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We obtain an analytic proof for asymptotic Hölder estimate and Harnack’s inequal-
ity for solutions to a discrete dynamic programming equation. The results also 
generalize to functions satisfying Pucci-type inequalities for discrete extremal oper-
ators. Thus the results cover a quite general class of equations.
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r é s u m é

Nous obtenons une preuve analytique pour l’estimation asymptotique de Hölder 
et l’inégalité de Harnack pour les solutions d’une équation de programmation dy-
namique discrète. Les résultats se généralisent également aux fonctions satisfaisant 
les inégalités de type Pucci pour des opérateurs extrémaux discrets. Ainsi, les ré-
sultats couvrent une classe d’équations suffisamment générale.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Recently a quite general method for regularity of stochastic processes was devised in [1]. It is shown that 
expectation of a discrete stochastic process or equivalently a function satisfying the dynamic programming 
principle (DPP)

u(x) = α

∫
RN

u(x + εz) dνx(z) + β

|Bε|

∫
Bε(x)

u(y) dy + ε2f(x), (1)

where f is a Borel measurable bounded function and νx is a symmetric probability measure with rather 
mild conditions, is asymptotically Hölder regular. Moreover, the result generalizes to Pucci-type extremal 
operators and conditions of the form

L+
ε u ≥ − |f | , L−

ε u ≤ |f | , (2)

where L+
ε , L−

ε are Pucci-type extremal operators related to operators of the form (1) as in Definition 2.3. 
As a consequence, the results immediately cover for example tug-of-war type stochastic games, which have 
been an object of a recent interest.

The proof in [1] uses probabilistic interpretation. In the PDE setting the closest counterpart would be 
Krylov-Safonov regularity method [11]. It gives Hölder regularity of solutions and Harnack’s inequality for 
elliptic equations with merely bounded and measurable coefficients. The next natural question, and the aim 
of this paper, is to try to obtain an analytic proof. In the PDE setting the closest counterpart would be 
Trudinger’s analytic proof of the Krylov-Safonov regularity result in [21].

The Hölder estimate is obtained in Theorem 4.7 (stated here in normalized balls for convenience) and it 
applies to (1) by selecting ρ = sup |f |:

Theorem. There exists ε0 > 0 such that if u satisfies L+
ε u ≥ −ρ and L−

ε u ≤ ρ in B2 where ε < ε0, we have 
for suitable constants

|u(x) − u(z)| ≤ C

(
sup
B2

|u| + ρ

)(
|x− z|γ + εγ

)
for every x, z ∈ B1.

After establishing a Hölder regularity estimate, it is natural to ask in the spirit of Krylov, Safonov and 
Trudinger for Harnack’s inequality. To the best of our knowledge, this was not known before in our context. 
The regularity techniques in PDEs or in the nonlocal setting utilize, heuristically speaking, the fact that 
there is information available in all scales. Concretely, a rescaling argument is used in those contexts in 
arbitrary small cubes. In our case, discreteness sets limitations, and these limitations have some crucial 
effects. Indeed, the standard formulation of Harnack’s inequality does not hold in our setting as we show 
by a counter example. Instead, we establish an asymptotic Harnack’s inequality in Theorem 5.5:

Theorem. There exists ε0 > 0 such that if u satisfies L+
ε u ≥ −ρ and L−

ε u ≤ ρ in B7 where ε < ε0, we have 
for suitable constants
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sup
B1

u ≤ C

(
inf
B1

u + ρ + ε2λ sup
B3

u

)
.

Both the asymptotic Hölder estimate and Harnack’s inequality are stable when passing to a limit with 
the scale ε, and we recover the standard Hölder estimate and Harnack’s inequality in the limit.

The key point in the proof is to establish the De Giorgi type oscillation estimate that roughly states 
the following (here written for the zero right hand side and suitable scaling for simplicity): Under certain 
assumptions if u is a (sub)solution to (1) with u ≤ 1 in a suitable bigger ball and

|BR ∩ {u ≤ 0}| ≥ θ|BR|,

for some θ > 0, then there exist η > 0 such that

sup
BR

u ≤ 1 − η.

This is established in Lemma 4.5. Then we can obtain asymptotic Hölder continuity by a finite iteration 
combined with a rough estimate in the scales below ε.

It is not straightforward to interpret the probabilistic proof in [1] into analytic form to obtain the proof 
of Lemma 4.5. Instead, we need to devise an iteration for the level sets

A = {u ≥ Kk} and B = {u ≥ Kk−1}.

It seems difficult to produce an estimate between the measures of A and B by using the standard version of 
the Calderón-Zygmund decomposition. The equation (1) is not infinitesimal, but if we simply drop all the 
cubes smaller than of scale ε in the decompositions, we have no control on the size of the error. To treat 
this, we use an additional condition for selecting additional cubes of scale ε. On the other hand, additional 
cubes should belong to the set B above, so there are two competing objectives. Different nonlocal analytic 
arguments, Alexandrov-Bakelman-Pucci (ABP) type estimates, and suitable cut-off levels will be used.

Unfortunately, but necessarily, the additional condition produces an error term in the estimate between 
measures of A and B. Nonetheless, we can accomplish the level set measure estimate in Lemma 4.4 which 
is sufficient to get the De Giorgi oscillation lemma.

The Hölder estimate and Harnack’s inequality are key results in the theory of non-divergence form elliptic 
partial differential equations with bounded and measurable coefficients. They were first obtained by Krylov 
and Safonov in [11,12] by stochastic arguments. Later, an analytic proof for strong solutions was established 
by Trudinger in [21], see also [10, Section 9]. In the case of viscosity solutions for fully nonlinear elliptic 
equations, the ABP estimate and Harnack’s inequality were obtained by Caffarelli [6], also covered in [7, 
Chapters 3 and 4]. For nonlocal equations, such results have been considered more recently for example in 
[8] or [9]. In the case of fully discrete difference equations, we refer the reader to [13].

There is a classical well-known connection between the Brownian motion and the Laplace equation. The 
dynamic programming principle (1) is partly motivated by the connection of stochastic processes with the 
p-Laplace equation and other nonlinear PDEs. Our results cover (see [1] for details) in particular a stochastic 
two player game called the tug-of-war game with noise. The tug-of-war game and its connection with the 
infinity Laplacian was discovered in [19]. For the tug-of-war games with noise and their connection to p-
Laplacian, see for example [18], [17], [3] and [14]. There are several regularity methods devised for tug-of-war 
games with noise: in the early papers a global approach based on translation invariance was used. Interior 
a priori estimates were obtained in [16] and [15]. However, none of these methods seem to directly apply in 
the general setup of this paper. In this setup, we refer to probabilistic approaches in [1] and with additional 
distortion bounds in [2].
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2. Preliminaries

Let Λ ≥ 1, ε > 0, β ∈ (0, 1] and α = 1 − β. Constants may depend on Λ, α, β and the dimension N . 
Further dependencies are specified later.

Throughout the article Ω ⊂ RN denotes a bounded domain, and Br(x) = {y ∈ RN : |x − y| < r} as well 
as Br = Br(0). We use N to denote the set of positive integers. We define an extended domain as follows

Ω̃Λε : = {x ∈ Rn : dist(x,Ω) < Λε}.

We further denote ∫
u(x) dx =

∫
RN

u(x) dx and
∫
A

u(x) dx = 1
|A|

∫
A

u(x) dx.

Moreover,

‖f‖LN (Ω) =

⎛⎝∫
Ω

|f(x)|N dx

⎞⎠1/N

and

‖f‖L∞(Ω) = sup
Ω

|f |.

When no confusion arises we just simply denote ‖ · ‖N and ‖ · ‖∞, respectively.
For x = (x1, . . . , xN ) ∈ RN and r > 0, we define Qr(x) the open cube of side-length r and center x with 

faces parallel to the coordinate hyperplanes. In other words,

Qr(x) : = {y ∈ RN : |yi − xi| < r/2, i = 1, . . . , n}.

In addition, if Q = Qr(x) and 	 > 0, we denote 	Q = Q�r(x).
Let M(BΛ) denote the set of symmetric unit Radon measures with support in BΛ and ν : RN → M(BΛ)

such that

x 	−→
∫

u(x + z) dνx(z) (3)

defines a Borel measurable function for every Borel measurable u : RN → R. By symmetric, we mean

νx(E) = νx(−E),

for every measurable set E ⊂ RN .
It is worth remarking that the hypothesis (3) on Borel measurability holds, for example, when the νx’s are 

the pushforward of a given probability measure μ in RN . More precisely, if there exists a Borel measurable 
function h : RN ×RN → BΛ such that

νx = h(x, ·)#μ

for each x, then
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v(x) =
∫

u(x + z) dνx(z)

=
∫

u(x + h(x, y)) dμ(y)

is measurable by Fubini’s theorem.
We consider here solutions to the Dynamic Programming Principle (DPP) given by

u(x) = α

∫
u(x + εv) dνx(v) + β

∫
Bε(x)

u(y) dy + ε2f(x).

Definition 2.1. We say that a bounded Borel measurable function u is a subsolution to the DPP if it satisfies

u(x) ≤ α

∫
u(x + εz) dνx(z) + β

∫
Bε(x)

u(y) dy + ε2f(x)

in Ω. Analogously, we say that u is a supersolution if the reverse inequality holds. If the equality holds, we 
say that it is a solution to the DPP.

