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1 | INTRODUCTION

In his monograph, DiBenedetto [5, Theorem VII.1.2] proved elliptic Harnack’s inequality for the
divergence form p-parabolic equation in the supercritical case. In this case, the intrinsic wait-
ing time required for degenerate parabolic equations is no longer needed. Instead he established
Harnack’s inequality with the same time level on both sides of the estimate akin to the elliptic case.

In this paper, we prove elliptic Harnack’s inequality for the following general non-divergence
form version of the non-linear parabolic equation:

hopm A

du = |Vul97Pdiv (|VulP72Vu) = |Vu|?*(Au + (p — 2)AY ), (§8))

for a natural range of exponents. When q = 2, we get the normalized p-parabolic equation arising
from the game theory, and when q = p, it is the standard p-parabolic equation.

Elliptic Harnack’s inequality, Theorem 2.1, states that a non-negative solution satisfies the
following local a priori estimate:

7_1 sup u(-,ty) < ulxg, ty) <y inf u(-,ty).
B,(xg) B,.(xg)
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under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.

Bull. London Math. Soc. 2022;1-20. wileyonlinelibrary.com/journal/blms | 1

35US017 SUOWILLOD BAIEa1D 3|cedt|dde ay) Aq pausenob afe sajoiiie O ‘asn Jo sajny 10} Akelqiauljuo 481 uo


mailto:tapio.j.kurkinen@jyu.fi
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12739&domain=pdf&date_stamp=2022-10-27

2 | KURKINEN ET AL.

DiBenedetto’s proof uses the theory of weak solutions. Since the equation is in a non-divergence
form, unless g = p, the usual weak theory based on integration by parts is not available in our
case. Our proof uses the parabolic (forward) Harnack’s inequality proven by Parviainen and
Vazquez [26] to estimate the solution in the past, constructing an explicit supersolution with
infinite boundary values and using the comparison principle to get an estimate at our original
time level. The idea both in the proof of the forward Harnack as well as in the derivation of the
explicit supersolution is based on an equivalence result. Heuristically speaking, radial solutions to
the original non-divergence form problem can be interpreted as solutions to the divergence form
p-parabolic equation, but in a fictitious space dimension d.

Nash discussed the possibility of elliptic Harnack’s inequality for a parabolic equation in [24].
Later Moser [22] pointed out that such an estimate does not hold for the heat equation. For
the p-parabolic equation, elliptic Harnack’s inequality is obviously false if p > 2, and holds for
nz—fl < p < 2. In addition to [5], Harnack’s inequalities in the singular range have been studied,
for example, by Dibenedetto, Gianazza and Vespri in [7, 8] and [9]. The intrinsic forward Har-
nack’s inequality for weak solutions of the p-parabolic equation was proven by Dibenedetto in
[4] and [10], see also [5], and later for equations with growth of order p by Dibenedetto, Gianazza
and Vespri in [6] and by Kuusi in [20]. For non-divergence form equations, parabolic Harnack’s
inequalities and related Holder regularity under additional restrictions were studied by Cordes [3]
and Landis [21]. With bounded and measurable coefficients parabolic Harnack’s inequality was
established by Krylov and Safonov [19].

Since the Equation (1.1) is in non-divergence form except in a special case, the solutions in
this paper are understood in the viscosity sense. The suitable concept of viscosity solutions to the
general equations (1.1) was established by Ohnuma and Sato [25]. In the special case g = 2, we
get the normalized p-parabolic equation that arises from the stochastic game theory [23]. This
non-divergence form special case as well as the general equation (1.1) have recently received
attention in the works of Jin-Silvestre [17], Imbert-Jin-Silvestre [15], Hoeg-Lindqvist [14], and
Dong-Fa-Zhang-Zhou [12] in addition to [26].

2 | MAIN RESULTS
Denote

Agu = |Vul97P div (|VulP72Vu) = [Vu|7*(Au + (p — 2)AY w), (2.1)

where p > 1 and q > 1 are real parameters and

9y, U 6xju dxixju
ANu = _—_—
o0

2
ij=1 [Vul

so the Equation (1.1) gets the form d,u = Agu. Because the dimensions of the sets play part in
some of the estimates, we shall denote

Q, (6) = B,(0) x (=6r,0],
Q(®) = B,(0) x (0,6r%),
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION | 3

where 0 is a positive parameter that determines the time-wise length of the cylinder relative to r9.
We denote the union of these sets as

Q,(®) =Q;(®)uQ;(©)
and when not located at the origin, we denote

(0 £g) + Q; (6) = B,.(xo) X (£, — 6r, 1],
(X0, to) + Q;F (6) = B,(x) X (ty, ty + 6r9),
(X0, ) + Q1(6) = B.(xy) X (£ — Or, £ + 6r7).

Our main result is that non-negative viscosity solutions to (1.1) satisfy the following elliptic
Harnack’s inequality if the following range condition holds:

1 if p > 22,
2>q> _ 2 (2.2)
1 {—2(:_1") if1<p<1+7".

