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Abstract
We prove an elliptic Harnack’s inequality for a general
form of a parabolic equation that generalizes both the
standard parabolic 𝑝-Laplace equation and the normal-
ized version that has been proposed in stochastic game
theory. This version of the inequality does not require
the intrinsic waiting time and we get the estimate with
the same time level on both sides of the inequality.
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1 INTRODUCTION

In his monograph, DiBenedetto [5, Theorem VII.1.2] proved elliptic Harnack’s inequality for the
divergence form 𝑝-parabolic equation in the supercritical case. In this case, the intrinsic wait-
ing time required for degenerate parabolic equations is no longer needed. Instead he established
Harnack’s inequalitywith the same time level on both sides of the estimate akin to the elliptic case.
In this paper, we prove elliptic Harnack’s inequality for the following general non-divergence

form version of the non-linear parabolic equation:

𝜕𝑡𝑢 = |∇𝑢|𝑞−𝑝 div (|∇𝑢|𝑝−2∇𝑢) = |∇𝑢|𝑞−2(Δ𝑢 + (𝑝 − 2)Δ𝑁∞𝑢), (1.1)

for a natural range of exponents. When 𝑞 = 2, we get the normalized 𝑝-parabolic equation arising
from the game theory, and when 𝑞 = 𝑝, it is the standard 𝑝-parabolic equation.
Elliptic Harnack’s inequality, Theorem 2.1, states that a non-negative solution satisfies the

following local a priori estimate:

𝛾−1 sup
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0) ⩽ 𝑢(𝑥0, 𝑡0) ⩽ 𝛾 inf
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0).

©2022 The Authors. Bulletin of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
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2 KURKINEN et al.

DiBenedetto’s proof uses the theory of weak solutions. Since the equation is in a non-divergence
form, unless 𝑞 = 𝑝, the usual weak theory based on integration by parts is not available in our
case. Our proof uses the parabolic (forward) Harnack’s inequality proven by Parviainen and
Vázquez [26] to estimate the solution in the past, constructing an explicit supersolution with
infinite boundary values and using the comparison principle to get an estimate at our original
time level. The idea both in the proof of the forward Harnack as well as in the derivation of the
explicit supersolution is based on an equivalence result. Heuristically speaking, radial solutions to
the original non-divergence form problem can be interpreted as solutions to the divergence form
𝑝-parabolic equation, but in a fictitious space dimension 𝑑.
Nash discussed the possibility of elliptic Harnack’s inequality for a parabolic equation in [24].

Later Moser [22] pointed out that such an estimate does not hold for the heat equation. For
the 𝑝-parabolic equation, elliptic Harnack’s inequality is obviously false if 𝑝 > 2, and holds for
2𝑛

𝑛+1
< 𝑝 < 2. In addition to [5], Harnack’s inequalities in the singular range have been studied,

for example, by Dibenedetto, Gianazza and Vespri in [7, 8] and [9]. The intrinsic forward Har-
nack’s inequality for weak solutions of the 𝑝-parabolic equation was proven by Dibenedetto in
[4] and [10], see also [5], and later for equations with growth of order 𝑝 by Dibenedetto, Gianazza
and Vespri in [6] and by Kuusi in [20]. For non-divergence form equations, parabolic Harnack’s
inequalities and relatedHölder regularity under additional restrictions were studied by Cordes [3]
and Landis [21]. With bounded and measurable coefficients parabolic Harnack’s inequality was
established by Krylov and Safonov [19].
Since the Equation (1.1) is in non-divergence form except in a special case, the solutions in

this paper are understood in the viscosity sense. The suitable concept of viscosity solutions to the
general equations (1.1) was established by Ohnuma and Sato [25]. In the special case 𝑞 = 2, we
get the normalized 𝑝-parabolic equation that arises from the stochastic game theory [23]. This
non-divergence form special case as well as the general equation (1.1) have recently received
attention in the works of Jin-Silvestre [17], Imbert-Jin-Silvestre [15], Høeg-Lindqvist [14], and
Dong-Fa-Zhang-Zhou [12] in addition to [26].

2 MAIN RESULTS

Denote

Δ
𝑞
𝑝𝑢 ∶= |∇𝑢|𝑞−𝑝 div (|∇𝑢|𝑝−2∇𝑢) = |∇𝑢|𝑞−2(Δ𝑢 + (𝑝 − 2)Δ𝑁∞𝑢), (2.1)

where 𝑝 > 1 and 𝑞 > 1 are real parameters and

Δ𝑁∞𝑢 =

𝑛∑
𝑖,𝑗=1

𝜕𝑥𝑖𝑢 𝜕𝑥𝑗𝑢 𝜕𝑥𝑖𝑥𝑗𝑢|∇𝑢|2
so the Equation (1.1) gets the form 𝜕𝑡𝑢 = Δ

𝑞
𝑝𝑢. Because the dimensions of the sets play part in

some of the estimates, we shall denote

𝑄−𝑟 (𝜃) = 𝐵𝑟(0) × (−𝜃𝑟
𝑞, 0],

𝑄+𝑟 (𝜃) = 𝐵𝑟(0) × (0, 𝜃𝑟
𝑞),
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 3

where 𝜃 is a positive parameter that determines the time-wise length of the cylinder relative to 𝑟𝑞.
We denote the union of these sets as

𝑄𝑟(𝜃) = 𝑄+𝑟 (𝜃) ∪ 𝑄
−
𝑟 (𝜃)

and when not located at the origin, we denote

(𝑥0, 𝑡0) + 𝑄−𝑟 (𝜃) = 𝐵𝑟(𝑥0) × (𝑡0 − 𝜃𝑟𝑞, 𝑡0],

(𝑥0, 𝑡0) + 𝑄+𝑟 (𝜃) = 𝐵𝑟(𝑥0) × (𝑡0, 𝑡0 + 𝜃𝑟𝑞),

(𝑥0, 𝑡0) + 𝑄𝑟(𝜃) = 𝐵𝑟(𝑥0) × (𝑡0 − 𝜃𝑟𝑞, 𝑡0 + 𝜃𝑟𝑞).

Our main result is that non-negative viscosity solutions to (1.1) satisfy the following elliptic
Harnack’s inequality if the following range condition holds:

2 > 𝑞 >

{
1 if 𝑝 ⩾

1+𝑛

2
,

2(𝑛−𝑝)

𝑛−1
if 1 < 𝑝 < 1+𝑛

2
.

(2.2)

We inspect the optimality of this range after the formulation of the theorem.

Theorem 2.1 (Elliptic Harnack’s inequality). Let 𝑢 ⩾ 0 be a viscosity solution to (1.1) in 𝑄−
1
(1) and

the range condition (2.2) holds. Fix (𝑥0, 𝑡0) ∈ 𝑄−
1
(1). Then, for any 𝜎 > 1, there exist 𝛾 = 𝛾(𝑛, 𝑝, 𝑞, 𝜎)

and 𝑐 = 𝑐(𝑛, 𝑝, 𝑞, 𝜎) such that

𝛾−1 sup
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0) ⩽ 𝑢(𝑥0, 𝑡0) ⩽ 𝛾 inf
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0),

whenever (𝑥0, 𝑡0) + 𝑄𝜎𝑟(𝜃) ⊂ 𝑄−
1
(1) where

𝜃 = 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞.

Our proof relies on comparison principle and parabolic Harnack’s inequality proven for viscos-
ity solutions of (1.1) in [26] and construction of an explicit viscosity supersolution with infinite
boundary values. Existence of such solutions relies on the singularity of the equation and was
proven for the 𝑝-parabolic case in [2, Theorem 4.1]. Here, we constructed a concrete solution in
order to obtain an explicit proof at each step. If 𝑞 approaches either end point of range (2.2), the
constant 𝛾 tends to infinity and 𝑐 approaches zero.
Elliptic Harnack’s inequality may fail outside of the range condition (2.2). To illustrate this,

recall a result by Parviainen and Vázquez [26] according to which radial viscosity solutions to
(1.1) are equivalent to weak solutions of the one-dimensional equation

𝜕𝑡𝑢 − 𝜅Δ𝑞,𝑑𝑢 = 0 in (−𝑅, 𝑅) × (0, 𝑇). (2.3)

Here, 𝜅 ∶= (𝑝 − 1)∕(𝑞 − 1) and (denoting by 𝑢𝑟 the radial derivative of 𝑢)

Δ𝑞,𝑑𝑢 ∶=
||𝑢𝑟||𝑞−2((𝑞 − 1)𝑢𝑟𝑟 +

𝑑 − 1

𝑟
𝑢𝑟

)
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4 KURKINEN et al.

is heuristically the usual radial 𝑞-Laplacian in a fictitious dimension

𝑑 ∶=
(𝑛 − 1)(𝑞 − 1)

𝑝 − 1
+ 1.

