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Abstract: Efficient and scalable early diagnostic methods for knee osteoarthritis are desired due to
the disease’s prevalence. The current automatic methods for detecting osteoarthritis using plain
radiographs struggle to identify the subjects with early-stage disease. Tibial spiking has been hypoth-
esized as a feature of early knee osteoarthritis. Previous research has demonstrated an association
between knee osteoarthritis and tibial spiking, but the connection to the early-stage disease has not
been investigated. We study tibial spiking as a feature of early knee osteoarthritis. Additionally,
we develop a deep learning based model for detecting tibial spiking from plain radiographs. We
collected and graded 913 knee radiographs for tibial spiking. We conducted two experiments: ex-
periments A and B. In experiment A, we compared the subjects with and without tibial spiking
using Mann-Whitney U-test. Experiment B consisted of developing and validating an interpretative
deep learning based method for predicting tibial spiking. The subjects with tibial spiking had more
severe Kellgren-Lawrence grade, medial joint space narrowing, and osteophyte score in the lateral
tibial compartment. The developed method achieved an accuracy of 0.869. We find tibial spiking a
promising feature in knee osteoarthritis diagnosis. Furthermore, the detection can be automatized.

Keywords: knee joint; osteoarthritis; radiography; tibial spiking; convolutional neural networks

1. Introduction

Knee osteoarthritis (OA) is a highly prevalent chronic joint disease and a prominent
global cause of disability. In the Global Burden of Disease 2010 study, knee and hip OA
was ranked the 11th most common global cause of disability [1]. As the prevalence of OA
increases with age [2], due to population aging, the burden of OA is expected to rise. Early
detection of OA is imperative for maximizing the efficacy of interventions, lowering the
burden of the disease and the incidence of knee joint replacement surgery [3,4].

Plain radiography is a standard imaging modality for OA diagnosis and severity
assessment. Radiographic signs of knee OA include joint space narrowing (JSN), formation
of osteophytes, cysts, and subchondral sclerosis [5]. Plain radiography as an imaging
modality is insensitive to early signs of knee OA, such as cartilage damage and minor
osteophytes [6,7], which makes the radiographic diagnosis of early knee OA challenging.

The most common classification for radiological knee OA was described by Kellgren
and Lawrence (KL) [8]. KL classification consists of ordinal grades from 0 to 4, where 0
stands for no signs of OA, and each subsequent grade signifies increasing OA severity. KL
is a composite grading system, defining OA by the presence of JSN and osteophytes. The
definitions of KL-grades for the knee joint are the following [8,9]:

• Grade 0: No radiological signs of OA.
• Grade 1: Doubtful JSN, possible osteophytic lipping.
• Grade 2: Definite osteophytes, possible JSN.
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• Grade 3: Moderate multiple osteophytes, definite JSN, some sclerosis, possible defor-
mity of bone ends.

• Grade 4: Large osteophytes, marked JSN, severe sclerosis, definite deformity of bone
ends.

The KL system has been criticized for ambiguity, e.g., in cases where JSN is present, but
osteophytes are not [10]. Osteoarthritis Research Society International (OARSI) developed
another radiographic atlas for OA [11]. Unlike KL, OARSI contains individual grades for
JSN and osteophytes on a scale of 0–3.

To increase the reliability and objectivity of OA assessment, fully automatic methods
have been developed for assessing radiographic knee OA using plain radiographs. Oka
et al. [12] developed an automatic method for quantifying features of OA, such as minimum
joint space width and osteophyte area using filters and differentiation. Shamir et al. [13]
used various handcrafted features extracted from the plain radiographs together with a
weighted nearest neighbor classifier to predict the KL-grade. More recently, convolutional
neural networks (CNN) [14] have achieved success in medical image classification tasks
such as malignant skin lesion classification [15] or radiographic identifying of subjects with
arthroplasty [16].

