq. (3.25) and expanding to first order in
M2.

3.2 General scattering formalism

We begin by writing down the invariant amplitude of the scattering AB → BX

by the exchange of a photon, shown in Figure 2a. We denote the absorptive part
containing the vertex6 γA → X as `µ and the emissive part containing the vertex
B → γB as Hν . Feynman rules of QED, given in Appendix B, tell us that the

6While the vertices technically have no notions of incoming or outgoing particles, the language
of absorptive and emissive parts is in this context a useful way to differentiate between the two
parts of the diagram connected by a photon.
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invariant amplitude M(AB → BX) is given by

iM(AB → BX) = (iZAe`
µ)
[
−igµν

q2

]
(iZBeH

ν) = iZAZBe
2 `

µHµ

q2 , (3.27)

where two factors of iZe have been factored out of the γA → X and B → γB

vertices. The constants ZA and ZB are the electric charges of the particles A and
B, respectively, in units of e (Z = −1 for the electron and Z = +1 for the proton).
Squaring the amplitude in Eq. (3.27),

|M(AB → BX)|2 = Z2
AZ

2
Be

4

q4 `µ(`ν)∗HµH
∗
ν .

Finally, we average over the initial-state spins and sum over the final-state spins in
order to obtain the unpolarized squared amplitude

|M(AB → BX)|2 = Z2
AZ

2
Be

4

q4 `µ(`ν)∗ 1
2
∑
HµH

∗
ν ≡ Z2

AZ
2
Be

4

q4 `µ(`ν)∗Wµν , (3.28)

where in the last step we defined Wµν ≡ 1
2
∑
HµH

∗
ν . The symbol ∑ indicates summing,

but not averaging, over all appropriate initial- and final-state spin states. The bar in
`µ(`ν)∗ indicates initial-state averaging and final-state summation. It should also be
noted that while the process considered here is quite general, the notation has been
chosen to suggest that the virtual photon is emitted by a hadron and absorbed by a
lepton.

The differential cross section for the process AB → BX is then [36, §G]

dσ(AB → BX) = |M(AB → BX)|2

4
√

(p · k)2 − p2k2
dPS, (3.29)

where k2 = m2 and p2 = M2. The flux factor
√

(p · k)2 − p2k2 assumes that p and k
are collinear. The phase space element dPS is

dPS = (2π)4δ(4)(p+ k − p′ − k′) d3p′

(2π)32E ′ dΠX ,

where the four-dimensional Dirac delta function δ(4) enforces the conservation of
momentum stated in Eq. (3.1). The Lorentz-invariant measure d3p′/(2π)32E ′ gives
the phase-space volume element for the final-state particle B with energy E ′. The
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term dΠX is a product of similar phase-space volume elements of the n particles in
the final state X,

dΠX =
n∏

i=1

d3k′
i

(2π)32(k′
i)0 , (3.30)

where (k′
i)0 gives the energy of the ith particle in the final state X. Thus, using

Eq. (3.28), we can rewrite Eq. (3.29) as

dσ(AB → BX) = Z2
AZ

2
Be

4

q4
`µ(`ν)∗Wµν

4
√

(p · k)2 − p2k2

× (2π)4δ(4)(p+ k − p′ − k′) d3p′

(2π)32E ′ dΠX .

(3.31)

For simplicity, we consider the case where all momenta of the final state X

have been integrated over. To perform this integral in Eq. (3.31), we introduce the
absorption tensor

`µν ≡
∫

dΠX`µ(`ν)∗(2π)4δ(4)(p+ k − p′ − k′). (3.32)

With the help of Eqs. (3.31) and (3.32), the differential cross section can be written
as

dσ(AB → BX) = Z2
AZ

2
Be

4

q4
`µνWµν

4
√

(p · k)2 − p2k2

d3p′

(2π)32E ′ . (3.33)

The integral over k′ in Eq. (3.32), which is included in the phase space element dΠX ,
ensures that `µν can only depend on the momenta k and q.

3.3 Photon absorption

We now consider the virtual photon absorption γA → X shown in Figure 2b. We
define7 the amplitude

iMλ(γA → X) = iZAe`µε
µ
λ(q),

so that the squared amplitude is

|Mλ(γA → X)|2 = Z2
Ae

2`µ`
∗
νε

µ
λ(εν

λ)∗. (3.34)

7The amplitude must be defined when the photon is virtual. However, the subsequent transverse
amplitude (3.35) coincides with the amplitude obtained from Feynman rules when the photon is
real.
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From this we define the spin-averaged transverse absorption amplitude

|MT (γA → X)|2 ≡ 1
2Z

2
Ae

2`µ`∗
ν

∑
λ=±1

εµ
λ(εν

λ)∗ = 1
2Z

2
Ae

2`µ`∗
νP

µν (3.35)

and the longitudinal absorption amplitude

|ML(γA → X)|2 ≡ Z2
Ae

2`µ`∗
νε

µ
0(εν

0)∗ = Z2
Ae

2`µ`∗
νR

µRν , (3.36)

where Eqs. (2.8) and (2.21) were used to identify the polarization tensors P µν and
Rµ. From these amplitudes we can define the corresponding absorption cross sections

dσ̂T/L(γA → X) =

∣∣∣MT/L(γA → X)
∣∣∣2

4
√

(q · k)2 − q2k2
(2π)4δ(4)(q + k − k′)dΠX

=

∣∣∣MT/L(γA → X)
∣∣∣2

4
√

(q · k)2 − q2k2
(2π)4δ(4)(p+ k − p′ − k′)dΠX .

(3.37)

If the photon is real, the differential cross section dσT (γA → X) in Eq. (3.37)
coincides with the cross section of the subprocess γA → X when q and k are collinear.
However, Eq. (3.29) has already been written in a frame where p and k are collinear,
and in general there is no guarantee that q and p are collinear. Nevertheless, when
Q2 and M2 are small, q and p are indeed approximately collinear; see Eq. (3.15).

Explicitly, Eqs. (3.35)–(3.37) say that the transverse absorption cross section is

dσ̂T (γA → X) = 1
2Z

2
Ae

2 `µ`∗
νP

µν

4
√

(q · k)2 − q2k2
(2π)4δ(4)(p+ k − p′ − k′) dΠX (3.38)

and the longitudinal absorption cross section is

dσ̂L(γA → X) = Z2
Ae

2 `µ`∗
νR

µRν

4
√

(q · k)2 − q2k2
(2π)4δ(4)(p+ k − p′ − k′) dΠX . (3.39)

Once again we integrate over the momenta of the final state X to obtain the integrated
transverse absorption cross section

σ̂T (γA → X) = 1
2Z

2
Ae

2 `µνP
µν

4
√

(q · k)2 − q2k2
(3.40)
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and the integrated longitudinal absorption cross section

σ̂L(γA → X) = Z2
Ae

2 `µνR
µRν

4
√

(q · k)2 − q2k2
, (3.41)

where Eq. (3.32) was used to identify the absorption tensor `µν .

3.4 Factorization of the cross section

As in Section 2.2 for the polarization tensor P µν , we can parametrize `µν as

`µν = agµν + bkµkν + cqµqν + d (kµqν + kνqµ) , (3.42)

where the coefficients a, b, c, and d are functions of the scalar invariants m2, q2 and
q · k. The Ward identity qµ`

µν = 0 yields

(
a+ cq2 + d(q · k)

)
qν +

(
b(q · k) + dq2

)
kν = 0. (3.43)

Equation (3.43) must hold for arbitrary momenta, so the coefficients of qν and kν

have to vanish identically. This results in the pair of equations


a+ cq2 + d(q · k) = 0,

b(q · k) + dq2 = 0.
(3.44)

Solving Eq. (3.44), we obtain c = b(q · k)2/q4 − a/q2 and d = −b(q · k)/q2. Plugging
these into Eq. (3.42), and using Eqs. (2.25) and (2.26),

`µν = a

(
gµν − qµqν

q2

)
+ b

(
kµ − qµ q · k

q2

)(
kν − qν q · k

q2

)

= a
∑

λ=0,±1
(−1)λεµ

λ(εν
λ)∗ + b

(q · k)2 − q2k2

−q2 RµRν

= −a
∑

λ=±1
εµ

λ(εν
λ)∗ + aεµ

0(εν
0)∗ + b

(q · k)2 − q2k2

−q2 RµRν

= −a︸︷︷︸
≡ã

P µν +
[
a+ b

(q · k)2 − q2k2

−q2

]
︸ ︷︷ ︸

≡b̃

RµRν .

(3.45)



35

Thus, with the obvious choice of ã and b̃, we can write

`µν = ãP µν + b̃RµRν . (3.46)

Contracting Eq. (3.46) with RµRν ,

RµRν`
µν = ã

=0︷ ︸︸ ︷
RµRνP

µν +b̃
=1︷ ︸︸ ︷

RµRνR
µRν = b̃, (3.47)

and with Pµν ,

Pµν`
µν = ã

=2︷ ︸︸ ︷
PµνP

µν +b̃
=0︷ ︸︸ ︷

PµνR
µRν = 2ã, (3.48)

where Eqs. (2.18), (2.20), and (2.23) were used. Then, by using Eqs. (3.47) and (3.48),

`µνW
µν =

(
ãPµν + b̃RµRν

)
W µν

=
(1

2Pαβ`
αβPµν +RαRβ`

αβRµRν

)
W µν

= 1
2Pαβ`

αβPµνW
µν +RαRβ`

αβRµRνW
µν

≡ 1
2TPαβ`

αβ + LRαRβ`
αβ,

(3.49)

where in the last line we defined

T ≡ PµνW
µν ,

L ≡ RµRνW
µν .

(3.50)

We can now recognize the remaining tensorial structure in Eq. (3.49) to be the
same as in the photon absorption cross sections (3.40) and (3.41). Thus,

T σ̂T (γA → X) + Lσ̂L(γA → X) = Z2
Ae

2
1
2T`µνP

µν + L`µνR
µRν

4
√

(q · k)2 − q2k2

= Z2
Ae

2 `µνW
µν

4
√

(q · k)2 − q2k2
.

(3.51)

Rewriting Eq. (3.33) with Eq. (3.51) in mind,

dσ(AB → BX) = Z2
AZ

2
Be

4

q4
`µνW

µν

4
√

(p · k)2 − p2k2

d3p′

(2π)32E ′
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= Z2
Be

2

q4

√√√√ (q · k)2 − q2k2

(p · k)2 − p2k2

Z2
Ae

2 `µνW
µν

4
√

(q · k)2 − q2k2

 d3p′

(2π)32E ′

= Z2
Be

2

q4

√√√√ (q · k)2 − q2k2

(p · k)2 − p2k2

× [T σ̂T (γA → X) + Lσ̂L(γA → X)] d3p′

(2π)32E ′ .

We now take the limit q2 → 0. In this limit, the transverse cross section
σ̂T (γA → X) approaches the cross section σ̂(γA → X) where the photon is now real
and therefore transversely polarized. The absorption tensor `µν and the transverse
polarization tensor P µν are finite as q2 → 0, but Rµ has a singularity at q2 → 0.
This means that b̃ = RµRν`

µν (see Eq. (3.47)) must approach zero fast enough to
keep the combination b̃RµRν appearing in Eq. (3.46) finite in the limit q2 → 0. By
Eq. (3.41),

σ̂L(γA → X) ∝ RµRν`
µν = b̃, (3.52)

so the longitudinal cross section σ̂L(γA → X) vanishes in the limit q2 → 0. One can
also verify explicitly8 that L = RµRνW

µν remains finite as q2 → 0. All in all, in the
limit q2 → 0,

dσ(AB → BX) ' Z2
Be

2

q4

√√√√ (q · k)2

(p · k)2 − p2k2T σ̂(γA → X) d3p′

(2π)32E ′ . (3.53)

3.5 Photon emission

In general, the emission tensor W µν cannot be calculated perturbatively. For instance,
the proton has internal structure which is not predicted by perturbative QCD [38].
Instead, it must be parametrized using some unknown form factors that are ultimately
determined by experimental data.

For the time being, we keep a very general form for W µν and only assume
symmetry W µν = W νµ. This makes it easier to use different parametrizations further
on. Since W µν depends only on p and q,

W µν = α1p
µpν + α2(pµqν + qµpν) + α3q

µqν + α4g
µν , (3.54)

8The contraction L is calculated explicitly in Eq. (3.58), which shows that L → α4 as q2 → 0,
where α4 is a finite parameter of the emission tensor, defined in Eq. (3.54).
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where α1, α2, α3, and α4 are scalar functions of p2 = M2 and q2.

We must now calculate T = PµνW
µν as it appears in the cross section (3.53).

From Eq. (2.15) we already know that gµνP
µν = −2. Using Eq. (3.3),

pµpνP
µν +M2 = 2(q · k)(q · p)(p · k) − q2(p · k)2 − k2(q · p)2

(q · k)2 − q2k2

=
q2(q · k)(p · k) − q2(p · k)2 − 1

4q
4k2

(q · k)2 − q2k2

= 1
4

q2

(q · k)2 − q2k2

[
4(q · k)(p · k) − 4(p · k)2 − q2k2

]
= 1

4
q2

(q · k)2 − q2k2

[
4(q · k)(p · k) − 4(p · k)2

−(q · k)2 + (q · k)2 − q2k2
]

= 1
4

−q2

(q · k)2 − q2k2

[
(2p · k − q · k)2 −

(
(q · k)2 − q2k2

)]
= −q2

4

[
(2p · k − q · k)2

(q · k)2 − q2k2 − 1
]
.

(3.55)

It is now useful to use the Lorentz-invariant y = (q · k)/(p · k), defined originally in
Eq. (3.7). Then Eq. (3.55) can be written as

pµpνP
µν = −q2

4

4M2

q2 +
(p · k)2

(
2 − q·k

p·k

)2

(q · k)2 − q2k2 − 1


= −q2

4

(
4M2

q2 + (2 − y)2

y2 − q2k2/(p · k)2 − 1
)
.

(3.56)

Using Eqs. (2.11), (2.15), and (3.56),

T = PµνW
µν = α1pµpνP

µν + α4gµνP
µν

= −α1
q2

4

(
4M2

q2 + (2 − y)2

y2 − q2k2/(p · k)2 − 1
)

− 2α4

' −α1
q2

4

(
4M2

q2 + (2 − y)2

y2 − 1
)

− 2α4

= −α1q
2
(
M2

q2 + 1 − y

y2

)
− 2α4,

(3.57)

where the second-to-last line follows from setting q2 → 0 in the denominator of the
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second term in parenthesis.
For completeness, we note that from Eq. (2.24) it follows that gµνR

µRν = RµR
µ =

1, and from Eq. (3.3),

pµR
µ =

√√√√ −q2

(q · k)2 − q2k2

(
p · k − (q · p)(q · k)

q2

)

=

√√√√ −q2

(q · k)2 − q2k2

(
p · k − 1

2(q · k)
)
p · k
p · k

=

√√√√ −q2

(q · k)2 − q2k2

(
1 − y

2

)
(p · k),

so that
L = WµνR

µRν = α1pµpνR
µRν + α4gµνR

µRν

= − α1q
2(p · k)2

(q · k)2 − q2k2

(
1 − y

2

)2
+ α4.

(3.58)

3.6 Equivalent photon distribution

We now consider the rest frame of the projectile, where p = 0. In this frame, E = M

and E ′ =
√
r2 +M2, where r ≡ |p′| = |0 − p′| = |q|. Then

Q2 ≡ −q2 = −(p− p′)2 = −2M2 + 2p · p′ = −2M2 + 2EE ′ − 2
=0︷ ︸︸ ︷

p · p′

= 2M
√
r2 +M2 − 2M2 = 2M

(√
r2 +M2 −M

) (3.59)

and
y = q · k

p · k
= 1 − p′ · k

p · k
= 1 − E ′k0 − p′ · k

Ek0 − p · k
= 1 − E ′

E
+ p′ · k

Ek0

= E − E ′

E
+ r |k| cos θ

Ek0 = q0

M
+ r |k| cos θ

Mk0 ,

(3.60)

where θ is the angle between p′ and k.
We now change variables from r and cos θ to Q2 and y. The Jacobian for this is

J = ∂(Q2, y)
∂(cos θ, r) = det


∂Q2

∂(cos θ)
∂y

∂(cos θ)
∂Q2

∂r

∂y

∂r

 . (3.61)

It is easy to see from Eq. (3.59) that ∂Q2/∂(cos θ) = 0, which means that by
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Eqs. (3.59)–(3.61),

J = − ∂y

∂(cos θ)
∂Q2

∂r
= − r |k|

Mk0
2Mr√
r2 +M2

= −2 |k| r2

E ′k0 .

We can then write the volume element as

dy dQ2 = |J | d(cos θ) dr = 2 |k| r2

E ′k0 d(cos θ) dr.

Going to spherical coordinates and integrating the trivial azimuthal dependence
away, we obtain

d3p′

(2π)32E ′ = r2 dr d(cos θ) dφ
(2π)32E ′ = r2 dr d(cos θ)

(2π)22E ′ = E ′k0

2 |k| r2
r2

(2π)22E ′ dy dQ2

= 1
4(2π)2

k0

|k|
dy dQ2.