If 𝑑 happens to be an integer, then solutions to (2.3) are equivalent to radial weak solutions of the
𝑞-parabolic equation in 𝐵𝑅 × (0, 𝑇) ⊂ ℝ𝑑+1. On the other hand, the counterexamples in [9, p. 140]
show that elliptic Harnack’s inequality for the 𝑞-parabolic equation in ℝ𝑑+1 holds only in the
range 2𝑑∕(𝑑 + 1) < 𝑞 < 2, from which one can derive the range condition (2.2) by recalling the
definition of 𝑑. In fact, the counterexample in [9] directly translates into our context even when 𝑑
is not an integer. To see this, suppose that 1 < 𝑝 < (1 + 𝑛)∕2 and set 𝑞 = 2(𝑛 − 𝑝)∕(𝑛 − 1). Then,
in particular 𝑞 > 1. We define in radial coordinates

𝑢(𝑟, 𝑡) ∶= (|𝑟| 2𝑑
𝑑−1 + 𝑒𝜅𝑏𝑡)−(𝑑−1)∕2 for all 𝑟 ∈ ℝ.

By a direct computation, 𝑢 satisfies (2.3) classically in (−𝑅,−𝛿) ∪ (𝛿, 𝑅) for any 𝑅 > 0 and small
𝛿 > 0. Letting 𝛿 → 0 then shows that 𝑢 is a weak solution in the sense of [26] and therefore a
viscosity solution to (1.1) in ℝ𝑛+1. However, 𝑢 fails to satisfy elliptic Harnack’s inequality since
𝑢(0, 𝑡)∕𝑢(1, 𝑡) → 0 as 𝑡 → −∞.
Finally, we point out that in the case 𝑞 = 𝑝, the range condition becomes

2 > 𝑝 >
2𝑛

𝑛 + 1
=∶ 𝑝∗

the so-called supercritical𝑝-parabolic equation forwhichwehave both intrinsic [6, 20] and elliptic
Harnack’s inequality [5]. As mentioned, in the subcritical case 𝑝 ⩽ 𝑝∗ both of the inequalities fail
[9] but there are some known Harnack-type results, see, for example, [7, Proposition 1.1].

3 PRELIMINARIES

Apart from the case 𝑞 = 𝑝, Equation (1.1) is in non-divergence form andwe cannot use integration
by parts to define standard weak solutions and will thus use the concept of viscosity solutions.
Moreover the equation is singular when 2 > 𝑞 > 1, and thus we need to restrict the class of test
functions to retain good priori control on the behavior near the singularities and make sure the
limits remain well defined.We use the definition with admissible test functions introduced in [16]
for a different class of equations and in [25] for our setting. This is the standard definition in this
context. In the case of the 𝑝-parabolic equation, that is, 𝑞 = 𝑝, the notions of weak and viscosity
solution are equivalent for all 𝑝 ∈ (1,∞) [18, 26, 27].
Let Ω ⊂ ℝ𝑛 be a domain and denote Ω𝑇 = Ω × (0, 𝑇) the space-time cylinder and

𝜕𝑝Ω = (Ω × {0}) ∪ (𝜕Ω × [0, 𝑇])

its parabolic boundary. Denote

𝐹(𝜂, 𝑋) = |𝜂|𝑞−2 Tr(𝑋 − (𝑝 − 2)
𝜂 ⊗ 𝜂|𝜂|2 𝑋

)
(3.1)
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 5

so that

𝐹(∇𝑢,𝐷2𝑢) = |∇𝑢|𝑞−2(Δ𝑢 + (𝑝 − 2)Δ𝑁∞𝑢) = Δ
𝑞
𝑝𝑢

whenever ∇𝑢 ≠ 0. Let (𝐹) be the set of functions 𝑓 ∈ 𝐶2([0,∞)) such that

𝑓(0) = 𝑓′(0) = 𝑓′′(0) = 0 and 𝑓′′(𝑟) > 0 for all 𝑟 > 0,

and also require that for g(𝑥) ∶= 𝑓(|𝑥|), it holds that
lim
𝑥→0
𝑥≠0

𝐹(∇g , 𝐷2g) = 0.

This set (𝐹) is never empty because it is easy to see that 𝑓(𝑟) = 𝑟𝛽 ∈ (𝐹) for any
𝛽 > max(𝑞∕(𝑞 − 1), 2). Note also that if 𝑓 ∈ (𝐹), then 𝜆𝑓 ∈ (𝐹) for all 𝜆 > 0.
Define also the set

Σ = {𝜎 ∈ 𝐶1(ℝ) ∣ 𝜎 is even, 𝜎(0) = 𝜎′(0) = 0, and 𝜎(𝑟) > 0 for all 𝑟 > 0}.

We use these (𝐹) and Σ to define admissible set of test functions for viscosity solutions.

Definition 3.1. A function 𝜑 ∈ 𝐶2(Ω𝑇) is admissible if for any (𝑥0, 𝑡0) ∈ Ω𝑇 with∇𝜑(𝑥0, 𝑡0) = 0,
there are 𝛿 > 0, 𝑓 ∈ (𝐹) and 𝜎 ∈ Σ such that

||𝜑(𝑥, 𝑡) − 𝜑(𝑥0, 𝑡0) − 𝜕𝑡𝜑(𝑥0, 𝑡0)(𝑡 − 𝑡0)
|| ⩽ 𝑓(||𝑥 − 𝑥0

||) + 𝜎(𝑡 − 𝑡0),

for all (𝑥, 𝑡) ∈ 𝐵𝛿(𝑥0) × (𝑡0 − 𝛿, 𝑡0 + 𝛿).

Note that by definition a function 𝜑 is automatically admissible in Ω𝑇 if either ∇𝜑(𝑥, 𝑡) ≠ 0 in
Ω𝑇 or the function −𝜑 is admissible in Ω𝑇 .

Definition 3.2. A function 𝑢 ∶ Ω𝑇 → ℝ ∪ {∞} is a viscosity supersolution to

𝜕𝑡𝑢 = Δ
𝑞
𝑝𝑢 in Ω𝑇

if the following three conditions hold.

(1) 𝑢 is lower semicontinuous,
(2) 𝑢 is finite in a dense subset of Ω𝑇 ,
(3) whenever an admissible 𝜑 ∈ 𝐶2(Ω𝑇) touches 𝑢 at (𝑥, 𝑡) ∈ Ω𝑇 from below, we have{

𝜕𝑡𝜑(𝑥, 𝑡) − Δ
𝑞
𝑝𝜑(𝑥, 𝑡) ⩾ 0 if ∇𝜑(𝑥, 𝑡) ≠ 0,

𝜕𝑡𝜑(𝑥, 𝑡) ⩾ 0 if ∇𝜑(𝑥, 𝑡) = 0.

A function 𝑢 ∶ Ω𝑇 → ℝ ∪ {−∞} is a viscosity subsolution if −𝑢 is a viscosity supersolution. A
function 𝑢 ∶ Ω𝑇 → ℝ is a viscosity solution if it is a supersolution and a subsolution.

Our proof uses the following comparison principle, which is Theorem 3.1 in [25].

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12739 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 KURKINEN et al.

Theorem 3.3. LetΩ ⊂ ℝ𝑛 be a bounded domain. Suppose that u is viscosity supersolution and 𝑣 is
a viscosity subsolution to (1.1) inΩ𝑇 . If

∞ ≠ lim sup
Ω𝑇∋(𝑦,𝑠)→(𝑥,𝑡)

𝑣(𝑦, 𝑠) ⩽ lim inf
Ω𝑇∋(𝑦,𝑠)→(𝑥,𝑡)

𝑢(𝑦, 𝑠) ≠ −∞

for all (𝑥, 𝑡) ∈ 𝜕𝑝Ω𝑇 , then 𝑣 ⩽ 𝑢 inΩ𝑇 .

We also use the following forward Harnack’s inequality, which is Theorem 7.3 in [26].

Theorem3.4. Let𝑢 ⩾ 0 be a viscosity solution to (1.1) in𝑄−
1
(1) and the range condition (2.2)holds or

𝑞 ⩾ 2. Fix (𝑥0, 𝑡0) ∈ 𝑄−
1
(1) such that 𝑢(𝑥0, 𝑡0) > 0. Then, there exist 𝜇 = 𝜇(𝑛, 𝑝, 𝑞) and 𝑐 = 𝑐(𝑛, 𝑝, 𝑞)

such that

𝑢(𝑥0, 𝑡0) ⩽ 𝜇 inf
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0 + 𝜃𝑟𝑞),

where

𝜃 = 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞,

whenever (𝑥0, 𝑡0) + 𝑄4𝑟(𝜃) ⊂ 𝑄−
1
(1).