Using CNNs for knee OA severity assessment from plain radiographs was initially
proposed by Antony et al. [17]. The recent state-of-the-art for predicting knee OA severity
using deep learning has been reviewed by Yeoh et al. [18]. CNN-based methods have been
reasonably successful in assessing severe KL-grades (i.e., grades 3 and 4), but for predicting
grades marking early OA, the accuracy is notably lower [17,19,20]. The limitations of
automation of early OA severity assessment using plain radiographs are likely multifaceted.
Firstly radiographs do not allow for direct visualization of the cartilage. Furthermore, the
current CNN-based methods are constrained by the KL system. As the current methods are
trained using noisy KL scores as the ground truth, the resulting models thus capture the
bias inherent to the KL classification. The results by Kim et al. [21] indicate that early OA
severity assessment with CNN can be improved by providing the model with additional
clinical information (e.g., age, sex, and body mass index (BMI)).

The limitations of early OA assessment could perhaps be alleviated further by con-
sidering additional radiographic features of OA not incorporated in the KL system, such
as the spiking of tibial tubercles that has been hypothesized as a sign of early knee OA
(hypothesis A). The spiking of tibial tubercles or tibial spiking refers to the tall and angular
appearance of the tibial spines (see Figure 1). The first mention of hypothesis A, to our
knowledge, is from a radiological textbook by Sutton [22]. However, the author provides
no evidence for the said hypothesis.

The feature was later studied by Reiff et al. [23], who examined radiographs from fifty-
five subjects with established knee OA and thirty-six controls. They found the lengthening
and sharpening of the peaks of the tubercles associated with knee OA. Donnelly et al. [24]
conducted a study with 950 subjects examining tibial spiking as a radiological feature of
OA. They found the sharpening of tibial spines to correlate with OA status (defined by KL
2 or higher) and osteophyte scores. They, however, concluded that tibial spiking is not a
reliable marker for knee OA in isolation due to a lack of clear independent association with
knee pain [24].

Unluet al. [25] studied the association between tibial spiking and cartilage defects
assessed via magnetic resonance imaging (MRI). The study involved seventy-six knees from
forty-seven subjects and thirty-one knees from sixteen controls. The subjects with knee
OA had significantly higher and sharper tibial spines than the controls. They observed
a correlation between cartilage defects and medial tubercle height but not with lateral
tubercle height [25]. Additionally, an association between the spiking of lateral tubercle
and osteophyte formation in the tibial compartments was found [25]. The latest study by
Hayeri et al. [26] considered tibial spiking from a paleopathological framework, where
thirty-five tibial bone specimens were directly examined for signs of OA. The study found
spiking of the lateral spine associated with osteophyte formation.
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Figure 1. Two knee radiographs rated for spiking of tibial tubercles are compared. The tubercles
rated as spiking are indicated by arrowheads.

The previous research indicates that tibial spiking might be associated with knee OA
and osteophyte formation [23–26], however, the feature might not be a reliable marker of
knee OA in isolation [24]. Although osteophyte formation is one of the primary signs of
radiographic OA, therefore tibial spiking might be a beneficial feature in assessing knee OA
in cases where no evident osteophytes can be detected. With automatic methods, the cost
of assessing radiographs for markers of OA is negligible and therefore provides a different
value proposition compared to general clinical adoption. Provided that tibial spiking is
identifiable by human experts, an automatic method can be developed, provided sufficient
data (hypothesis B).

The aim of the present study was to evaluate the hypothesis on tibial spiking as an
early sign of knee OA (hypothesis A). While the previous work on the subject indicates that
tibial spiking might be a feature of knee OA [23–26], the research is still lacking. Especially
whether tibial spiking is connected with the early knee OA is unclear. Furthermore,
we examined the feasibility of identifying tibial spiking automatically by developing a
method for assessing the feature from plain radiographs (hypothesis B), which has not
been considered previously.

2. Materials and Methods
2.1. Radiographic Data

The present study utilized data from the Osteoarthritis Initiative (OAI) [27] and the
Multicenter Osteoarthritis Study (MOST) [28]. OAI and MOST are longitudinal cohort
studies of OA and include radiographs assessed for signs of OA at multiple time points.
OAI dataset includes data from 4607 participants between ages 45–79 at baseline. MOST
baseline dataset contains data from 3026 participants between ages 50–79.