(3.62)

Still in the projectile’s rest frame,

(p · k)2 − p2k2 = E2(k0)2 − E2
(
(k0)2 − |k|2

)
= E2 |k|2 ,

so by using Eq. (3.7),

(p · k)2 − p2k2

(q · k)2 = (p · k)2

(p · k)2
(p · k)2 − p2k2

(q · k)2 = 1
y2

(p · k)2 − p2k2

(p · k)2 = 1
y2

E2 |k|2

E2(k0)2

= 1
y2

|k|2

(k0)2 .

(3.63)

Since (k0)2 = k2+|k|2 ' |k|2 when k2 = m2 � |k|2, we can approximate (k0)2/ |k|2 '
1 and use Eqs. (3.62) and (3.63) to obtain

√√√√ (q · k)2

(p · k)2 − p2k2
d3p′

(2π)32E ′ = y

4(2π)2
(k0)2

|k|2
dy dQ2 ' 1

(4π)2y dy dQ2. (3.64)

Going back to the full differential cross section dσ(AB → BX) given in Eq. (3.53)
and plugging in Eq. (3.64),

dσ(AB → BX)
dy dQ2 ' Z2

Be
2

q4
y

(4π)2T σ̂(γA → X) = α

4π
y

Q4Z
2
BT σ̂(γA → X), (3.65)
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where α = e2/4π ≈ 1/137 is the fine-structure constant and σ̂(γA → X) is understood
to be evaluated at ŝ ' ys (see Eq. (3.12)). We can now define the photon distribution

fγ/B(y,Q2) ≡ α

4π
y

Q4Z
2
BT, (3.66)

where T = T (y,Q2,M2), and then rewrite Eq. (3.65) as

dσ(AB → BX)
dy dQ2 ' fγ/B(y,Q2)σ̂(γA → X). (3.67)

Integrating Eq. (3.67) over y and Q2,

σ(AB → BX) '
∫

dy dQ2 dσ(AB → BX)
dy dQ2

=
∫

dy
∫

dQ2fγ/B(y,Q2)σ̂(γA → X)

≡
∫

dy fγ/B(y)σ̂(γA → X),

(3.68)

where on the last line we defined the Q2-integrated photon distribution

fγ/B(y) ≡
∫

dQ2fγ/B(y,Q2). (3.69)

Defining such an integrated distribution is possible, because the integrated cross
section σ̂(γA → X) does not depend on Q2. Using Eq. (3.57), we can write the
equivalent photon distribution more explicitly as

fγ/B(y,Q2) = α

2π
y

Q2Z
2
B

[
α1

2

(
1 − y

y2 − M2

Q2

)
− α4

Q2

]
, (3.70)

where α1 and α4 are parameters of the emission tensor W µν (3.54). Equation (3.70)
corresponds9 to Eq. (6.16b) in Ref. [34].

Equation (3.67) finally gives the claimed factorization of electromagnetic cross
sections in one-photon exchange processes, while Eq. (3.70) gives a general formula
for the equivalent photon distribution. Given any emission tensor W µν , one can use
Eq. (3.70) to calculate the photon distribution.

9Ref. [34] uses ω = (q · k)/m and E = (p · k)/m instead of y. These are connected by y = ω/E
and dy = dω/E. We will see in Eq. (5.10) that α1 = 4 and α4 = −Q2 for the case considered in [34,
Eq. (6.16b)]. One should also note that [34, Eq. (6.16b)] contains the denominator ω2 + Q2, which
should be approximated to ω2. The corresponding approximation was done in the second-to-last
line in Eq. (3.57).
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4 Equivalent photon approximation in two-photon
exchange processes

In this section, we consider the equivalent photon approximation in a generic process
involving two photon exchanges, depicted in Figure 3. One might assume that the
factorization in Eq. (3.68) generalizes to

σ(AB → ABX) =
∫

dy1 dy2 dQ2
1 dQ2

2fγ/A(y1, Q
2
1)fγ/B(y2, Q

2
2)σ̂(γγ → X). (4.1)

We show in this section that this is indeed the case, although there are some additional
complications not present in the one-photon exchange case.

4.1 Kinematics

We consider the process A(p1)+B(p2) → A(p′
1)+B(p′

2)+X(k′) depicted in Figure 3a.
As in Section 3.1, the momentum of each particle is shown in parenthesis and we
denote

p1 = (E1,p1),

p2 = (E2,p2),

p′
1 = (E ′

1,p′
1),

p′
2 = (E ′

2,p′
2),

k′ = (k′0,k′).

(4.2)

The particles A and B are assumed to stay intact during the scattering process so
that

p2
i = M2

i = (p′
i)2,

where i = 1, 2. Here M1 and M2 are the masses of the particles A and B, respectively.
The conservation of momentum is given by

p1 + p2 = p′
1 + p′

2 + k′.
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A(p1)

B(p2)

X1(k′
1)

X2(k′
2)

...
Xn(k′

n)

A(p′
1)

B(p′
2)

γ(q1)

γ(q2)

X(k′)

(a) Total scattering AB → ABX.

X1(k′
1)

X2(k′
2)

...

Xn(k′
n)

γ(q1)

γ(q2)

X(k′)

(b) Virtual two-photon absorption γγ → X.

Figure 3. Feynman diagrams related to the scattering AB → ABX. The
momentum of each particle is denoted in parenthesis. The final state X(k′)
consists of n particles, each with momentum k′

i such that k′ = ∑n
i=1 k

′
i.

The momentum-transfer vectors are defined in the usual way by

qi ≡ (q0
i ,qi) ≡ pi − p′

i.

Analogously to Eqs. (3.3) and (3.4),

q2
i = (pi − p′

i)2 = p2
i − 2pi · p′

i + (p′
i)2 = 2p2

i − 2pi · p′
i = 2pi · (pi − p′

i) = 2pi · qi (4.3)

and
q2

i = 2(p′
i)2 − 2pi · p′

i = 2p′
i · (p′

i − pi) = −2p′
i · qi. (4.4)

The Mandelstam s for the process AB → ABX is

s = (p1 + p2)2 = (p′
1 + p′

2 + k′)2
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and for the subprocess γγ → X

ŝ = (q1 + q2)2 = (k′)2.

Following Eq. (3.7), we define

y1 ≡ q1 · q2

p1 · q2
,

y2 ≡ q1 · q2

p2 · q1
.

(4.5)

As in Eq. (3.8), y1 and y2 can be interpreted as fractional energy losses

yi = 1 − E ′
i

Ei

in the rest frames of the two respective photons. The rest frames of the photons
exist as long as q2

i 6= 0. As in Eq. (3.9), we also have

0 ≤ yi ≤ 1. (4.6)

By neglecting the masses M1 and M2, and taking the limits q2
1, q

2
2 → 0, the same

argument that led to Eq. (3.15) shows that qi and pi are approximately proportional.
Then it follows from Eq. (4.5) that

y1 ' q1 · p2

p1 · p2
,

y2 ' q2 · p1

p1 · p2
.

(4.7)

Using Eqs. (4.5) and (4.7), we obtain a useful approximate relation

(q1 · q2)(p1 · p2) ' (q1 · p2)(q2 · p1). (4.8)

Finally, as in Eqs. (3.10)–(3.12), by neglecting the masses M1 and M2, and taking
the limit q2

1, q
2
2 → 0,

ŝ = (q1 + q2)2 = q2
1 + 2q1 · q2 + q2

2 ' 2q1 · q2 = q1 · p2

p1 · p2

q1 · q2

p2 · q1
2p1 · p2

' y1y2(2p1 · p2) ' y1y2(p1 + p2)2 = y1y2s,
(4.9)
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where we identified y1 from Eq. (4.7) and y2 from Eq. (4.5). Like in the one-photon
exchange case, it is useful to define

Q2
i ≡ −q2

i ≥ 0.

Equation (3.26) easily generalizes to

Q2
i,min ' M2

i y
2
i

1 − yi

, (4.10)

while Eqs. (3.24) and (3.25) cannot be directly used due to the increased complexity
of the kinematics.

4.2 Scattering cross sections

As in the case of a one photon exchange, we start by considering the cross section
σ(AB → ABX) of the entire scattering process, shown in Figure 3a. Using Feynman
rules, we obtain the invariant amplitude

iM(AB → ABX) = (iZ1eH
µ
1 )
[
−igµρ

q2
1

]
(e2Kρσ)

[
−igνσ

q2
2

]
(iZ2eH

ν
2 )

= Z1Z2e
4

q2
1q

2
2
Hµ

1KµνH
ν
2 ,

(4.11)

where Hµ
1 and Hν

2 describe the emission vertices A → γA and B → γB, respectively,
and Kµν describes the two-photon absorption γγ → X. The constants Z1 and Z2 are
the electric charges of the particles A and B in units of e (Z = −1 for the electron
and Z = +1 for the proton). Since the tensors H1 and H2 depend only on the photon
emission vertex, they are the same as in Eq. (3.27), apart from the different momenta
that they depend on. Squaring the amplitude in Eq. (4.11),

|M(AB → ABX)|2 = Z2
1Z

2
2e

8

q4
1q

4
2
Hµ

1 (Hρ
1 )∗Hν

2 (Hσ
2 )∗KµνK

∗
ρσ.

For the spin-averaged amplitude, we can use the same emission tensor as was used
in Eq. (3.28) to obtain

|M(AB → ABX)|2 = Z2
1Z

2
2e

8

q4
1q

4
2
W µρ

1 W νσ
2 KµνK∗

ρσ. (4.12)
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The differential cross section is then

dσ(AB → ABX) = |M(AB → ABX)|2

4
√

(p1 · p2)2 − p2
1p

2
2

(2π)4δ(4)(p1 + p2 − p′
1 − p′

2 − k′)

× d3p′
1

(2π)32E ′
1

dp′
2

(2π)32E ′
2
dΠX ,

(4.13)

where E ′
1 and E ′

2 are the energies of the outgoing particles A and B‚ respectively,
and dΠX is the phase-space volume element of the arbitrary but fixed final state X.
This volume element has the same form as it does in Eq. (3.30). In writing Eq. (4.13),
we assumed that p1 and p2 are collinear. As before, we integrate over the final state
X. Only KµνK∗

ρσ depends on the momenta of the final state X, so we define

Kµνρσ ≡
∫

dΠXKµνK∗
ρσ(2π)4δ(4)(p1 + p2 − p′

1 − p′
2 − k′). (4.14)

The cross section dσ(AB → ABX) must be real, and since the emission tensors
W1 and W2 are real, the absorption tensor Kµνρσ must be real as well. From this it
follows that

Kµνρσ = K∗
µνρσ = Kρσµν . (4.15)

Thus, the cross section becomes, using Eqs. (4.13) and (4.14),

dσ(AB → ABX) = Z2
1Z

2
2e

8

q4
1q

4
2

W µρ
1 W νσ

2 Kµνρσ

4
√

(p1 · p2)2 − p2
1p

2
2

d3p′
1

(2π)32E ′
1

dp′
2

(2π)32E ′
2

(4.16)

Next, we consider the two-photon absorption process γγ → X, depicted in
Figure 3b. The invariant amplitude is defined by

iMλ1λ2(γγ → X) = εµ
λ1(q1)

(
e2Kµν

)
εν

λ2(q2), (4.17)

where ελ is the polarization vector of the polarization (helicity) state λ. The squared
amplitude is then

|Mλ1λ2(γγ → X)|2 = e4εµ
λ1(q1)

(
ερ

λ1(q1)
)∗
KµνK

∗
ρσε

ν
λ2(q2)

(
εσ

λ2(q2)
)∗
. (4.18)

Summing over the different polarization states, one can use the polarization tensors
introduced in Section 2.2 to write the squared amplitude in a covariant form. Here
we write down explicitly only the case where both photons are transversely polarized.
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In the kinematics of the process γγ → X, the transverse polarization tensor (2.16) is

P µν(q1, q2) = −gµν + (q1 · q2)(qµ
1 q

ν
2 + qµ

2 q
ν
1 ) − q2

1q
µ
2 q

ν
2 − q2

2q
µ
1 q

ν
1

(q1 · q2)2 − q2
1q

2
2

= P µν(q2, q1),

so we can henceforth simply denote

P µν ≡ P µν(q1, q2) = P µν(q2, q1).

In addition, we will introduce the shorthand notation

Rµ
1 ≡ Rµ(q1, q2) =

√√√√ −q2
1

(q1 · q2)2 − q2
1q

2
2

(
qµ

2 − qµ
1
q1 · q2

q2
1

)
,

Rµ
2 ≡ Rµ(q2, q1) =

√√√√ −q2
2

(q1 · q2)2 − q2
1q

2
2

(
qµ

1 − qµ
2
q1 · q2

q2
2

) (4.19)

for the longitudinal polarization tensors given in Eq. (2.25). Then, averaging the
squared amplitude given in Eq. (4.18) over the transverse polarization states and
using the polarization tensor P µν ,

|MT T (γγ → X)|2 ≡ 1
4
∑

|Mλ1λ2(γγ → X)|2

= 1
4e

4 ∑
λ1=±1

εµ
λ1(q1)

(
ερ

λ1(q1)
)∗
KµνK∗

ρσ

×
∑

λ2=±1
εν

λ2(q2)
(
εσ

λ2(q2)
)∗

= 1
4e

4P µρKµνK∗
ρσP

νσ.

(4.20)

The cross section associated with the amplitude in Eq. (4.20) is defined as

dσ̂T T (γγ → X) = |M(γγ → X)T T |2

4
√

(q1 · q2)2 − q2
1q

2
2

(2π)4δ(4)(q1 + q2 − k′)dΠX , (4.21)

where q1 and q2 are taken to be approximately collinear; see the discussion on
page 33. Integrating over the final state X and using Eq. (4.14),

σ̂T T (γγ → X) = e4P µρP νσKµνρσ

16
√

(q1 · q2)2 − q2
1q

2
2

. (4.22)
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4.3 Two-photon absorption

As in Section 3.4, we must now parametrize the absorption tensor Kµνρσ. Since we
integrated over the final state X, it can only depend on the momenta of the photons,
q1 and q2. In addition, it must obey the symmetry condition given in Eq. (4.15), as
well as the Ward identity

qµ
1Kµνρσ = qν

2Kµνρσ = qρ
1Kµνρσ = qσ

2Kµνρσ = 0. (4.23)

The last two conditions in Eq. (4.23) are superfluous, as they follow from the first
two conditions and the symmetry Kµνρσ = Kρσµν . Due to the more complicated
four-index structure, writing the general parametrization is fairly complicated. In the
case of a one-photon exchange, the analogous parametrization Eq. (3.42) contained
four parameters, which the Ward identity qµ`

µν = 0 reduced to two independent
parameters. For Kµνρσ, the initial parametrization has 43 parameters, which are
eventually reduced to 8. Thus, deriving a parametrization for Kµνρσ in terms of the
polarization tensors in analogy with Eq. (3.46) is more challenging.

One approach is to first guess the form of Kµνρσ in terms of P , R1, and R2, using
Eq. (3.46) as a guide. In particular, we require that each term should be symmetric
in the exchange µν ↔ ρσ and that each term should individually satisfy the Ward
identity. For example, the symmetry requires that a term such as P µνRρ

1R
σ
2 should be

accompanied by another term Rµ
1R

ν
2P

ρσ. The Ward identity in turn excludes certain
terms, such as Rµ

1R
ν
1P

ρσ, since (q2)νR
ν
1 6= 0 in general. All in all, this consideration

results in the parametrization

Kµνρσ = a1P
µνP ρσ + a2P

µρP νσ + a3P
µσP νρ + a4 (P µνRρ

1R
σ
2 +Rµ

1R
ν
2P

ρσ)

+ a5P
µρRν

2R
σ
2 + a6R

µ
1R

ρ
1P

νσ + a7 (P µσRρ
1R

ν
2 +Rµ

1R
σ
2P

νρ)

+ a8R
µ
1R

ν
2R

ρ
1R

σ
2 .

(4.24)

Equation (4.24) is certainly symmetric in the exchange µν ↔ ρσ and satisfies the
Ward identity given in Eq. (4.23). However, it is not obvious that this parametrization
is entirely general and is not missing anything. One can use a computer algebra
system to check that this is indeed the case. The details are given in Appendix E.