We inspect the optimality of this range after the formulation of the theorem.

Theorem 2.1 (Elliptic Harnack’s inequality). Let u > 0 be a viscosity solution to (1.1) in Q (1) and
the range condition (2.2) holds. Fix (x, t,) € Q[ (1). Then, forany o > 1, there existy = y(n, p,q,0)
and c = c(n, p, q, o) such that

Y~ sup u(,ty) < u(xg, ty) <y inf u(-,tpy),
B,.(x() B,(xo)

whenever (X, ty) + Q,(6) C Q7 (1) where
6 = cu(x,, ty)* 4.

Our proof relies on comparison principle and parabolic Harnack’s inequality proven for viscos-
ity solutions of (1.1) in [26] and construction of an explicit viscosity supersolution with infinite
boundary values. Existence of such solutions relies on the singularity of the equation and was
proven for the p-parabolic case in [2, Theorem 4.1]. Here, we constructed a concrete solution in
order to obtain an explicit proof at each step. If g approaches either end point of range (2.2), the
constant y tends to infinity and c approaches zero.

Elliptic Harnack’s inequality may fail outside of the range condition (2.2). To illustrate this,
recall a result by Parviainen and Vazquez [26] according to which radial viscosity solutions to
(1.1) are equivalent to weak solutions of the one-dimensional equation

ou— kAgqu =0 in (-R,R) x(0,T). (2.3)

Here, x := (p —1)/(g — 1) and (denoting by u, the radial derivative of u)

) d—1
Aq,du ‘= |ur|q <(q_ Du,, + ’ ur)
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4 | KURKINEN ET AL.

is heuristically the usual radial g-Laplacian in a fictitious dimension

_(-bg-n
p—1

d:

If d happens to be an integer, then solutions to (2.3) are equivalent to radial weak solutions of the
g-parabolic equation in By X (0, T) C R%*!, On the other hand, the counterexamples in [9, p. 140]
show that elliptic Harnack’s inequality for the g-parabolic equation in R%*! holds only in the
range 2d/(d + 1) < q < 2, from which one can derive the range condition (2.2) by recalling the
definition of d. In fact, the counterexample in [9] directly translates into our context even when d
is not an integer. To see this, suppose that1 < p < (1 +n)/2 and set g = 2(n — p)/(n — 1). Then,
in particular g > 1. We define in radial coordinates

2d
u(r,t) := (|r|a1 + e®H)=@=V/2 forallr € R.

By a direct computation, u satisfies (2.3) classically in (=R, —6) U (8, R) for any R > 0 and small
8 > 0. Letting 6 — 0 then shows that u is a weak solution in the sense of [26] and therefore a
viscosity solution to (1.1) in R"*1. However, u fails to satisfy elliptic Harnack’s inequality since
u(0,t)/u(l,t) > 0ast - —oo.

Finally, we point out that in the case g = p, the range condition becomes

2n
n+1

2>p> =D,

the so-called supercritical p-parabolic equation for which we have both intrinsic [6, 20] and elliptic
Harnack’s inequality [5]. As mentioned, in the subcritical case p < p,, both of the inequalities fail
[9] but there are some known Harnack-type results, see, for example, [7, Proposition 1.1].

3 | PRELIMINARIES

Apart from the case g = p, Equation (1.1) is in non-divergence form and we cannot use integration
by parts to define standard weak solutions and will thus use the concept of viscosity solutions.
Moreover the equation is singular when 2 > g > 1, and thus we need to restrict the class of test
functions to retain good priori control on the behavior near the singularities and make sure the
limits remain well defined. We use the definition with admissible test functions introduced in [16]
for a different class of equations and in [25] for our setting. This is the standard definition in this
context. In the case of the p-parabolic equation, that is, g = p, the notions of weak and viscosity
solution are equivalent for all p € (1, o) [18, 26, 27].
Let Q C R" be a domain and denote Q = Q X (0, T') the space-time cylinder and

9,Q = (Qx{ohu (@ x[0,T])

its parabolic boundary. Denote

F(n,X) = |n|"*Tr <X—(p—2)n|§9|2nX> 3D
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 5

so that
F(Vu,D*u) = |Vu|?2(Au + (p — 2)A§’ou) = Agu
whenever Vu # 0. Let F(F) be the set of functions f € C?([0, o)) such that
f(0) = f'(0)= f"()=0and f"(r) > 0forall r > 0,
and also require that for g(x) := f(|x]|), it holds that

lin(l)F(Vg,ng) =0.
X—
x#0

This set F(F) is never empty because it is easy to see that f(r) =rf € F(F) for any
B > max(q/(q — 1), 2). Note also that if f € F(F), then Af € F(F) forall 1 > 0.
Define also the set
Y ={o € C'(R) | oiseven,c(0) = ¢’(0) = 0, and o(r) > 0 for all r > 0}.