We collected bilateral PA (posterior-anterior) fixed flexion knee radiographs with
KL-grades 0–2 from OAI and MOST baseline datasets. The radiographs were selected
randomly with an approximately equal number of samples from each KL-grade. We
collected 722 radiographs from OAI and 191 radiographs from MOST, from which we
used only the right knee. The collected knees with regard to the KL-grade can be seen
in Table 1. Additionally, we collected assessments of radiographic knee OA, including
KL-score, OARSI osteophyte and JSN scores, Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) knee pain score, and the subject BMI for each sample.

Table 1. Collected knees with regard to KL-grade.

KL0 KL1 KL2

OAI 243 248 231
MOST 65 61 65
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2.2. Data for Experiment A

As the tibial spiking was not assessed in OAI or MOST cohorts, we collected the
assessments manually for all 913 knees. The assessments were performed by two physi-
cians, a radiology resident with three years of experience in radiology (expert 1) and an
experienced orthopedic surgeon (expert 2). Each knee was assessed by a single expert,
blinded to the OA assessments and clinical details. Prior to grading the knees, the experts
had a single session to establish a uniform view of the spiking criteria. Each spine (medial
and lateral) was rated for spiking by subjective visual inspection of angulation, size, and
other deformities. No angle or height measurements of the tubercles were performed in
this study. The spines were graded on a binary scale of 0–1 with the possibility of giving an
“unsure” rating. The unsure rating was warranted as the tibial spines might be occluded
by the femur or otherwise difficult to judge, e.g., due to poor exposure. The spines were
also rated unsure in borderline cases (i.e., doubtful spiking). We defined overall spiking
(i.e., spiking on medial or lateral side) as

spiking := (lateral spiking = 1) ∨ (medial spiking = 1). (1)

2.3. Reliability

We evaluated inter-rater reliability using a subset of 205 radiographs rated by both
experts in separate sessions, blinded to the assessments made by the other party. Intra-rater
reliability was assessed with a subset of the knees re-rated by the same expert, blinded
to the previous rating. The duplicate radiographs used for evaluating reliability were
mixed among the set of regular radiographs. Additionally, the experts were blinded to
the existence of duplicate radiographs. Sample sizes for evaluating intra-rater reliability
were 53 and 68 for experts 1 and 2, respectively. The inter- and intra-rater reliability were
measured using Cohen’s κ (Kappa) [29]. For calculating κ scores we used implementation
in Python (ver. 3.10.0) [30] library scikit-learn 1.0.1 [31].

The reliability analysis was performed for the original 3-way ratings (including the
unsure ratings), binary (0–1) ratings where the unsure assessments were omitted, and
overall spiking (defined in Equation (1)). The rating pairs were omitted if either contained
an unsure rating. The sample sizes for assessing the intra-rater reliability of unsure omitted
ratings were 41 and 42 for experts 1 and 2, respectively, and 124 for inter-rater reliability.

2.4. Experiment A

To evaluate the hypothesis on tibial spiking as a feature of early OA (hypothesis A),
we conducted experiment A, where the differences were tested between groups with tibial
spiking and a control group (i.e., subjects without tibial spiking). Given hypothesis A, we
would expect the group with tibial spiking to have a higher KL-score, osteophyte-score,
JSN-score, and knee pain. We combined the samples from OAI (722) and MOST (191), for
913 samples in experiment A.

We defined the inclusion criteria for the spiking group identically to overall spiking;
see Equation (1). Consequently, the control group included all the samples with negative
or unsure ratings. In total, 630 samples were assigned to the spiking group and 283 to
the control group. For testing the group differences, we used two-tailed Mann-Whitney
U-test [32]. We used the Scipy 1.7.3 [33] implementation for calculating the U-test values.
To counteract the multiple comparisons problem, we applied the Bonferroni correction [34].
With significance levels α = (0.05, 0.01, 0.001) and the number of tests n = 9, the corrected
significance level α′i is

α′i =
αi
n

. (2)

Some radiographs in the original OAI and MOST data were missing some OARSI
assessments (JSN or osteophytes grade). We omitted the samples containing missing values
for the calculations, which reduces the sample size for these variables. Sample sizes for the
variables containing missing information are the following: BMI: spiking 629 and control
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283, OARSI JSN variables: spiking 618 and control 281, and OARSI osteophyte variables:
spiking 432 and control 145.