If we rearrange the terms in the DPP, we may alternatively use a notation that is closer to the difference 
methods.

Definition 2.2. Given a Borel measurable bounded function u : RN → R, we define Lεu : RN → R as

Lεu(x) = 1
ε2

(
α

∫
u(x + εz) dνx(z) + β

∫
Bε(x)

u(y) dy − u(x)
)
.

With this notation, u is a subsolution (supersolution) if and only if Lεu + f ≥ 0(≤ 0).

By defining

δu(x, y) : = u(x + y) + u(x− y) − 2u(x), (4)

and recalling the symmetry condition on νx we can rewrite

Lεu(x) = 1
2ε2

(
α

∫
δu(x, εz) dνx(z) + β

∫
B1

δu(x, εy) dy
)
.

Our theorems actually hold for functions merely satisfying Pucci-type inequalities.

Definition 2.3. Let u : RN → R be a bounded Borel measurable function. We define the extremal Pucci 
type operators

L+
ε u(x) : = 1

2ε2

(
α sup

ν∈M(BΛ)

∫
δu(x, εz) dν(z) + β

∫
B1

δu(x, εy) dy
)

= 1
2ε2

(
α sup

z∈BΛ

δu(x, εz) + β

∫
B1

δu(x, εy) dy
) (5)

and
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L−
ε u(x) : = 1

2ε2

(
α inf

ν∈M(BΛ)

∫
δu(x, εz) dν(z) + β

∫
B1

δu(x, εy) dy
)

= 1
2ε2

(
α inf

z∈BΛ
δu(x, εz) + β

∫
B1

δu(x, εy) dy
)
,

(6)

where δu(x, εy) = u(x + εy) + u(x − εy) − 2u(x) for every y ∈ BΛ.

More generally we can consider functions that satisfy

L+
ε u ≥ −ρ, L−

ε u ≤ ρ.

If we omit the notation above L−
ε u ≤ ρ reads as

u(x) ≥ α inf
ν∈M(BΛ)

∫
u(x + εv) dν(v) + β

∫
Bε(x)

u(y) dy − ε2ρ.

Observe that the natural counterpart for the Pucci operator P+(D2u) = supI≤A≤ΛI tr(AD2u) is given 
by

P+
ε u(x) : = 1

2ε2 sup
I≤A≤ΛI

∫
B1

δu(x, εAy) dy. (7)

Our operator is extremal in the sense that we have L+
ε u ≥ P+

ε u for β = 1
ΛN .

In many places we consider u defined in the whole RN but only for expository reasons: as usual we need 
to have the function defined in a larger set than where the equation is given so that the integrands in the 
operators are defined; this we always assume.

The existence of solutions to the DPP can be seen by Perron’s method. For the uniqueness in [1] we 
employed the connection to a stochastic process. Here we give a pure analytic proof of the uniqueness.

Lemma 2.4 (Existence and uniqueness). There exists a unique solution to the DPP with given boundary 
values.

Proof. As stated, the existence can be proved by Perron’s method. Then, there is a maximal solution that 
we denote u. Suppose that there is another solution v. We have v ≤ u and our goal is to show that equality 
holds.

We define

M = sup
x∈Ω

u(x) − v(x)

and assume, for the sake of contradiction, that M > 0. We define

A = |{y ∈ Bε(x) : π1(y) > π1(x) + ε/2}|
|Bε|

= |{y ∈ B1 : π1(y) > 1/2}|
|B1|

where π1 stands for the projection in the first coordinate.
Given δ > 0 we consider x0 ∈ Ω such that u(x0) − v(x0) > M − δ. We have

M − δ < u(x0) − v(x0)

= α

∫
u(x0 + εz) − v(x0 + εz) dνx0(z) + β

∫
Bε(x0)

u(y) − v(y) dy

< αM + β(1 −A)M + βA

∫
u(y) − v(y) dy.
{y∈Bε(x0):π1(y)>π1(x0)+ε/2}
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Simplifying we obtain

M − δ

βA
<

∫
{y∈Bε(x0):π1(y)>π1(x0)+ε/2}

u(y) − v(y) dy.

Then, there exists x1 ∈ {y ∈ Bε(x0) : π1(y) > π1(x0) + ε/2} such that

M − δ

βA
< u(x1) − v(x1).

Inductively, given xk−1 ∈ Ω we construct xk such that M− δ
(βA)k < u(xk) −v(xk) and π1(xk) > π1(x0) +kε/2. 

Since Ω is bounded and the first coordinate increases in at least ε/2 in every step, there exists a first n such 
that xn /∈ Ω. Observe that n ≤ n0 = diam(Ω)

ε/2 , therefore for δ small enough such that M − δ
(βA)n0 > 0 we 

have reached a contradiction. In fact, we have

0 < M − δ

(βA)n0
≤ M − δ

(βA)n ≤ u(xn) − v(xn)

and u(xn) = v(xn) since xn /∈ Ω. �
2.1. Examples and connection to PDEs

In this section, we recall some examples from [1] alongside other ones, all of which are covered by our 
results. First, we comment about the passage to the limit with the step size ε where the connection to PDEs 
arises.

We consider φ ∈ C2(Ω), and use the second order Taylor’s expansion of φ to obtain

lim
ε→0

Lεφ(x) = Tr{D2φ(x)A(x)},

where

A(x) : = α

2

∫
z ⊗ z dνx(z) + β

2(N + 2) I.

Above a ⊗ b stands for the tensor product of vectors a, b ∈ Rn, that is, the matrix with entries (aibj)ij . See 
Example 2.3 in [1] for the details.

We have obtained a linear second order partial differential operator. Furthermore, for β ∈ (0, 1], the 
operator is uniformly elliptic: given ξ ∈ RN \ {0}, we can estimate

β

2(N + 2) ≤ 〈A(x)ξ, ξ〉
|ξ|2 ≤ αΛ2

2 + β

2(N + 2) .

Roughly speaking, in the DPP (1), the fact that β is strictly positive corresponds to the concept of uniform 
ellipticity in PDEs. In stochastic terms, there is always certain level of diffusion to each direction.

It also holds, using Theorem 4.7 (cf. [17, Theorem 4.9]), that under suitable regularity assumptions, the 
solutions uε to the DPP converge to a viscosity solution v ∈ C(Ω) of

Tr{D2v(x)A(x)} = f(x),

as ε → 0. This is obtained through the asymptotic Arzelà-Ascoli theorem [17, Lemma 4.2].
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Moreover, by passing to the limit under suitable uniqueness considerations we obtain that the results in 
this paper imply the corresponding regularity for the solutions to the limiting PDEs. That is we obtain that 
the limit functions are Hölder continuous and verify the classical Harnack inequality, see Remark 5.6.

The extremal inequalities (2) cover a wide class of discrete operators, comparable to the uniformly elliptic 
operators in PDEs covered by the Pucci extremal operators, see for example [7]. Also recall (7) where we 
commented on this connection.

Example 2.5. Our result applies to solutions of the nonlinear DPP given by

u(x) = α sup
ν∈BΛ

u(x + εν) + u(x− εν)
2 + β

∫
B1

u(x + εy) dy.

In [5] a control problem associated to the nonlinear example is presented and, in the limit as ε → 0, a local 
PDE involving the dominative p-Laplacian operator arises.

Heuristically, the above DPP can be understood by considering a value u at x, which can be computed by 
summing up different outcomes with corresponding probabilities: either a maximizing controller who gets 
to choose ν wins (probability α), or a random step occurs (with probability β) within a ball of radius ε. If 
the controller wins, the position moves to x + εν (with probability 1/2) or to x − εν (with probability 1/2).

Example 2.6. Motivation for this article partly arises from tug-of-war games. In particular, the tug-of-war 
with noise associated to the DPP

u(x) = α

2

(
sup
Bε(x)

u + inf
Bε(x)

u

)
+ β

∫
Bε(x)

u(z)dz + ε2f(x), (8)

was introduced in [17]. This can be rewritten as

1
2ε2

(
α

(
sup
Bε(x)

u + inf
Bε(x)

u− 2u(x)
)

+ β

∫
B1

δu(x, εy) dy
)

+ f(x) = 0.

Since

sup
Bε(x)

u + inf
Bε(x)

u ≤ sup
z∈B1

(
u(x + εz) + u(x− εz)

)
we have 0 ≤ f + L+

ε u and similarly 0 ≥ f + L−
ε u. Therefore solutions to (8) satisfy (2), and our results 

apply to these functions. As a limit one obtains the p-Laplacian problem with 2 < p < ∞. See Example 2.4 
in [1] for other DPPs related to the p-Laplacian.

Example 2.7. Consider a stochastic process where a particle jumps to a point in an ellipsoid εEx uniformly 
at random (B1 ⊂ Ex ⊂ BΛ), see [2]. Such a process is associated to the DPP

u(x) =
∫
Ex

u(x + εy) dy.

That DPP is covered by our results, see Example 2.7 in [1]. Such mean value property has been studied in 
connection with smooth solutions to PDEs in [20] by Pucci and Talenti.

Example 2.8. Also Isaacs type dynamic programming principle

u(x) = α sup inf u(x + εν) + u(x− εν) + β

∫
u(x + εy) dy,
V ∈V ν∈V 2 B1
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with V ⊂ P(BΛ), a subset of the power set, and β > 0, can be mentioned as an example. In particular, if 
we consider

V = {π ∩BΛ : π is an hyperplane of dimension k}

we obtain

λk(D2u) + CΔu = f,

as a limiting PDE, where

λk(D2u) = inf
dim(V )=k

sup
v∈V

〈D2u v, v〉

is the k-th eigenvalue of D2u, see also [4].