Remark 3.5. Note that the assumption 𝑢(𝑥0, 𝑡0) > 0 is needed only in the case 𝑞 ⩾ 2. Assuming 𝑞
satisfies the range condition (2.2), we can define 𝑣(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝜀 > 0 for some small constant
𝜀 > 0. Using Theorem 3.4 for this 𝑣, we get

𝑢(𝑥0, 𝑡0) + 𝜀 ⩽ 𝜇 inf
𝐵𝑟(𝑥0)

𝑢
(
⋅, 𝑡0 + 𝑐(𝑢(𝑥0, 𝑡0) + 𝜀)2−𝑞𝑟𝑞

)
+ 𝜀

and letting 𝜀 → 0 gives us the intrinsic Harnack’s inequality for 𝑢 by continuity.

4 A VISCOSITY SUPERSOLUTIONWITH INFINITE BOUNDARY
VALUES

In this section, we construct an explicit viscosity supersolution 𝑣 to (1.1) in 𝐵𝑅(0) × (0,∞) that
takes infinite lateral boundary values and vanishes at the bottom of the cylinder. Recently infinite
point source solutions have been constructed for the supercritical 𝑝-parabolic equation in [13].
While it is straightforward to check that our function is a supersolution, it may not be immediately
clear how one obtains its expression and therefore we present the derivation. The construction
is based on the equivalence result between radial viscosity solutions of (1.1) and weak solutions
of (2.3), see [26, Theorem 4.2]. Solutions to the one-dimensional equation (2.3) can be at least
formally obtained via the stationary equation

−𝜅Δ𝑞,𝑑𝑣 +
𝑣

2 − 𝑞
= 0. (4.1)

Indeed, if 𝑣 solves (4.1) and we set 𝑢(𝑟, 𝑡) = 𝑡
1

2−𝑞 𝑣(𝑟), then we have formally

𝜅Δ𝑞,𝑑𝑢 = 𝜅||𝑢𝑟||𝑞−2((𝑞 − 1)𝑢𝑟𝑟 +
𝑑 − 1

𝑟
𝑢𝑟

)
= 𝜅𝑡

1
2−𝑞

−1
Δ𝑞,𝑑𝑣 =

1

2 − 𝑞
𝑡

1
2−𝑞

−1
𝑣 = 𝜕𝑡𝑢,
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 7

so 𝑢 solves (2.3). Now, Equation (4.1) can be seen as a radial version of the equation

−𝜅Δ𝑞𝑣 +
𝑣

2 − 𝑞
= 0 (4.2)

in a fictitious dimension 𝑑. Here, Δ𝑞 denotes the usual 𝑞-Laplacian. Equations such as (4.2) have
been widely studied in the literature when 𝑑 is an integer. In particular, Díaz and Letelier [11]
obtained the existence of local solutions with infinite boundary values to a large class of equa-
tions that includes (4.2). In their proof, they make use of an explicit radial supersolution with
infinite boundary values (see [11, Theorem 5.1]). Our idea is to take this supersolution and use the
above transformations to obtain a supersolution to (1.1). This way one arrives to the expression
(4.3) below.

Lemma 4.1. Suppose that 1 < 𝑞 < 2, 𝑝 > 1 and let 𝑅 > 0. Then, there exists a positive constant
𝜆 = 𝜆(𝑛, 𝑝, 𝑞) such that the function

𝑣(𝑥, 𝑡) ∶= 𝜆𝑡
1

2−𝑞

⎛⎜⎜⎝ 1

𝑅
1

1−𝑞 (𝑅
𝑞

𝑞−1 − |𝑥| 𝑞

𝑞−1 )

⎞⎟⎟⎠
𝑞

2−𝑞

(4.3)

is a viscosity supersolution to (1.1) in 𝐵𝑅(0) × (0,∞).

Proof. Let us first consider the case 𝑅 = 1.
(Step 1) For (𝑟, 𝑡) ∈ [0, 1) × (0,∞), we set

𝑤(𝑟, 𝑡) ∶= 𝜆𝑡
1

2−𝑞 (1 − 𝑟
𝑞

𝑞−1 )
𝑞

𝑞−2 ,

where 𝜆 = 𝜆(𝑛, 𝑝, 𝑞) is a large constant to be chosen later. We show that 𝑤 satisfies

𝜕𝑡𝑤 − ||𝑤′||𝑞−2((𝑝 − 1)𝑤′′ +
𝑛 − 1

𝑟
𝑤′

)
⩾ 0 in (0, 1) × (0,∞). (4.4)

We have

𝜕𝑡𝑤(𝑟, 𝑡) = 𝜆
1

2 − 𝑞
𝑡

1
2−𝑞

−1
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2 ,

𝑤′(𝑟, 𝑡) = −𝜆
𝑞2

(𝑞 − 1)(𝑞 − 2)
⋅ 𝑡

1
2−𝑞 𝑟

𝑞

𝑞−1
−1
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2
−1 (4.5)

and

𝑤′′(𝑟, 𝑡) = −𝜆
𝑞2

(𝑞 − 1)(𝑞 − 2)

(
𝑞

𝑞 − 1
− 1

)
⋅ 𝑡

1
2−𝑞 𝑟

𝑞

𝑞−1
−2
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2
−1

+ 𝜆
𝑞3

(𝑞 − 1)2(𝑞 − 2)

(
𝑞

𝑞 − 2
− 1

)
⋅ 𝑡

1
2−𝑞 𝑟

2(
𝑞

𝑞−1
−1)

(1 − 𝑟
𝑞

𝑞−1 )
𝑞

𝑞−2
−2
.

(4.6)
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8 KURKINEN et al.

Thus, by combining (4.5) and (4.6), we get

(𝑝 − 1)𝑤′′(𝑟, 𝑡) +
𝑛 − 1

𝑟
𝑤′(𝑟, 𝑡)

= −𝜆
𝑞2(𝑝 − 1)

(𝑞 − 1)2(𝑞 − 2)
𝑡

1
2−𝑞 𝑟

𝑞

𝑞−1
−2
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2
−1

+ 𝜆
2𝑞3(𝑝 − 1)

(𝑞 − 1)2(𝑞 − 2)2
𝑡

1
2−𝑞 𝑟

2(
𝑞

𝑞−1
−1)

(1 − 𝑟
𝑞

𝑞−1 )
𝑞

𝑞−2
−2

− 𝜆
𝑞2(𝑛 − 1)

(𝑞 − 1)(𝑞 − 2)
𝑡

1
2−𝑞 𝑟

𝑞

𝑞−1
−2
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2
−1

⩽ 𝐶(𝑛, 𝑝, 𝑞)𝜆𝑡
1

2−𝑞 𝑟
𝑞

𝑞−1
−2
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2
−2
((1 − 𝑟

𝑞

𝑞−1 ) + 𝑟
𝑞

𝑞−1 ).

⩽ 𝐶(𝑛, 𝑝, 𝑞)𝜆𝑡
1

2−𝑞 𝑟
𝑞

𝑞−1
−2
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2
−2
.

Combining this with the formula (4.5), we obtain

||𝑤′||𝑞−2 ((𝑝 − 1)𝑤′′ +
𝑛 − 1

𝑟
𝑤′

)
⩽ 𝐶(𝑛, 𝑝, 𝑞)𝜆𝑞−2𝑡

𝑞−2

2−𝑞 𝑟
(𝑞−2)(

𝑞

𝑞−1
−1)

(1 − 𝑟
𝑞

𝑞−1 )
(𝑞−2)(

𝑞

𝑞−2
−1)

⋅ 𝜆𝑡
1

2−𝑞 𝑟
𝑞

𝑞−1
−2
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2
−2

= 𝐶(𝑛, 𝑝, 𝑞)𝜆𝑞−1𝑡
1

2−𝑞
−1
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2 ,

where we used that (𝑞 − 2)(
𝑞

𝑞−1
− 1) + (

𝑞

𝑞−1
− 2) =

𝑞−2

𝑞−1
+

2−𝑞

𝑞−1
= 0 and (𝑞 − 2)(

𝑞

𝑞−2
− 1) = 2.