2.5. Data for Experiment B

We used 80% of OAI data (577 images) for model training and 20% (145 images)
for model validation. All 191 images from MOST were used as the final test data. For a
breakdown of each dataset split with regard to the tibial spiking rating, refer to Table 2. As
the ground truth, we used the definition for overall spiking (see Equation (1)). We used the
assessments from a single expert chosen randomly for the images graded by both experts.

Table 2. Tibial spiking data frequency tables for medial, lateral, and overall spiking (medial or lateral;
OR). Zero indicates the absence of spiking, while one indicates the presence of spiking. The question
mark indicates the unsure rating.

Medial Lateral OR
0 1 ? 0 1 ? 0 1

Train 216 281 80 253 279 45 188 389
Validation 57 71 17 53 77 15 47 98
Test 66 108 17 59 116 16 48 143
Total 339 460 114 365 472 76 283 630

The image data in the OAI and MOST datasets were stored as Digital Imaging and
Communications in Medicine (DICOM) image format. We used pydicom 2.2.2 [35] for
reading the DICOM pixel data. The original bilateral PA images were first localized to
the region of interest (ROI), i.e., the right knee joint area. The images were localized by
manually annotating a center point in the valley between medial and lateral tibial tubercles
and calculating square ROI of size 300× 300 from the center point. For annotating the ROI
centers, we used labelme 5.0.1 [36]. Finally, we downsampled the ROI images to an input
size of 224× 224 by bilinear interpolation.

Following the localization, we inverted the pixel values of images with MONOCHROME1
photometric interpretation (i.e., we converted black-on-white images to white-on-black).
We performed histogram equalization using OpenCV Python library [37] to improve the
image contrast. All image sample pixel intensities were normalized by subtracting the mean
and dividing by the standard deviation, which were calculated from the set of training
samples.

We replaced the original training samples with augmented samples in a one-to-one
fashion. The augmentations included flipping the images horizontally with a probability
of 0.5 and performing random affine transformation (i.e., scaling, spatial translation, and
rotation) to introduce variance among the training samples. The degree of rotation was
sampled from a range of (–12, 12). The degree of spatial translation was sampled from
(–11.2, 11.2) and (–2.24, 2.24) for the horizontal and vertical axis, respectively. The scale
factor was sampled from (0.8, 1.2). The augmentations were resampled for each training
iteration. For an illustration of the data processing pipeline, see Figure 2.

2.6. Experiment B

We developed and evaluated a model for identifying tibial spiking from plain radio-
graphs to determine whether tibial spiking is detectable with automatic methods (hypoth-
esis B). For the classification model, we fine-tuned (i.e., domain adapted) a CNN model
ResNeXt-50-32x4d introduced by Xie et al. [38] pre-trained on around 1.2 million color
images from ImageNet [39] challenge [40] for assessing tibial spiking. The CNN model
implementation from Torchvision [41] version 0.12.0 was used. We modified the model
by replacing the dense layer with two dense units, followed by softmax. We, therefore,
initialized the weights for all other layers pre-trained on ImageNet. The motivation for the
procedure is to improve the performance of CNN by utilizing the features learned from
another dataset [42].
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Histogram
equalization

and  
augmentation

Data pre-processing

ROI localization
CNN model Assessment

 

Figure 2. Tibial spiking assessment pipeline: the bilateral PA view radiographs are localized to the
ROI, histogram equalization, augmentations (when applicable), and normalization are performed
before feeding the data to the model.

The CNN model architecture is detailed in Table 3. The bottleneck blocks, i.e., BN1–4 in
Table 3 featured a shortcut connections [38] similar to He et al. [43]. The shortcut connection
for a block B is defined as

y = B(x) + x, (3)

where y is the output and x is the input. Note that the dimensions of the block B and the
identity x must be equal in Equation (3). When this is not the case, a linear projection Wdx
is used to match the dimensions before adding the identity [43]. We used the standard
cross-entropy as the loss function, optimized with Adam [44] with following parameters
α = 0.0002, β1 = 0.9, β2 = 0.999, ε = 10−8. PyTorch 1.11.0 [41] was used as the model
training and testing framework.