The applicability of the results in this article is by no means limited to these examples, but rather the 
results apply to many kind of fully nonlinear uniformly elliptic PDEs.

3. Measure estimates

One of the key ingredients in the proof of Hölder regularity is the measure estimate Lemma 3.6. To 
prove it, we need an ε-ABP estimate Theorem 3.1, an estimate for the difference between u and its concave 
envelope Corollary 3.3, as well as a suitable barrier functions Lemma 3.5.

3.1. The ε-ABP estimate

Next we recall a version of the ABP estimate. The discrete nature of our setting forces us to consider 
non-continuous subsolutions of the DPP, so the corresponding concave envelope Γ might not be C1,1 as in 
the classical setting. Moreover, in this setting it is not easy to use the change of variables formula for the 
integral to prove the ABP. In our previous work [1], the ABP estimate (Theorem 3.1 below) is adapted to 
the discrete ε-setting following an argument by Caffarelli and Silvestre ([8]) for nonlocal equations. The idea 
is to use a covering argument on the contact set (where u coincides with Γ) to estimate the oscillation of Γ. 
It is also interesting to note that one can recover the classical ABP estimate by taking limits as ε → 0.

However, the ε-ABP estimate as stated in [1] turns out to be insufficient to establish the preliminary 
measure estimates needed in our proof of Hölder regularity. To deal with this inconvenience, and since the 
ε-ABP exhibits certain independence of the behavior of u outside the contact set, we need to complement 
the ε-ABP estimate with an estimate (in measure) of the difference between the subsolution u and its 
concave envelope Γ (Lemma 3.2) in a neighborhood of any contact point.

Given ε > 0, we denote by Qε(RN ) a grid of open cubes of diameter ε/4 covering RN up to a measure 
zero. Take

Qε(RN ) : = {Q = Q ε
4
√

N
(x) : x ∈ ε

4
√
N

ZN}.

In addition, if A ⊂ RN we write

Qε(A) : = {Q ∈ Qε(RN ) : Q ∩A �= ∅}.

In order to obtain the measure estimates, given a bounded Borel measurable function u satisfying the 
conditions in Theorem 3.1, we define the concave envelope of u+ = max{u, 0} in B √ as the function
2 N+Λε
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Γ(x) : =
{

inf{	(x) : for all hyperplanes 	 ≥ u+ in B2
√
N+Λε} if |x| < 2

√
N + Λε,

0 if |x| ≥ 2
√
N + Λε.

Moreover, we define the superdifferential of Γ at x as the set of vectors

∇Γ(x) : = {ξ ∈ RN : Γ(z) ≤ Γ(x) + 〈ξ, z − x〉 for all |z| < 2
√
N + Λε}.

Since Γ is concave, then ∇Γ(x) �= ∅ for every |x| < 2
√
N + Λε.

In addition, we define the contact set Ku ⊂ B2
√
N as the set of points where u and Γ ‘agree’:

Ku : = {|x| ≤ 2
√
N : lim sup

y→x
u(y) = Γ(x)}.

We remark that the set Ku is compact. Indeed, Ku is bounded and since u ≤ Γ, the set of points where the 
equality is attained is given by lim supy→x u(y) − Γ(x) ≥ 0 and it is closed because lim supy→x u(y) − Γ(x)
is upper semicontinuous.

Now we are in conditions of stating the ε-ABP estimate, whose proof can be found in [1, Theorem 4.1]
(see also Remark 7.4 in the same reference).

Theorem 3.1 (ε-ABP estimate). Let f ∈ C(B2
√
N ) and suppose that u is a bounded Borel measurable 

function satisfying {
L+
ε u + f ≥ 0 in B2

√
N ,

u ≤ 0 in RN \B2
√
N ,

where L+
ε u was defined in (5). Then

sup
B2

√
N

u ≤ C

( ∑
Q∈Qε(Ku)

(sup
Q

f+)N |Q|
)1/N

,

where C > 0 is a constant independent of ε.

All relevant information of u in the proof of the ε-ABP estimate turns out to be transferred to its concave 
envelope Γ in the contact set Ku, while the behavior of u outside Ku does not play any role in the estimate. 
Therefore, in order to control the behavior of u in B2

√
N , in the next result we show that u stays sufficiently 

close to its concave envelope in a large enough portion of the ε-neighborhood of any contact point x0 ∈ Ku. 
It is also worth remarking that the result can be regarded as a refinement of Lemma 4.4 in [1], the main 
difference being the possible discontinuities that u might present.

Lemma 3.2. Under the assumptions of Theorem 3.1, let x0 ∈ Ku. Then for every C > 0 large enough there 
exists c > 0 such that

|Bε/4(x0) ∩ {Γ − u ≤ Cf(x0)ε2}| ≥ cεN .

Proof. By the definition of the set Ku, given x0 ∈ Ku there exists a sequence {xn}n of points in B2
√
N

converging to x0 such that

Γ(x0) = lim
n→∞

u(xn).

Recall the notation δu(xn, y) : = u(xn + y) + u(xn − y) − 2u(xn). Then, since u ≤ Γ,
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δu(xn, y) ≤ δΓ(xn, y) + 2[Γ(xn) − u(xn)]

≤ 2[Γ(xn) − u(xn)],

for every y, where the concavity of Γ has been used in the second inequality. In particular,

sup
z∈BΛ

δu(xn, εz) ≤ 2[Γ(xn) − u(xn)] −→ 0

as n → ∞. On the other hand,

1
2

∫
B1

δu(xn, εy) dy =
∫
Bε

(u(xn + y) − u(xn)) dy

=
∫
Bε

(u(x0 + y) − Γ(x0)) dy

+ Γ(x0) − u(xn) +
∫
Bε

(u(xn + y) − u(x0 + y)) dy,

and taking limits

lim
n→∞

1
2

∫
B1

δu(xn, εy) dy =
∫
Bε

(u(x0 + y) − Γ(x0)) dy.

Replacing in the expression for L+
ε u(xn) we get

ε2 lim inf
n→∞

L+
ε u(xn) ≤ β

∫
Bε

(u(x0 + y) − Γ(x0)) dy.

Since L+
ε u + f ≥ 0 by assumption with continuous f , we obtain

f(x0)ε2

β
≥
∫
Bε

(Γ(x0) − u(x0 + y)) dy

=
∫
Bε

(Γ(x0) − u(x0 + y) + 〈ξ, y〉) dy,

for every vector ξ ∈ RN , where the equality holds because of the symmetry of Bε. Since ∇Γ(x0) �= ∅ by the 
concavity of Γ, we can fix ξ ∈ ∇Γ(x0).

Next we split Bε in two sets: Bε ∩ {Φ ≤ Cf(x0)ε2} and Bε ∩ {Φ > Cf(x0)ε2}, where we have denoted

Φ(y) : = Γ(x0) − u(x0 + y) + 〈ξ, y〉

for every y ∈ Bε for simplicity, and we study the integral of Φ over both subsets.
First, since u ≤ Γ and ξ ∈ ∇Γ(x0) we have that

Φ(y) ≥ Γ(x0) − Γ(x0 + y) + 〈ξ, y〉 ≥ 0

for every y ∈ Bε, so we can estimate ∫
Bε∩{Φ≥Cf(x0)ε2}

Φ(y) dy ≥ 0.

On the other hand,
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∫
Bε∩{Φ>Cf(x0)ε2}

Φ(y) dy > |Bε ∩ {Φ > Cf(x0)ε2}|Cf(x0)ε2.

Summarizing, we have proven that

f(x0)ε2

β
>

|Bε ∩ {Φ > Cf(x0)ε2}|
|Bε|

Cf(x0)ε2,

so

|Bε/4 ∩ {Φ > Cf(x0)ε2}| ≤ |Bε ∩ {Φ > Cf(x0)ε2}| < |Bε|
Cβ

= 4N

Cβ
|Bε/4|.

Therefore,

|Bε/4 ∩ {Φ ≤ Cf(x0)ε2}| ≥ |Bε/4|
(

1 − 4N

Cβ

)
= cεN .

Finally, replacing Φ, and since Γ(x0+y) ≤ Γ(x0) +〈ξ, y〉 for every y ∈ Bε/4 and ξ ∈ ∇Γ(x0), we can estimate

cεN ≤ |{y ∈ Bε/4 : Γ(x0) − u(x0 + y) + 〈ξ, y〉 ≤ Cf(x0)ε2}|
≤ |{y ∈ Bε/4 : Γ(x0 + y) − u(x0 + y) ≤ Cf(x0)ε2}|
=
∣∣Bε/4(x0) ∩ {Γ − u ≤ Cf(x0)ε2}

∣∣,
so the proof is finished. �

We obtain the same estimate in each cube Q ∈ Qε(Ku) immediately as a corollary of the previous lemma.

Corollary 3.3. Under the assumptions of Theorem 3.1, there exists c > 0 such that∣∣3√N Q ∩ {Γ − u ≤ C(sup
Q

f)ε2}
∣∣ ≥ c|Q|

for each Q ∈ Qε(Ku).