A more systematic method for finding Eq. (4.24) can be found in the literature
[25, 34]. We give a brief description of this helicity-based method here. The main
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idea is to write a formal expansion of Kµνρσ using some basis tensors Bµνρσ
λ1λ2λ3λ4 ,

Kµνρσ =
∑

λ1λ2λ3λ4

Aλ1λ2λ3λ4B
µνρσ
λ1λ2λ3λ4 , (4.25)

where the sum runs over all polarization states 0,±1. One convenient choice for the
basis is constructed using polarization vectors,

Bµνρσ
λ1λ2λ3λ4 = (−1)λ1+λ2+λ3+λ4

(
εµ

λ1(q1)
)∗ (

εν
λ2(q2)

)∗
ερ

λ3(q1)εσ
λ4(q2). (4.26)

The expansion coefficients Aλ1λ2λ3λ4 can then be projected out from the expansion
in Eq. (4.25) using Eq. (2.4):

Aλ1λ2λ3λ4 = εµ
λ1(q1)εν

λ2(q2)
(
ερ

λ3(q1)
)∗ (

εσ
λ4(q2)

)∗
Kµνρσ. (4.27)

Substituting this back into Eq. (4.25) and using Eqs. (2.4), (2.26), and (4.23),

Kµνρσ =
∑

λ1λ2λ3λ4

(−1)λ1+λ2+λ3+λ4
(
εµ

λ1(q1)
)∗ (

εν
λ2(q2)

)∗
ερ

λ3(q1)εσ
λ4(q2)

× εµ′

λ1(q1)εν′

λ2(q2)
(
ερ′

λ3(q1)
)∗ (

εσ′

λ4(q2)
)∗
Kµ′ν′ρ′σ′

= Kµ′ν′ρ′σ′
∑
λ1

(−1)λ1
(
εµ

λ1(q1)
)∗
εµ′

λ1(q1)
∑
λ2

(−1)λ2
(
εν

λ2(q2)
)∗
εν′

λ2(q2)

×
∑
λ3

(−1)λ3
(
ερ

λ3(q1)
)∗
ερ′

λ3(q1)
∑
λ4

(−1)λ4
(
εσ

λ4(q2)
)∗
εσ′

λ4(q2)

= Kµ′ν′ρ′σ′

gµµ′ − qµ
1 q

µ′

1
q2

1

(gνν′ − qν
2q

ν′
2

q2
2

)gρρ′ − qρ
1q

ρ′

1
q2

1

(gσσ′ − qσ
2 q

σ′
2

q2
2

)

= Kµ′ν′ρ′σ′gµµ′
gνν′

gρρ′
gσσ′

= Kµνρσ.

This shows that the tensors chosen in Eq. (4.26) indeed form a basis for Kµνρσ with
the Ward identity being a crucial part of the argument. Furthermore, we once again
see that the three polarization vectors defined in Section 2 are sufficient to describe
Kµνρσ.

To reduce the number of terms in the expansion (4.25), we note that the expansion
coefficients (4.27) have a number of useful properties. Requiring them to be real,
one can show that

Aλ1λ2λ3λ4 = A∗
λ1λ2λ3λ4 = Aλ3λ4λ1λ2 .
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Using ε∗
λ = (−1)λε−λ, which can be seen from Eqs. (2.2) and (2.3), we find that

A−λ1,−λ2,−λ3,−λ4 = (−1)λ1+λ2+λ3+λ4Aλ1λ2λ3λ4 .

Finally, as a consequence of the conservation of angular momentum, the expansion
coefficients satisfy the sum rule [25, Eq. (26)]

Aλ1λ2λ3λ4 = δλ1−λ2,λ3−λ4Aλ1λ2λ3λ4 .

This sum rule states that the coefficient Aλ1λ2λ3λ4 vanishes if λ1 − λ2 6= λ3 − λ4.
Using these properties, the expansion (4.25) simplifies considerably. For example, the
terms with λ1 = λ2 = λ3 = λ4 = +1 and λ1 = λ2 = λ3 = λ4 = −1 can be combined
into a single term

A++++B
µνρσ
++++ + A−−−−B

µνρσ
−−−− = A++++ (Bµνρσ

++++ +Bµνρσ
−−−−) ,

where each + and − corresponds to λ = +1 and λ = −1, respectively. Now, if
λ = S · q̂1, then S · q̂2 = S · (−q̂1) = −λ in center-of-mass frame of the two photons.
In terms of the polarization vectors, this implies that

ε±1(q1) = ε∓1(q2). (4.28)

Using Eq. (4.28) and ε∗
λ = (−1)λε−λ, one can then show that

Bµνρσ
++++ +Bµνρσ

−−−− = 1
2 (P µνP ρσ − P µσP νρ + P µρP νσ) .

In a similar fashion, one can go through the remaining terms and eventually obtain
Eq. (4.24).

The coefficients a1 through a8 in Eq. (4.24) can be projected out using the
properties of the polarization tensors, Eqs. (2.17) and (2.23). For example,

P µνP ρσKµνρσ = a1P
µνPµνP

ρσPρσ + a2P
µνPµρP

ρσPνσ + a3P
µνPµσP

ρσPνρ

= 4a1 + a2(−P ν
ρ )(−P ρ

ν ) + a3(−P ν
σ )(−P σ

ν )

= 4a1 + a2P
νρPρν + a3PνσP

σν

= 4a1 + 2a2 + 2a3
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and
P µνRρ

1R
σ
2Kµνρσ = a4P

µνPµνR
ρ
1(R1)ρR

σ
2 (R2)σ = 2a4.

Going through the rest in exactly the same way, we obtain a system of equations


P µνP ρσKµνρσ = 4a1 + 2a2 + 2a3,

P µρP νσKµνρσ = 2a1 + 4a2 + 2a3,

P µσP νρKµνρσ = 2a1 + 2a2 + 4a3,

P µνRρ
1R

σ
2Kµνρσ = 2a4,

P µρRν
2R

σ
2Kµνρσ = 2a5,

Rµ
1R

ρ
1P

νσKµνρσ = 2a6,

P µσRρ
1R

ν
2Kµνρσ = 2a7,

Rµ
1R

ν
2R

ρ
1R

σ
2Kµνρσ = a8,

which has the solution

a1 = 1
8 (3P µνP ρσ − P µρP νσ − P µσP νρ)Kµνρσ,

a2 = 1
8 (3P µρP νσ − P µσP νρ − P µνP ρσ)Kµνρσ,

a3 = 1
8 (3P µσP νρ − P µνP ρσ − P µρP νσ)Kµνρσ,

a4 = 1
2P

µνRρ
1R

σ
2Kµνρσ,

a5 = 1
2P

µρRν
2R

σ
2Kµνρσ,

a6 = 1
2R

µ
1R

ρ
1P

νσKµνρσ,

a7 = 1
2P

µσRρ
1R

ν
2Kµνρσ,

a8 = Rµ
1R

ν
2R

ρ
1R

σ
2Kµνρσ.

(4.29)

The tensor Kµνρσ must be finite in the limit q2
1, q

2
2 → 0. However, Ri is singular

as q2
i → 0. Looking at Eq. (4.24), this means that the coefficients a4, a5, a6, a7, and

a8 must compensate and go to zero fast enough to keep each term finite in the limit
q2

1, q
2
2 → 0. Based on Eq. (3.58), we know that after contracting Kµνρσ with W µρ

1

and W νσ
2 , the contractions between R and W1 and W2 remain finite. With this in

mind, we neglect the terms containing factors of R in Eq. (4.24), which leaves

Kµνρσ ' a1P
µνP ρσ + a2P

µρP νσ + a3P
µσP νρ. (4.30)
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Using Eq. (4.30),

W µρ
1 W νσ

2 Kµνρσ = a1W
µρ
1 W νσ

2 PµνPρσ + a2W
µρ
1 W νσ

2 PµρPνσ

+ a3W
µρ
1 W νσ

2 PµσPνρ.
(4.31)

Since the polarization tensor P and the emission tensors W1 and W2 are symmetric
in their indices, we can shuffle the indices of the third term in Eq. (4.31) to obtain

W µρ
1 W νσ

2 PµσPνρ = W µρ
1 W σν

2 PµσPρν = W µρ
1 W νσ

2 PµνPρσ, (4.32)

where the indices ν and σ were renamed in the last step. Combining Eqs. (4.31)
and (4.32),

W µρ
1 W νσ

2 Kµνρσ = (a1 + a3)W µρ
1 W νσ

2 PµνPρσ + a2W
µρ
1 W νσ

2 PµρPνσ. (4.33)

Using Eq. (4.29), we can calculate that

a1 + a3 = 1
8 (3P µνP ρσ − P µρP νσ − P µσP νρ)Kµνρσ

+ 1
8 (3P µσP νρ − P µνP ρσ − P µρP νσ)Kµνρσ

= 1
4 (P µνP ρσ − P µρP νσ + P µσP νρ)Kµνρσ.

(4.34)

We have now parametrized the two-photon absorption tensor Kµνρσ and begun the
derivation of the factorization, starting from Eq. (4.31). However, before we can
complete this derivation, we must first rewrite Eq. (4.33).

4.4 Transverse projections

At this stage in the one-photon exchange case, the cross section had already been
factored. In Eq. (4.33), however, there are two remaining terms instead of one.
It turns out that additional work is needed to complete the factorization in the
two-photon exchange case.

We first define the transversely projected momentum vectors

(p⊥
i )µ ≡ −P µν(q1, q2)(pi)ν ,

(q⊥
i )µ ≡ −P µν(p1, p2)(qi)ν .

(4.35)
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Here we are using the general feature of the polarization tensor P which states that
P µν(a, b) is a (sign-reversing) projection operator to the subspace orthogonal to any
given vectors a and b. Using Eq. (2.17),

p⊥
i · p⊥

j = (−P µν(q1, q2)(pi)ν)(−Pµρ(q1, q2)pρ
j ) = −P ν

ρ (q1, q2)(pi)νp
ρ
j

= (−Pνρ(q1, q2)pν
i )pρ

j = p⊥
i · pj

= pν
i (−Pνρ(q1, q2)pρ

j ) = pi · p⊥
j

(4.36)

and completely analogously q⊥
i · q⊥

j = q⊥
i · qj = qi · q⊥

j . Furthermore,

(p′⊥
i )µ ≡ −P µν(p1, p2)(p′

i)ν = −P µν(p1, p2)(pi − qi)ν = P µν(p1, p2)(qi)ν

= −(q⊥
i )µ.

(4.37)

Next, we define

cosφ ≡ − p⊥
1 · p⊥

2√
(p⊥

1 )2(p⊥
2 )2

,

cosφ′ ≡ − p′⊥
1 · p′⊥

2√
(p′⊥

1 )2(p′⊥
2 )

= − q⊥
1 · q⊥

2√
(q⊥

1 )2(q⊥
2 )2

,

(4.38)

where the latter form of cosφ′ follows from Eq. (4.37). It should be noted that both
cosines depend on q1 and q2, and thus on p′

1 and p′
2, through Eq. (4.35). In order to

better understand these definitions, consider for example the center-of-mass frame of
the particles A and B, so that p1 = −p2. Assume further that these particles move
along the z-axis, so that

p1 = (E1, 0, 0, pz),

p2 = (E2, 0, 0,−pz),
(4.39)

where E1 = E2 when the two particles A and B have the same mass. In this case, a
direct computation shows that

P µν(p1, p2) =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

We now write the outgoing momentum vectors of the particles A (i = 1) and B



53

(i = 2) in spherical coordinates as

p′
i = (E ′

i, ri cosφi sin θi, ri sinφi sin θi, ri cos θi), (4.40)

where E ′
i is the energy, ri ≡ |p′

i|, θi is the scattering angle and φi is the azimuthal
angle. Then

cosφ′ = − p′⊥
1 · p′⊥

2√
(p′⊥

1 )2(p′⊥
2 )2

= − [−r1r2(cosφ1 sin θ1 cosφ2 sin θ2 + sinφ1 sin θ1 sinφ2 sin θ2)]

×
[
r2

1

(
cos2 φ1 sin2 θ1 + sin2 φ1 sin2 θ1

)]−1/2

×
[
r2

2

(
cos2 φ2 sin2 θ2 + sin2 φ2 sin2 θ2

)]−1/2

= (cosφ1 cosφ2 + sinφ1 sinφ2) sin θ1 sin θ2

sin θ1 sin θ2

= cos(φ1 − φ2),

(4.41)

since sin θi ≥ 0 for 0 ≤ θi ≤ π. The last line of Eq. (4.41) uses a standard
trigonometric identity. Thus we see that in this particular frame, the angle φ′

given by cosφ′ in Eq. (4.38) has a simple interpretation of being the azimuthal
angle between the particles A and B after the scattering. In complete analogy, φ
can be interpreted as the azimuthal angle between the particles A and B in the
center-of-mass frame of the two photons. In other frames the interpretation is less
straightforward, but cosφ and cosφ′ are nevertheless manifestly Lorentz-invariant.

In the limit q2
1, q

2
2,M

2
1 ,M

2
2 → 0, we have cosφ ' cosφ′ [34]. This can be seen by

defining ∆µν ≡ P µν(p1, p2) − P µν(q1, q2). Then, since

P µν(p1, p2) = −gµν + (p1 · p2)(pµ
1p

ν
2 + pµ

2p
ν
1) −

→0︷︸︸︷
p2

1 pµ
2p

ν
2 −

→0︷︸︸︷
p2

2 pµ
1p

ν
1

(p1 · p2)2 − p2
1p

2
2︸ ︷︷ ︸

→0

' −gµν + pµ
1p

ν
2 + pµ

2p
ν
1

p1 · p2

and similarly for P µν(q1, q2), we have

∆µν ' pµ
1p

ν
2 + pµ

2p
ν
1

p1 · p2
− qµ

1 q
ν
2 + qµ

2 q
ν
1

q1 · q2
. (4.42)
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Using Eqs. (4.4) and (4.42) as well as p1 · p′
1 = p1 · (p1 − q1) = M2

1 − q1 · p1 ' 0,

∆µν(p′
1)ν = pµ

1(p2 · p′
1) + pµ

2

→0︷ ︸︸ ︷
(p1 · p′

1)
p1 · p2

− qµ
1 (q2 · p′

1) + qµ
2

→0︷ ︸︸ ︷
(q1 · p′

1)
q1 · q2

' pµ
1

(
1 − q1 · p2

p1 · p2

)
+ qµ

1

(
1 − q2 · p1

q1 · q2

) (4.43)

and analogously

∆µν(p′
2)ν = pµ

1

→0︷ ︸︸ ︷
(p2 · p′

2) +pµ
2(p1 · p′

2)
p1 · p2

− qµ
1

→0︷ ︸︸ ︷
(q2 · p′

2) +qµ
2 (q1 · p′

2)
q1 · q2

' pµ
2

(
1 − q2 · p1

p1 · p2

)
+ qµ

2

(
1 − q1 · p2

q1 · q2

)
.

(4.44)

Then we obtain

∆µν(p′
1)µ(p′

1)ν =
→0︷ ︸︸ ︷

p1 · p′
1

(
1 − q1 · p2

p1 · p2

)
+

→0︷ ︸︸ ︷
(q1 · p′

1)
(

1 − q2 · p1

q1 · q2

)
' 0 (4.45)

and

∆µν(p′
2)µ(p′

2)ν =
→0︷ ︸︸ ︷

p2 · p′
2

(
1 − q2 · p1

p1 · p2

)
+

→0︷ ︸︸ ︷
(q2 · p′

2)
(

1 − q1 · p2

q1 · q2

)
' 0. (4.46)

Finally,

∆µν(p′
1)µ(p′

2)ν = (p1 · p′
2)
(

1 − q1 · p2

p1 · p2

)
+ (q1 · p′

2)
(

1 − q2 · p1

q1 · q2

)

= (p1 · p2 − p1 · q2)
(

1 − q1 · p2

p1 · p2

)

+ (q1 · p2 − q1 · q2)
(

1 − q2 · p1

q1 · q2

)

= p1 · p2 −����q1 · p2 −XXXXq2 · p1 + (q1 · p2)(q2 · p1)
p1 · p2

+����q1 · p2 − (q1 · p2)(q2 · p1)
q1 · q2

− q1 · q2 +XXXXq2 · p1

' p1 · p2 + q1 · q2 − p1 · p2 − q1 · q2

= 0,

(4.47)
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where Eq. (4.8) was used to obtain the second-to-last line. On the other hand, since
qµ

1Pµν(q1, q2) = qµ
2Pµν(q1, q2) = 0 and pi = qi + p′

i, we have

p⊥
i = −P µν(q1, q2)(pi)ν = −P µν(q1, q2)(qi + p′

i)ν = −P µν(q1, q2)(p′
i)ν . (4.48)

Using Eqs. (4.45)–(4.48),

cosφ = − p⊥
1 · p⊥

2√
(p⊥

1 )2(p⊥
2 )2

= − (−P µν(q1, q2)(p′
1)µ)(p′

2)ν√
(−P µν(q1, q2)(p′

1)µ)(p′
1)ν(−P ρσ(q1, q2)(p′

2)ρ)(p′
2)σ

= − (−P µν(p1, p2) + ∆µν)(p′
1)µ(p′

2)ν√
(−P µν(p1, p2) + ∆µν)(p′

1)µ(p′
1)ν(−P ρσ(p1, p2) + ∆ρσ)(p′

2)ρ(p′
2)σ

' − (−P µν(p1, p2))(p′
1)µ(p′

2)ν√
(−P µν(p1, p2))(p′

1)µ(p′
1)ν(−P ρσ(p1, p2))(p′

2)ρ(p′
2)σ

= − p′⊥
1 · p′⊥

2√
(p′⊥

1 )2(p′⊥
2 )2

= cosφ′.