Hence,

𝜕𝑡𝑤 − ||𝑤′||𝑞−2 ((𝑝 − 1)𝑤′′ +
𝑛 − 1

𝑟
𝑤′

)
⩾ 𝜆

1

2 − 𝑞
𝑡

1
2−𝑞

−1
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2 − 𝐶(𝑛, 𝑝, 𝑞)𝜆𝑞−1𝑡
1

2−𝑞
−1
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2

= 𝜆𝑞−1𝑡
1

2−𝑞
−1
(1 − 𝑟

𝑞

𝑞−1 )
𝑞

𝑞−2

(
𝜆2−𝑞

2 − 𝑞
− 𝐶(𝑛, 𝑝, 𝑞)

)
.

By taking 𝜆 = 𝜆(𝑛, 𝑝, 𝑞) large enough, the right-hand side of the above display can be made non-
negative. This way we see that 𝑤 satisfies (4.4).
(Step 2)We set

𝑣(𝑥, 𝑡) ∶= 𝑤(|𝑥|, 𝑡) for all (𝑥, 𝑡) ∈ 𝐵1 × (0,∞).

Suppose first that (𝑥, 𝑡) ∈ (𝐵1 ⧵ {0}) × (0,∞) and denote 𝑟 = |𝑥|. Then, we have
∇𝑣(𝑥, 𝑡) =

𝑥

𝑟
𝑤′(𝑟, 𝑡),

𝐷2𝑣(𝑥, 𝑡) =
𝑥

𝑟
⊗
𝑥

𝑟
𝑤′′(𝑟, 𝑡) +

1

𝑟
(𝐼 −

𝑥

𝑟
⊗
𝑥

𝑟
)𝑤′(𝑟, 𝑡).
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 9

Therefore, since 𝑤 satisfies (4.4), we have

𝜕𝑡𝑣 − Δ
𝑞
𝑝𝑣 = 𝜕𝑡𝑣 − |∇𝑣|𝑞−2 Tr(𝐷2𝑣 + (𝑝 − 2)

∇𝑣 ⊗ ∇𝑣|∇𝑣|2 𝐷2𝑣

)
= 𝜕𝑡𝑤 − ||𝑤′||𝑞−2((𝑝 − 1)𝑤′′ +

(𝑛 − 1)

𝑟
𝑤′) ⩾ 0.

This means that 𝑣 is a classical supersolution in (𝐵1 ⧵ {0}) × (0,∞). We still need to consider the
set {0} × (0,∞). Since 1 < 𝑞 < 2, it follows from the formulas (4.5) of 𝑤′ and (4.6) of 𝑤′′ that
𝑣 ∈ 𝐶2(𝐵1 × (0,∞)) with ∇𝑣(0, 𝑡) = 0 and 𝜕𝑡𝑣(0, 𝑡) ⩾ 0 for all 𝑡 > 0. Therefore, if 𝜑 ∈ 𝐶2 touches
𝑣 from below at (0, 𝑡), we have ∇𝜑(0, 𝑡) = ∇𝑣(0, 𝑡) = 0 and 𝜕𝑡𝜑(0, 𝑡) = 𝜕𝑡𝑣(0, 𝑡) ⩾ 0, as required.
Consequently 𝑣 is a viscosity supersolution in 𝐵1 × (0,∞).
(Step 3) It remains to consider 𝑅 > 0. Let 𝑣 be the viscosity supersolution to

𝜕𝑡𝑣 = Δ
𝑞
𝑝𝑣 in 𝐵1 × (0,∞)

which we constructed in the previous steps. Set 𝑣(𝑥, 𝑡) ∶= 𝑣(𝑅−1𝑥, 𝑅−𝑞𝑡). Then, for all (𝑥, 𝑡) ∈
𝐵𝑅(0) ⧵ {0} × (0,∞), we have

𝜕𝑡𝑣(𝑥, 𝑡) − Δ
𝑞
𝑝𝑣(𝑥, 𝑡) = 𝑅−𝑞𝑣(𝑅−1𝑥, 𝑅−𝑞𝑡) − 𝑅−𝑞Δ

𝑞
𝑝𝑣(𝑅

−1𝑥, 𝑅−𝑞𝑡) ⩾ 0,

so 𝑣 is a viscosity supersolution in 𝐵𝑅(0) × (0,∞). Moreover,

𝑣(𝑥, 𝑡) = 𝜆(𝑅−𝑞𝑡)
1

2−𝑞

(
1 −

|||𝑅−1𝑥||| 𝑞

𝑞−1

) 𝑞

𝑞−2

= 𝜆𝑡
1

2−𝑞 (𝑅𝑅
𝑞

1−𝑞 (𝑅
𝑞

𝑞−1 − |𝑥| 𝑞

𝑞−1 ))
𝑞

𝑞−2

= 𝜆𝑡
1

2−𝑞 (𝑅
1

1−𝑞 (𝑅
𝑞

𝑞−1 − |𝑥| 𝑞

𝑞−1 ))
𝑞

𝑞−2

as desired. □

5 A PARABOLIC HARNACK’S INEQUALITY

In this section, we prove a both-sided version of parabolic Harnack’s inequality for Equation (1.1)
which is of independent interest and needed for our proof of Theorem 2.1. The proof of the back-
wards estimate is an adaptation of section 6.9 in [9] apart from the non-emptyness of the set 𝛼

below, which we prove using the comparison principle and the explicit supersolution we con-
structed in Lemma 4.1. To this end, we need to reduce the waiting time in the forward Harnack
inequality. This kind of reduction can be achieved by increasing the multiplier 𝜇, as made precise
in the following proposition.

Proposition 5.1. Let 𝑢 ⩾ 0 be a viscosity solution to (1.1) in 𝑄−
1
(1) and the range condition (2.2)

holds. Fix (𝑥0, 𝑡0) ∈ 𝑄−
1
(1) such that𝑢(𝑥0, 𝑡0) > 0. Let 𝑐 be as in Theorem3.4. Then, for any 𝑐 ∈ (0, 𝑐),

there exists �̂� = �̂�(𝑛, 𝑝, 𝑞, 𝑐) such that

𝑢(𝑥0, 𝑡0) ⩽ �̂� inf
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0 + �̂�𝑟𝑞), (5.1)

whenever (𝑥0, 𝑡0) + 𝑄5𝑟(�̂�) ⊂ 𝑄−
1
(1), where �̂� = 𝑐𝑢(𝑥0, 𝑡0)

2−𝑞 .
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10 KURKINEN et al.

We postpone the proof of Proposition 5.1 to the end of this section and consider the both-sided
Harnack inequality next.

Theorem 5.2. Let 𝑢 ⩾ 0 be a viscosity solution to (1.1) in𝑄−
1
(1) and the range condition (2.2) holds.

Fix (𝑥0, 𝑡0) ∈ 𝑄−
1
(1). Then, there exist 𝜇 = 𝜇(𝑛, 𝑝, 𝑞), 𝑐 = 𝑐(𝑛, 𝑝, 𝑞) and 𝛼 = 𝛼(𝑛, 𝑝, 𝑞) ∈ (0, 1) such

that

𝜇−1 sup
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0 − 𝜃𝑟𝑞) ⩽ 𝑢(𝑥0, 𝑡0) ⩽ 𝜇 inf
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0 + 𝜃𝑟𝑞),

where

𝜃 = 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞,

whenever (𝑥0, 𝑡0) + 𝑄 6
𝛼
𝑟
(𝜃) ⊂ 𝑄−

1
(1).

Proof. Without loss of generality, we may assume 𝑢(𝑥0, 𝑡0) > 0 as stated in Remark 3.5. Let 𝑐 be
a small positive constant to be chosen later. For this 𝑐, let �̂� > 2 be given by Proposition 5.1. Let 𝜌
be a radius such that (𝑥0, 𝑡0) + 𝑄6𝜌(�̂�) ⊂ 𝑄−

1
(1), �̂� = 𝑐𝑢(𝑥0, 𝑡0)

2−𝑞, and let

𝑡 = 𝑡0 − 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞𝜌𝑞. (5.2)

Let 𝛼 ∈ (0, 1) be a constant to be chosen later and define the sets

𝛼 = 𝐵𝛼𝜌(𝑥0) ∩ {𝑥 ∈ 𝐵𝛼𝜌(𝑥0) ∣ 𝑢(𝑥, 𝑡) ⩽ �̂�𝑢(𝑥0, 𝑡0)} =∶ 𝐵𝛼𝜌(𝑥0) ∩ 𝐷. (5.3)

We will first show that 𝛼 can be chosen to make 𝛼 open. Assume that 𝛼 is not empty
and fix 𝑧 ∈ 𝛼. Since 𝑢 is continuous, we can choose a radius 𝜀 such that 𝐵𝜀(𝑧) ⊂ 𝐵𝛼𝜌(𝑥0)

and

𝑢(𝑦, 𝑡) ⩽ 2�̂�𝑢(𝑥0, 𝑡0) for all 𝑦 ∈ 𝐵𝜀(𝑧). (5.4)