Proof. Let Q ∈ Qε(Ku). Then there is x0 ∈ Q ∩Ku. On the other hand, since diamQ = ε/4, if we denote 
by xQ the center of Q, we get that |xQ − x0| ≤ diamQ/2 and

Bε/4(x0) = BdiamQ(x0) ⊂ B 3
2 diamQ(xQ) ⊂ 3

√
N Q.

Hence, by Lemma 3.2, using this inclusion and recalling that εN = (4
√
N)N |Q| we complete the proof. �

3.2. A barrier function for L−
ε

Another ingredient needed in the proof of the measure estimate Lemma 3.6 is a construction of a barrier 
for the minimal Pucci-type operator defined in (6). To that end, we prove the following technical inequality 
for real numbers.

Lemma 3.4. Let σ > 0. If a, b > 0 and c ∈ R such that |c| < a + b then

(a + b + c)−σ + (a + b− c)−σ − 2a−σ ≥ 2σa−σ−1
[
−b + σ + 1

(
1 − (σ + 2) b

)
c2
]
. (9)
2 a a
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Proof. The inequality

(t + h)−σ + (t− h)−σ − 2t−σ ≥ σ(σ + 1)t−σ−2h2

holds for every 0 < |h| < t. This can be seen by considering the Taylor expansion in h of the LHS with error 
of order 4 and bound the error since it is positive.

Then replacing t = a + b and h = c we obtain that

(a + b + c)−σ + (a + b− c)−σ ≥ 2(a + b)−σ + σ(σ + 1)(a + b)−σ−2c2.

Moreover, by using convexity we can estimate

(a + b)−σ ≥ a−σ − σa−σ−1b = a−σ

(
1 − σ

b

a

)
,

and similarly

(a + b)−σ−2 ≥ a−σ−2
(

1 − (σ + 2) b
a

)
.

Using these inequalities and rearranging terms we get

(a + b + c)−σ + (a + b− c)−σ − 2a−σ ≥ 2a−σ

(
1 − σ

b

a

)
+ σ(σ + 1)a−σ−2

(
1 − (σ + 2) b

a

)
c2 − 2a−σ

= 2σa−σ−1
[
−b + σ + 1

2

(
1 − (σ + 2) b

a

)
c2

a

]
,

and the proof is concluded. �
Next we construct a suitable barrier function. The importance of this function, which will be clarified 

later, lies in the fact that, when added to a subsolution u, its shape ensures that the contact set is localized 
in a fixed neighborhood of the origin. Recall the notation L−

ε from (6).

Lemma 3.5. There exists a smooth function Ψ : RN → R and ε0 > 0 such that⎧⎪⎪⎨⎪⎪⎩
L−
ε Ψ + ψ ≥ 0 in RN ,

Ψ ≥ 2 in Q3,

Ψ ≤ 0 in RN \B2
√
N ,

for every 0 < ε ≤ ε0, where ψ : RN → R is a smooth function such that

ψ ≤ ψ(0) in RN and ψ ≤ 0 in RN \B1/4.

Proof. The proof is constructive. Let σ > 0 to be fixed later and define

Ψ(x) = A(1 + |x|2)−σ −B

for each x ∈ RN , where A, B > 0 are chosen such that

Ψ(x) =
{

2 if |x| = 3
2
√
N,

0 if |x| = 2
√
N.
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Then Ψ ≤ 0 in RN \ B2
√
N and Ψ ≥ 2 in Q3 ⊂ B3/2

√
N . We show that Ψ satisfies the remaining condition 

for a suitable choice of the exponent σ independently of ε.
Since Ψ is radial, we can assume without loss of generality that x = (|x|, 0, . . . , 0). Then

Ψ(x + εy) = A(1 + |x + εy|2)−σ −B = A(1 + |x|2 + ε2|y|2 + 2ε|x|y1)−σ −B

for every y ∈ RN . Thus, recalling (9) with a = 1 + |x|2, b = ε2|y|2 and c = 2ε|x|y1 we obtain that

δΨ(x, εy) = Ψ(x + εy) + Ψ(x− εy) − 2Ψ(x)

≥ 2ε2Aσ(1 + |x|2)−σ−1
[
−|y|2 + 2(σ + 1)

(
1 − (σ + 2) ε2|y|2

1 + |x|2
)

|x|2
1 + |x|2 y

2
1

]
≥ 2ε2Aσ(1 + |x|2)−σ−1

[
−Λ2 + 2(σ + 1)(1 − (σ + 2)Λ2ε2) |x|2

1 + |x|2 y
2
1

]

for every |y| < Λ.
Fix ε0 = ε0(Λ, σ) such that

ε0 ≤ 1
Λ
√

2(σ + 2)
,

so

δΨ(x, εy) ≥ 2ε2Aσ(1 + |x|2)−σ−1
[
−Λ2 + (σ + 1) |x|2

1 + |x|2 y
2
1

]

for every |y| < Λ and 0 < ε ≤ ε0. In consequence we can estimate

inf
z∈BΛ

δΨ(x, εz) ≥ 2ε2Aσ(1 + |x|2)−σ−1 [−Λ2]
and

∫
B1

δΨ(x, εy) dy ≥ 2ε2Aσ(1 + |x|2)−σ−1
[
−Λ2 + σ + 1

N + 2 · |x|2
1 + |x|2

]
,

where we have used that 
∫
B1

y2
1 dy = 1

N+2 . Replacing these inequalities in the definition of L−
ε Ψ(x), (6), we 

obtain

L−
ε Ψ(x) ≥ Aσ(1 + |x|2)−σ−1

[
−Λ2 + β

σ + 1
N + 2 · |x|2

1 + |x|2
]

= : −ψ(x)

for every x ∈ RN and 0 < ε ≤ ε0. It is easy to check that ψ(x) ≤ ψ(0) = AσΛ2 for every x ∈ RN . Moreover

ψ(x) ≤ Aσ(1 + |x|2)−σ−1
[
Λ2 − β(σ + 1)

17(N + 2)

]

for every |x| ≥ 1/4. Choosing large enough σ = σ(N, Λ, β) > 0 we get that ψ(x) ≤ 0 for every |x| ≥ 1/4
and the proof is finished. �
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3.3. Estimate for the distribution function of u

In the next lemma we adapt [8, Lemma 10.1] to pass from a pointwise estimate to an estimate in measure. 
This is done by combining the estimate for the difference between u and Γ near the contact set with the 
ε-ABP estimate.

Lemma 3.6. There exist ε0, ρ > 0, M ≥ 1 and 0 < μ < 1 such that if u is a bounded measurable function 
satisfying {

L−
ε u ≤ ρ in B2

√
N ,

u ≥ 0 in RN ,

for some 0 < ε ≤ ε0 and

inf
Q3

u ≤ 1,

then

|{u > M} ∩Q1| ≤ μ.

Proof. The idea of the proof is as follows: first we use the auxiliary functions Ψ and ψ from Lemma 3.5 to 
define a new function

v = Ψ − u,

which satisfies the assumptions in Theorem 3.1 (ε-ABP estimate) with f = ψ + ρ. Then we use the ε-ABP 
together with the pointwise estimate infQ3 u ≤ 1 and the negativity of ψ outside B1/4 to obtain a lower 
bound for the measure of the union of all cubes Q ∈ Qε(Kv ∩ B1/4). Combining this with the estimate of 
the difference between v and its concave envelope at each cube Q (Corollary 3.3) we can deduce the desired 
measure estimate for u.

Let v = Ψ − u where Ψ is the function from Lemma 3.5. Since u ≥ 0 and Ψ ≤ 0 in RN \ B2
√
N , then 

v ≤ 0 in RN \B2
√
N . On the other hand,

sup
Q3

v ≥ inf
Q3

Ψ − inf
Q3

u ≥ 1.

Similarly, since δv(x, εy) = δΨ(x, εy) − δu(x, εy), then

sup
z∈BΛ

δv(x, εz) ≥ inf
z∈BΛ

δΨ(x, εz) − inf
z∈BΛ

δu(x, εz)

so we have that

L+
ε v(x) ≥ L−

ε Ψ(x) − L−
ε u(x) ≥ −ψ(x) − ρ.

Summarizing, v = Ψ − u satisfies supQ3
v ≥ 1 and

{
L+
ε v + ψ + ρ ≥ 0 in B2

√
N ,

v ≤ 0 in RN \B √ .
2 N
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Moreover, since ψ is continuous, we are under the hypothesis of the ε-ABP estimate in Theorem 3.1, and 
thus the following estimate holds,

sup
B2

√
N

v ≤ C1

( ∑
Q∈Qε(Kv)

(sup
Q

ψ+ + ρ)N |Q|
)1/N

,

where C1 > 0. Then, since Q3 ⊂ B2
√
N and supQ3

v ≥ 1, we obtain

1
C1

≤
( ∑

Q∈Qε(Kv)

(sup
Q

ψ+ + ρ)N |Q|
)1/N

≤
( ∑

Q∈Qε(Kv)

(sup
Q

ψ+)N |Q|
)1/N

+ ρ

( ∑
Q∈Qε(Kv)

|Q|
)1/N

,

where the second inequality follows immediately from Minkowski’s inequality. Since Kv ⊂ B2
√
N and 

diamQ = ε/4 for each Q ∈ Qε(Kv) then∑
Q∈Qε(Kv)

|Q| ≤ |B2
√
N+ε/4| ≤ CN

2 ,

for every 0 < ε ≤ ε0. Replacing in the previous estimate and rearranging terms we get

1
C1

− C2ρ ≤
( ∑

Q∈Qε(Kv)

(sup
Q

ψ+)N |Q|
)1/N

.