(4.49)

4.5 Factorization of the cross section

Returning back to Eq. (4.33), we can now calculate the two contractions between P ,
W1 and W2 with the help of Eqs. (2.17), (4.36), and (4.38). Using qµ

i Pµν = 0,
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(4.50)

where W µν
i = α

(i)
1 p

µ
i p

ν
i + α

(i)
2 (pµ

i q
ν
i + qµ

i p
ν
i ) + α

(i)
3 q

µ
i q

ν
i + α

(i)
4 g

µν by Eq. (3.54).
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Similarly for the second contraction,
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(4.51)

Defining C ≡ W µρ
1 W νσ

2 Kµνρσ and plugging Eqs. (4.29), (4.34), (4.50), and (4.51) back
into Eq. (4.33),
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Expanding and combining like terms,
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= 2
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Using the trigonometric identity cos(2φ) = 2 cos2 φ − 1, which also implies that
3 − 2 cos2 φ = 2 − cos(2φ),
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(4.52)

where Eq. (4.51) was used to get to the last line. We now define

Ti ≡ W µν
i Pµν (4.53)
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in complete analogy with Eq. (3.50), and

ξ ≡ 1
8 (P µνP ρσ − P µρP νσ + P µσP νρ)Kµνρσα

(1)
1 α

(2)
1 (p⊥

1 )2(p⊥
2 )2. (4.54)

Since P µν and Kµνρσ depend only on q1 and q2, ξ depends only on q1, q2, (p⊥
1 )2, and

(p⊥
2 )2. With Eqs. (4.22), (4.53), and (4.54), we can rewrite Eq. (4.52) as

C = W µρ
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2 Kµνρσ = 4
√

(q1 · q2)2 − q2
1q

2
2 σ̂(γγ → X)T1T2 + ξ cos(2φ). (4.55)

In Eq. (4.55), all dependence on the angle φ is shown explicitly. This is the case
because σ̂(γγ → X) depends only on q1 and q2, T1 depends only on q1, q2, and p1,
T2 depends only on q1, q2, and p2, and ξ depends only on q1, q2, (p⊥

1 )2, and (p⊥
2 )2. In

particular, none of these terms depend on p⊥
1 · p⊥

2 and therefore do not contain any
dependence on φ.

As in the one-photon exchange case, we write the phase space volume element
d3p′

i/(2π)32E ′
i in terms of yi and Q2

i . Rewriting φ2 = φ1 −φ′, we have from Eq. (4.40)
that
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Changing variables first from p′
1 and p′

2 to r1, r2, θ1, θ2, φ1, and φ′, the Jacobian reads
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(4.58)

where we temporarily introduced the notations φ̃2 ≡ φ1 − φ′, s ≡ sin, and c ≡ cos.
We see that the Jacobian (4.58) is the product of two Jacobians associated with
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spherical coordinates, r2 sin θ, even though φ1 appears in both p′
1 and p′

2. Thus,
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Using Eqs. (4.39), (4.56), and (4.57), we can write
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(4.60)
Then, using Eqs. (4.7), (4.39), and (4.60),
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where E ′
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Then it is straightforward to calculate that
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and so
dy1 dy2 dQ2

1 dQ2
2 = |J2| dr1 dr2 d(cos θ1) d(cos θ2). (4.62)

Once again using Eqs. (4.5) and (4.7),

(p1 · p2)2 − p2
1p

2
2

(q1 · q2)2 − q2
1q

2
2

' (p1 · p2)2 − p2
1p

2
2

(q1 · q2)2 = (p1 · p2)2

(p1 · p2)2
(p1 · p2)2 − p2

1p
2
2

(q1 · q2)2

= 1
y2

1y
2
2

(p1 · p2)2 − p2
1p

2
2

(p1 · p2)2 ,

(4.63)
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where
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(4.64)

Neglecting the mass Mi, we have E2
i = M2

i + p2
z ' p2

z and therefore
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Combining Eqs. (4.58), (4.59), and (4.61)–(4.65),
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(4.66)

Plugging Eqs. (4.55) and (4.66) into Eq. (4.16),
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(4.67)

The integral over the azimuthal angle φ1 can be done trivially. Using Eq. (4.49), we
have cos(2φ) ' cos(2φ′). Thus, when integrating over φ′, the term ξ cos(2φ′) vanishes
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and we are left with

dσ(AB → ABX) = Z2
1Z

2
2

q4
1q

4
2

e4T1T2

16(2π)4 σ̂(γγ → X)y1y2 dy1 dy2 dQ2
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2

=
[
α

4π
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Q4
1
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] [
α

4π
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Q4
2
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σ̂(γγ → X)dy1 dy2 dQ2
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= fγ/A(y1, Q
2
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2
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1 dQ2
2,

(4.68)

where on the last line we identified the equivalent photon distributions based on
Eq. (3.66). Equation (4.68) is an important result, as it establishes the factorization
claimed in Eq. (4.1) for two-photon exchange processes when Q2

1, Q2
2, M2

1 , and M2
2

are assumed to be small.
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5 Emission tensor structure

This section is concerned with the structure of the emission tensor Wµν defined by the
B → γB vertex. For an elementary particle, the Feynman rules completely determine
Wµν . For particles with internal structure, the emission tensor must be parametrized
with some form factors that are ultimately determined from experimental data.
However, Lorentz structure and the Ward identity place significant restrictions on
the possible forms of the vertex and, by extension, the emission tensor.

5.1 Scalar particle

When the particle emitting the photon is a spin-0 scalar particle, we can use scalar
quantum electrodynamics (scalar QED) to determine the form of the emission tensor
Wµν . In scalar QED, the spin-1

2 Dirac particles found in standard QED are replaced
with spin-0 scalar particles.

If the scalar particle is elementary, the vertex is given by the Feynman rule
−ie(p + p′)µ (see Appendix B.2). In the case of a scalar particle with internal
structure, we know that the vertex can only depend on the momenta p, p′ and q.
Only two of these are independent, and here we choose these to be p + p′ and
q = p− p′. In keeping with the Lorentz structure of the elementary vertex, we can
write the most general vertex as

Hµ = F (Q2)(p+ p′)µ +G(Q2)qµ,

where F and G are some scalar functions depending on Q2 = −q2. The Ward identity
qµH

µ = 0 further constrains the form of Hµ. Since the emitting particle stays intact,
q · (p+ p′) = 0 holds by Eqs. (3.3) and (3.4), and therefore

qµH
µ = Fq · (p+ p′) +Gq2 = Gq2 = 0
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holds in general only if G = 0. We are then left with

Hµ = F (Q2)(p+ p′)µ = F (Q2)(2p− q)µ.

Squaring this yields the emission tensor

Wµν = HµH
∗
ν = F 2(Q2)(2p− q)µ(2p− q)ν . (5.1)

No summing or averaging is necessary here, since the particle is a scalar and therefore
has no spin or polarization structure. The function F (Q2) contains all the information
about the structure of the particle. When F = 1, we recover the elementary-particle
case.

Writing Eq. (5.1) in the form of Eq. (3.54),

Wµν = F 2(Q2)(2p− q)µ(2p− q)ν = F 2(Q2) [4pµpν − 2(pµqν + pνqµ) + qµqν ]
!= α1pµpν + α2(pµqν + qµpν) + α3qµqν + α4gµν .

Thus we see that α1 = 4F 2(Q2), α2 = −2F 2(Q2), α3 = F 2(Q2), and α4 = 0. Then
the equivalent photon distribution (3.70) reads

fγ/B(y,Q2) = α

π

y

Q2Z
2
BF

2(Q2)
(

1 − y

y2 − M2

Q2

)
. (5.2)

Equation (5.2) gives the general form of the photon distribution for scalar particles.
It can, for example, be used in the study of collisions involving lead nuclei, since
208Pb is a spin-0 particle [39].

5.2 Dirac particle

When the emitting particle is a spin-1
2 Dirac particle, like the proton, the vertex

structure is more complicated compared to the spin-0 case. The vertex rule for an
elementary particle is −ieγµ. Generalizing this to a particle with internal structure,
we can write the vertex as −ieΓµ where the vertex factor Γµ is some 4 × 4 matrix
that contains all the information about the internal structure of the particle. We can
therefore write the most general vertex factor Γµ as a linear combination of some
basis matrices.
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A particularly useful basis for 4 × 4 matrices is given by [3, §3.4]

{14, γ
µ, σµν , γ5, γµγ5}. (5.3)

The usefulness of this covariant basis stems from their transformation properties
under the Lorentz group when combined with a Dirac field ψ in the form ψΓψ. For
example, ψ14ψ transforms like a scalar while ψγµψ transforms like a vector. The
transformation properties of each basis matrix is listed in Table 1.

Γ Transformation of ψΓψ
14 scalar
γµ vector
σµν rank-2 tensor
γ5 pseudoscalar
γµγ5 pseudovector

Table 1. Transformation properties of the covariant basis matrices under the
Lorentz group [3, §3.4].

To reduce the number of independent terms, we can use the Dirac equation and
the Ward identity qµΓµ = 0. The approach taken here follows Ref. [40, §10.6]. Since
the elementary vertex −ieγµ transforms like a vector in the form ψ(−ieγµ)ψ, we
require ψ(−ieΓµ)ψ to also transform like a vector. This means that we cannot write
Γµ directly as a linear combination of the matrices in Eq. (5.3) with scalar coefficients.
Instead, these coefficients must have some Lorentz structure to them, which will be
provided by the momentum vectors. The only momenta available at the vertex are p
and p′, or equivalently q = p− p′ and r ≡ p+ p′.

Starting from the identity matrix 14, we can form two vectors qµ and rµ. Moving
on to γµ, we have the following new combinations:

γµ, qµ
/q, r

µ
/q, q

µ/r, rµ/r.

Since the vertex factor Γµ will always appear in the form u(p′)Γµu(p), we can use
the momentum-space Dirac equations (A.5) and (A.7) to show that

u(p′)/qu(p) = u(p′)/pu(p) − u(p′)/p′u(p) = Mu(p′)u(p) −Mu(p′)u(p) = 0
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and
u(p′)/ru(p) = u(p′)/pu(p) + u(p′)/p′u(p) = u(p′)2Mu(p).

With these, we see that

u(p′)
(
Aqµ

/q +Brµ
/q + Cqµ/r +Drµ/r

)
u(p) = u(p′) (2CMqµ + 2DMrµ)u(p),

which can simply be absorbed to the two terms proportional to qµ and rµ coming
from 14. Thus, the only new independent term is γµ.

Next, we will consider σµν = i
2 [γµ, γν ], for which we have four new independent

combinations:
σµνqν , σ

µνrν , σ
αβqαrβq

µ, σαβqαrβr
µ. (5.4)

Since for any vector a we have by the Dirac algebra that

[γµ, γν ]aν = [γµ, /a] = 2γµ/a− {γµ, /a} = 2γµ/a− 2aµ,

we see that the first two terms in Eq. (5.4) once again reduce to terms already
obtained from 14 and γµ. Similarly,

[γµ, γν ]qµrν = [/q, /r] = 2/q/r − {/q, /r} = 2/q/r − 2q · r,

and since

u(p′)/q/ru(p) = u(p′)(/p− /p
′)(/p+ /p

′)u(p) = u(p′)(/p−M)(M + /p
′)u(p)

= u(p′)/p/p′u(p) + u(p′)M/pu(p) − u(p′)/p′Mu(p) − u(p′)M2u(p)

= u(p′)
(
{/p, /p′} − /p

′
/p
)
u(p) − u(p′)M2u(p)

= u(p′)
(
2p · p′ − 2M2

)
u(p),

we see again that the contributions from the last two terms in Eq. (5.4) are not
independent, but can be absorbed to previously obtained terms.

According to Table 1, the remaining basis matrices γ5 and γµγ5 transform like a
pseudoscalar and a pseudovector, respectively. This means that they change signs
under a parity transformation. Since quantum electrodynamics is a parity-conserving
theory, we can rule out any combinations γ5 and γµγ5; see Ref. [41] or Ref. [40,
§10.6] for more details.
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We now have only three remaining independent terms, so

Γµ = K1γ
µ +K2r

µ +K3q
µ, (5.5)

where K1, K2 and K3 are functions of the scalar invariants q2 and M2. Applying the
Ward identity qµΓµ = 0 to Eq. (5.5) and using q · r = 0, we obtain

qµΓµ = K1/q +K2q · r +K3q
2 = K1/q +K3q

2 = 0,

which means that out of the three factors K1, K2 and K3, only two are independent.
Furthermore, using the Gordon decomposition identity (A.12),

u(s′, p′)γµu(s, p) = u(s′, p′)
[
rµ

2M − iσµνqν

2M

]
u(s, p),

we can rewrite the term proportional to rµ in Eq. (5.5) in terms of γµ and iσµνqν .
We will choose the final parametrization following Halzen and Martin10 [2] as

Γµ = F1(Q2)γµ − iκ

2MF2(Q2)σµνqν , (5.6)

where the elastic electromagnetic form factors F1 and F2 contain all the information
about the internal structure of the proton. Some authors absorb the constant κ or
the mass M into the definition of F2, see for example Ref. [40, Eq. (10.6.15)] or Ref.
[3, Eq. (6.33)]. For a review of the electromagnetic form factors, see Refs. [42, 43].

The constant κ in Eq. (5.6) is the anomalous magnetic moment. Let us take the
proton as an example. If the proton had no internal structure, its magnetic moment
would be the nuclear magneton µN = e/2M [44, §10.9]. However, due to the proton’s
internal structure, the measured value of the magnetic moment is actually 2.79µN

[45]. The difference between the measured value and the value predicted by the
Dirac equation, in units of µN, is called the anomalous magnetic moment κ. Thus,
for the proton, κp = 2.79 − 1 = 1.79. For the neutron, the predicted value of the
magnetic moment is zero since the neutron is electrically neutral. As for the proton,
the internal structure of the neutron complicates matter and experiments show that
κn = µn = −1.91 [45]. For elementary particles like the electron, the anomalous

10When comparing Eq. (5.6) to Eq. (8.13) in Ref. [2], it should be noted that the different sign
follows from Halzen and Martin defining q = p′ − p, while in this thesis we use q = p − p′.
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magnetic moment is zero11.

The emission vertex is thus given by

Hµ = u(s′, p′)Γµu(s, p) = u(s′, p′)
[
F1(Q2)γµ − iκ

2MF2(Q2)σµνqν

]
u(s, p) (5.7)

and the corresponding emission tensor is

Wµν = HµH∗
ν = 1

2
∑
HµH

∗
ν

=
(
F 2

1 (Q2) + τκF 2
2 (Q2)

)
(2p− q)µ(2p− q)ν

+
(
F1(Q2) + κF2(Q2)

)2 (
q2gµν − qµqν

)
= G2

E(Q2) + τG2
M(Q2)

1 + τ
(2p− q)µ(2p− q)ν +G2

M(Q2)
(
q2gµν − qµqν

)
,

(5.8)

where κ is the anomalous magnetic moment, τ ≡ −q2/4M2 = Q2/4M2, and GE(Q2)
and GM(Q2) are the Sachs form factors [2, Eq. (8.16)]

GE(Q2) ≡ F1(Q2) − τκF2(Q2),

GM(Q2) ≡ F1(Q2) + κF2(Q2),

which can be interpreted in the Breit frame12 as the spatial Fourier transforms of
the electric and magnetic moment density distributions, respectively [2, 47]. The
derivation of Eq. (5.8) is presented in Appendix C. It should be noted that Eq. (5.8)
gives the same13 tensor as in Ref. [12], up to a factor of 1

2 .

11This is only true to first order in α. Loop corrections introduce deviations to the magnetic
moments of fermions. The one-loop correction is famously given by α/2π ' 0.001 [3, Eq. (6.59)],
obtained originally by Schwinger [46]. This also shows that the anomalous magnetic moments of
elementary particles are orders of magnitude smaller than those of the nucleons.

12The Breit frame is defined by p′ = −p, where p and p′ are the incoming and outgoing momenta
of the particle, respectively. The Breit frame is also known as the brick-wall frame, since the particle
appears to bounce back with no energy transfer to the target. [2]

13When comparing the two expressions, it should be noted that the factor pµpν in Ref. [12] reads
(2p − q)µ(2p − q)ν in the notation of this thesis.
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Writing Eq. (5.8) in the form of Eq. (3.54),

W µν = G2
E(Q2) + τG2

M(Q2)
1 + τ

(2p− q)µ(2p− q)ν +G2
M(Q2)

(
q2gµν − qµqν

)
= 4 (G2

E(Q2) + τG2
M(Q2))

1 + τ
pµpν − 2 (G2

E(Q2) + τG2
M(Q2))

1 + τ
(pµqν + pνqµ)

+ G2
E(Q2) − (1 − τ)G2

M(Q2)
1 + τ

qµqν −Q2G2
M(Q2)gµν

!= α1p
µpν + α2(pµqν + qµpν) + α3q

µqν + α4g
µν ,

(5.9)

we see that
α1 = 4 (G2

E(Q2) + τG2
M(Q2))

1 + τ
,

α2 = 2 (G2
E(Q2) + τG2

M(Q2))
1 + τ

,

α3 = G2
E(Q2) − (1 − τ)G2

M(Q2)
1 + τ

,

α4 = −Q2G2
M(Q2).