For each 𝑦 ∈ 𝐵𝜀(𝑧), construct the intrinsic 𝑞-paraboloid

(𝑦, 𝑡) = {(𝑥, 𝑡) ∈ 𝑄−1 (1) ∣ 𝑡 − 𝑡 ⩾ 𝑐𝑢(𝑦, 𝑡)2−𝑞|𝑥 − 𝑦|𝑞}.
Selecting

𝛼 ∶= (2�̂�)
𝑞−2

𝑞 , (5.5)

we have (𝑥0, 𝑡0) ∈ (𝑦, 𝑡) whenever 𝑦 ∈ 𝐵𝜀(𝑧), since using (5.4) we can estimate

𝑐𝑢(𝑦, 𝑡)2−𝑞||𝑦 − 𝑥0
||𝑞 ⩽ 𝑐(2�̂�)2−𝑞𝑢(𝑥0, 𝑡0)

2−𝑞||𝑦 − 𝑥0
||𝑞 ⩽ 𝑐(2�̂�)2−𝑞𝑢(𝑥0, 𝑡0)

2−𝑞(𝛼𝜌)𝑞

⩽ 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞𝜌𝑞 = 𝑡0 − 𝑡.
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 11

Assume for a moment that 𝑢(𝑦, 𝑡) ⩾ 2𝑢(𝑥0, 𝑡0) and pick a radius

�̂� =
𝑢(𝑥0, 𝑡0)

2−𝑞

𝑞

𝑢(𝑦, 𝑡)
2−𝑞

𝑞

𝜌

so that

𝑡 + 𝑐𝑢
(
𝑦, 𝑡

)2−𝑞
�̂�𝑞 = 𝑡 + 𝑐𝑢(𝑥0, 𝑡0)

2−𝑞𝜌𝑞 = 𝑡0.

Thus, by Proposition 5.1 we have

𝑢
(
𝑦, 𝑡

)
⩽ �̂� inf

𝐵�̂�(𝑦)
𝑢
(
⋅, 𝑡 + 𝑐𝑢

(
𝑦, 𝑡

)2−𝑞
�̂�𝑞

)
= �̂� inf

𝐵�̂�(𝑦)
𝑢(⋅, 𝑡0) ⩽ �̂�𝑢(𝑥0, 𝑡0), (5.6)

where the last inequality holds because from (𝑥0, 𝑡0) ∈ (𝑦, 𝑡), it follows

||𝑥0 − 𝑦||𝑞 ⩽ 𝑡0 − 𝑡

𝑐𝑢(𝑦, 𝑡)2−𝑞
=
𝑐𝑢(𝑥0, 𝑡0)

2−𝑞𝜌𝑞

𝑐𝑢(𝑦, 𝑡)2−𝑞
= �̂�𝑞.

The use of Proposition 5.1 here is justified since 𝐵5�̂�(𝑦) ⊂ 𝐵6𝜌(𝑥0) because

5�̂� + 𝜌 = 5
𝑢(𝑥0, 𝑡0)

2−𝑞

𝑞

𝑢(𝑦, 𝑡)
2−𝑞

𝑞

𝜌 + 𝜌 ⩽ 5

(
𝑢(𝑥0, 𝑡0)

2𝑢(𝑥0, 𝑡0)

) 2−𝑞

𝑞

𝜌 + 𝜌 ⩽ 6𝜌,

where we use our assumption 𝑢(𝑦, 𝑡) ⩾ 2𝑢(𝑥0, 𝑡0) and 𝑞 < 2. In the time direction it holds

𝑡 − 𝑐𝑢(𝑦, 𝑡)2−𝑞(5�̂�)𝑞 = 𝑡 − 𝑐𝑢(𝑦, 𝑡)2−𝑞
(
𝑢(𝑥0, 𝑡0)

𝑢(𝑦, 𝑡)

)2−𝑞

(5𝜌)𝑞

= 𝑡0 − 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞𝜌𝑞 − 𝑐𝑢(𝑥0, 𝑡0)

2−𝑞(5𝜌)𝑞

= 𝑡0 − (1 + 5𝑞)�̂�𝜌𝑞 > 𝑡0 − �̂�(6𝜌)𝑞

and thus there is enough room to use the proposition. The last inequality holds because 𝑞 > 1.
If 𝑢(𝑦, 𝑡) < 2𝑢(𝑥0, 𝑡0), then (5.6) holds automatically since �̂� ⩾ 2. We can get inequality (5.6) for

any 𝑦 ∈ 𝐵𝜀(𝑧) and thus 𝐵𝜀(𝑧) ⊂ 𝛼 for a radius 𝜀 only depending on 𝑧. This can be repeated for
any 𝑧 ∈ 𝛼 and thus the set𝛼 has to be open.
We still need to show that𝛼 ≠ ∅. If we assume thriving for a contradiction that𝛼 = ∅, then

𝑚 ∶= inf
𝐵𝛼𝜌(𝑥0)

𝑢(⋅, 𝑡) ⩾ �̂�𝑢(𝑥0, 𝑡0). (5.7)

Consider the function

𝑤(𝑥, 𝑡) ∶= −𝜆(𝑡 − 𝑡)
1

2−𝑞

⎛⎜⎜⎜⎜⎝
1

(𝛼𝜌)
1

1−𝑞

(
(𝛼𝜌)

𝑞

𝑞−1 − ||𝑥 − 𝑥0
|| 𝑞

𝑞−1

)
⎞⎟⎟⎟⎟⎠

𝑞

2−𝑞

+ 𝑚.
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12 KURKINEN et al.

By Lemma 4.1, 𝑤 is a viscosity subsolution to (1.1) in 𝐵𝛼𝜌(𝑥0) × (𝑡,∞) and satisfies

⎧⎪⎨⎪⎩
𝑤(𝑥, 𝑡) ≡ 𝑚 ⩽ 𝑢(𝑥, 𝑡) for all 𝑥 ∈ 𝐵𝛼𝜌(𝑥0),

lim
Ω𝑇∋(𝑥,𝑡)→(𝑦,𝑠)

𝑤(𝑥, 𝑡) = −∞ for all (𝑦, 𝑠) ∈ 𝜕𝐵𝛼𝜌(𝑥0) × (𝑡,∞).

Thus, by comparison principle Theorem 3.3, we have 𝑢 ⩾ 𝑤 in 𝐵𝛼𝜌(𝑥0) × [𝑡,∞), so in particular
we have

𝑢(𝑥0, 𝑡0) ⩾ 𝑤(𝑥0, 𝑡0)

= −𝜆
(
𝑡0 − 𝑡0 + 𝑐𝑢(𝑥0, 𝑡0)

2−𝑞𝜌𝑞
) 1
2−𝑞

⎛⎜⎜⎜⎜⎝
1

(𝛼𝜌)
1

1−𝑞

(
(𝛼𝜌)

𝑞

𝑞−1 − 0

)
⎞⎟⎟⎟⎟⎠

𝑞

2−𝑞

+ 𝑚

= −𝜆𝑐
1

2−𝑞 𝜌
𝑞

2−𝑞 (𝛼𝜌)
−

𝑞

2−𝑞 𝑢(𝑥0, 𝑡0) + 𝑚

⩾ −𝜆𝑐
1

2−𝑞 𝛼
−

𝑞

2−𝑞 𝑢(𝑥0, 𝑡0) + �̂�𝑢(𝑥0, 𝑡0)

=

(
−2𝜆𝑐

1
2−𝑞 + 1

)
�̂�𝑢(𝑥0, 𝑡0)

> 2

(
−2𝜆𝑐

1
2−𝑞 + 1

)
𝑢(𝑥0, 𝑡0),

where the last two inequalities follow from our assumption (5.7) and that �̂� > 2. By taking 𝑐 to
be a small enough constant depending only on 𝑝, 𝑞 and 𝑛, we can ensure that the coefficient of
𝑢(𝑥0, 𝑡0) on the right-hand side is larger than 1, yielding a contradiction. Thus, the set𝛼 cannot
be empty.
We have shown that the set𝛼 = 𝐵𝛼𝜌(𝑥0) ∩ 𝐷 is open and non-empty. Because 𝑢 is continuous,

the set𝐷 is closed and thus for our 𝛼, we must have 𝐵𝛼𝜌(𝑥0) ⊂ 𝐷 and thus by definition of the set

sup
𝐵𝛼𝜌(𝑥0)

𝑢(⋅, 𝑡) ⩽ �̂�𝑢(𝑥0, 𝑡0).