Choosing small enough ρ > 0 we have that

1
(2C1)N

≤
∑

Q∈Qε(Kv)

(sup
Q

ψ+)N |Q|.

Next we observe that by Lemma 3.5, ψ ≤ 0 in RN \ B1/4, so ψ+ ≡ 0 for each Q ∈ Qε(Kv) such that 
Q ∩B1/4 = ∅, while we estimate supQ ψ+ ≤ ψ(0) when Q ∩B1/4 �= ∅. Thus

1
(2C1ψ(0))N ≤

∑
Q∈Qε(Kv∩B1/4)

|Q|,

and recalling Corollary 3.3, we obtain the following inequality,

c

(2C1ψ(0))N ≤
∑

Q∈Qε(Kv∩B1/4)

∣∣3√N Q ∩ {Γ − v ≤ C(sup
Q

ψ+ + ρ)ε2}
∣∣.

Notice that 3
√
N Q ⊂ B1/2 ⊂ Q1 for each Q ∈ Qε(Kv ∩B1/4) and every 0 < ε ≤ ε0 with ε0 > 0 sufficiently 

small, so

3
√
N Q ∩ {Γ − v ≤ C(sup

Q
ψ+ + ρ)ε2} ⊂ Q1 ∩ {Γ − v ≤ C(ψ(0) + ρ)ε2}

for each Q ∈ Qε(Kv ∩ B1/4), where the fact that supQ ψ+ ≤ ψ(0) has been used again here. Furthermore, 
if 	 = 	(N) ∈ N is the unique odd integer such that 	 − 2 < 3

√
N ≤ 	, then each cube Q ∈ Qε(Kv ∩B1/4)

is contained in at most 	N cubes of the form 3
√
N Q′ with Q′ ∈ Qε(Kv ∩B1/4), and in consequence
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c

(2C1ψ(0))N ≤ 	N
∣∣Q1 ∩ {Γ − v ≤ C(ψ(0) + ρ)ε2}

∣∣.
Finally, since Γ ≥ 0, v = Ψ − u ≤ Ψ(0) − u and ε ≤ ε0,

c

(2C1ψ(0)	)N ≤
∣∣Q1 ∩ {u ≤ Ψ(0) + C(ψ(0) + ρ)ε2

0}
∣∣.

Then let M : = Ψ(0) + C(ψ(0) + ρ)ε2
0 and 1 − μ : = c(2C1ψ(0)	)−N , so that we get

1 − μ ≤
∣∣Q1 ∩ {u ≤ M}

∣∣,
which immediately implies the claim. �
4. De Giorgi oscillation estimate

A key intermediate result towards the oscillation estimate (Lemma 4.5), Hölder regularity (Theorem 4.7) 
and Harnack’s inequality is a power decay estimate for |{u > t} ∩Q1|. This will be Lemma 4.4. It is based 
on the measure estimates Lemma 3.6 and Lemma 4.2, as well as a discrete version of the Calderón-Zygmund 
decomposition, Lemma 4.1 below.

4.1. Calderón-Zygmund decomposition

The discrete nature of the DPP does not allow to apply the rescaling argument to arbitrary small dyadic 
cubes. To be more precise, since all the previous estimates require certain bound ε0 > 0 for the scale-size in 
the DPP, and since the extremal Pucci-type operators L±

ε rescale as L±
2�ε

in each dyadic cube of generation 
	, the rescaling argument will only work on those dyadic cubes of generation 	 ∈ N satisfying 2�ε < ε0. For 
that reason, the dyadic splitting in the Calderón-Zygmund decomposition has to be stopped at generation L, 
and in consequence the Calderón-Zygmund decomposition lemma has to be adapted. We need an additional 
criterion for selecting cubes in order to control the error caused by stopping the process at generation L. 
We use the idea from [1].

We use the following notation: D� is the family of dyadic open subcubes of Q1 of generation 	 ∈ N, where 
D0 = {Q1}, D1 is the family of 2N dyadic cubes obtained by dividing Q1, and so on. Given 	 ∈ N and 
Q ∈ D� we define pre(Q) ∈ D�−1 as the unique dyadic cube in D�−1 containing Q.

Lemma 4.1 (Calderón-Zygmund). Let A ⊂ B ⊂ Q1 be measurable sets, δ1, δ2 ∈ (0, 1) and L ∈ N. Suppose 
that the following assumptions hold:

1. |A| ≤ δ1;
2. if Q ∈ D� for some 	 ≤ L satisfies |A ∩Q| > δ1|Q| then pre(Q) ⊂ B;
3. if Q ∈ DL satisfies |A ∩Q| > δ2|Q| then Q ⊂ B;

Then,

|A| ≤ δ1|B| + δ2.

Proof. We will construct a collection of open cubes QB, containing subcubes from generations D0, D1, . . . , DL.
The cubes will be pairwise disjoint and will be contained in B. Recall that by assumption |Q1∩A| ≤ δ1 |Q1|. 
Then we split Q1 into 2N dyadic cubes D1. For those dyadic cubes Q ∈ D1 that satisfy
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|A ∩Q| > δ1|Q|, (10)

we select pre(Q) into QB. Those cubes are included in B because of assumption (2).
For other dyadic cubes that do not satisfy (10) and are not contained in any cube already included in 

QB , we keep splitting, and again repeat the selection according to (10). We repeat splitting L ∈ N times. 
At the level L, in addition to the previous process, we also select those cubes Q ∈ DL (not the predecessors) 
into QB for which

|A ∩Q| > δ2|Q|, (11)

and which are not contained in any cube already included in QB. Those cubes are included in B because 
of assumption (3).

Observe that for pre(Q) selected according to (10) into QB , it holds that

|A ∩ pre(Q)| ≤ δ1|pre(Q)|

since otherwise we would have stopped splitting already at the earlier round. We also have |A ∩Q| ≤ δ1|Q|
for cubes Q selected according to (11) into QB , since their predecessors were not selected according to (10). 
Summing up, for all the cubes Q ∈ QB , it holds that

|A ∩Q| ≤ δ1|Q|. (12)

Next we define GL as a family of cubes of DL that are not included in any of the cubes in QB . It 
immediately holds a.e. that

A ⊂ Q1 =
⋃

Q∈QB

Q ∪
⋃

Q∈GL

Q.

By this, using (12) for every Q ∈ QB , as well as observing that |A ∩Q| ≤ δ2|Q| by (11) for every Q ∈ GL, 
we get

|A| =
∑

Q∈QB

|A ∩Q| +
∑

Q∈GL

|A ∩Q|

≤
∑

Q∈QB

δ1|Q| +
∑

Q∈GL

δ2|Q|

≤ δ1|B| + δ2.

In the last inequality, we used that the cubes in QB are included in B, as well as the fact that they are 
disjoint by construction. �

As we have already pointed out, we use the estimate from Lemma 3.6 to show that the condition (2) in 
the Calderón-Zygmund lemma is satisfied. To ensure that the remaining condition is satisfied for the dyadic 
cubes in DL not considered before stopping the dyadic decomposition, we prove the following result using 
the equation. Here ε is ‘relatively large’.

Lemma 4.2. Let 0 < ε0 < 1 and ρ > 0. Suppose that u is a bounded measurable function satisfying{
L−
ε u ≤ ρ in Q10

√
N ,

u ≥ 0 in RN ,
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for some ε02 ≤ ε ≤ ε0. There exists a constant c = c(ε0, ρ) > 0 such that if

|{u > K} ∩Q1| >
c

K

holds for some K > 0, then

u > 1 in Q1.

Proof. By the definition of the minimal Pucci-type operator L−
ε and since L−

ε u(x) ≤ ρ for every x ∈ Q10
√
N

by assumption, rearranging terms we have

u(x) ≥ α inf
ν∈M(BΛ)

∫
u(x + εv) dν(v) + β

∫
Bε(x)

u(y) dy − ε2ρ

≥ β

∫
Bε(x)

u(y) dy − ε2ρ,

where in the second inequality we have used that u ≥ 0 to estimate the α-term by zero. Then, by considering 
f = χB1

|B1| , we can rewrite this inequality as

u(x) ≥ β

εN

∫
f
(y − x

ε

)
u(y) dy − ε2ρ,

which holds for every x ∈ Q10
√
N , and in particular for every |x| < 5

√
N . Next observe that if |x| +ε < 5

√
N , 

then y ∈ Q10
√
N for every y ∈ Bε(x), and thus applying twice the previous inequality we can estimate by 

using change of variables

u(x) ≥ β

εN

∫
f
(y − x

ε

)( β

εN

∫
f
(z − y

ε

)
u(z) dz − ε2ρ

)
dy − ε2ρ

= β2

εN

∫ ( 1
εN

∫
f
(y − x

ε

)
f
(z − y

ε

)
dy

)
u(z) dz − (1 + β)ε2ρ

= β2

εN

∫
(f ∗ f)

(z − x

ε

)
u(z) dz − (1 + β)ε2ρ,

which holds for every |x| < 5
√
N − ε.