Table 3. The architecture of the used model consists of sequential bottleneck (BN) blocks after the
initial convolution and max pooling. The convolution layer parameters are presented in the order of
kernel size, and the number of kernels and C denotes the number of grouped convolutions. A bracket
followed by × k indicates the block is repeated k times. The dense layer has an input size of 2048 and
an output size of two. The spatial output size of the block is presented in the middle column.

Block Output Size Architecture

Conv1 112× 112 7× 7, 64, stride 2

Pool 56× 56 3× 3 max pool, stride 2

BN1 56× 56
1× 1, 128

× 33× 3, 128, C = 32
1× 1, 256

BN2 28× 28
1× 1, 256

× 43× 3, 256, C = 32
1× 1, 512

BN3 14× 14
1× 1, 512

× 63× 3, 512, C = 32
1× 1, 1024

BN4 7× 7
1× 1, 1024

× 33× 3 1024, C = 32
1× 1, 2048

1× 1 global average pool

Dense 2048, 2, softmax

We performed a grid search to determine suitable hyperparameters for fine-tuning
the classification model. As the model selection criteria, we used validation accuracy. The
parameter space used in the grid search can be seen in Table 4. The best-performing model
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was trained for ten epochs with a batch-size four and a learning rate (α) of 0.0002. The
learning rate was decayed every four epochs by a factor of 0.115.

Table 4. Grid search parameter space. Step-size defines the interval for decaying the learning rate
specified by gamma.

Values

Epochs 1, 2, 3, . . . , 23, 24, 25
Batch-size 4, 5, 6
Learning-rate 7× 10−3, 8× 10−3, 9× 10−3, 10−4, 2× 10−4, 3× 10−4, 4× 10−4

Step-size 4, 5, 6
Gamma 0.115, 0.12, 0.125

We used Gradient-weighted Class Activation Mapping (Grad-CAM) [45] implemen-
tation TorchCAM (ver. 0.3.1a0) [46] for visualizing the model predictions. Grad-CAM
provides visual explainability by highlighting the regions from the input image strongly
influencing the output [45]. The heatmaps generated by Grad-CAM provide transparency
into the model prediction-making and enable the developers to determine how the model
is able to discern the classes or fails to do so. For the users, the visual explanations enable
the building of trust in the classifier system. The study workflow and the methodology are
summarized in Figure 3. The analysis code and the trained model for detecting tibial spik-
ing have been made available on GitHub: https://github.com/AI-hub-keskisuomi/AI_
hub_keskisuomi/tree/main/WP3_knee_osteoarthritis/tibial_spiking_grading (accessed
on 4 October 2022).

OAI MOST

Knee radiographsTibial spiking grading
OA assesments, 

knee pain, 
BMI

Dataset

Merge

Reliability analysis

Split to control and
spiking groups

Mann-Whitney 
U-test

Remove samples
with missing
information

Bonferroni
correction

Experiment A

Evaluate

Pre-trained  
ResNeXt-50-

32x4d

Test Validation Train

Split

Replace dense layers

Modified ResNeXt 
architecture

Optimize
hyperparameters
with grid search

Trained CNN
model

Experiment B

Grad-CAM
analysis

Select 
samples

Select ROI

Tibial spiking
assesments

Augment 
image data

Histogram
equalization

Figure 3. Flowchart of the study methodology. The processes or methods are denoted with rect-
angles, datasets with cylinders, data with parallelograms, and the models with rectangles with
rounded corners.

https://github.com/AI-hub-keskisuomi/AI_hub_keskisuomi/tree/main/WP3_knee_osteoarthritis/tibial_spiking_grading
https://github.com/AI-hub-keskisuomi/AI_hub_keskisuomi/tree/main/WP3_knee_osteoarthritis/tibial_spiking_grading
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3. Results and Discussion
3.1. Reliability

The reproducibility of tibial spiking grading is detailed in Table 5. According to
a frequently used scale reported by Landis and Koch [47] for interpreting κ values, the
range 0.21–0.40 represents fair agreement, 0.41–0.60 moderate agreement, 0.61–80 substan-
tial agreement, and 0.81–1.00 almost perfect agreement. Albeit, the ranges are arbitrary
according to Landis and Koch [47] but are often used to discuss reliability analysis results.