We use these F(F) and X to define admissible set of test functions for viscosity solutions.

Definition 3.1. A function ¢ € C?(Qy) is admissible if for any (x,, t,) € Qp with V(x,, t,) = 0,
thereare § > 0, f € F(F) and o € X such that

|p(x, t) — (. tg) — 3,00, to)(t — to)| < f(|x = Xo|) + ot — £y),
for all (x,t) € Bs(xy) X (tx — &, ty + 9).

Note that by definition a function ¢ is automatically admissible in Q if either Vo(x, t) # 0 in
Qg or the function —¢ is admissible in Q.

Definition 3.2. A functionu : Q; — R U {oo} is a viscosity supersolution to
— A9y
du=Apu inQy

if the following three conditions hold.

(1) u is lower semicontinuous,
(2) uisfinite in a dense subset of Qr,
(3) whenever an admissible ¢ € C%(Q;) touches u at (x, ) € Q from below, we have

8,p(x, 1) = Alp(x, 1) > 0 if Vo(x,1) # 0,
O,p(x,t) 20 if Vo(x,t) = 0.

A function u : Qp - RU{—o0} is a viscosity subsolution if —u is a viscosity supersolution. A
function u : Qp — R is a viscosity solution if it is a supersolution and a subsolution.

Our proof uses the following comparison principle, which is Theorem 3.1 in [25].
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6 | KURKINEN ET AL.

Theorem 3.3. Let Q C R" be a bounded domain. Suppose that u is viscosity supersolution and v is
a viscosity subsolution to (1.1) in Q. If

o # limsup ov(y,s)< liminf u(y,s) # —oo
Qra(y,s)—(x,t) Qra(y,s)—(x,t)

forall (x,t) € 8,Qy, thenv < uin Q.
We also use the following forward Harnack’s inequality, which is Theorem 7.3 in [26].

Theorem 3.4. Letu > 0beaviscosity solution to (1.1) in Q7 (1) and the range condition (2.2) holds or
q = 2. Fix(xy, ty) € Q] (1) such that u(x, ty) > 0. Then, there exist u = u(n, p,q) and ¢ = c¢(n, p, q)
such that

u(xg, tp) < #Bil(le)”(" ty +0rd),
r\0

where

6 = cu(xy, ty)* 9,
whenever (xo, t) + Q4,(6) C Q7 (1)

Remark 3.5. Note that the assumption u(x,, t;) > 0 is needed only in the case g > 2. Assuming q
satisfies the range condition (2.2), we can define v(x, t) = u(x, t) + € > 0 for some small constant
€ > 0. Using Theorem 3.4 for this v, we get

u(xp, ty) + € < /,tBir(lf)u(‘, to + c(u(xo, ty) +€)°79r?) + ¢
r(Xo

and letting ¢ — 0 gives us the intrinsic Harnack’s inequality for u by continuity.

4 | AVISCOSITY SUPERSOLUTION WITH INFINITE BOUNDARY
VALUES

In this section, we construct an explicit viscosity supersolution v to (1.1) in Bz(0) X (0, c0) that
takes infinite lateral boundary values and vanishes at the bottom of the cylinder. Recently infinite
point source solutions have been constructed for the supercritical p-parabolic equation in [13].
While it is straightforward to check that our function is a supersolution, it may not be immediately
clear how one obtains its expression and therefore we present the derivation. The construction
is based on the equivalence result between radial viscosity solutions of (1.1) and weak solutions
of (2.3), see [26, Theorem 4.2]. Solutions to the one-dimensional equation (2.3) can be at least
formally obtained via the stationary equation

v
—xA, ;u+ —— =0. 41
q.d 2 — q ( )

1

Indeed, if v solves (4.1) and we set u(r, t) = t2-1v(r), then we have formally

— 1 _ 1
KAg qU = 1<|u,|q_2 <(q - Du,, + %ur> = xt2-4 1Aq’dv =3 i qtz—q "v=d,u,
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 7

so u solves (2.3). Now, Equation (4.1) can be seen as a radial version of the equation

—xkAv+——=0 4.2)
2—q

in a fictitious dimension d. Here, A, denotes the usual g-Laplacian. Equations such as (4.2) have
been widely studied in the literature when d is an integer. In particular, Diaz and Letelier [11]
obtained the existence of local solutions with infinite boundary values to a large class of equa-
tions that includes (4.2). In their proof, they make use of an explicit radial supersolution with
infinite boundary values (see [11, Theorem 5.1]). Our idea is to take this supersolution and use the
above transformations to obtain a supersolution to (1.1). This way one arrives to the expression
(4.3) below.

Lemma 4.1. Suppose that 1 < q <2, p> 1 and let R > 0. Then, there exists a positive constant
A = A(n, p, q) such that the function

a
1 1 2
v(x, t) 1= At 1 - (4.3)

Ri-a(Ro — |x|a71)

is a viscosity supersolution to (1.1) in Bx(0) X (0, c0).