Let n ∈ N to be fixed later and assume that |x| + (n − 1)ε < 5
√
N . By iterating this argument n times 

we obtain

u(x) ≥ βn

εN

∫
f∗n
(y − x

ε

)
u(y) dy − (1 + β + β2 + · · · + βn−1)ε2ρ

≥ βn

εN

∫
f∗n
(y − x

ε

)
u(y) dy − ε2ρ

1 − β

(13)

for every |x| < 5
√
N − (n − 1)ε, where f∗n denotes the convolution of f with itself n times. Observe that 

f∗n is a radial decreasing function and f∗n > 0 in Bn. Thus, since ε ≥ ε0
2 by assumption,

f∗n
(y − x

ε

)
≥ f∗n

(2(y − x)
ε0

)
,

which is strictly positive whenever |y− x| < nε0
2 . Now fix n ∈ N such that |x| < 5

√
N − (n − 1)ε0 for every 

x ∈ Q1 and |y − x| < nε0 for every x, y ∈ Q1, that is n ∈ N such that
2
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2
√
N < nε0 <

9
2
√
N + ε0.

Then

f∗n
(y − x

ε

)
≥ f∗n

(2
√
Ne1

ε0

)
= : C > 0

for every x, y ∈ Q1. In this way Q1 is contained in the support of y 	→ f∗n( y−x
ε

)
for every x ∈ Q1, so 

recalling that u ≥ 0 we can estimate∫
f∗n
(y − x

ε

)
u(y) dy ≥

∫
Q1

f∗n
(y − x

ε

)
u(y) dy

≥ C

∫
Q1

u(y) dy

≥ C

∫
{u>K}∩Q1

u(y) dy

> C|{u > K} ∩Q1|K

for each K > 0. Replacing this in (13) and recalling that ε ≤ ε0 we get

u(x) > C
βn

εN
|{u > K} ∩Q1|K − ε2ρ

1 − β

≥ C
βn

εN0
|{u > K} ∩Q1|K − ε2

0ρ

1 − β

for each K > 0 and every x ∈ Q1.
Finally, let us fix c = εN0

Cβn

(
1 + ε20ρ

1−β

)
. By assumption, |{u > K} ∩Q1| K > c holds for some K > 0, so

u(x) > C
βn

εN0
c− ε2

0ρ

1 − β
= 1

for every Q1 and the proof is finished. �
4.2. Power decay estimate

The power decay estimate (Lemma 4.4) is obtained by deriving an estimate between the superlevel sets 
of u and then iterating the estimate. In order to obtain the estimate between the superlevel sets, we use 
a discrete version of the Calderón-Zygmund decomposition (Lemma 4.1) together with the preliminary 
measure estimates from Lemma 3.6 and Lemma 4.2.

Lemma 4.3. There exist ε0, ρ, c > 0, M ≥ 1 and 0 < μ < 1 such that if u is a bounded measurable function 
satisfying {

L−
ε u ≤ ρ in Q10

√
N ,

u ≥ 0 in RN ,

for some 0 < ε ≤ ε0 and
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inf
Q3

u ≤ 1,

then

|{u > Kk} ∩Q1| ≤
c

(1 − μ)K + μk,

holds for every K ≥ M and k ∈ N.

Proof. The values of M , μ, ε0 and ρ are already given by Lemma 3.6, while c has been fixed in Lemma 4.2.
For k = 1, by Lemma 3.6, we have

|{u > K} ∩Q1| ≤ |{u > M} ∩Q1| ≤ μ ≤ c

K
+ μ.

Now we proceed by induction. We consider

A := Ak := {u > Kk} ∩Q1 and B := Ak−1 := {u > Kk−1} ∩Q1.

We have A ⊂ B ⊂ Q1 and |A| ≤ μ. We apply Lemma 4.1 for δ1 = μ, δ2 = c
K and L ∈ N such that 

2Lε < ε0 ≤ 2L+1ε. We have to check in two cases that certain dyadic cubes are included in B.
Observe that since |A| ≤ μ, the first assumption in Lemma 4.1 is satisfied. Next we check that the 

remaining conditions in Lemma 4.1 are also satisfied. Given any cube Q ∈ D� for some 	 ≤ L, we define 
ũ : Q1 → R as a rescaled version of u restricted to Q, that is

ũ(y) = 1
Kk−1 u(x0 + 2−�y) (14)

for every y ∈ Q, where x0 stands for the center of Q. Then

|{ũ > K} ∩Q1| = 2N�|{u > Kk} ∩Q| = |A ∩Q|
|Q| .

Let us suppose that Q is a cube in D� for some 	 ≤ L satisfying

|A ∩Q| > μ|Q|. (15)

We have to check that pre(Q) ⊂ B. Let us suppose on the contrary that the inclusion does not hold, that 
is that there exists x̃ ∈ pre(Q) such that u(x̃) ≤ Kk−1. By (14) we have that

δũ(y, ε̃z) = 1
Kk−1 δu(x0 + 2−�y, εz),

where ε̃ = 2�ε ≤ 2Lε < ε0, and δũ(y, ̃εz) is defined according to (4). Replacing this in the definition of L−
ε

in (6), and since L−
ε u ≤ ρ by assumption, we obtain

L−
ε̃ ũ(y) = 1

22�Kk−1 L−
ε u(x0 + 2−�y) ≤ ρ

22�Kk−1 ≤ ρ,

where we have used that K ≥ M ≥ 1. Moreover ũ ≥ 0 and infQ3 ũ ≤ 1 since u(x̃) ≤ Kk−1 by the counter 
assumption. Hence, the rescaled function ũ satisfies the assumptions in Lemma 3.6, and thus

|A ∩Q| = |{ũ > K} ∩Q1| ≤ μ,
|Q|
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which contradicts (15). Thus pre(Q) ⊂ B and the second condition in Lemma 4.1 is satisfied.
Suppose now that Q ∈ DL is a dyadic cube satisfying

|A ∩Q| > c

K
|Q|.

Then

|{ũ > K} ∩Q1| = |A ∩Q|
|Q| >

c

K
,

and by Lemma 4.2 we have that ũ ≥ 1 in Q1. Recalling (14) we get that u ≥ Kk−1 in Q, and thus Q ⊂ B

as desired.
Finally, the assumptions in Lemma 4.1 are satisfied, so we can conclude that

|A| ≤ c

K
+ μ|B|,

so the result follows by induction. We get

|{u > Kk} ∩Q1| ≤
c

K
(1 + μ + · · · + μk−1) + μk ≤ c

(1 − μ)K + μk

as desired. �
Next we show that a convenient choice of the constants in the previous result immediately leads to the 

desired power decay estimate for |{u ≥ t} ∩Q1|.

Lemma 4.4. Let u be a function satisfying the conditions from Lemma 4.3. There exist a > 0 and d ≥ 1
such that

|{u > t} ∩Q1| ≤ de−
√

log t
a

for every t ≥ 1.

Proof. Let M ≥ 1 and μ ∈ (0, 1) be the constants from Lemma 4.3. Let us fix a = 1
log 1

μ

> 0. Then given 

t ≥ 1 we choose K = K(t) = e
√

log(t)/a ≥ 1, so t = Ka logK . We distinguish two cases.
First, if K = K(t) ≥ M , recalling Lemma 4.3 we have that the estimate

|{u > Kk} ∩Q1| ≤
c

(1 − μ)K + μk

holds for every k ∈ N. In particular, if we fix k = �a logK� we get that

Kk ≤ Ka log(K) = t

and

μk < μa log(K)−1 = 1
Kμ

.

Using these inequalities together with the estimate from Lemma 4.3 we obtain
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|{u > t} ∩Q1| ≤ |{u > Kk} ∩Q1|

≤ c

(1 − μ)K + μk

≤
(

c

1 − μ
+ 1

μ

)
1
K

=
(

c

1 − μ
+ 1

μ

)
e−
√

log t
a ,

where in the last equality we have used the definition of K = K(t).
On the other hand, if K(t) < M then we can roughly estimate

|{u > t} ∩Q1| ≤ 1 <
M

K(t) = Me−
√

log t
a .

Finally, choosing d = max{M, c
1−μ + 1

μ} ≥ 1, the result follows for every t ≥ 1. �
We prove here the De Giorgi oscillation lemma. The lemma follows from the measure estimate in a 

straightforward manner. Harnack’s inequality requires an additional argument that we postpone to the 
next section.

Lemma 4.5 (De Giorgi oscillation lemma). Given θ ∈ (0, 1), there exist ε0, ρ > 0 and η = η(θ) ∈ (0, 1) such 
that if u satisfies

{
L−
ε u ≤ ηρ in Q10

√
N ,

u ≥ 0 in RN ,

for some 0 < ε < ε0 and

|Q1 ∩ {u > 1}| ≥ θ,

then

inf
Q3

u ≥ η.

Proof. We take ε0, ρ > 0 given by Lemma 4.3. Let m = inf
Q3

u for simplicity and define ũ the rescaled version 

of u given by

ũ(x) = u(x)
m

for every x ∈ RN . Then inf
Q3

ũ ≤ 1 and, by assumption,

|{ũ >
1
m
} ∩Q1| = |{u > 1} ∩Q1| ≥ θ.

Now suppose that L−
ε u ≤ ηρ where 0 < η ≤ m is a constant to be chosen later. Then

L−
ε ũ = L−

ε u ≤ ηρ ≤ ρ,

m m
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and recalling Lemma 4.4 with ũ and t = 1
m ≥ 1 (observe that in the case m ≥ 1 we immediately get the 

result) we obtain

θ ≤ |{ũ >
1
m
} ∩Q1| ≤ de

−
√

log 1
m

a .