Combining this with the right-hand side of the Harnack’s inequality Proposition 5.1, we obtain

�̂�−1 sup
𝐵𝛼𝜌(𝑥0)

𝑢(⋅, 𝑡0 − 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞𝜌𝑞) ⩽ 𝑢(𝑥0, 𝑡0) ⩽ �̂� inf

𝐵𝜌(𝑥0)
𝑢(⋅, 𝑡0 + 𝑐𝑢(𝑥0, 𝑡0)

2−𝑞𝜌𝑞)

for the specific 𝛼 chosen in (5.5). If we let 𝑐 = 𝛼−𝑞𝑐 and 𝑟 = 𝛼𝜌, we have

�̂�−1 sup
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0 − 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞𝑟𝑞) ⩽ 𝑢(𝑥0, 𝑡0) ⩽ �̂� inf

𝐵𝜌(𝑥0)
𝑢(⋅, 𝑡0 + 𝑐𝑢(𝑥0, 𝑡0)

2−𝑞𝑟𝑞)

⩽ �̂� inf
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0 + 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞𝑟𝑞),

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12739 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 13

which is what we wanted. The condition (𝑥0, 𝑡0) + 𝑄6𝜌(�̂�) ⊂ 𝑄−
1
(1) becomes the stated (𝑥0, 𝑡0) +

𝑄 6
𝛼
𝑟
(𝜃) ⊂ 𝑄−

1
(1). □

We conclude this section with the proof of Proposition 5.1.

Proof of Proposition 5.1. As discussed in Remark 3.5, we may assume that 𝑢(𝑥0, 𝑡0) > 0. Let 𝜇 > 1

and 𝑐 be the constants in Theorem 3.4 and let 𝑐 < 𝑐. We prove (5.1) for �̂� ∶= 𝜇�̃�, where �̃� ∶=

(𝑐∕𝑐)
1

2−𝑞 . Denote 𝑡 ∶= 𝑡0 + 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞𝑟𝑞 and let �̂� ∈ 𝐵𝑟(𝑥0) be an arbitrary point. It now suffices

to prove that

𝑢(𝑥0, 𝑡0) ⩽ �̃�𝜇𝑢(�̂�, 𝑡). (5.8)

To this end, we may suppose that 𝑢(𝑥0, 𝑡0) > �̃�𝑢(�̂�, 𝑡) because otherwise

𝑢(�̂�, 𝑡) ⩾
1

�̃�
𝑢(𝑥0, 𝑡0) >

1

�̃�𝜇
𝑢(𝑥0, 𝑡0),

which would already imply (5.8). Let [(𝑥0, 𝑡0), (�̂�, 𝑡)] be a segment from (𝑥0, 𝑡0) to (�̂�, 𝑡), that is,

[(𝑥0, 𝑡0), (�̂�, 𝑡)] ∶=

{(
𝑥0 + 𝑙

�̂� − 𝑥0||�̂� − 𝑥0
|| , 𝑡0 + 𝑙𝜅

)
∣ 𝑙 ∈ [0, ||�̂� − 𝑥0

||]}, 𝜅 ∶=
𝑡 − 𝑡0||�̂� − 𝑥0

|| .
We have

𝑢(�̂�, 𝑡) <
1

�̃�
𝑢(𝑥0, 𝑡0) < 𝑢(𝑥0, 𝑡0).

Thus, by continuity there exists (𝑥1, 𝑡1) ∈ [(𝑥0, 𝑡0), (�̂�, 𝑡)] ⧵ {(𝑥0, 𝑡0), (�̂�, 𝑡)} such that

𝑢(𝑥1, 𝑡1) =
1

�̃�
𝑢(𝑥0, 𝑡0). (5.9)

Moreover, since (𝑥1, 𝑡1) lies on the segment, there is 𝑙1 ∈ (0, |�̂� − 𝑥0|) such that
(𝑥1, 𝑡1) =

(
𝑥0 + 𝑙1

�̂� − 𝑥0||�̂� − 𝑥0
|| , 𝑡0 + 𝑙1𝜅

)
.

We now have

||𝑥1 − �̂�|| = |||||𝑥0 + 𝑙1
�̂� − 𝑥0||�̂� − 𝑥0

|| − 𝑥0 −
||�̂� − 𝑥0

|| �̂� − 𝑥0||�̂� − 𝑥0
||
||||| = (||�̂� − 𝑥0

|| − 𝑙1)

=

(
𝑡 − 𝑡0
𝜅

−
𝑡1 − 𝑡0
𝜅

)
=
𝑡 − 𝑡1
𝜅

. (5.10)

We set

𝜌 ∶=

(
𝑡 − 𝑡1

𝑐𝑢(𝑥1, 𝑡1)
2−𝑞

) 1
𝑞
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14 KURKINEN et al.

because then, since 𝜅 = (𝑡 − 𝑡0)∕|�̂� − 𝑥0|, we obtain using (5.9)
𝑡 − 𝑡1
𝜅

= 𝜌
(𝑡 − 𝑡1)

1− 1
𝑞 (𝑐𝑢(𝑥1, 𝑡1)

2−𝑞)
1
𝑞

𝜅

= 𝜌||�̂� − 𝑥0
|| (𝑡 − 𝑡1)

1− 1
𝑞 (𝑐𝑢(𝑥1, 𝑡1)

2−𝑞)
1
𝑞

(𝑡 − 𝑡0)

< 𝜌𝑟

(
𝑐𝑢(𝑥1, 𝑡1)

2−𝑞

𝑡 − 𝑡0

) 1
𝑞

= 𝜌𝑟

(
𝑐𝑢(𝑥1, 𝑡1)

2−𝑞

𝑐𝑢(𝑥0, 𝑡0)
2−𝑞𝑟𝑞

) 1
𝑞

= 𝜌

(
𝑐

𝑐�̃�2−𝑞

) 1
𝑞

= 𝜌. (5.11)

Combining (5.10) and (5.11) we see that �̂� ∈ 𝐵𝜌(𝑥1). Moreover, by definition of 𝜌, we have 𝑡1 +
𝑐𝑢(𝑥1, 𝑡1)

2−𝑞𝜌𝑞 = 𝑡. Consequently, assuming for the moment that we have enough space to apply
Theorem 3.4 at (𝑥1, 𝑡1) for radius 𝜌, we obtain

𝑢(𝑥1, 𝑡1) ⩽ 𝜇 inf
𝐵𝜌(𝑥1)

𝑢(⋅, 𝑡1 + 𝑐𝑢(𝑥1, 𝑡1)
2−𝑞𝜌𝑞) ⩽ 𝜇𝑢(�̂�, 𝑡).

Hence by (5.9)

𝑢(�̂�, 𝑡) ⩾
1

𝜇
𝑢(𝑥1, 𝑡1) =

1

𝜇�̃�
𝑢(𝑥0, 𝑡0),

as desired.
Since we use Theorem 3.4 at (𝑥1, 𝑡1), 𝑡1 > 𝑡0, we only need to check that the upper boundary of

the cylinder (𝑥1, 𝑡1) + 𝑄4𝜌(𝜃) is within the domain of the solution. First, by (5.9), we have

||𝑥0 − 𝑥1
|| + 4𝜌 ⩽ 𝑟 + 4

(
𝑡 − 𝑡1

𝑐𝑢(𝑥1, 𝑡1)
2−𝑞

) 1
𝑞

⩽ 𝑟 + 4

(
𝑡 − 𝑡0

𝑐𝑢(𝑥1, 𝑡1)
2−𝑞

) 1
𝑞

= 𝑟 + 4

(
𝑐𝑢(𝑥0, 𝑡0)

2−𝑞𝑟𝑞

𝑐𝑢(𝑥1, 𝑡1)
2−𝑞

) 1
𝑞

= 𝑟 + 4

(
𝑐

𝑐
�̃�2−𝑞

) 1
𝑞

𝑟 = 5𝑟.

Further,

𝑡1 + 𝑐𝑢(𝑥1, 𝑡1)
2−𝑞(4𝜌)𝑞 = 𝑡1 + 𝑐𝑢(𝑥1, 𝑡1)

2−𝑞4𝑞
(

𝑡 − 𝑡1

𝑐𝑢(𝑥1, 𝑡1)
2−𝑞

)
= 𝑡1 + 4𝑞(𝑡 − 𝑡1)

= (4𝑞 − 1)(𝑡0 − 𝑡1) + 𝑡0 + 4𝑞𝑐𝑢(𝑥0, 𝑡0)
2−𝑞𝑟𝑞

⩽ 𝑡0 + 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞(5𝑟)𝑞.