Table 5. Intra and inter-rater reliability (κ) for 3-way ratings, binary ratings with unsure omitted
(denoted with o), and overall spiking (denoted with OR) with 95% confidence interval (CI).

Intra-Rater
Reliability (Expert 1)

Intra-Rater
Reliability (Expert 2)

Inter-Rater
Reliability

Medial 0.61 (0.58–0.64) 0.52 (0.50–0.54) 0.34 (0.33–0.35)
Medial (o) 0.78 (0.75–0.82) 0.94 (0.92–0.96) 0.59 (0.58–0.61)

Lateral 0.59 (0.56–0.62) 0.75 (0.73–0.76) 0.55 (0.55–0.56)
Lateral (o) 0.71 (0.67–0.74) 1.00 (1.00–1.00) 0.75 (0.74–0.76)

OR 0.53 (0.50–0.57) 0.69 (0.67–0.72) 0.48 (0.47–0.49)

Inter-rater reliability for the lateral spiking was in the moderate range, similar to
the KL-grade reliability evaluated in previous studies [48,49]. However, the inter-rater
reliability of the medial side assessments was only fair. The medial spiking ratings con-
tained more unsure ratings, indicating that the medial spines were more challenging to
assess. The proximate cause for the discrepancy can only be conjectured. Nevertheless, the
medial tibial tubercles are more prominent and thus are more likely to be occluded by the
femur. After omitting the unsure ratings, the inter-rater reliability was comparable to the
KL grading reliability.

The intra-rater reliability of both experts was moderate to substantial for the 3-way
ratings. The intra-rater reliability of expert 2 was lower for the medial side. However,
expert 1 was equally consistent in assessing the lateral and the medial sides. The disparity
in the ratings of expert 2 seems to be explainable by the unsure ratings. The ratings for the
knees graded twice of expert 2 contained 38% unsure ratings, while assessments of expert 1
contained 23% unsure ratings. The intra-rater reliability of expert 2 was near-perfect after
omitting the unsure ratings.

Overall, the intra-rater reliability for assessing tibial spiking was comparable to KL
grading (0.50 weighted κ with 95% confidence interval (CI) of (0.25–0.75)) [48]. After
removing the unsure ratings, the intra-rater reliability of expert 2 exceeded the κ reported
by Gossec et al. [48]. Although, intra-rater reliability of assessing tibial spiking seems
less reliable than KL grading when compared against the KL intra-rater reliability of 0.97
weighted κ with 95% CI of (0.92–1.0) reported by Culvenor et al. [49]. After omitting the
unsure ratings, the intra-rater reliability of expert 2 was comparable to the weighted κ
obtained by Culvenor et al. [49].

3.2. Experiment A

The sample means for spiking and control groups jointly with U-test significance levels
are detailed in Table 6. After applying the Bonferroni correction, the significant variables
below p < 0.001 were KL-grade and BMI, and the variables below p < 0.01 were OARSI
Medial JSN and tibia lateral osteophytes score.
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Table 6. Mean values for spiking and control groups with U-test significance levels (without Bonfer-
roni correction * p < 0.05; ** p < 0.01; *** p < 0.001).

Spiking Control

KL-grade *** 1.11 0.70
WOMAC knee pain * 2.14 1.62

BMI *** 29.09 27.46
Medial JSN *** 0.38 0.25

Lateral JSN 0.05 0.04
Tibia medial osteophytes ** 0.59 0.41
Tibia lateral osteophytes *** 0.40 0.21

Femur medial osteophytes ** 0.48 0.27
Femur lateral osteophytes ** 0.41 0.22

We found significant group differences supporting hypothesis A. Higher KL, OARSI
medial JSN and lateral tibia osteophyte grades in the spiking group support the previously
reported evidence for the association between tibial spiking and knee OA [23,26]. However,
there was no difference in the less prominent [5] lateral JSN. Considering the spiking
group’s higher mean KL-grade, the higher BMI in the spiking group is consistent with the
literature on the risk factors of knee OA [50]. Our results partly confirm the association
between tibial spiking and osteophytes reported previously [24–26]. However, we could
not confirm an association between tibial spiking and knee pain.