Proof. Let us first consider the case R = 1.
(Step 1) For (r,t) € [0,1) X (0, o), we set

1 4 9

w(r,t) i=At2-9(1 —ra-1)a2,

where 4 = A(n, p, q) is a large constant to be chosen later. We show that w satisfies

dw— |w/|q—z<(p 1w+ ”T—lw/> >0 in(0,1)x (0, ). (4.4)
‘We have
1 a
Sw(r,t) =2 _qt2 i1 = )iz,
w'(r t)=—/1q—2-tﬁ Ll_ (l—rq 1)q2 -1 (4.5)
’ CERCED)
and

” _ g qa %qi— _q1q21
00 = e (g 1>t a=r

3 1 q

q q P e i

A —1)-tzrar- et (1—rq 1)q2
(q-17q —2)< >

(4.6)
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8 | KURKINEN ET AL.

Thus, by combining (4.5) and (4.6), we get
(p— D" (.0 + =20

2 - 1
=T g dhyh
(@-1)2(g—-2)

3(p —
Mtﬁr (Ll_ (1_rq l)q -2 -2
(@ —1)%(g—2)

2(pn — 1 g 9 g
T - 357520 ity

(@-1(g-2)
L L_ 4 9, 4 a
< C(n, p,At>-ara-! (l—rq-l)q—2 (@A =rat)+4rat).
L L_ 4 4,
< C(n, p, At -ara-? (1 —ra1)a-2

Combining this with the formula (4.5), we obtain

|w/|lI—2 ((p _ 1)w// + ”IT—lw/)

a2 4 (gea) (L
< Cn po -2 8 G g _ ity
149 4 a_,
sAtapat Y(1—rat)a?
1 4 a
= C(n, p, AT 470 (1 —ri1)i2,
where we used that (g—2)(-L - 1)+ (-L —2)=22 4+ 29 =0 and (q-2)(-L —1)=2.
q-1 q-1 g-1 " g¢-1 q-2
Hence,
d,w — |w’|q_2 ((p —Dw” + A== ; 1w’)
1 L 4 a . 4 a
> A5 qtz—q (1 —rat)e2 —C(n, p,q)A1" = "1 - re1)a

2—q

q - C(l’l,p, CI))

1 q q
=297 (1 - i )a (;

By taking 4 = A(n, p, q) large enough, the right-hand side of the above display can be made non-
negative. This way we see that w satisfies (4.4).
(Step 2) We set

v(x,t) :=w(|x|,t) forall(x,t) € B; X (0, ).
Suppose first that (x,t) € (B \ {0}) X (0, ) and denote r = |x|. Then, we have

Vox, t) = Zw/(r, t),
r

D2u(x,0) = X @ Xw"(rn )+ 21 - X @ Xyw'(r, 1),
r r r r r
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 9

Therefore, since w satisfies (4.4), we have

o,v— A%v =0,0—|Vu|T 2 Tr <Dzv +(p— 2)mD2v>
[Vl
_ -1
=ow— |w|? *(p—Dw” + Mw’) >0.

r

This means that v is a classical supersolution in (B, \ {0}) X (0, o). We still need to consider the
set {0} x (0, c0). Since 1 < g < 2, it follows from the formulas (4.5) of w’ and (4.6) of w’ that
v € C%(B; x (0, 00)) with Vu(0,t) = 0 and 3,v(0,t) > 0 for all t > 0. Therefore, if ¢ € C? touches
v from below at (0, t), we have Vg(0,t) = Vu(0,t) = 0 and J,¢(0, t) = 9,v(0, t) > 0, as required.
Consequently v is a viscosity supersolution in B; X (0, o).

(Step 3) It remains to consider R > 0. Let v be the viscosity supersolution to

8,v=AJv inB; X (0, )

which we constructed in the previous steps. Set 0(x, t) := v(R™'x, R™9¢). Then, for all (x,t) €
Bg(0) \ {0} X (0, c0), we have

8,0(x,1) — AJO(x, 1) = R"90(R"x,R™9) = R™4AJv(R™'x,R™) > 0,

so U'is a viscosity supersolution in By (0) X (0, o). Moreover,

_ e 4\ 72 14 a @ a4
(x, t) = A(R™9t)>4 (1 - ’R_lx’q‘1> = At7 4 (RRT4(RTT — |x|3-1))a-2

as desired. O

5 | APARABOLIC HARNACK’S INEQUALITY

In this section, we prove a both-sided version of parabolic Harnack’s inequality for Equation (1.1)
which is of independent interest and needed for our proof of Theorem 2.1. The proof of the back-
wards estimate is an adaptation of section 6.9 in [9] apart from the non-emptyness of the set U,
below, which we prove using the comparison principle and the explicit supersolution we con-
structed in Lemma 4.1. To this end, we need to reduce the waiting time in the forward Harnack
inequality. This kind of reduction can be achieved by increasing the multiplier u, as made precise
in the following proposition.