Rearranging terms we get

inf
Q3

u = m ≥ e−a
(
log d

θ

)2
,

so choosing η = η(θ) = e−a
(
log d

θ

)2 ∈ (0, 1) we finish the proof. �
Now we are in a position to state the Hölder estimate. The proof after obtaining the De Giorgi oscillation 

estimate is exactly as in [1]. The statement of the De Giorgi oscillation lemma here is different from the one 
there. For the sake of completeness we prove that the statement here implies the one in [1].

Lemma 4.6. There exist k > 1 and C, ε0 > 0 such that for every R > 0 and ε < ε0R, if L+
ε u ≥ −ρ in BkR

with u ≤ M in BkR and

|BR ∩ {u ≤ m}| ≥ θ|BR|,

for some ρ > 0, θ ∈ (0, 1) and m, M ∈ R, then there exist η = η(θ) > 0 such that

sup
BR

u ≤ (1 − η)M + ηm + CR2ρ.

Proof. We can assume that M > m, given γ > 0 we define

ũ(x) = M − u(2Rx)
M −m

+ γ

in Bk/2. For k = 10N since Q10
√
N ⊂ Bk/2 we get that ũ is defined in Q10

√
N . Since u ≤ M we get ũ ≥ 0. 

Also, since u ≤ m implies ũ > 1 we get

|Q1 ∩ {u > 1}| ≥ |B1/2 ∩ {u > 1}| ≥ |BR ∩ {u ≤ m}|
|BR|

≥ θ.

For ε̃ = ε
2R < ε0, since L+

ε u ≥ −ρ, we get L−
ε̃ ũ ≤ 4R2ρ

M−m . Therefore, Lemma 4.5 implies that there exists 
ρ̃ > 0 and η̃ = η̃(θ) ∈ (0, 1) such that if 4R2ρ

M−m < ρ̃η̃ we get

inf
Q3

ũ ≥ η̃.

Then,

sup
Q6R

u ≤ M(1 − η̃ + γ) + m(η̃ + γ).

Since BR ⊂ Q6R and this holds for every γ > 0, we get

supu ≤ M(1 − η̃) + mη̃.

BR
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Finally we take η = η̃ and C = 4
ρ̃ . Thus, if 4R2ρ

M−m < ρ̃η̃ the result immediately follows from above. And if 
4R2ρ ≥ ρ̃η̃(M −m) we have

sup
BR

u ≤ M

= (1 − η̃)M + η̃m + η̃(M −m)

≤ (1 − η̃)M + η̃m + 4R2ρ

ρ̃

= (1 − η)M + ηm + CR2ρ. �
As we already mentioned, the Hölder estimate follows as in [1].

Theorem 4.7. There exists ε0 > 0 such that if u satisfies L+
ε u ≥ −ρ and L−

ε u ≤ ρ in BR where ε < ε0R, 
there exist C, γ > 0 such that

|u(x) − u(z)| ≤ C

Rγ

(
sup
BR

|u| + R2ρ

)(
|x− z|γ + εγ

)
for every x, z ∈ BR/2.

5. Harnack’s inequality

In this section we obtain an ‘asymptotic Harnack’s inequality’. First, we prove Lemma 5.2 that gives 
sufficient conditions to obtain the result. One of the conditions of the lemma follows from Theorem 4.7 so 
then our task is to prove the other condition.

Before proceeding to the proof of the asymptotic Harnack we observe that the classical Harnack’s in-
equality does not hold.

Example 5.1. Fix ε ∈ (0, 1). We consider Ω = B2 ⊂ RN and A = {(x, 0, . . . , 0) ∈ Ω : x ∈ εN}. We define 
ν : Ω → M(B1) as

νx(E) = |E ∩B1|
|B1|

for x /∈ A,

νx = δe1 + δ−e1

2 for x ∈ A,

where e1 = (1, 0, . . . , 0). Now we construct a solution to the DPP Lεu = 0 in Ω, we assume α > 0. We define

u(x) =
{
ak if x = (kε, 0, . . . , 0), k ∈ N,

1 otherwise,

where a1 = a > 0 is arbitrary and the rest of the ak’s are fixed so that Lεu(kε, 0, . . . , 0) = 0 for each k ∈ N. 
Observe that if x /∈ A then δu(x, εy) = 0 a.e. y ∈ B1 and thus

Lεu(x) = 1
2ε2

∫
B1

δu(x, εy) dy = 0.

Otherwise, for x = (kε, 0, . . . , 0) we get
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Lεu(x) = 1
2ε2

(
α δu(x, εe1) + β

∫
B1

δu(x, εy) dy
)

= 1
ε2

(
α
ak+1 + ak−1

2 + β − ak

)
.

Thus for the DPP to hold we must have

ak = 1 − α + α
ak−1 + ak+1

2

for k ∈ N where we are denoting a0 = 1. Clearly this determines the values of the whole sequence, we 
explicitly calculate it. Let ϕ and ϕ̄ be the solutions to the equation x = α

2 (1 + x2), that is

ϕ = 1 +
√

1 − α2

α
and ϕ̄ = 1 −

√
1 − α2

α
.

Then

ak = 1 + a
ϕk − ϕ̄k

ϕ− ϕ̄
.

Observe that infB1 u = 1 but supB1
u ≥ a1 = a, so the Harnack inequality does not hold.

Let us observe that this does not contradict the Hölder estimate since supB2
|u| is large compared to a.

We begin the proof of the asymptotic Harnack inequality with the following lemma that gives sufficient 
conditions to obtain the result. The lemma is a modification of Lemma 4.1 and Theorem 5.2 in [16]. Our 
result, however, differs from the one there since, as observed above, in the present setting the classical 
Harnack’s inequality does not hold. The condition (ii) in Lemma 5.1 of [16] requires an estimate at level ε
that we do not require here. Indeed, Example 5.1 shows that this condition does not necessarily hold in our 
setting.

Lemma 5.2. Assume that u is a positive function defined in B3 ⊂ Rn and there is C ≥ 1, ρ ≥ 0 and ε > 0
such that

1. for some κ, λ > 0,

inf
Br(x)

u ≤ C

(
r−λ inf

B1
u + ρ

)
for every |x| ≤ 2 and r ∈ (κε, 1),

2. for some γ > 0,

osc (u,Br(x)) ≤ C
( r

R

)γ (
sup

BR(x)
u + R2ρ

)

for every |x| ≤ 2, R ≤ 1 and ε < r ≤ δR with εκ < Rδ where δ = (21+2λC)−1/γ .

Then

sup
B1

u ≤ C̃

(
inf
B1

u + ρ + ε2λ sup
B3

u

)
where C̃ = C̃(κ, λ, γ, C) = (21+2λC)2λ/γ max(C22+2λ, (2κ)2λ).
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Proof. We define Rk = 21−k and Mk = 4C(2−kδ)−2λ for each k = 1, . . . , k0, where k0 = k0(ε) ∈ N is fixed 
so that

2−(k0+1) ≤ κε

2δ < 2−k0 .

Then

ε2λ ≥
(

δ

2κ

)2λ
M1

Mk0

and δRk ≥ δRk0 > κε.
We assume, for the sake of contradiction, that

sup
B1

u > C̃

(
inf
B1

u + ρ + ε2λ sup
B3

u

)

with

C̃ = max
{
M1,

(
2κ
δ

)2λ
}
.

We get

sup
B1

u > M1

(
1

Mk0

sup
B3

u + inf
B1

u + ρ

)
.

We define x1 = 0 and x2 ∈ BR1(x1) = B1(0) such that

u(x2) > M1

(
1

Mk0

sup
B3

u + inf
B1

u + ρ

)
.

We claim that we can construct a sequence xk+1 ∈ BRk
(xk) such that

u(xk+1) > Mk

(
1

Mk0

sup
B3

u + inf
B1

u + ρ

)
,

for k = 1, . . . , k0.
We proceed to prove this by induction, we fix k and assume the hypothesis for the smaller values. Since 

δ < 1 we have BδRk
(xk) ⊂ BRk

(xk). Observe that |xk| ≤ R1 + · · ·+Rk−1 ≤ 2 and 1 > δRk > κε. Then, by 
hypothesis (1) we get

sup
BRk

(xk)
u ≥ C−1δ−γ

(
sup

BδRk
(xk)

u− inf
BδRk

(xk)
u

)
−R2

kρ

≥ C−1δ−γ

(
u(xk) − inf

BδRk
(xk)

u− Cδγρ

)
.

We apply hypothesis (2) for BδRk
(xk), we get
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inf
BδRk

(xk)
u + Cδγρ ≤ C(δRk)−λ inf

B1
u + Cρ + Cδγρ

< 2C(δRk)−2λ inf
B1

u + Mk−1

2 ρ

= Mk−1

2

(
inf
B1

u + ρ

)
< u(xk)/2,

where we have used that C(1 + δγ) ≤ 2C ≤ M1/2 ≤ Mk−1/2 and the inductive hypothesis.
Combining the last two inequalities we get

sup
BRk

(xk)
u > C−1δ−γ (u(xk) − u(xk)/2)

= C−1δ−γu(xk)/2

> C−1δ−γMk−1/2
(

1
Mk0

sup
B3

u + inf
B1

u + ρ

)
= Mk

(
1

Mk0

sup
B3

u + inf
B1

u + ρ

)
,

where the last equality holds by the choice of δ. Then, we can choose xk+1 ∈ BRk
(xk) such that

u(xk+1) > Mk

(
1

Mk0

sup
B3

u + inf
B1

u + ρ

)
.