3.3. Experiment B

We evaluated the top model from the grid search using 191 samples from the MOST
dataset. The model produced an accuracy of 0.869 with sensitivity of 0.909 and specificity
of 0.750. More details on the model performance can be seen in Table 7. Confusion matrix
for the test data is presented in Figure 4.

Table 7. Classifier performance metrics.

Accuracy Loss Sensitivity Specificity Precision

Train 0.872 0.300 0.882 0.851 0.925
Validation 0.869 0.399 0.929 0.745 0.883

Test 0.869 0.314 0.909 0.750 0.915

spiking no spiking
Predicted label

spiking

no spiking

Tr
ue

 la
be

l

130 13

12 36

20

40

60

80

100

120

Figure 4. Confusion matrix for the test dataset.

The developed model obtained lower specificity than sensitivity, meaning the model
suffers to a greater extent from type I error (i.e., the model predicted spiking when none
was present), which might reflect the class imbalance in the training samples. Additionally,
due to how the ground truth was constructed, the no-spiking class might have contained
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more borderline cases (a subset of the unsure ratings could have been regarded as doubtful
spiking). In future studies, more data should be accumulated to address the asymmetry.

Like knee OA severity grading, automating tibial spiking detection lacks the “ideal”
ground truth (i.e., 100% reliable labels). Consequently, the models derived will be con-
strained by the quality of data available. The ground truth’s inter-rater reliability (κ) was
0.48, i.e., moderate. Currently, a universally agreed-upon atlas for assessing tibial spiking
does not exist. The lack of shared criteria for grading tibial spiking casts doubt on the
generalizability of the model developed in the present work, as different experts might
have divergent views on how the spiking of tibial tubercles manifests in the radiographs.
Nevertheless, the results of experiment A indicate that the spiking the model was trained
to detect is associated with the other signs of knee OA.

It should be emphasized that calling the feature tibial “spiking” is somewhat imprecise
in the present work, as the feature was graded based not only on the angulation of the
spines but also on the length and bony growth on the spine peaks. Therefore, the feature
might be more explicitly considered as “osteophytic” abnormalities in the tibial tubercles.
Alexander [51] speculated that tibial spiking might be a type of osteophyte formation. Our
results give some support for the theory. However, more research on the topic is required
as the exact mechanism behind tibial spiking is unknown.

We visualized the model predictions for the validation data using Grad-CAM. By
visualizing the failed predictions of the model, we can gain information on the reasons
behind the failures, e.g., in Figure 5a, the network concentrates on the narrow joint space
instead of on the tubercles. However, in Figure 5b, the model concentrates on the medial
tibial tubercle predicting spiking while the ground truth was non-spiking. The heatmap
indicates a strong influence of the medial tubercle; the assessments could be re-evaluated
in cases where the model has an apparent disagreement with the expert. The model used
in this manner can provide a second opinion for a physician.

(a) (b)

Figure 5. Grad-CAM visualizations for incorrect predictions. In subfigure (a), the model rates the
knee spiking based on the narrow appearance of the medial joint space, which indicates that the
model has learned the association between tibial spiking and medial JSN. In subfigure (b), the model
makes a spiking assessment based on the medial tubercle.

The successful predictions can be visualized to identify how the model is able to
discern the spiking samples from the non-spiking samples. In Figure 6a, the model has
concentrated on the vicinity of the lateral tubercle. In Figure 6b, the model could not
identify any spiking features and consequently predicted non-spiking.
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(a) (b)

Figure 6. Grad-CAM visualizations for correct predictions. In subfigure (a), the lateral tubercle had
the highest contribution to the prediction. In subfigure (b), no influential region was found from a
non-spiking sample, as can be observed from the blank heatmap.

4. Conclusions

Our results indicate an association between the spiking of tibial tubercles and early
knee OA. Adopting spiking of tibial tubercles as additional information in the diagnosis
of knee OA seems promising. Although, additional research on the characteristics of
tibial spiking and guidelines for assessing the feature is needed. The model developed for
automatically identifying tibial spiking was able to generalize despite the modest number
of training samples. The analysis using Grad-CAM revealed that the developed method is
somewhat reliant on the JSN, which could lead to misclassifications. In the future, more
data on tibial spiking should be acquired to develop better tools for healthcare.
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