(5.10)

Plugging these into Eq. (3.70),

fγ/B(y,Q2) = α

2π
y

Q2Z
2
B

[
2 (G2

E(Q2) + τG2
M(Q2))

1 + τ

(
1 − y

y2 − M2

Q2

)
+G2

M(Q2)
]
.

(5.11)
Equation (5.11) gives the general form of the equivalent photon distribution for
spin-1

2 particles.

5.3 Dipole form factors

In this section, we apply Eq. (5.11) and calculate the photon distribution of the
proton, which will be used in Section 6. We use the so-called dipole form factors [12,
43, 48]

GE(Q2) =
(
1 +Q2/Λ2

)−2
,

GM(Q2) = µpGE(Q2),
(5.12)

where Λ2 = 0.71 GeV2 is an experimentally determined parameter and µp = 2.79 [45]
is the total magnetic moment of the proton. Using Eq. (5.12) in Eq. (5.11) yields

fγ/p(y,Q2) = α

2π
y

Q2

(
1 +Q2/Λ2

)−4
[

2(1 + µ2
pτ)

1 + τ

(
1 − y

y2 − M2

Q2

)
+ µ2

p

]
, (5.13)
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where τ = Q2/4M2. Integrating Eq. (5.13) over Q2, we obtain the integrated photon
distribution (3.69)

fγ/p(y) = αy

2π

∫ Q2
max

Q2
min

dQ2

Q2

(
1 + Q2

Λ2

)−4 [2(1 + µ2
pτ)

1 + τ

(
1 − y

y2 − M2

Q2

)
+ µ2

p

]
. (5.14)

Since the integrand in Eq. (5.14) is just a rational function of Q2, it is possible to
calculate the integral in terms of elementary functions. However, the full result will
not be produced here due to its complexity. Instead, we consider certain special
cases.

Setting14 Q2
max = ∞ and µp = 1, the equivalent photon distribution (5.14) reduces

to the simpler form

fγ/p(y) = α

2π

∫ ∞

Q2
min

dQ2

Q2

(
1 +Q2/Λ2

)−4
[

1 + (1 − y)2

y
− 2yM2

Q2

]
. (5.15)

This integral is calculated in Appendix D and the result is

fγ/p(y) = α

2π
1 + (1 − y)2

y

[
logA− 11

6 + 3
A

− 3
2A2 + 1

3A3

]

− α

2π
2yM2

Λ2

[
A− 4 logA+ 10

3 − 6
A

+ 2
A2 − 1

3A3

]
,

(5.16)

where A = 1 + Λ2/Q2
min. If we also set M = 0 in Eq. (5.16), we obtain a further

simplification

fγ/p(y) = α

2π
1 + (1 − y)2

y

[
logA− 11

6 + 3
A

− 3
2A2 + 1

3A3

]
, (5.17)

which has been previously obtained by Drees and Zeppenfeld [12].

14The integrand in Eq. (5.14) contains an overall term 1/Q2 (1 + Q2/Λ2)4 ∼ 1/(Q2)5, which
means that the integrand decays very quickly as Q2 grows.
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6 Muon-pair production

In this section, we apply the equivalent photon approximation derived in Section 4
to muon-pair production in proton-proton collisions which proceed via two photon
exchanges. We also numerically calculate the same cross section without resorting to
the equivalent photon approximation to see how they compare.

6.1 Full calculation

The Feynman diagrams associated with the muon-pair production process pp →
ppµ+µ− are shown in Figure 4. We assume that the process proceeds via two photon
exchanges, which means that the two protons cannot interact hadronically with each
other.

p(p1)

p(p2)

p(p′
1)

p(p′
2)

µ+(k′
1)

µ−(k′
2)

q1

q2

p(p1)

p(p2)

p(p′
1)

p(p′
2)

µ+(k′
1)

µ−(k′
2)

q1

q2

Figure 4. Feynman diagrams for the scattering pp → ppµ+µ− when the process
is assumed to proceed via two photon exchanges. The momentum of each particle
is shown in parenthesis.

The kinematics and associated notation have already been covered in Section 4.1.
We are working the center-of-mass frame of the incoming protons where p1 + p2 = 0.
Furthermore, we assume that the protons travel along the z-axis. In this frame,
√
s = E1 + E2 and

p1 =
(√

s

2 , 0, 0, pz

)
,

p2 =
(√

s

2 , 0, 0,−pz

)
,
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where pz =
√

s
4 −M2. We can use the (exact) decomposition obtained in Eq. (4.18)

to write the squared amplitude as

|M(pp → ppµ+µ−)|2 = e8

q4
1q

4
2
W µρ

1 W νσ
2 KµνK∗

ρσ.

The tensor Kµν describing the pair creation γγ → µ+µ− can now be written down
explicitly using Feynman rules:

Kµν = −iu(k′
2, s2)

γν
/q1 − /k

′
1 +m2

(q1 − k′
1)2 −m2γµ + γµ

/q2 − /k
′
1 +m

(q2 − k′
1)2 −m2γν

 v(k′
1, s1), (6.1)

where s1 and s2 are the spin states of the antimuon and muon, respectively, and m

is the muon mass. The spinors u and v are introduced in Appendix A.
It is instructive to see how the Ward identity

qµ
1Kµν = qν

2Kµν = 0 (6.2)

is realized in Eq. (6.1). We can use Eq. (A.4) and the conservation of momentum
q1 + q2 = k′

1 + k′
2 to obtain

(/q1 − /k
′
1 +m)/q1 = (/q1 − /k

′
1 +m)(/q1 − /k

′
1 −m+ (/k′

1 +m))

= (q1 − k′
1)2 −m2 + (/q1 − /k

′
1 +m)(/k′

1 +m)
(6.3)

and
/q1(/q2 − /k

′
1 +m) = (/q1 − /k

′
2 +m+ (/k′

2 −m))(/q2 − /k
′
1 +m)

= −(/q2 − /k
′
1 −m− (/k′

2 −m))(/q2 − /k
′
1 +m)

= −(q2 − k′
1)2 +m2 + (/k′

2 −m)(/q2 − /k
′
1 +m).

(6.4)

Using the Dirac equations in momentum space (Eqs. (A.5) and (A.7)–(A.9)) as well
as Eqs. (6.3) and (6.4),

qµ
1Kµν = −iu(k′

2, s2)
γν

/q1 − /k
′
1 +m2

(q1 − k′
1)2 −m2/q1 + /q1

/q2 − /k
′
1 +m

(q2 − k′
1)2 −m2γν

 v(k′
1, s1)

= −iu(k′
2, s2)

γν

(q1 − k′
1)2 −m2 + (/q1 − /k

′
1 +m)(/k′

1 +m)
(q1 − k′

1)2 −m2

+
−(q2 − k′

1)2 +m2 + (/k′
2 −m)(/q2 − /k1 +m)

(q2 − k′
1)2 −m2 γν

 v(k′
1, s1)
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= −iu(k′
2, s2)

γν

1 +
(/q1 − /k

′
1 +m)(/k′

1 +m)
(q1 − k′

1)2 −m2


−

1 −
(/k′

2 −m)(/q2 − /k
′
1 +m)

(q2 − k′
1)2 −m2

 γν

 v(k′
1, s1)

= −iu(k′
2, s2)γν

/q1 − /k
′
1 +m

(q1 − k′
1)2 −m2

=0︷ ︸︸ ︷
(/k′

1 +m)v(k′
1, s1)

− i u(k′
2, s2)(/k′

2 −m)︸ ︷︷ ︸
=0

/q2 − /k
′
1 +m

(q2 − k′
1)2 −m2γνv(k′

1, s1) = 0.

The case qν
2Kµν = 0 can be checked in a similar manner.

To simplify the notation, we denote

kµν ≡ γν
/q1 − /k

′
1 +m2

(q1 − k′
1)2 −m2γµ + γµ

/q2 − /k
′
1 +m

(q2 − k′
1)2 −m2γν (6.5)

so that

k†
µν = γµ

/q1 − /k
′
1 +m2

(q1 − k′
1)2 −m2γν + γν

/q2 − /k
′
1 +m

(q2 − k′
1)2 −m2γµ = kνµ.

Then, using standard trace techniques (see Appendix A),

KµνK∗
ρσ =

∑
s1s2

KµνK
∗
ρσ

=
∑
s1s2

u(k′
2, s2)kµνv(k′

1, s1) [u(k′
2, s2)kρσv(k′

1, s1)]†

=
∑
s1s2

u(k′
2, s2)kµνv(k′

1, s1)v(k′
1, s1)kσρu(k′

2, s2).

(6.6)

Making the matrix structure explicit in Eq. (6.6) and using Eq. (A.10),

KµνK∗
ρσ =

∑
s1s2

u(k′
2, s2)A(kµν)ABv(k′

1, s1)Bv(k′
1, s1)C(kσρ)CDu(k′

2, s2)D

=
∑
s2

u(k′
2, s2)Du(k′

2, s2)A(kµν)AB

∑
s1

v(k′
1, s1)Bv(k′

1, s1)C(kσρ)CD

= tr
{
(/k′

2 +m)kµν(/k′
1 −m)kσρ

}
= tr

(/k′
2 +m)

γν
/q1 − /k

′
1 +m2

(q1 − k′
1)2 −m2γµ + γµ

/q2 − /k
′
1 +m

(q2 − k′
1)2 −m2γν


×(/k′

1 −m)
γρ

/q1 − /k
′
1 +m2

(q1 − k′
1)2 −m2γσ + γσ

/q2 − /k
′
1 +m

(q2 − k′
1)2 −m2γρ

 ,

(6.7)
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where the last line follows directly from Eq. (6.5).

We now define C ′ ≡ W µρ
1 W νσ

2 KµνK∗
ρσ. Using the Ward identity (6.2) and

Eqs. (5.9) and (5.12),

C ′ = W µρ
1 W νσ

2 KµνK∗
ρσ

=
4(1 + µ2

pQ2
1

4M2 )
1 + Q2

1
4M2

pµ
1p

ρ
1 − µ2

pQ
2
1g

µρ

4(1 + µ2
pQ2

2
4M2 )

1 + Q2
2

4M2

pν
2p

σ
2 − µ2

pQ
2
2g

νσ


×KµνK∗

ρσG
2
E(Q2

1)G2
E(Q2

2).

(6.8)

Using Eq. (4.13), and Eq. (4.2) for the notation of the momentum vectors,

dσ(pp → ppµ+µ−) = e8

q4
1q

4
2

(2π)4C ′

4
√

(p1 · p2)2 −M4
δ(4)(p1 + p2 − p′

1 − p′
2 − k′

1 − k′
2)

× d3p′
1

(2π)32E ′
1

d3p′
2

(2π)32E ′
2

d3k′
1

(2π)32(k′
1)0

d3k′
2

(2π)32(k′
2)0

= α4

64π4
√

(p1 · p2)2 −M4

C ′

Q4
1Q

4
2
δ(4)(p1 + p2 − p′

1 − p′
2 − k′

1 − k′
2)

× d3p′
1

E ′
1

d3p′
2

E ′
2

d3k′
1

(k′
1)0

d3k′
2

(k′
2)0 .

Denoting

η ≡ α4

64π4
√

(p1 · p2)2 −M4
,

ε ≡ E1 + E2 − E ′
1 − E ′

2,

(6.9)

the integrated cross section is then

σ(pp → ppµ+µ−) ≡ σµ+µ−

= η
∫ d3p′

1
E ′

1

d3p′
2

E ′
2

d3k′
1

(k′
1)0

d3k′
2

(k′
2)0

C ′

Q4
1Q

4
2
δ(ε− (k′

1)0 − (k′
2)0)

× δ(3)(p′
1 + p′

2 + k′
1 + k′

2).

(6.10)

Using the three-dimensional delta function, we can trivially integrate over k′
2. We also

write the remaining momentum vectors in spherical coordinates using the notation

k′
1 = r1(cosφ1 sin θ1, sinφ1 sin θ1, cos θ1),

p′
i = Ri(cos Φi sin Θi, sin Φi sin Θi, cos Θi).

(6.11)
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Then, Eq. (6.10) becomes

σµ+µ− = η
∫ R2

1dR1d cos Θ1dΦ1√
M2 +R2

1

R2
2dR2d cos Θ2dΦ2√

M2 +R2
2

r2
1dr1d cos θ1dφ1√

m2 + r2
1

√
m2 + |k′

2|
2

× C ′

Q4
1Q

4
2
δ(ε− (k′

1)0 − (k′
2)0),

(6.12)

where k′
2 = −p′

1 − p′
2 − k′

1 is implicit.

We must still integrate over the remaining delta function. To do this, we use the
composition property [49]

δ(f(x)) =
∑

i

δ(x− x∗
i )

|f ′(x∗
i )|

, (6.13)

where the sum is over all simple zeroes x∗
i of f . To that end, we define

f(r1) ≡ ε− (k′
1)0 − (k′

2)0 = ε−
√
m2 + r2

1 −
√
m2 + |k′

2|
2

= ε−
√
m2 + r2

1 −
√
m2 + |p′

1 + p′
2 + k′

1|
2

= ε−
√
m2 + r2

1 −
√
m2 + |p′

1 + p′
2|

2 + 2(p′
1 + p′

2) · k′
1 + r2

1.

(6.14)

For convenience, we define
ρ2 ≡ |p′

1 + p′
2|

2
,

u ≡ (p′
1 + p′

2) · k′
1

r1
.

(6.15)

Using Eqs. (6.11) and (6.15),

u = cos θ1(R1 cos Θ1 +R2 cos Θ2)

+ sin θ1(R1 sin Θ1 cos(φ1 − Φ1) +R2 sin Θ2 cos(φ1 − φ2)).
(6.16)

With these definitions, Eq. (6.14) becomes

f(r1) = ε−
√
m2 + r2

1 −
√
m2 + ρ2 + 2ur1 + r2

1, (6.17)

with all dependence on r1 shown explicitly. Solving the equation f(r1) = 0, we obtain
two solutions

r±
1 =

−u(ε2 − ρ2) ± ε
√

(ε2 − ρ2)2 − 4m2(ε2 − u2)
2(ε2 − u2) . (6.18)
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It is important to notice that Eq. (6.18) is not equivalent to f(r1) = 0 as there are
extraneous solutions in Eq. (6.18). This can be taken into account in the numerical
integration routine by checking that a solution candidate is actually a solution.

Moving on to
∣∣∣f ′(r±

1 )
∣∣∣, we can take the derivative of Eq. (6.17) to obtain

f ′(r1) = −
r1

(√
m2 + r2

1 +
√
m2 + ρ2 + 2ur1 + r2

1

)
√
m2 + r2

1

√
m2 + ρ2 + 2ur1 + r2

1

− u√
m2 + ρ2 + 2ur1 + r2

1

=
r1

(
ε−

√
m2 + r2

1 +
√
m2 + ρ2 + 2ur1 + r2

1 − ε
)

√
m2 + r2

1

√
m2 + ρ2 + 2ur1 + r2

1

− u√
m2 + ρ2 + 2ur1 + r2

1

= r1(f(r1) − ε)√
m2 + r2

1

√
m2 + ρ2 + 2ur1 + r2

1

− u√
m2 + ρ2 + 2ur1 + r2

1

.

Then, since f(r±
1 ) = 0,

∣∣∣f ′(r±
1 )
∣∣∣ =

∣∣∣∣ r±
1 ε√

m2+(r±
1 )2

+ u
∣∣∣∣√

m2 + ρ2 + 2ur±
1 + (r±

1 )2
. (6.19)

Thus, we obtain using Eq. (6.13) that

δ(ε− (k′
1)0 − (k′

2)0) = δ(f(r1)) = δ(r1 − r+
1 )∣∣∣f ′(r+

1 )
∣∣∣ + δ(r1 − r−

1 )∣∣∣f ′(r−
1 )
∣∣∣ . (6.20)

Plugging Eq. (6.20) to Eq. (6.12) and calculating the integral over r1,

σµ+µ− = η
∫ R2

1dR1d cos Θ1dΦ1√
M2 +R2

1

R2
2dR2d cos Θ2dΦ2√

M2 +R2
2

d cos θ1dφ1

×
∑

r∗
1=r±

1

 C ′

Q4
1Q

2
2

r2
1√

m2 + r2
1

√
m2 + |k′

2|
2

Θ(r1)
|f ′(r1)|


r1=r∗

1

,

(6.21)

where Θ(x) is the Heaviside theta function defined by

Θ(x) ≡


1, if x ≥ 0,

0, if x < 0,

and the notation [· · · ]r1=r∗
1

means that every occurrence of r1 inside the square



77

brackets should be replaced by r∗
1. The term Θ(r1) originates from the integral over

r1 ≥ 0, since ∫ ∞

0
dx δ(x− x∗) = Θ(x∗).