Thus, the upper boundary of (𝑥1, 𝑡1) + 𝑄4𝜌(𝜃) is contained in (𝑥0, 𝑡0) + 𝑄5𝑟(�̂�) ⊂ 𝑄−
1
(1). □
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 15

6 PROOF OF THE ELLIPTIC HARNACK’S INEQUALITY

ToproveTheorem2.1,we first establish the following versionwheremore space is required around
the point (𝑥0, 𝑡0). To prove this proposition, we first use the parabolic Harnack Theorem 5.2 to get
an estimate at an earlier time level, use Lemma 4.1 to construct a super solution with infinite
boundary values at this level and finally use the comparison principle Theorem 3.3 to get an esti-
mate at our original time level. We repeat this process again around a local minimum of 𝑢 to get
the other side of the inequality.

Proposition 6.1. Let 𝑢 ⩾ 0 be a viscosity solution to (1.1) in 𝑄−
1
(1) and the range condition (2.2)

holds. Fix (𝑥0, 𝑡0) ∈ 𝑄−
1
(1). Then, there exist �̄� = �̄�(𝑛, 𝑝, 𝑞), 𝑐 = 𝑐(𝑛, 𝑝, 𝑞) and𝛼 = 𝛼(𝑛, 𝑝, 𝑞) ∈ (0, 1)

such that

�̄�−1 sup
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0) ⩽ 𝑢(𝑥0, 𝑡0) ⩽ �̄� inf
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0), (6.1)

whenever (𝑥0, 𝑡0) + 𝑄13
𝛼
𝑟
(𝜃) ⊂ 𝑄−

1
(1) where

𝜃 = 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞.

Proof. Wecanuse parabolicHarnack (Theorem5.2) for radius 2𝑟 to obtain constants𝜇 = 𝜇(𝑛, 𝑝, 𝑞)

and 𝑐 = 𝑐(𝑛, 𝑝, 𝑞) such that

𝑢(𝑥, 𝑡0 − 𝜃(2𝑟)𝑞) ⩽ sup
𝐵2𝑟(𝑥0)

𝑢(⋅, 𝑡0 − 𝜃(2𝑟)𝑞) ⩽ 𝜇𝑢(𝑥0, 𝑡0) (6.2)

for all 𝑥 ∈ 𝐵2𝑟(𝑥0), where 𝜃 = 𝑐𝑢(𝑥0, 𝑡0)
2−𝑞. This is justified because 6

𝛼
(2𝑟) < 13

𝛼
𝑟. Let

𝑣(𝑥, 𝑡) ∶= 𝜆(𝑡 − 𝑡0 + 𝜃(2𝑟)𝑞)
1

2−𝑞

⎛⎜⎜⎝ 1

(2𝑟)
1

1−𝑞 ((2𝑟)
𝑞

𝑞−1 − ||𝑥 − 𝑥0
|| 𝑞

𝑞−1 )

⎞⎟⎟⎠
𝑞

2−𝑞

+ 𝜇𝑢(𝑥0, 𝑡0).

Then by Lemma 4.1, 𝑣 is a viscosity supersolution in 𝐵2𝑟(𝑥0) × (𝑡0 − 𝜃(2𝑟)𝑞,∞) that satisfies

⎧⎪⎨⎪⎩
𝑣 ⩾ 𝜇𝑢(𝑥0, 𝑡0) on 𝐵2𝑟(𝑥0) × {𝑡0 − 𝜃(2𝑟)𝑞},

lim
Ω𝑇∋(𝑥,𝑡)→(𝑦,𝑠)

𝑣(𝑥, 𝑡) = ∞ for all (𝑦, 𝑠) ∈ 𝜕𝐵2𝑟(𝑥0) × (𝑡0 − 𝜃(2𝑟)𝑞,∞)

and we can use comparison principle Theorem 3.3 to get

𝑢 ⩽ 𝑣 in (𝑥0, 𝑡0) + 𝑄2𝑟(𝜃) (6.3)

because 𝑢 is bounded in (𝑥0, 𝑡0) + 𝑄2𝑟(𝜃) and on the bottom of the cylinder we have by (6.2)

𝑢(𝑥, 𝑡0 − 𝜃(2𝑟)𝑞) ⩽ 𝜇𝑢(𝑥0, 𝑡0) ⩽ 𝑣(𝑥, 𝑡0 − 𝜃(2𝑟)𝑞).
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16 KURKINEN et al.

The estimate (6.3) and the definition of 𝜃 imply in particular that

sup
𝐵𝑟(𝑥0)

𝑢(⋅, 𝑡0) ⩽ sup
𝐵𝑟(𝑥0)

𝑣(⋅, 𝑡0) = 𝜆(𝜃(2𝑟)𝑞)
1

2−𝑞

(
(2𝑟)

1
1−𝑞 ((2𝑟)

𝑞

𝑞−1 − 𝑟
𝑞

𝑞−1 )

) 𝑞

𝑞−2

+ 𝜇𝑢(𝑥0, 𝑡0)

= 𝜆(𝑐𝑢(𝑥0, 𝑡0)
2−𝑞2𝑞𝑟𝑞)

1
2−𝑞

(
𝑟2

1
1−𝑞 (2

𝑞

𝑞−1 − 1)

) 𝑞

𝑞−2

+ 𝜇𝑢(𝑥0, 𝑡0)

=

(
𝜆𝑐

1
2−𝑞 2

𝑞

2−𝑞

(
2

1
1−𝑞 (2

𝑞

𝑞−1 − 1)

) 𝑞

𝑞−2

+ 𝜇

)
𝑢(𝑥0, 𝑡0)

=∶ �̄�(𝑛, 𝑝, 𝑞)𝑢(𝑥0, 𝑡0). (6.4)

Dividing by �̄� gives us the left-hand side of (6.1). The constant �̄� blows up in the limit cases because
𝜆 blows upwhen 𝑞 → 2 for all 𝑐, and 𝜇 does the samewhen 𝑞 approaches the lower bound of (2.2).
Let �̂� be a minimum point of 𝑢(⋅, 𝑡0) in 𝐵𝑟(𝑥0). We will again use Theorem 5.2 to obtain

sup
𝐵2𝑟(�̂�)

𝑢(⋅, 𝑡0 − �̂�(2𝑟)𝑞) ⩽ 𝜇𝑢(�̂�, 𝑡0),

where �̂� = 𝑐(𝑢(�̂�, 𝑡0))
2−𝑞. The use of Harnack is justified because 6

𝛼
(2𝑟) + 𝑟 < 13

𝛼
𝑟 because 𝛼 ∈

(0, 1). Let

𝑣(𝑥, 𝑡) = 𝜆(𝑡 − 𝑡0 + �̂�(2𝑟)𝑞)
1

2−𝑞

⎛⎜⎜⎝ 1

(2𝑟)
1

1−𝑞 ((2𝑟)
𝑞

𝑞−1 − |𝑥 − �̂�| 𝑞

𝑞−1 )

⎞⎟⎟⎠
𝑞

2−𝑞

+ 𝜇𝑢(�̂�, 𝑡0).

Then again by Lemma 4.1, 𝑣 is a viscosity supersolution in 𝐵2𝑟(�̂�) × (𝑡0 − �̂�(2𝑟)𝑞,∞) that satisfies

⎧⎪⎨⎪⎩
𝑣 ⩾ 𝜇𝑢(�̂�, 𝑡0) on 𝐵2𝑟(�̂�) × {𝑡0 − �̂�(2𝑟)𝑞},

lim
Ω𝑇∋(𝑥,𝑡)→(𝑦,𝑠)

𝑣(𝑥, 𝑡) = ∞ for all (𝑦, 𝑠) ∈ 𝜕𝐵2𝑟(�̂�) × (𝑡0 − �̂�(2𝑟)𝑞,∞)

and we can use comparison principle Theorem 3.3 to get

𝑢 ⩽ 𝑣 in (�̂�, 𝑡0) + 𝑄2𝑟(�̂�)

and thus

𝑢(𝑥0, 𝑡0) ⩽ sup
𝐵𝑟(�̂�)

𝑢(⋅, 𝑡0) ⩽ sup
𝐵𝑟(�̂�)

𝑣(⋅, 𝑡0) =

(
𝜆𝑐

1
2−𝑞 2

𝑞

2−𝑞

(
2

1
1−𝑞 (2

𝑞

𝑞−1 − 1)

) 𝑞

𝑞−2

+ 𝜇

)
𝑢(�̂�, 𝑡0)

= �̄�(𝑛, 𝑝, 𝑞) inf
𝐵𝑟(𝑥)

𝑢(⋅, 𝑡0), (6.5)

which is the right-hand side of (6.1). Combining (6.4) and (6.5) proves the theorem. □
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 17

Next we combine Proposition 6.1 with a covering argument to prove Theorem 2.1. We first con-
struct a suitable sequence of small balls along an arbitrary radial segment of our set. Then, we
showby induction that there is enough roomaround cylinders defined on these balls to use Propo-
sition 6.1 to get an Harnack-type estimate over any of these radial segments up arbitralily close to
the boundary. Parabolic intrinsic Harnack chains for the 𝑝-parabolic equation have recently been
examined in [1] in the degenerate case 𝑝 > 2.