Proposition 5.1. Let u > 0 be a viscosity solution to (1.1) in Q7 (1) and the range condition (2.2)
holds. Fix (xo, ty) € Q7 (1) such that u(x, t,) > 0. Let ¢ be as in Theorem 3.4. Then, forany ¢ € (0, ¢),
there exists ft = pu(n, p, q, ¢) such that

U, o) < e nf uCto + 6, 5.1)
r\0

whenever (x,,t,) + Qs,(8) C Q; (1), where 8 = ¢u(x, ty)> 9.
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10 | KURKINEN ET AL.

‘We postpone the proof of Proposition 5.1 to the end of this section and consider the both-sided
Harnack inequality next.

Theorem 5.2. Let u > 0 be a viscosity solution to (1.1) in Q[ (1) and the range condition (2.2) holds.

Fix (xy,t) € Q] (1). Then, there exist u = pu(n, p,q), ¢ = c¢(n, p,q) and a = a(n, p,q) € (0,1) such
that

Wb sup u(s, ty — 6r?) < u(xg, ty) < ,uBi?f)u(-, ty + 6r?),
r(Xo

B,.(xq)
where
_ 2—q
6 - cu(xO’ tO) s

whenever (X, ty) + Qs ,(6) C Q7 (1).

Proof. Without loss of generality, we may assume u(x,, t,) > 0 as stated in Remark 3.5. Let ¢ be
a small positive constant to be chosen later. For this ¢, let i > 2 be given by Proposition 5.1. Let p
be a radius such that (x, t,) + Q6p(é) cQ (D), 6= éu(x,, ty)*~4, and let
Let ¢ € (0,1) be a constant to be chosen later and define the sets
U, = Bap(xo) Nni{x e Eap(xo) | u(x,t) < fu(xy, ty)} =: Bap(xo) ND. (5.3)
We will first show that a can be chosen to make U, open. Assume that U}, is not empty
and fix z € V. Since u is continuous, we can choose a radius ¢ such that B.(z) C Bap(xo)
and
u(y,t) < 2pu(xy,t,) forally € B.(z). (5.4)
For each y € B,(z), construct the intrinsic g-paraboloid
P, D) ={x,) € Q7)) | t =1 > éu(y,1)* 9|x — y|%}.
Selecting
)
a =29, (5.5
we have (X, t,) € P(y,t) whenever y € B,(z), since using (5.4) we can estimate
eu(y, >y — xo|? < 6A* u(x, t5)* 9|y — xo|% < e Tulxg, o)~ (ap)?

< Cuxg, tg)*p% =ty — 1.
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION

11

Assume for a moment that u(y, t) > 2u(x,, t,) and pick a radius

2—q
. ul(xg,ty) 9
p=—"r
u(y,n) @
so that
t+cu(y,t ) Tpt = eu(xy, tg)* 1p? =t

Thus, by Proposition 5.1 we have
- Al <A 29 4 - A
u(y,t) <@ inf u(-,t+cu ,t q>= inf u(-,ty) < fu(x,, ty),
(n.t)  inf) (v.t)" 7p Aot (o) < fru(xg, by

where the last inequality holds because from (x,, t;) € P(y, 1), it follows

q to—t  Cu(xg,tp)* 909 Aq
V'S = pi.
u(y, 1)*1 cu(y, )4

|xo
The use of Proposition 5.1 here is justified since Bsﬁ(y) C B6p(x0) because

2—q
H(XO, ) g
2—

u(y,t) ¢

506+p=5

»Q

2—q
u(xy, ty)
+pL5( — + 60,
PP <2u(x0,t0)> prpsOe

where we use our assumption u(y, ) > 2u(x,, t,) and g < 2. In the time direction it holds

2—q
F— eu(y, DF(5p)T = T — cu(y, {1 (M> (5p)?
u(y,t)

=ty — Cu(x, )* 907 — cu(xo, ty)*~9(5p)1

=ty — (1459807 > t, — B(6p)1

(5.6)

and thus there is enough room to use the proposition. The last inequality holds because g > 1.
Ifu(y,t) < 2u(x,, t,), then (5.6) holds automatically since & > 2. We can get inequality (5.6) for
any y € B,(z) and thus B,(z) C U, for a radius ¢ only depending on z. This can be repeated for

any z € U, and thus the set U}, has to be open.

We still need to show that UV}, # . If we assume thriving for a contradiction that U}, = @, then

m = inf u(,t) > fu(x,, ty).
Bap(xo

Consider the function

2L 1

w(x,t) 1= —A(t — 1) - 7 7
(ap)ta <(om)E —|x- xo|ﬁ>

(5.7)
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12 | KURKINEN ET AL.