In order to obtain the cross section that is approximately differential in the
invariant mass

Wµ+µ− ≡
√

(k′
1 + k′

2)2 (6.22)

of the muon-antimuon system, we can introduce a cut function

Θ(W 2
min ≤ W 2

µ+µ− ≤ W 2
max) ≡


1, if W 2

min ≤ W 2
µ+µ− ≤ W 2

max,

0, otherwise,
(6.23)

to the total cross section integral in Eq. (6.21). The parameters Wmin and Wmax

define an invariant-mass bin, and the cross section in one such bin is then given by

dσµ+µ−

dWµ+µ−
= η

∫ R2
1dR1d cos Θ1dΦ1√

M2 +R2
1

R2
2dR2d cos Θ2dΦ2√

M2 +R2
2

d cos θ1dφ1

×
∑

r∗
1=r±

1

 C ′

Q4
1Q

2
2

r2
1√

m2 + r2
1

√
m2 + |k′

2|
2

Θ(r1)
|f ′(r1)|


r1=r∗

1

×
Θ(W 2

min ≤ W 2
µ+µ− ≤ W 2

max)
Wmax −Wmin

.

(6.24)

6.2 Numerical methods

With the integral in Eq. (6.24) written as it is, the integration variables are
R1, cos Θ1,Φ1, R2, cos Θ2,Φ2, cos θ1, and φ1. The cosines cos Θ1, cos Θ2, and cos θ1

have well-defined integration bounds extending from −1 to 1. Similarly, the integra-
tion bounds of the azimuthal angles Φ1,Φ2, and φ1 extend from 0 to 2π. For the
integration bounds of the radial integration variables R1 and R2, we choose to extend
them from 0 to

√
s/2. These bounds are not necessarily optimal, but they cover the

entire physical region of the phase space. Writing these bounds down explicitly, we
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have

dσµ+µ−

dWµ+µ−
= η

∫ √
s

2

0
dR1

R2
1√

M2 +R2
1

∫ 1

−1
d cos Θ1

∫ 2π

0
dΦ1

×
∫ √

s
2

0
dR2

R2
2√

M2 +R2
2

∫ 1

−1
d cos Θ2

∫ 2π

0
dΦ2

∫ 1

−1
d cos θ1

∫ 2π

0
dφ1

×
∑

r∗
1=r±

1

 C ′

Q4
1Q

2
2

r2
1√

m2 + r2
1

√
m2 + |k′

2|
2

Θ(r1)
|f ′(r1)|


r1=r∗

1

×
Θ(W 2

min ≤ W 2
µ+µ− ≤ W 2

max)
Wmax −Wmin

,

(6.25)
where C ′ = W µρ

1 W νσ
2 KµνK∗

ρσ, η, r±
1 , and

∣∣∣f ′(r±
1 )
∣∣∣ are defined in Eqs. (6.9), (6.18),

and (6.19).
In principle, Eq. (6.25) could be used directly for numerical integration. However,

due to the finite precision of floating-point arithmetic, further work is needed. The
issue is in the contraction C ′, which contains large canceling terms [50]. Numerical
error in the subtraction of two large numbers leads to completely invalid results.

One solution is to rewrite the contraction in a way that avoids these cancellations
altogether. This has been done by Vermaseren in Ref. [50]. Another approach, also
briefly mentioned by Vermaseren, is to replace the vector pi in the emission tensor
Wi by

P µ
i ≡ pµ

i − 1
yi

qµ
i , (6.26)

where yi is taken from Eq. (4.7). This replacement is allowed by the Ward identity
qµ

i Kµν = 0, as analytically the replacement pi → Pi does nothing. However, doing
this replacement improves numerical stability dramatically. The reason for this can
be found in Eq. (3.15). Since the bulk of the integral is concentrated around the
point (Q2

1, Q
2
2) = (0, 0) where qµ

i ' yip
µ
i , the linear combination Pi becomes very

small and eliminates the large numerical error; see also Ref. [51].
While the contraction C ′ could in principle be calculated by hand using Eqs. (6.7),

(6.8), and (6.26), the large number of terms makes this impractical. Instead, we
use FeynCalc [52–54] to calculate and simplify the contraction. Conservation of
momentum is used to eliminate the momentum vector k′

2 by writing k′
2 = q1 + q2 −k′

1.
The resulting expression, written in terms of scalar products of the momentum
vectors P1, P2, q1, q2, and k′

1, is converted to a C-style string with the Mathematica
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function CForm. The scalar products are then converted to appropriate variable
names and a C++ source file, comprising of a single function that calculates the value
of the contraction, is produced and exported.

Since the contraction C ′ is implemented by scalar products of the momentum
vectors, the required momentum vectors have to be reconstructed from the integration
variables15. The three-momentum vector p′

i can easily be calculated from the values
of Ri, cos Θi, and Φi using Eq. (6.11). Since 0 ≤ Θi ≤ π, the value of sin Θi ≥ 0 is
determined unambiguously by sin Θi =

√
1 − cos2 Θi. The full momentum vector p′

i

can then be calculated using the dispersion relation E ′
i =

√
M2 +R2

i .
The momentum vector k′

1 can be reconstructed similarly, but now r1 is no longer
an integration variable. Instead, it must be calculated using Eq. (6.18). As we
mentioned earlier, there are extraneous solutions in Eq. (6.18). To account for this,
the solutions r±

1 calculated with Eq. (6.18) are checked to be actual solutions by
verifying numerically that f(r±

1 ) = 0 holds. In addition, if r±
1 < 0, that solution is

rejected, as is required by the Heaviside theta function Θ(r1) appearing in Eq. (6.25).
After the momentum vectors p′

1, p
′
2, and k′

1 have been reconstructed, the rest follows
easily since we can then calculate any scalar products directly.

To compute the integral (6.25) numerically, we use the Gsl [55] implementation
of the Vegas [56, 57] algorithm. Vegas is an adaptive Monte-Carlo integration
algorithm. For an introduction to Monte-Carlo integration methods, see for example
Ref. [58].

In practice, Vegas contains two types of iteration loops. For a given integration
grid, Vegas calculates the integral by computing the value of the integrand at N
randomly selected points, and it does this for some number niter of iterations. After
these iterations, the value of the integral I and its absolute error estimate ∆I are
returned alongside a χ2-value. The χ2-value indicates the statistical consistency of
the integral value and its error estimate. The closer the χ2-value is to 1, the more
reliable are the results. Vegas then adapts, or rebins, the previous integration grid
to concentrate the integration points to regions where the function contributes the
most to the integral. After the rebinning procedure, Vegas starts iterating the
integral using the new integration grid. [55, 58]

The integration routine is split into two phases. In the first phase (Phase 1),
when the integration grid has not adapted sufficiently well to the physically allowed

15The alternative is to write all scalar products directly in terms of the integration variables.



80

Table 2. Vegas integration parameters for the full calculation (6.25). These
parameters are defined by Gsl in the gsl_monte_vegas_params structure. The
values are given for both phases of the integration routine; see the text on page 79.
The value of niter is given in Table 3.

Parameter Description Phase 1 Phase 2

alpha Stiffness of rebinning algorithm 2.0 0.1
iterations Number of iterations per rebinning 2 niter
mode Variance reduction method stratified stratified

Table 3. Integration routine parameters for the full calculation (6.25). These
parameters control the number of sampling points as well as the stopping condition
for the integration routine.

Parameter Description
√
s = 200 GeV

√
s = 13 TeV

N Number of sampling points 2 × 109 2 × 109

niter Number of iterations per re-
binning

15 20

Icut-off Minimum integral value for
transitioning to Phase 2

1 1

δχ2 Maximum allowed value for
|χ2 − 1|

0.1 0.1

δImax Maximum allowed value for
the relative error δI

0.1 0.1

nmax Maximum number of rebin-
ning iterations

200 200

region, only two iterations are calculated before the rebinning procedure. Once the
value of the integral rises above some cut-off value Icut-off, the integration grid is
deemed sufficiently well-adapted and the second phase (Phase 2) begins. In the
second phase, niter iterations are performed before rebinning the grid.

The integration routine stops when the χ2-value gets sufficiently close to 1.
That is to say, when |χ2 − 1| < δχ2 for some δχ2. Additionally, the relative error
δI ≡ |∆I/I| must be smaller than some value δImax. For practical reasons, a fail-safe
mechanism is also present. This means that if some maximum number of rebinning
iterations nmax is exceeded, the integration is stopped and the integral with the
χ2-value closest to 1 thus far is returned.

All integration parameters can be found in Tables 2 and 3. The code and the
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data files are available on GitHub16.
It should be noted that the numerical calculation of lepton pair production cross

sections in hadron-hadron collisions has also been considered elsewhere. In 1991,
the generator LPAIR [59] was created based on Ref. [50]. A more modern version
of LPAIR, called CepGen, was developed in Ref. [60]. These generators are more
powerful and complex as they include facilities for applying experimental cuts as
well as for the consideration of dissociative processes where one or both hadrons
break apart.

6.3 Equivalent photon approximation

We now apply the equivalent photon approximation to muon-pair production. In
this context, the integral (4.68) reads

σEPA(pp → ppµ+µ−) ≡ σEPA
µ+µ− =

∫
dy1 dy2fγ/p(y1)fγ/p(y2)σ̂(γγ → µ+µ−). (6.27)

The equivalent photon distribution fγ/p(y) for the dipole form factors (5.12) was
calculated in Eqs. (5.16) and (5.17). In addition, we consider the case where the
proton’s magnetic moment µp is kept in place. We still set Q2

max = ∞ so that by
Eq. (5.14),

fγ/p(y) = αy

2π

∫ ∞

Q2
min

dQ2

Q2

(
1 + Q2

Λ2

)−4 [2(1 + µ2
pτ)

1 + τ

(
1 − y

y2 − M2

Q2

)
+ µ2

p

]
. (6.28)

While this integral can be calculated in terms of elementary functions, we do not
produce the complicated result here. Instead, we calculate it using Mathematica
and use the resulting expression directly for numerical integration.

The integrated cross section σ̂(γγ → µ+µ−) is given by17 the Breit–Wheeler
formula [61, Exercise 3.15]

σ̂γγ ≡ σ̂(γγ → µ+µ−)

= 4πα2

ŝ

(1 + 4m2

ŝ
− 8m4

ŝ2

)
log

1 +
√

1 − 4m2/ŝ

1 −
√

1 − 4m2/ŝ
−
(

1 + 4m2

ŝ

)√
1 − 4m2

ŝ

 ,
16https://github.com/samiyr/fyss9490
17The cross section given in Ref. [61] is written in terms of the relativistic speed v of either the

muon or the antimuon in their center-of-mass frame. In this frame, v =
√

1 − 4m2/ŝ.

https://github.com/samiyr/fyss9490
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where ŝ is the Mandelstam s associated with the process γγ → µ+µ−, corresponding
to the squared invariant mass W 2

µ+µ− of the muon-antimuon-system defined in
Eq. (6.22):

ŝ = (k′
1 + k′

2)2 = W 2
µ+µ− . (6.29)

Based on Eq. (4.6) alone, the integration domain of the integral in Eq. (6.27)
would be the unit square 0 ≤ y1, y2 ≤ 1. However, in the center-of-mass frame where
k′

1 = −k′
2 ≡ k′,

ŝ = (k′
1 + k′

2)2 = 2m2 + 2
(
m2 + |k′|2 + |k′|2

)
≥ 4m2. (6.30)

Using Eqs. (4.9) and (6.30),

y1y2 ≥ 4m2

s
. (6.31)

Thus, the integration region is not the unit square [0, 1]2, but rather the set

{(y1, y2) ∈ [0, 1]2 : y1y2 ≥ 4m2/s}, (6.32)

which is illustrated in Figure 5. Thus, Eq. (6.27) becomes

σEPA
µ+µ− =

∫ 1

0
dy1

∫ 1

0
dy2 fγ/p(y1)fγ/p(y2) σ̂γγ(ŝ = y1y2s)Θ(y1y2s− 4m2), (6.33)

where the Heaviside theta function enforces Eq. (6.31).
As in Eq. (6.24), we can obtain the approximately differential cross section

dσEPA
µ+µ−/dWµ+µ− by introducing the same cut as in Eq. (6.23). Thus, by Eqs. (6.29)

and (6.33),

dσEPA
µ+µ−

dWµ+µ−
=
∫ 1

0
dy1

∫ 1

0
dy2 fγ/p(y1)fγ/p(y2) σ̂γγ(ŝ = y1y2s)Θ(y1y2s− 4m2)

× Θ(W 2
min ≤ y1y2s ≤ W 2

max)
Wmax −Wmin

.

(6.34)

This integral can easily be calculated using the Gsl implementation of the Vegas
algorithm. The integration parameters, defined in Section 6.2, are listed in Tables 4
and 5.
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Figure 5. The integration region of the integral in Eq. (6.27). The shaded
region corresponds to the set given in Eq. (6.32).

6.4 Results and comparisons

In order to validate the results obtained from the full calculation, we can com-
pare the results obtained from Eq. (6.25) to experimental data. The observable
dσµ+µ−/dWµ+µ− has been measured in the ATLAS experiment [11] at

√
s = 13 TeV.

Due to practical limitations of particle detectors, experimental results have various
kinematical cuts. The cuts in the ATLAS experiment restrict the transverse mo-
mentum pT and pseudorapidity η of the muon and antimuon. When the incoming
protons travel along the z-axis, these two kinematical observables are given by [62,
§2.4]

(pT)i =
√

(k′x
i )2 + (k′y

i )2

and
ηi = 1

2 log |k′
i| + k′z

i

|k′
i| − k′z

i

,

where k′
i = (k′0

i ,k′
i) = (k′0

i , k
′x
i , k

′y
i , k

′z
i ).

The cuts in the ATLAS experiment are split into two regions of the invariant
mass Wµ+µ− . In the region 12 GeV < Wµ+µ− < 30 GeV, a minimum transverse
momentum pT > 6 GeV is required for the muon and the antimuon. In the region
30 GeV < Wµ+µ− < 70 GeV, the cut pT > 10 GeV is required for both particles. In
both regions, the pseudorapidity of both the muon and the antimuon are required
to be in the range |η| < 2.4. Implementing these cuts in the full calculation can be
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Table 4. Vegas integration parameters for the equivalent photon approx-
imation calculation (6.34). These parameters are defined by Gsl in the
gsl_monte_vegas_params structure.

Parameter Description Value

alpha Stiffness of rebinning algorithm 1.5
iterations Number of iterations per rebinning 5
mode Variance reduction method stratified

Table 5. Integration routine parameters for the equivalent photon approximation
calculation (6.34). These parameters control the number of sampling points as
well as the stopping condition for the integration routine. The parameter values
are the same for both values of

√
s.

Parameter Description Value

N Number of sampling points 107

δχ2 Maximum allowed value for |χ2 − 1| 0.1
δImax Maximum allowed value for the relative error δI 0.1
nmax Maximum number of rebinning iterations 200

done by introducing cut functions for the transverse momenta and pseudorapidities
of both muons to the integral (6.25) in the exact same way as the invariant-mass cut
(6.23) was introduced.

The comparison between the ATLAS data and the full calculation with experimen-
tal cuts is shown in Figure 6. The full calculation overestimates the experimentally
obtained cross section by 5 − 25 %. This level of agreement is reasonable considering
that the full calculation uses the relatively simple dipole form factors (5.12). In par-
ticular, they do not take finite-size corrections into account. If the two protons collide
too close to each other in the impact parameter, additional hadronic interactions may
also occur that can dissociate the proton. Including these finite-size corrections would
reduce the cross section, which is consistent with the full calculation overestimating
the experimental data. This result gives us confidence in using Eq. (6.25) to evaluate
the performance of the equivalent photon approximation, which is based on the same
dipole form factors.

We can now compare the equivalent photon approximation with the full calcula-
tion. For the equivalent photon approximation cross section dσEPA

µ+µ−/dWµ+µ−(6.34),
we use the three distributions given in Eqs. (5.16), (5.17), and (6.28). All three
distributions use the same dipole form factors (5.12), but with differing approx-
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Figure 6. Muon-pair production cross sections in proton-proton collisions at√
s = 13 TeV. The upper plot shows the cross sections and the lower plot shows

the ratio between the ATLAS data given in Ref. [11] and the results obtained
from the full calculation (6.25) with experimental cuts. The solid orange line is
the full calculation (6.25) and the black data points represent the ATLAS data.
The cross sections are binned in the invariant mass Wµ+µ− of the muon pair.
The integration parameters are listed in Tables 2 and 3.
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imations. In Eq. (6.28) we set Q2
max = ∞. The distribution (5.16) neglects the

anomalous magnetic moment of the proton by setting µp = 1. Finally, Eq. (5.17)
also neglects the mass of the proton. In all distributions, we also approximated Q2

min

using Eq. (4.10).
The results at

√
s = 200 GeV are shown in Figure 7. In the range 12 GeV <

Wµ+µ− < 50 GeV, the simplest photon distribution (5.17) fares reasonably well by
initially overestimating the cross section by 24 % and then underestimating it by
20 %. However, the underestimation continues in the region 50 GeV < Wµ+µ− <

70 GeV, with the distribution (5.17) underestimating the cross section by up to 49 %.
Interestingly, the less approximative and thus supposedly more accurate distribution
(5.16) fares worse by consistently underestimating the cross section by 40 − 89 %.
However, the least approximative distribution (6.28) is still the most accurate. This
distribution overestimates the cross section only by less than 1 %.