Proof of Theorem 2.1. By Proposition 6.1, there exist constants �̄�(𝑛, 𝑝, 𝑞), 𝑐′(𝑛, 𝑝, 𝑞) and
𝛼(𝑛, 𝑝, 𝑞) ∈ (0, 1) such that the elliptic Harnack’s inequality

�̄�−1 sup
𝐵𝜏(𝑧)

𝑢(⋅, 𝑡0) ⩽ 𝑢(𝑧, 𝑡0) ⩽ �̄� inf
𝐵𝜏(𝑧)

𝑢(⋅, 𝑡0) (6.6)

holds whenever 𝐵13
𝛼
𝜏
(𝑧) ⊂ 𝐵1 and

𝑡0 ±
(
13

𝛼
𝜏
)𝑞
𝑐′𝑢(𝑧, 𝑡0)

2−𝑞 ∈ (−1, 0]. (6.7)

Fix an arbitrary �̂� ∈ 𝜕𝐵𝑟(𝑥0). Let 𝜌 ∶= 𝑟𝛼(𝜎 − 1)∕13. We define the points

𝑦𝑘 ∶= 𝑥0 + 𝑘𝜌
�̂� − 𝑥0||�̂� − 𝑥0

|| ∈ 𝐵𝑟(𝑥0),

where 𝑘 = 0,… , 𝐾 and 𝐾 ⩾ 0 is the smallest natural number such that �̂� ∈ 𝐵𝜌(𝑦𝐾). Since �̂� is on
the boundary of 𝐵𝑟(𝑥0) and 𝜌 is a scaling of 𝑟, the number𝐾 depends only on 𝜎, 𝑛, 𝑝 and 𝑞. Wewill
apply the elliptic Harnack’s inequality in the balls 𝐵𝜌(𝑦𝑘). Therefore, we need the corresponding
intrinsic cylinders to be contained within 𝑄−

1
(1). Since the choice of 𝜌 ensures that 𝐵13

𝛼
𝜌
(𝑦) ⊂

𝐵𝜎𝑟(𝑥0) ⊂ 𝐵1 whenever 𝑦 ∈ 𝐵𝑟(𝑥0), it remains to show that (6.7) holds for 𝜏 = 𝜌 and 𝑧 = 𝑦𝑘, 𝑘 =
0,… , 𝐾. We choose

𝑐 ∶= 𝑐′
(
𝜎 − 1

𝜎

)𝑞
�̄�𝐾(2−𝑞)

and proceed by induction to check that we have enough space in the time direction to use
Proposition 6.1 for each of the cylinders (𝑦𝑘, 𝑡0) + 𝑄𝜌(𝑐

′𝑢(𝑦𝑘, 𝑡0)
2−𝑞). Note that the assumption

(𝑥0, 𝑡0) + 𝑄𝜎𝑟(𝜃) ⊂ 𝑄−
1
(1) implies

𝑡0 ± (𝜎𝑟)𝑞𝑐𝑢(𝑥0, 𝑡0)
2−𝑞 ∈ (−1, 0]. (6.8)

(Initial step) Since �̄� ⩾ 1, we have(
13

𝛼
𝜌
)𝑞
𝑐′𝑢(𝑦0, 𝑡0)

2−𝑞 = (𝑟(𝜎 − 1))𝑞𝑐′𝑢(𝑥0, 𝑡0)
2−𝑞 = (𝜎𝑟)𝑞𝑐𝑢(𝑥0, 𝑡0)

2−𝑞 𝑐
′(𝜎 − 1)𝑞

𝑐𝜎𝑞

⩽ (𝜎𝑟)𝑞𝑐𝑢(𝑥0, 𝑡0)
2−𝑞. (6.9)

It follows from (6.9) and (6.8) that (6.7) holds with 𝑧 = 𝑦0 and 𝜏 = 𝜌. Thus, the elliptic Harnack
inequality (6.6) gives

�̄�−1 sup
𝐵𝜌(𝑦0)

𝑢(⋅, 𝑡0) ⩽ 𝑢(𝑥0, 𝑡0) ⩽ �̄� inf
𝐵𝜌(𝑦0)

𝑢(⋅, 𝑡0).
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18 KURKINEN et al.

(Induction step) Suppose that 1 ⩽ 𝑘 ⩽ 𝐾 and that we have

�̄�−𝑘 sup
𝐵𝜌(𝑦𝑘−1)

𝑢(⋅, 𝑡0) ⩽ 𝑢(𝑥0, 𝑡0) ⩽ �̄�𝑘 inf
𝐵𝜌(𝑦𝑘−1)

𝑢(⋅, 𝑡0). (6.10)

Since 𝑦𝑘 ∈ 𝐵𝜌(𝑦𝑘−1), this implies in particular

𝑢(𝑦𝑘, 𝑡0) ⩽ �̄�𝑘𝑢(𝑥0, 𝑡0).

Therefore, by definition of 𝜌 and 𝑐 we have(
13

𝛼
𝜌
)𝑞
𝑐′𝑢(𝑦𝑘, 𝑡0)

2−𝑞 ⩽ (𝑟(𝜎 − 1))𝑞𝑐′�̄�𝑘(2−𝑞)𝑢(𝑥0, 𝑡0)
2−𝑞

= (𝜎𝑟)𝑞𝑐𝑢(𝑥0, 𝑡0)
2−𝑞 𝑐

′(𝜎 − 1)𝑞�̄�𝑘(2−𝑞)

𝑐𝜎𝑞

⩽ (𝜎𝑟)𝑞𝑐𝑢(𝑥0, 𝑡0)
2−𝑞. (6.11)

It follows from (6.11) and (6.8) that (6.7) holds for 𝑧 = 𝑦𝑘 and 𝜏 = 𝜌. Consequently by the elliptic
Harnack’s inequality (6.6), we have

�̄�−1 sup
𝐵𝜌(𝑦𝑘)

𝑢(⋅, 𝑡0) ⩽ 𝑢(𝑦𝑘, 𝑡0) ⩽ �̄� inf
𝐵𝜌(𝑦𝑘)

𝑢(⋅, 𝑡0).

Since 𝑦𝑘 ∈ 𝐵𝜌(𝑦𝑘−1), combining the above display with (6.10) yields

𝑢(𝑥0, 𝑡0) ⩾ �̄�−𝑘 sup
𝐵𝜌(𝑦𝑘−1)

𝑢(⋅, 𝑡0) ⩾ �̄�−𝑘𝑢(𝑦𝑘, 𝑡0) ⩾ �̄�−(𝑘+1) sup
𝐵𝜌(𝑦𝑘)

𝑢(⋅, 𝑡0)

and similarly

𝑢(𝑥0, 𝑡0) ⩽ �̄�𝑘 inf
𝐵𝜌(𝑦𝑘−1)

𝑢(⋅, 𝑡0) ⩽ �̄�𝑘𝑢(𝑦𝑘, 𝑡0) ⩽ �̄�𝑘+1 inf
𝐵𝜌(𝑦𝑘)

𝑢(⋅, 𝑡0).

Thus,

�̄�−(𝑘+1) sup
𝐵𝜌(𝑦𝑘)

𝑢(⋅, 𝑡0) ⩽ 𝑢(𝑥0, 𝑡0) ⩽ �̄�𝑘+1 inf
𝐵𝜌(𝑦𝑘)

𝑢(⋅, 𝑡0) (6.12)

and the induction step is complete.
By the induction principle, the estimate (6.12) holds for all 𝑘 = 0,… , 𝐾. Since �̂� ∈ 𝐵𝜌(𝑦𝐾), we

have in particular

�̄�−(𝐾+1) sup
[𝑥,�̂�]

𝑢(⋅, 𝑡0) ⩽ 𝑢(𝑥0, 𝑡0) ⩽ �̄�𝐾+1 inf
[𝑥,�̂�]

𝑢(⋅, 𝑡0),

where [𝑥, �̂�] denotes the segment from 𝑥 to �̂�. Since �̂� ∈ 𝜕𝐵𝑟(𝑥0)was arbitrary, the estimate of the
theorem follows for 𝛾 ∶= �̄�𝐾+1. □
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