By Lemma 4.1, w is a viscosity subsolution to (1.1) in Bap(xo) X (t, 00) and satisfies

w(x, 1) =m < u(x,t) for all x € B,,(x,),

li ) =— for all (y,s) € 6B X (£, ).
QTa(xl,gl—»(y,s)w(x )=—co forall(y,s) ap(X0) X (t, )

Thus, by comparison principle Theorem 3.3, we have u > w in Bap(xo) X [f, ), S0 in particular
we have

u(xy, to) = wlxo, ty)

1
= L +m

(o)™ (mmﬁ - o)

4 9q

= —A¢rapi(ap) 1u(xy,tH) + m

1 9
—Aéaa 29u(X, o) + fru(xo, to)

\%

= <—2/162—q + 1>,au(x0,t0)

1
>2 <—2/16 2-q 4 1>u(x0, to)s

where the last two inequalities follow from our assumption (5.7) and that &t > 2. By taking ¢ to
be a small enough constant depending only on p, g and n, we can ensure that the coefficient of
u(x,, ty) on the right-hand side is larger than 1, yielding a contradiction. Thus, the set U, cannot
be empty.

We have shown that the set U}, = B,,(x,) N D is open and non-empty. Because u is continuous,
the set D is closed and thus for our a, we must have B ,(x,) C D and thus by definition of the set

sup u(-,t) < fu(xg, ty).
Bap(xo)

Combining this with the right-hand side of the Harnack’s inequality Proposition 5.1, we obtain

A1 sup sty — eulxg, £)*9p7) < uxo, o) < fnf uC.to + Cu(xg, o)~ p%)
PO

Bap(xo)
for the specific a chosen in (5.5). If we let ¢ = a~9¢ and r = ap, we have

i sup u(-, ty — Cu(xo, £6)°~Ir?) < ulxg, to) < fr_inf u(, ty + cu(xo, ty)*~rd)
B,.(xp) B, (x0)

<R oinf ul, to + cu(x, t)*~r9),
r(xO)
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION | 13

which is what we wanted. The condition (x,, t,) + Q6p(é) C Q7 (1) becomes the stated (xo, £y) +
Qs,(6) C Q7 (D). O

‘We conclude this section with the proof of Proposition 5.1.

Proof of Proposition 5.1. As discussed in Remark 3.5, we may assume that u(x,, t,) > 0. Let u > 1
and c be the constants in Theorem 3.4 and let ¢ < c. We prove (5.1) for & := uft, where fi :=

L R . . )
(c/é)>e.Denotef :=t, + cu(x,, t,)> 9r and let £ € B,(x,) be an arbitrary point. It now suffices
0 0> to r(Xo Iyp
to prove that

u(xo, fo) < Fpuaa(2, D). (538)
To this end, we may suppose that u(x,, t,) > ftu(%, f) because otherwise

N 1
u(x,t) = —ulxgy, ty) > —ulxy, ty),
00 MM 00

=

which would already imply (5.8). Let [(x,, t,), (£, f)] be a segment from (x,, t,) to (%, ), that is,

f_to

)%_xO
X )AC—x0|.

—,t0+lk> |le [0,|fc—x0|]}, K i=
Xo|

% — xo

[(xorto). (£, )] := { <x0 ol

We have

u(®,f) < %u(xo, to) < u(xo, ty).
Thus, by continuity there exists (x;,t;) € [(xq, to), (%, )] \ {(x0, £y), (%, )} such that
1
u(xy, ty) = ﬁu(xo, to)- (5.9)

Moreover, since (x;, ¢;) lies on the segment, there is [; € (0, |X — x,|) such that

X —x
|% = x|

‘We now have

X—Xx X —X
|x; = %] = |x0 + 1, — 0 xXo— |% x0|A—0 =(|% = x| = 1)
Xol £ = X
=<t—t0_t1—t0>:t—t1. 510)
x x x

We set
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14 | KURKINEN ET AL.

because then, since x = (f — t)/|% — x,|, we obtain using (5.9)

A o 1-1 1
-4 (F—1) a(cu(x;, t)* 94
=p

K K

(- tl)l_%(cu(xl, tl)z_q)é
(—ty)

1
or < Cu(?fp t)* 1 > a
i—t,
1
_ cu(xy, t)*71
- pr<éu(x0’ to)z_qrq>

=p< ¢ >q=p. (51)

= ol — x|

q
e—a

Combining (5.10) and (5.11) we see that X € Bp(xl). Moreover, by definition of p, we have ¢; +
cu(x;,t;)>"9p% = {. Consequently, assuming for the moment that we have enough space to apply
Theorem 3.4 at (x;, t;) for radius p, we obtain

u(xl’ tl) < M lnf u(" tl + cu(xl’ tl)z_qu) < Mu(‘)eﬁ f)
B, (x1)
Hence by (5.9)

A 1 1
u(')%’ [) > _u(x >t ) = _~u(x ot )9
u 1>%1 Uit 0> 0

as desired.
Since we use Theorem 3.4 at (x;, t,), t; > t,, we only need to check that the upper boundary of
the cylinder (x;, t;) + Q4,(6) is within the domain of the solution. First, by (5.9), we have