The results at
√
s = 13 TeV are shown in Figure 8. This time, all three distribu-

tions approximate the full cross section to within 20 %. The simplest distribution
(5.17) overestimates the cross section by 15 − 18 %, while the distribution (5.16),
which includes the mass term, underestimates the cross section by 8 − 16 %. The
distribution (6.28) is still the most accurate as it overestimates the cross section by
less than 4 %.

To see why the distributions (5.16) and (5.17) give more comparable results at
√
s = 13 TeV than they do at

√
s = 200 GeV, we must consider Eq. (6.31). As s

grows, the product y1y2 can become smaller. Thus, at higher values of
√
s, the values

of y1 and y2 are smaller. Looking at Eq. (5.16), we see that the mass correction term
is proportional to y, which makes it insignificant at small values of y in comparison
to the term in Eq. (5.17), which behaves like 1/y at small values of y.
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Figure 7. Muon-pair production cross sections in proton-proton collisions at√
s = 200 GeV. The upper plot shows the cross sections and the lower plot shows

the ratio between the results obtained using the equivalent photon approximation
and the full calculation. The solid orange line is the full calculation (6.25). The
non-solid lines use the equivalent photon approximation. The dashed green line
uses the photon distribution from Eq. (5.17), the dotted red line uses Eq. (5.16),
and the dash-dotted blue line uses Eq. (6.28). The cross sections are binned
in the invariant mass Wµ+µ− of the muon pair. The integration parameters are
listed in Tables 2–5.
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Figure 8. Same as Figure 7, but at
√
s = 13 TeV.
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7 Conclusions

In this thesis, we derived the factorization of electromagnetic cross sections involving
one- and two-photon exchanges in the equivalent photon approximation using a
helicity-based method used in Ref. [34]. In the process, we obtained a general
expression for the equivalent photon distribution, Eq. (3.70). We also considered the
distributions for spin-0 (Eq. (5.2)) and spin-1

2 (Eq. (5.11)) particles in Section 5.
Obtaining the factorization in a one-photon exchange process was relatively

straightforward using the polarization tensors defined in Section 2.2, since they
provide a convenient orthogonal basis (see Eqs. (3.46) and (4.24)). The kinematics
are also relatively simple in this case. While the basic idea used in the one-photon
exchange case also works in the two-photon exchange case, the generalization to that
case presented some additional challenges.

One challenge was obtaining the parametrization of Kµνρσ (4.24). Unlike the
one-photon exchange case, there are four Lorentz-indices to contend with. In the
one-photon exchange case, the transition from `µν being written in terms of individual
momentum vectors (Eq. (3.42)) to it being written in terms of the polarization tensors
(Eq. (3.46)) was done in a few lines in Eq. (3.45). More importantly, the transition
was done not systematically but by inspection: looking at the first line in Eq. (3.45),
one can notice the same tensor structure that is also found in the polarization tensors,
specifically in Eqs. (2.25) and (2.26). Since even writing the general form of Kµνρσ is
a non-trivial task, as we found in Appendix E, trying to rewrite the parametrization
in terms of the polarization tensors by inspection alone is essentially hopeless, as can
be seen in Eq. (4.29).

Another challenge was dealing with the extra terms in Eq. (4.33). Ultimately,
the resolution required the introduction of transverse projections in Section 4.4. A
related complication was the fact that the angle φ, which arose from the squared
matrix element in Eq. (4.50), is different from the angle φ′, which arose from the
kinematics of the phase space in Eq. (4.57). The approximate equality of these two
angles was eventually obtained in Eq. (4.49).

We did not consider the case where the momenta of the final state X are not
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integrated over. The simplicity of `µν in Eq. (3.42) follows from the integration over
the phase space of X, which was done in Eq. (3.32). Without this integration, the
general structure of `µν , and similarly that of Kµνρσ, would be considerably more
complicated, as additional momentum vectors would need to be included in the
parametrizations.

The integration over the phase space of X becomes significant when experimental
cuts are considered. One can add some experimental cuts directly to Eq. (4.68), but
these would have to be written in terms of y1, y2, Q

2
1, and Q2

2 alone. This was possible
to do for the invariant mass Wµ+µ− of the muon pair in Eq. (6.25) using Eq. (4.9),
but for many other cuts it is not. Instead, one would have to use a differential cross
section dσ̂(γγ → X) in lieu of the fully integrated cross section σ̂(γγ → X) used in
Eq. (4.68). For an example of such a cross section, see Ref. [13].

In Section 6, we considered photon-induced muon-pair production in proton-
proton collisions as an example of the application of the equivalent photon approx-
imation. We compared the equivalent photon approximation with three photon
distributions, all based on dipole form factors of the proton, to a full calculation
based on the same dipole form factors. The full calculation was compared to experi-
mental data from the ATLAS experiment with the results agreeing to within 25 %,
which is in line with our expectations considering the lack of finite-size corrections in
the full calculation.

We compared the equivalent photon approximation and the full calculation at two
total center-of-mass energies,

√
s = 200 GeV and

√
s = 13 TeV. At

√
s = 200 GeV,

we found significant differences between the three distributions. While the least
approximative distribution (6.28) gave the best accuracy, the distribution (5.17)
without the mass term was surprisingly more accurate than the distribution (5.16)
with the mass term. At

√
s = 13 TeV, these two distributions gave more accurate

results overall. This time, the distribution (5.16) with the mass term was slightly
more accurate than the distribution (5.17) without it. The distribution (6.28) still
provided the most accurate results.

Based on these results, we can attest to the usefulness of the equivalent photon
approximation, and specifically of the photon distribution (5.17). Using Eq. (5.17),
one can obtain fairly accurate results in muon-pair production with a particularly
simple distribution formula. If one is willing to let go of the simple distribution
(5.17), it is also easy to obtain very accurate results by using Eq. (6.28). The
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distribution (5.16), however, is not likely to find any use cases. This is because the
distribution (5.16) is, at best, only as accurate as the simpler distribution (5.17),
with it potentially being far less accurate in certain situations.

In the future one could, aside from not integrating over the final-state momenta,
also test the equivalent photon approximation in other processes. Of course, many
processes have already been considered in the literature, such as massive gauge
boson production [26, 63], but usually with differing photon distributions. One
could also consider finite-size corrections in the equivalent photon approximation.
So far, finite-size corrections seem to have been included in the equivalent photon
approximation by some semiclassical argument or using additional modeling; a purely
field-theoretical derivation of an impact-parameter dependent photon distribution
was not found in the general literature by the author during the preparation of this
thesis.
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A Dirac equation

The Dirac equation is a relativistic wave equation describing massive spin-1
2 particles,

also known as Dirac particles. In covariant notation, the Dirac equation reads [3]

iγµ∂µψ = mψ, (A.1)

where the γ-matrices fulfill the Dirac algebra18

{γµ, γν} = γµγν + γνγµ = 2gµν . (A.2)

This algebra follows naturally from the Dirac ansatz and by requiring that the
squared equation coincide with the Klein-Gordon equation. The γ-matrices are a set
of four 4×4-matrices. While the γ-matrices are not four-vectors, it is conventional to
use similar notation. In particular, lowering the index is done by the metric tensor,
γµ ≡ gµνγ

ν . The γ-matrices have a number of useful properties, most notably [2]

(γµ)† = γ0γµγ0,

(γ0)2 = 14.
(A.3)

Another consequence of the Dirac algebra is

/a/a = aµaνγ
µγν = 1

2aµaν (γµγν + γνγµ) = aµaνg
µν = a2, (A.4)

where the slash notation /a ≡ aµγ
µ was used.

One set of solutions to Eq. (A.1) is given by plane waves of the form ψ(x) =
u(p)e−ip·x, where u(p) is a four-component spinor with momentum p. Substituting
this into the Dirac equation (A.1) yields the Dirac equation in momentum space,

/pu(p) = mu(p). (A.5)

18To be precise, the algebra should read {γµ, γν} = 2gµν14, where 14 is the 4 × 4 identity matrix.
However, this identity matrix is usually not written explicitly.
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The adjoint of Eq. (A.5) can be derived by taking the hermitian conjugate of Eq. (A.5)
and using Eq. (A.3), yielding

mu†(p) = (/pu(p))† = pµ(γµu(p))† = pµu
†(p)(γµ)†

= u†(p)γ0
/pγ

0 = u(p)/pγ0,
(A.6)

where ψ ≡ ψ†γ0 is the Dirac adjoint of ψ. Multiplying Eq. (A.6) by γ0 from the
right, we obtain the adjoint equation

u(p)/p = mu(p). (A.7)

Another set of solutions, the negative-energy solutions, are given by plane waves
of the form ψ(x) = v(p)eip·x. These spinors are usually associated with antiparticles
and they satisfy the momentum-space Dirac equation [3]

/pv(p) = −mv(p) (A.8)

and the corresponding adjoint equation

v(p)/p = −mv(p). (A.9)

The spinors also satisfy the spin-sum formulas [3]

∑
s

u(k, s)u(k, s) = /k +m,

∑
s

v(k, s)v(k, s) = /k −m.
(A.10)

Using Eq. (A.3), we can obtain another useful identity,

(
f1γ

µf2
)†

=
(
f †

1γ
0γµf2

)†
= f †

2(γµ)†(γ0)†f1 = f †
2γ

0γµf1

= f2γ
µf1,

(A.11)

where f1, f2 are some spinors (any combination of u and v). Equation (A.11) easily
generalizes to (

f1γ
µ1γµ2 · · · γµnf2

)†
= f2γ

µn · · · γµ2γµ1f1.
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A.1 Gordon decomposition identity

A useful consequence of Eqs. (A.5) and (A.7) is the Gordon decomposition identity.
For simplicity, we denote u′ ≡ u(p′) and u ≡ u(p). Using Eqs. (A.2), (A.5), and (A.7),

u′iσµν(p′ − p)νu = 1
2u

′[γµ, γν ](p− p′)νu = 1
2u

′γµ(/p− /p
′)u− 1

2u
′(/p− /p

′)γµu

= 1
2u

′γµ(m− /p
′)u− 1

2u
′(/p−m)γµu

= mu′γµu− 1
2u

′p′
νγ

µγνu− 1
2u

′pνγ
νγµu

= mu′γµu− 1
2u

′p′
ν (2gµν − γνγµ)u− 1

2u
′pν (2gνµ − γµγν)u

= mu′γµu− u′(p+ p′)µu+ 1
2u

′
/p

′γµu+ 1
2u

′γµ
/pu

= mu′γµu− u′(p+ p′)µu+mu′γµu

= 2mu′
[
γµ − (p+ p′)µ

2m

]
u,

which gives the Gordon decomposition identity

u′γµu = u′
[

(p+ p′)µ

2m + iσµν(p′ − p)ν

2m

]
u = u′

[
(p+ p′)µ

2m − iσµνqν

2m

]
u. (A.12)

A.2 Trace techniques

The following standard trace identities are taken from Ref. [3, §A.3]:

tr 14 = 4,

tr(odd number of γ-matrices) = 0,

tr(γµγν) = 4gµν ,

tr(γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) .

(A.13)

These can be derived using the Dirac algebra, Eq. (A.2), and properties of the trace,
namely linearity and cyclicity.

For traces containing six or more γ-matrices, one can use the Dirac algebra to
write the traces in terms of traces containing a product of four γ-matrices. However,
in practice, this is best left to a computer algebra system.
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Denoting σµν ≡ i
2 [γµ, γν ], we can use Eq. (A.13) to derive

tr(γµγνσρλ) = i

2 tr (γµγν [γρ, γλ]) = i

2 tr(γµγνγργλ) − i

2 tr(γµγνγλγρ)

= 2i [gµνgρλ − gµρgνλ + gµλgνρ − (gµνgλρ − gµλgνρ + gµρgνλ)]

= 4i(gµλgνρ − gµρgνλ)

(A.14)

and therefore

tr(/aγνσρλb
λ) = aµbλ tr(γµγνσρλ) = 4i((a · b)gνρ − aρbν),

tr(γµ/aσρλb
λ) = aνbλ tr(γµγνσρλ) = 4i(aρbµ − (a · b)gµρ).

(A.15)
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B Quantum electrodynamics

Quantum electrodynamics (QED) couples charged spin-1
2 Dirac particles to a photon

field. In the case of a single particle species, this theory is described by the Lagrangian

L = −1
4FµνF

µν + ψ(i /D −m)ψ = −1
4FµνF

µν + ψ(i/∂ −m)ψ − eψγµψAµ, (B.1)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor, e is the elementary
charge and Dµ = ∂µ + ieAµ is the covariant derivative. The Lagrangian in Eq. (B.1)
is invariant under a local U(1) gauge transformation

ψ → ψ′ = eiα(x)ψ,

Aµ → A′
µ = Aµ − 1

e
∂µα(x),

where α(x) is a real-valued function. [3] The Feynman rules for QED in the Feynman
gauge [3, §A.1] are listed below. In all cases, the momentum flows from left to right.

External fermions

k, s = u(k, s) (incoming fermion)

k, s = u(k, s) (outgoing fermion)

k, s = v(k, s) (incoming antifermion)

k, s = v(k, s) (outgoing antifermion)

External photons

q, µ = εµ(q) (incoming photon)
q, µ = ε∗

µ(q) (outgoing photon)
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Propagators

k k = i(/k +m)
k2 −m2 + iε

(fermion propagator)

q, µ q, ν = − igµν

q2 + iε
(photon propagator)

Vertices

µ = iZeγµ (QED vertex)

B.1 The Ward identity

One important consequence of the gauge invariance of QED is the so-called Ward
identity. Consider some QED process which includes a photon with momentum q,
shown in Figure 9. The amplitude can be written as M = εµ(q)Mµ, where εµ(q) is
the polarization vector of the photon, Mµ is the amplitude of the rest of the diagram,
and all relevant diagrams have been summed over. The Ward identity then states
that [3]

qµMµ = 0.

Current conservation, which follows from gauge invariance, is implemented at the
amplitude level by the Ward identity.

q, µ

Figure 9. A diagram of some generic QED process with invariant amplitude
M = εµ(q)Mµ, where εµ(q) is the polarization vector of a photon with momentum
q and Mµ is the invariant amplitude of the rest of the diagram to which the
photon is connected.
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B.2 Scalar quantum electrodynamics

In scalar QED, scalar particles are coupled to photons, instead of Dirac particles as
is the case in standard QED. Scalar QED is described by the Lagrangian

L = −1
4FµνF

µν + (Dµφ)∗(Dµφ) −m2φ∗φ,

where Fµν = ∂µAν − ∂νAµ is the field tensor, Dµ = ∂µ + ieAµ is the covariant
derivative and m is the mass of the scalar particle. The Feynman rules for scalar
QED are listed below. [3, Problem 9.1]

Propagators

k k = i

k2 −m2 + iε
(scalar propagator)

q, µ q, ν = − igµν

q2 + iε
(photon propagator)

Vertices

k

k′

µ = −ie(k + k′)µ (sQED vertex)

µ ν

= 2ie2gµν (seagull vertex)
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C Calculation of the emission tensor for Dirac
particles

This section shows in detail the calculation of the emission tensor Wµν starting from
Eq. (5.7). Here we denote the spinors as u ≡ u(p, s) and u′ ≡ u(p′, s′), and similarly
for u and u′. Squaring the vertex of the form Hµ = u′Γµu,

HµH
∗
ν = u′Γµu [u′Γνu]† = u′Γµu

[
(u′)†γ0Γνu

]†
= u′Γµu

[
u†Γ†

ν(γ0)†u′
]

= u′Γµuu
†γ0γ0Γ†

νγ
0u′

= u′Γµuu
(
γ0Γ†

νγ
0
)
u′.

(C.1)

Using standard trace techniques, the matrix structure of Eq. (C.1) can be made
explicit by writing

HµH
∗
ν = u′

A(Γµ)ABuBuC

(
γ0Γ†

νγ
0
)

CD
u′

D = u′
Du

′
A(Γµ)ABuBuC

(
γ0Γ†

νγ
0
)

CD
.

Summing over the final-state spin s′, averaging over the initial-state spin s, and using
the spin-projection operator

∑
s

uAuB = (/p+M)AB

from Eq. (A.10), we obtain the emission tensor

Wµν = HµH∗
ν = 1

2
∑
s′
u′

Du
′
A(Γµ)AB

∑
s

ubuC

(
γ0Γ†

νγ
0
)

CD

= 1
2(/p′ +M)DA(Γµ)AB(/p+M)BC

(
γ0Γ†

νγ
0
)

CD

= 1
2 tr

[
(/p′ +M)Γµ(/p+M)γ0Γ†

νγ
0
]
.