Therefore we get

u(xk0+1) > sup
B3

u + Mk0

(
inf
B1

u + ρ

)
,

which is a contradiction since xk0+1 ∈ B2. �
So, now our task is to prove that solutions to the DPP satisfy the hypothesis of the previous lemma. We 

start working towards condition (1).

Theorem 5.3. There exists C, σ, ε0 > 0 such that if u is a bounded measurable function satisfying{
L−
ε u ≤ 0 in B7,

u ≥ 0 in RN ,

for some 0 < ε ≤ ε0, then

inf
Br(z)

u ≤ Cr−2σ inf
B1

u

for every z ∈ B2 and r ∈ (κε, 1), where κ = Λ
√

2(σ + 1).

Proof. Let Ω = B4(z) \Br(z). Our aim is to construct a subsolution Ψ in the Λε-neighborhood of Ω, i.e. in 
Ω̃ = B4+Λε(z) \Br−Λε(z), such that Ψ ≤ u in Ω̃.

Let Ψ : RN \ {0} → R be the smooth function defined by

Ψ(x) = A|x− z|−2σ −B
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for certain A, B, σ > 0, which is a radially decreasing function. The constants A and B are fixed in such a 
way that Ψ ≤ u in Ω̃ \ Ω, that is both in Br(z) \Br−Λε(z) and B4+Λε(z) \B4(z). More precisely, requiring

Ψ
∣∣
∂Br−Λε(z)

= inf
Br(z)

u and Ψ
∣∣
∂B4(z)

= 0,

and since Ψ is radially decreasing, we obtain that Ψ ≤ u in Ω̃ \ Ω. Therefore these conditions determine A
and B so that

Ψ(x) = |x− z|−2σ − 4−2σ

(r − Λε)−2σ − 4−2σ inf
Br

u.

Let us assume for the moment that z = 0 and x = (|x|, 0 . . . , 0). Similarly as in the proof of Lemma 3.5, 
using (9) we can estimate

δΨ(x, εy) ≥ 2ε2Aσ|x|−2σ−2
[
−Λ2 + 2(σ + 1)

(
1 − (σ + 2)Λ2ε2

r2

)
y2
1

]
for every |x| > r > Λε and |y| < Λ (so that |x + εy| > 0 and thus δΨ(x, εy) is well defined). Moreover, since 
r ∈ (κε, 1) we get

1 − (σ + 2)Λ2ε2

r2 ≥ 1 − (σ + 2)Λ2

κ2 = 1
2 ,

where the equality holds for

κ = Λ
√

2(σ + 2) ≥ 2Λ.

This also sets out an upper bound for ε: the inequality κε < 1 is satisfied for every 0 < ε ≤ ε0 with 
ε0 < 1

Λ
√

2(σ+2) . Then

δΨ(x, εy) ≥ 2ε2Aσ|x|−2σ−2 [−Λ2 + (σ + 1)y2
1
]

for every |x| > r > Λε and |y| < Λ. Hence

inf
z∈BΛ

δΨ(x, εz) ≥ 2ε2Aσ|x|−2σ−2 [−Λ2]
and ∫

B1

δΨ(x, εy) dy ≥ 2ε2Aσ|x|−2σ−2
[
−Λ2 + σ + 1

N + 2

]
,

so

L−
ε Ψ(x) ≥ Aσ|x|−2σ−2

[
−Λ2 + β

σ + 1
N + 2

]
= : −ψ(x)

for every |x| > r > Λε. Choosing large enough σ depending on N , β and Λ we get that ψ ≤ 0 for every 
|x| > Λε.

Summarizing, since Ω = B4(z) \Br(z) with r > κε ≥ 2Λε, we obtain{
L−
ε Ψ ≥ −ψ in Ω,

Ψ ≤ u in Ω̃ \ Ω.
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In what follows we recall the ε-ABP estimate to show that the inequality Ψ ≤ u is satisfied also in Ω. 
But before, as in the proof of Lemma 3.6, we define v = Ψ − u and since by assumption L−

ε u ≤ 0 in 
Ω = B4(z) \Br(z) ⊂ B7, we have

L+
ε v ≥ L−

ε Ψ − L−
ε u ≥ −ψ

in Ω. Thus {
L+
ε v + ψ ≥ 0 in Ω,

v ≤ 0 in Ω̃ \ Ω.

By the ε-ABP estimate (see Theorem 4.1 together with Remark 7.4 both from [1]),

sup
Ω

v ≤ sup
Ω̃\Ω

v + C

( ∑
Q∈Qε(Kv)

(
sup
Q

ψ+
)N

|Q|
)1/N

,

where Kv ⊂ Ω stands for the contact set of v in Ω and Qε(Kv) is a family of disjoint cubes Q of diameter 
ε/4 such that Q ∩Kv �= ∅, so that Q ⊂ Ω̃. Since v ≤ 0 in Ω̃ \ Ω and ψ ≤ 0, we obtain that v ≤ 0 in Ω, that 
is, Ψ ≤ u in Ω. In consequence,

inf
B1

u ≥ inf
B1

Ψ = 3−2σ − 4−2σ

(r − Λε)−2σ − 4−2σ inf
Br(z)

u

≥ (3−2σ − 4−2σ)(r − Λε)2σ inf
Br(z)

u

≥ (3−2σ − 4−2σ)
(r

2

)2σ
inf

Br(z)
u

for every z ∈ B2, where we have used r > κε ≥ 2Λε so that r − Λε > r
2 , so the proof is finished. �

Now we prove that condition (1) in Lemma 5.2 holds in the desired setting.

Corollary 5.4. There exists C, σ, ε0 > 0 such that if ρ ≥ 0 and u is a bounded measurable function satisfying{
L−
ε u ≤ ρ in B7,

u ≥ 0 in RN ,

for some 0 < ε ≤ ε0, then

inf
Br(z)

u ≤ C
(
r−2σ inf

B1
u + ρ

)
for every z ∈ B2 and r ∈ (κε, 1), where κ = Λ

√
2(σ + 1).

Proof. We consider ũ(x) = u(x) −Aρ|x|2, where A > 0 is a constant to be fixed later. Then

δũ(x, εy) = δu(x, εy) − 2ε2Aρ|y|2 ≤ δu(x, εy),

so

inf δũ(x, εz) ≤ inf δu(x, εz)

z∈BΛ z∈BΛ
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and ∫
B1

δũ(x, εy) dy =
∫
B1

δu(x, εy) dy − 2ε2Aρ
N

N + 2 ,

where we have used that 
∫
B1

|y|2 dy = N
N+2 . Therefore,

L−
ε ũ ≤ L−

ε u−Aρβ
N

N + 2 ≤
(

1 −Aβ
N

N + 2

)
ρ ≤ 0,

where the last inequality holds for a sufficiently large choice of A.
Therefore we can apply Theorem 5.3 to ũ. Observe first that since r ∈ (κε, 1) and z ∈ B2 then Br(z) ⊂ B3. 

Thus ũ ≥ u − 9Aρ in Br(z) and

inf
Br(z)

u− 9Aρ ≤ inf
Br(z)

ũ ≤ Cr−2σ inf
B1

ũ ≤ Cr−2σ inf
B1

u

and the result follows. �
Now we are ready to state the main result of the section.

Theorem 5.5. There exists C, λ, ε0 > 0 such that if u ≥ 0 in RN is a bounded and measurable function 
satisfying L+

ε u ≥ −ρ and L−
ε u ≤ ρ in B7 for some 0 < ε < ε0, then

sup
B1

u ≤ C

(
inf
B1

u + ρ + ε2λ sup
B3

u

)
.

Proof. By Corollary 5.4 we have that u satisfies condition (1) in Lemma 5.2 for λ = 2σ. We deduce condition 
(2) by taking infimum over x, z ∈ Br in the inequality given by Theorem 4.7. We use ε < r to bound εγ < rγ . 
In this way, we obtained the inequality for every r < R/2 and ε < ε0R. We need it to hold for every r ≤ δR

and ε < δ
κR. Therefore we have proved the result if δ < 1/2 and δκ < ε0. That is we have obtained the result 

as long as δ is small enough. Recall that δ = (21+2λC)−1/γ . Then, it is enough to take γ > 0 small enough. 
We can do this since ε0, C, κ and λ only depend on Λ, α, β and the dimension N , and not on γ. Also if 
Theorem 4.7 holds for a certain γ > 0 it also holds with the same constants for every smaller γ > 0. �
Remark 5.6. Let {uε : 0 < ε < ε0} be a family of nonnegative measurable solutions to the DDP with 
f = 0. In view of Theorem 4.7 together with the asymptotic Arzelá-Ascoli theorem [17, Lemma 4.2], we 
can assume that uε → u uniformly in B2 as ε → 0. Then by taking the limit in the asymptotic Harnack 
inequality

sup
B1

uε ≤ C

(
inf
B1

uε + ε2λ sup
B3

uε

)
,

we obtain the classical inequality for the limit, that is

sup
B1

u ≤ C inf
B1

u.

Similarly if {uε : 0 < ε < ε0} is a uniformly convergent family of nonnegative measurable functions such 
that L+

ε uε ≥ −ρ and L−
ε uε ≤ ρ, then for the limit we get

supu ≤ C(inf
B

u + ρ).

B1 1
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