1 1
t—t, q i—t, q
|xo—x;| +4p<r+4( ——— | <r+4( ————

cu(xy, t)*1 cu(xy, t)*1

1 1

Cu(x,, t))>~9rd \ 4 A 7

=r+4<%> =r+4<£,a2‘q> r = 5r.
cu(xy, t)*1 ¢

Further,
f—t
t; 4 cu(xy, t,)*79(4p) = t, + cu(x,, t;)*"949 <—1>
cu(xy,t;)?4
=t +49(1 - 1))
= (47— 1)(ty — t;) + to + 49¢u(x,, to)*~Ird
<ty + eu(xg, to)*~9(5r).
Thus, the upper boundary of (x;,t;) + Q40(8) is contained in (xo, £y) + QSr(é) C Q7 (1). O
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION 15

6 | PROOF OF THE ELLIPTIC HARNACK’S INEQUALITY

To prove Theorem 2.1, we first establish the following version where more space is required around
the point (x,, t,). To prove this proposition, we first use the parabolic Harnack Theorem 5.2 to get
an estimate at an earlier time level, use Lemma 4.1 to construct a super solution with infinite
boundary values at this level and finally use the comparison principle Theorem 3.3 to get an esti-
mate at our original time level. We repeat this process again around a local minimum of u to get
the other side of the inequality.

Proposition 6.1. Let u > 0 be a viscosity solution to (1.1) in Q[ (1) and the range condition (2.2)
holds. Fix (X, ty) € Q7 (1). Then, thereexist7 = 7(n, p,q), ¢ = c(n, p,q)anda = a(n, p,q) € (0,1)
such that

771 sup u(-,ty) < u(xy, ty) <7 inf u(-,ty), (6.1)
B,(xo) B,(xo)

whenever (X, t) + Q13 ,(6) C Q (1) where

6 = cu(xy, ty)* 9.

Proof. We can use parabolic Harnack (Theorem 5.2) for radius 2r to obtain constants u = u(n, p, q)
and ¢ = ¢(n, p, q) such that

u(x,ty —62r)?) < sup u(,ty —62r)?) < uulxy, ty) (6.2)

BZr(x())

for all x € B,,(x,), where 6 = cu(x,, t,)*"9. This is justified because §(2r) < 1;31*. Let

q
2=

b=
1
D(x, 1) 1= At = o +6(2r)) 71| —— 1 g + (g t).

()3 (@) — [x = xo|#7)

Then by Lemma 4.1, v is a viscosity supersolution in B,,(x,) X (t, — 8(2r)4, co) that satisfies

v > pu(xo, L) on By, (x,) X {t, — 6(2r)1},
lim v(x,t) =00 forall (y,s) € B,,(xy) X (t, —6(2r)1, )
Qr3(x,0)—(.s)
and we can use comparison principle Theorem 3.3 to get
u < vin (xg, ty) + Q. (0) (6.3)

because u is bounded in (x,, t,) + Q,,(6) and on the bottom of the cylinder we have by (6.2)

u(x, tg — 6(2r)7) < pu(xy, ty) < v(x, o — 6(2r)7).
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16 | KURKINEN ET AL.

The estimate (6.3) and the definition of 8 imply in particular that

q

sup u(-,ty) < sup v(:,ty) = A(@(Zr)q)ﬁ ((Zr)ﬁ((ZV)# — r%)> - + pu(xg, ty)

B,.(xg) B,(xp)

q
1 q

1 q-2
= Alcu(xy, ty)*"929r%) 2= <r2 1-q(24-1 — 1)> ! + uu(xy, to)

19 R %
Ac2-a22-4q <21-q (241 — 1)> + 1 fu(xg, ty)

2 7(n, p, Qulxg, L) (6.4)

Dividing by 7 gives us the left-hand side of (6.1). The constant 7 blows up in the limit cases because
Ablows up when g — 2 forall ¢, and i does the same when g approaches the lower bound of (2.2).
Let X be a minimum point of u(-, t,) in B,(x,). We will again use Theorem 5.2 to obtain

sup u(-,ty — 8(2r?) < pu(z, t)s

BZI'(X)

where 8 = c(u(%, t,))*~9. The use of Harnack is justified because 2(2;') +r< gr because a €
(0,1). Let

a
2
1

q q

4 4 _a_

@r)a(@r)et — |x — X[o1)

0(x, t) = A(t — ty + é(zr)q)ﬁ

+ pu(x, ty).