Since

γ0σ†
µνγ

0 = − i

2γ
0(γµγν − γνγµ)†γ0 = − i

2γ
0(γ†

νγ
†
µ − γ†

µγ
†
ν)γ0 = σµν ,
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we have, using the explicit form of Γµ found in Eq. (5.7), that

γ0Γ†
µγ

0 = F1γ
0γ†

µγ
0 + iκ

2MF2γ
0σ†

µνγ
0qν = F1γµ + iκ

2MF2σµνq
ν .

Therefore
Wµν = 1

2 tr
[
(/p′ +M)

(
F1γµ − iκ

2MF2σµλq
λ
)

×(/p+M)
(
F1γν + iκ

2MF2σνρq
ρ
)]

= 1
2F

2
1 tr

[
(/p′ +M)γµ(/p+M)γν

]
+ iκ

4MF1F2 tr
[
(/p′ +M)γµ(/p+M)σνρq

ρ
]

− iκ

4MF1F2 tr
[
(/p′ +M)σµλq

λ(/p+M)γν

]
+ κ2

8M2F
2
2 tr

[
(/p′ +M)σµλq

λ(/p+M)σνρq
ρ
]

≡ 1
2F

2
1 tr1 + iκ

4MF1F2(tr2 − tr3) + κ2

8M2F
2
2 tr4 .

(C.2)

The first trace tr1 has the form of the standard leptonic tensor. Replacing the
momentum p′ in favor of q = p− p′ and using Eq. (3.3), we have [3, §5]

tr1 ≡ tr
[
(/p′ +M)γµ(/p+M)γν

]
= 4(pµp

′
ν + pνp

′
µ − (p · p′ −M2)gµν)

= 4(2pµpν − pµqν − pνqµ) + 2q2gµν .
(C.3)

For the three remaining traces, the fact that the trace of an odd product of γ-matrices
is zero is extensively used to simplify the expressions without explicitly writing the
vanishing traces. Thus, using Eqs. (3.3), (3.4), and (A.15),

tr2 ≡ tr
[
(/p′ +M)γµ(/p+M)σνρq

ρ
]

= M tr(/p′γµσνρq
ρ) +M tr(γµ/pσνρq

ρ)

= 4iM((q · p′)gµν − qµp
′
ν) + 4iM(qµpν − (q · p)gµν)

= 4iM
(

−1
2q

2gµν − qµp
′
ν

)
+ 4iM

(
qµpν − 1

2q
2gµν

)
= 4iMqµ(pν − p′

ν) − 4iMq2gµν

= 4iM(qµqν − q2gµν).

(C.4)
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Similarly,
tr3 ≡ tr

[
(/p′ +M)σµλq

λ(/p+M)γν

]
= M tr(/p′σµλq

λγν) +M tr(σµλq
λ
/pγν)

= M tr(γν/p
′σµλq

λ) +M tr(/pγνσµλq
λ)

= 4iM((q · p)gµν − qνpµ) + 4iM(qνp
′
µ − (q · p′)gµν)

= 4iM
(1

2q
2gµν − qνpµ

)
+ 4iM

(
qνp

′
µ + 1

2q
2gµν

)
= 4iMq2gµν − 4iMqν(pµ − p′

µ)

= 4iM(q2gµν − qµqν).

(C.5)

For the last trace,

tr4 ≡ tr
[
(/p′ +M)σµλq

λ(/p+M)σνρq
ρ
]

= tr(/p′σµλq
λ/σνρq

ρ) +M2 tr(σµλq
λσνρq

ρ)

= −1
4 tr(/p′[γµ, /q]/p[γν , /q]) − 1

4M
2 tr([γµ, /q][γν , /q])

= −1
4pαqβqλp

′
ρ

[
tr(γργµγβγαγνγλ) − tr(γργµγβγαγλγν)

− tr(γργβγµγαγνγλ) + tr(γργβγµγαγαγν)
]

− M2

2
[
tr(γµ/qγν/q) − q2 tr(γµγν)

]
= −4pαqβqλp

′
ρ

[
gνρ(gαµgβλ − gαβgλµ) + gαν(gβλgµρ − gβρgλµ) − gαλgβνgµρ

+ gαρ(gβνgλµ − gβλgµν) + gαλgβρgµν + gαβgλρgµν − gαµgβνgλρ

]
− 2M2

[
qαqβ(gµαgνβ − gµνgαβ + gµβgαν) − q2gµν

]
,

where FeynCalc was used on the last line to simplify the trace calculation. Using
Eqs. (3.3) and (3.4), the trace simplifies to

tr4 = −4
[
p′

ν(pµq
2 − (q · p)qµ) + pν(q2p′

µ − (q · p′)qµ) − (q · p)qνp
′
µ

+ (p · p′)(qνqµ − q2gµν) + (q · p)(q · p′)gµν + (q · p)(q · p′)gµν − pµqν(q · p′)
]

− 4M2(qµqν − q2gµν)

= −4
[
pµp

′
νq

2 − 1
2p

′
νqµq

2 + pνp
′
µq

2 + 1
2pνqµq

2 − 1
2q

2qνp
′
µ

+(p · p′)(qµqν − q2gµν) − 1
4q

4gµν − 1
4q

4gµν + 1
2pµqνq

2
]

− 4M2(qµqν − q2gµν)
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= −4
[
pµp

′
νq

2 + pνp
′
µq

2 + 1
2(pν − p′

ν)qµq
2 + 1

2(pµ − p′
µ)qνq

2

+
(
M2 − 1

2q
2
)

(qµqν − q2gµν) − 1
2q

4gµν

]
− 4M2(qµqν − q2gµν)

= −4q2(pµp
′
ν + pνp

′
µ) − 4qµqνq

2 − 4M2(qµqν − q2gµν)

+ 2q2(qµqν − q2gµν) + 2q4gµν − 4M2(qµqν − q2gµν)

= −4q2(pµp
′
ν + pνp

′
µ) − 2qµqνq

2 − 8M2(qµqν − q2gµν).

Further rewriting p′ = p− q, we obtain

tr4 = −4q2(2pµpν − pµqν − pνqµ) − 2qµqνq
2 − 8M2(qµqν − q2gµν). (C.6)

Plugging Eqs. (C.3)–(C.6) back into Eq. (C.2),

Wµν = 2F 2
1 (2pµpν − pµqν − pνqµ) + F 2

1 q
2gµν − 2κF1F2(qµqν − q2gµν)

− κ2

4M2F
2
2

(
2q2(2pµpν − pµqν − pνqµ) + qµqνq

2 + 4M2(qµqν − q2gµν

)
= F 2

1 ((2p− q)µ(2p− q)ν − qµqν) + F 2
1 q

2gµν − 2κF1F2(qµqν − q2gµν)

− κ2q2

4M2F
2
2 (2p− q)µ(2p− q)ν − κ2F 2

2 (qµqν − q2gµν)

=
(
F 2

1 − κ2q2

4M2F
2
2

)
(2p− q)µ(2p− q)ν + F 2

1

(
q2gµν − qµqν

)
+ 2κF1F2

(
q2gµν − qµqν

)
+ κ2F 2

2

(
q2gµν − qµqν

)
=
(
F 2

1 − κ2q2

4M2F
2
2

)
(2p− q)µ(2p− q)ν + (F1 + κF2)2

(
q2gµν − qµqν

)
≡
(
F 2

1 + τκ2F 2
2

)
(2p− q)µ(2p− q)ν + (F1 + κF2)2

(
q2gµν − qµqν

)
,

(C.7)

where on the last step we defined τ ≡ −q2/4M2 = Q2/4M2. We can also write
Eq. (C.7) using the so-called Sachs form factors [2]

GE(Q2) ≡ F1(Q2) − τκF2(Q2),

GM(Q2) ≡ F1(Q2) + κF2(Q2).
(C.8)
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Inverting Eq. (C.8),

F1(Q2) = GE(Q2) + τGM(Q2)
1 + τ

,

F2(Q2) = GM(Q2) −GE(Q2)
κ(1 + τ) .

From this it follows that

F 2
1 (Q2) + τκ2F 2

2 (Q2) = (GE(Q2) + τGM(Q2))2

(1 + τ)2 + τ (GM(Q2) −GE(Q2))2

(1 + τ)2

= (1 + τ)G2
E(Q2) + τ(1 + τ)G2

M(Q2)
(1 + τ)2

= G2
E(Q2) + τG2

M(Q2)
1 + τ

.

Thus, Eq. (C.7) finally becomes

Wµν = G2
E(Q2) + τG2

M(Q2)
1 + τ

(2p− q)µ(2p− q)ν +G2
M(Q2)

(
q2gµν − qµqν

)
.
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D Integration of the equivalent photon distribu-
tion for the dipole form factors

This section goes through the calculation of the integral

I ≡
∫ ∞

Q2
min

dQ2

Q2

(
1 +Q2/Λ2

)−4
[

1 + (1 − y)2

y
− 2yM2

Q2

]
, (D.1)

which is a part of Eq. (5.15). Splitting the integral into two, we need to calculate
the integrals

In ≡
∫ ∞

Q2
min

dQ2

(Q2)n

(
1 +Q2/Λ2

)−4
, (D.2)

where n = 1, 2. Setting u = 1 +Q2/Λ2 and defining B ≡ 1 +Q2
min/Λ2 > 1, we can

change variables in Eq. (D.2) to obtain

In =
∫ ∞

B

duΛ2

u4 [Λ2(u− 1)]n = 1
(Λ2)n−1

∫ ∞

B

du
u4(u− 1)n

.

Using partial fractions,

I1 = −
∫ ∞

B
du
( 1

1 − u
+ 1
u

)
− 1
B

− 1
2B2 − 1

3B3 . (D.3)

The remaining integral in Eq. (D.3) is

−
∫ ∞

B
du
( 1

1 − u
+ 1
u

)
= − [log u− log(1 − u)]∞B

= lim
u→∞

log 1 − u

u
+ logB − log(1 −B)

= log(−1) + logB − log(−1) − log(B − 1)

= logB − log(B − 1).

(D.4)
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Defining A ≡ 1 + Λ2/Q2
min > 1, it is easy to see that B = A/(A− 1). Using this and

Eq. (D.4), Eq. (D.3) becomes

I1 = logB − log(B − 1) − 1
B

− 1
2B2 − 1

3B3

= log A

A− 1 − log 1
A− 1 − A− 1

A
− (A− 1)2

2A2 − (A− 1)3

3A3

= logA− log(A− 1) − log 1 + log(A− 1) − 11A3 − 18A2 + 9A− 2
6A3

= logA− 11
6 + 3

A
− 3

2A2 + 1
3A3 .

(D.5)

Similarly, we can use partial fractions, B = A/(A− 1), and Eq. (D.4) to obtain

Λ2I2 =
∫ ∞

B

du
u4(u− 1)2

=
∫ ∞

B

du
(u− 1)2 + 4

∫ ∞

B
du
( 1

1 − u
+ 1
u

)
+ 3
B

+ 1
B2 + 1

3B3

= 1
B − 1 − 4 (logB − log(B − 1)) + 3

B
+ 1
B2 + 1

3B3

= A− 1 − 4 logA+ 3(A− 1)
A

+ (A− 1)2

A2 + (A− 1)3

3A3

= A− 1 − 4 logA+ 13A3 − 18A2 + 6A− 1
3A3

= A− 4 logA+ 10
3 − 6

A
+ 2
A2 − 1

3A3 .

(D.6)

Combining Eqs. (D.5) and (D.6), Eq. (D.1) is thus given by

I =
∫ ∞

Q2
min

dQ2

Q2

(
1 +Q2/Λ2

)−4
[

1 + (1 − y)2

y
− 2yM2

Q2

]

= 1 + (1 − y)2

y
I1 − 2yM2I2

= 1 + (1 − y)2

y

[
logA− 11

6 + 3
A

− 3
2A2 + 1

3A3

]

− 2yM2

Λ2

[
A− 4 logA+ 10

3 − 6
A

+ 2
A2 − 1

3A3

]
.
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E Parametrization of the two-photon absorption
tensor

In this appendix we show that Eq. (4.24) holds. Since the final state X has been
integrated over, Kµνρσ can only depend on q1 and q2. In addition, it has the symmetry
Kµνρσ = Kρσµν (see Eq. (4.15)). Therefore, the only available tensors are qµ

1 , qµ
2 , and

gµν , out of which we can construct Kµνρσ. There are three types of combinations:
two metric tensors, one metric tensor and two vectors, and four vectors. Of the first
type, there are three terms:

gµνgρσ, gµρgνσ, gµσgνρ.

For the terms with one metric tensor and two vectors, we must consider the
symmetry Kµνρσ = Kρσµν in the exchange of indices µν ↔ ρσ. For example, the term
gµνqρ

1q
σ
1 is not symmetric in the exchange µν ↔ ρσ. In order to keep the symmetry

of Kµνρσ, there must be an accompanying term gρσqµ
1 q

ν
1 . The term gµρqν

1q
σ
1 , on the

other hand, is automatically symmetric in the exchange µν ↔ ρσ.
A systematic approach to symmetrization that can be easily implemented on a

computer algebra system is based on permutations. We construct an ordered list of
permutations l1 based on the permutations of the indices (µ, ν, ρ, σ) in some specific
order. The ordering itself does not matter, only that the same one is always used.
As an example, the default ordering of the Mathematica function Permutations

gives
l1 = ((µ, ν, ρ, σ), (µ, ν, σ, ρ), (µ, ρ, ν, σ), . . . , (σ, ρ, ν, µ)). (E.1)

We then construct another ordered list l2 based on the permutations of (ρ, σ, µ, ν):

l2 = ((ρ, σ, µ, ν), (ρ, σ, ν, µ), (ρ, µ, σ, ν), . . . , (ν, µ, σ, ρ)). (E.2)

The ordered lists l1 and l2 contain the same elements but in different orders.
From these two lists of indices we construct two more lists, L1 and L2, containing
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terms of the form
gµ1µ2qµ3

i qµ4
j , (E.3)

where the indices are applied in order. Based on Eqs. (E.1) and (E.2),

L1 = (gµνqρ
1q

σ
1 , g

µνqρ
1q

σ
2 , . . . , g

σρqν
2q

µ
2 )

and
L2 = (gρσqµ

1 q
ν
1 , g

ρσqµ
1 q

ν
2 , . . . , g

νµqσ
2 q

ρ
2).

It should be noted that the lists L1 and L2 initially contain duplicate elements,
but these can easily be removed. Again, L1 and L2 have the same elements but in
different orders.

The next step is finding a permutation between L1 and L2. That is, a function
that maps the elements of L1 to elements of L2 in order. For the lists we have
considered here, that permutation is given by

P = (1 12)(2 22)(3 23) · · · (18 19). (E.4)

The permutation in Eq. (E.4) is denoted using transpositions (i j), which in this
context means that the ith element of L1 equals the jth element of L2. We can use
this permutation to construct pairs of symmetric elements,



gµνqρ
1q

σ
1 gρσqµ

1 q
ν
1

gµνqρ
1q

σ
2 gρσqµ

1 q
ν
2

... ...
gσρqν

2q
µ
2 gνµqσ

2 q
ρ
2

 . (E.5)

Here, the first column is L1 and the second column is L1 under the permutation
P . Summing the terms in Eq. (E.5) yields a list of 24 symmetric terms of the form
shown in Eq. (E.3).

Similarly, one can construct the 16 symmetrized terms of the form

qµ1
i qµ2

j qµ3
k qµ4

l .

All in all, there are 3 + 24 + 16 = 43 terms in the parametrization of Kµνρσ. These
terms can of course be constructed by hand, but using a computer algebra system
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eliminates the otherwise very real possibility of careless errors.
We now have a parametrization K̃µνρσ of Kµνρσ with 43 unknown parameters,

denoted by {βi}43
i=1. The Ward identity (Eq. (4.23)) places further restrictions on the

form of K̃µνρσ. The two contractions give a number of equations from the remaining
independent terms. This is analogous to how in the one-photon exchange case, the
single Ward identity qµ`

µν = 0 resulted in two equations in Eq. (3.44). One can then
solve these equations generated by the Ward identity, which reduces the number of
unknown parameters to 15.

To see that K̃µνρσ is indeed equivalent to Eq. (4.24), one can calculate the
unknown parameters {ai}8

i=1 in Eq. (4.24) using K̃µνρσ. For example,

a1 = 1
8 (3P µνP ρσ − P µρP νσ − P µσP νρ) K̃µνρσ

= −(β34 + β37)q2
1q

2
2 − (β6 + β26)(q1 · q2) − (β29 + β32q

2
1 + β9 + β10)

q2
1q

2
2

q1 · q2
.

This gives the parameters {ai} in terms of {βj}. Substituting the parameters {ai}
written in terms of {βj} back into Eq. (4.24), one can then show that Kµνρσ = K̃µνρσ.

The Mathematica code which constructs the parametrization K̃µνρσ and shows
its equivalence with Eq. (4.24) using the methods described here is available on
GitHub19.

19https://github.com/samiyr/fyss9490

https://github.com/samiyr/fyss9490
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