Then again by Lemma 4.1, U is a viscosity supersolution in B,,(%) X (¢, — 8(2r)4, oo) that satisfies

0> uu(®, ty) on B, (%) X {t, — 6(2r)1},

lim  6(x,t) =co forall (y,s) € 0B, (%) x (t, — 6(2r)?, o)
Qpra(x,t)—(y,8)

and we can use comparison principle Theorem 3.3 to get
u < 0in (%,1) + Q,(6)

and thus

q
19 S q—2
u(xy, ty) < sup u(-, ty) < sup 0(:, ty) = </lcz-5122—‘1 <21-q (291 — 1)> ! + pt)u(fc, to)
(%)

B, B,(%)

=y(n, p,q) inf u(-,ty), (6.5)
B,.(x)

which is the right-hand side of (6.1). Combining (6.4) and (6.5) proves the theorem. O
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ELLIPTIC HARNACK’S INEQUALITY FOR A SINGULAR NONLINEAR PARABOLIC EQUATION | 17

Next we combine Proposition 6.1 with a covering argument to prove Theorem 2.1. We first con-
struct a suitable sequence of small balls along an arbitrary radial segment of our set. Then, we
show by induction that there is enough room around cylinders defined on these balls to use Propo-
sition 6.1 to get an Harnack-type estimate over any of these radial segments up arbitralily close to
the boundary. Parabolic intrinsic Harnack chains for the p-parabolic equation have recently been
examined in [1] in the degenerate case p > 2.

Proof of Theorem 2.1. By Proposition 6.1, there exist constants y(n,p,q), ¢'(n, p,q) and
a(n, p,q) € (0,1) such that the elliptic Harnack’s inequality

771 sup u-, to) < u(z, to) < 7 inf u(-,to) (6.6)
B.(2) B.(2)

holds whenever B3 T(z) C B, and

to+ (106—31)qc’u(z, t,)*"9 € (-1,0]. (6.7)

Fix an arbitrary y € 0B,(x,). Let p := ra(oc —1)/13. We define the points

where k =0, ...,K and K > 0 is the smallest natural number such that y € Bp(yK). Since y is on
the boundary of B,(x,) and p is a scaling of r, the number K depends only on o, n, p and q. We will
apply the elliptic Harnack’s inequality in the balls B, (y ). Therefore, we need the corresponding
intrinsic cylinders to be contained within Q7 (1). Since the choice of p ensures that B gp(y) C

B,,(xy) C B, whenever y € B,(x,), it remains to show that (6.7) holds fort = pandz = y;, k =
0, ...,K. We choose

—1\¢ -
c:=c'<a ) pk@=a)
> 14

and proceed by induction to check that we have enough space in the time direction to use
Proposition 6.1 for each of the cylinders (y;, t,) + Qp(c’ u(yk,t)*~9). Note that the assumption

(XO’ tO) + Qo‘r(e) c Ql_(l) 1mphes
to £ (or)lcu(x,, ty)* 9 € (~1,0]. (6.8)

(Initial step) Since 7 > 1, we have

q (g —1)4
() cutror 1077 = (6 = D)ty 100 = (oYt 010

< (or)leu(xy, ty)* 9. (6.9)

It follows from (6.9) and (6.8) that (6.7) holds with z = y, and © = p. Thus, the elliptic Harnack
inequality (6.6) gives

77_1 sup u(-,ty) < ulxp, ty) <7 inf u(-,ty).
Bp(yO)

Bp(y())
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18 | KURKINEN ET AL.

(Induction step) Suppose that 1 < k < K and that we have

77 sup u(,ty) <ulxg,ty) <7° inf  u(.,ty). (6.10)

Bo(Yk-1) B, (V-1
Since y, € §p(yk_1), this implies in particular
u(yy, to) < 7¥ulxg, L)
Therefore, by definition of p and c we have

q
(Z6) uliot0 7 < (0 = D)7 Dutxy, 1)

/(o — 1)IpkC—

— q 2—q
= (or)lcu(xy,t
( ) (o o) cod

< (or)leu(xy, ty)* 9. (6.11)

It follows from (6.11) and (6.8) that (6.7) holds for z = y;, and T = p. Consequently by the elliptic
Harnack’s inequality (6.6), we have

7_1 Sup u(',to) < u(yk9t0) < 7 lnf u('at())'
B,() B,(yi)

Since y, € Ep(yk_l), combining the above display with (6.10) yields

u(xg,to) =77 sup u(-,t) = 7 u@p, to) = 7Y sup u(-, t)
Bp(yk—l) Bp(yk)

and similarly

u(xg, tg) <7° inf u(-,ty) < 7 uyy, ty) < 74 o )u(-, to)-

o Yk—1 P Vi
Thus,
7D sup u(-,ty) < ulxg tp) < 7 inf (-, t,) (6.12)
B, Bo O

and the induction step is complete.
By the induction principle, the estimate (6.12) holds for all k = 0, ..., K. Since y € Bp(yK), we
have in particular

7~ Y sup u(-, t5) < uxg, to) <75 inf ul-, 1),
[X,)A?] [xsy]

where [x, §] denotes the segment from x to y. Since y € 0B,(x,)) was arbitrary, the estimate of the
theorem follows for y := pK+1. O
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