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Abstract
Continuous software engineering has become commonplace in numerous fields. However, 
in regulating intensive sectors, where additional concerns need to be taken into account, it 
is often considered difficult to apply continuous development approaches, such as devops. 
In this paper, we present an approach for using pull requests as design controls, and apply 
this approach to machine learning in certified medical systems leveraging model cards, a 
novel technique developed to add explainability to machine learning systems, as a regula-
tory audit trail. The approach is demonstrated with an industrial system that we have used 
previously to show how medical systems can be developed in a continuous fashion.

Keywords Machine learning · ML · MLOps · CD4ML · Design control · Medical 
software · Regulated software · Continuous engineering

1 Introduction

During the latest decade, the Web has silently become the dominant platform for software 
applications. Effectively, this process has made releasing software so simple and cheap 
that to a degree, development and deployment activities are entangled. New parts of soft-
ware are experimentally deployed, and feedback from released software is used to assist in 
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development. As pointed out in Taivalsaari et al. (2008), this leads to a new type of devel-
opment approach, advancing in evolutionary fashion, where software is always on, and 
updates are tiny changes in the code. Concrete models for such continuous software engi-
neering (Fitzgerald & Stol,  2017) include continuous delivery (Humble & Farley,  2010) 
and DevOps (Ebert et al., 2016).

However, not all software lives on the Web, where applications can constantly evolve 
behind the curtains. Instead, numerous applications are used to power factories, control 
electronics, provide guidance for drones, and so on. For these, it is common that addi-
tional concerns are added in the development process. These can be added to the continu-
ous development process as add-ons or amalgamations, sometimes also reflected in their 
respective names, such as DevSecOps (Myrbakken & Colomo-Palacios, 2017) for DevOps 
used to develop secure systems, RegOps (Drvar et al., 2020) for digitalizing the regulatory 
value chain, or MLOps (Treveil et al., 2020) for continuous delivery of Machine Learning 
(ML) features.

Unfortunately, these approaches focus on one particular aspect that is added to the con-
tinuous software engineering pipeline, and do not consider how to integrate them to a big-
ger whole. Hence, their interoperability remains weak. Consequently, relating regulatory  
compliance and ML, for instance, requires additional considerations which are not a part 
of any off-the-shelf approach. As an example, consider the MLOps pipeline visualized in 
Fig.  1, consisting of data operations, executed by data engineers, data analysis and ML 
operations, run by data scientists, and developers who implement and deploy the final 
application. In contrast, RegOps focuses only on software development — the final part, 
performed by software developers — but overlooks the rest (Toivakka et al., 2021; Stirbu 
& Mikkonen, 2018). Hence, while MLOps helps in forming a pipeline for the whole devel-
opment effort, RegOps only supports the final parts with regulatory considerations and  
design controls.

In this paper, we introduce continuous design controls for ML in certified medical sys-
tems, covering the MLOps pipeline. The proposed approach starts with continuous soft-
ware engineering practices, which is then expanded with ML and data processing facilities. 
Then, we introduce the necessary regulatory processes, which cover both software and ML 
parts of the development. To simplify presentation, details of data operations, which in any 
case are often specific to certain organization (Aho et al., 2020), are largely overlooked, 
although practical techniques that bind them to continuous software engineering practices 

training
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app
code

data engineers data scientists developers and ops

Fig. 1  Simplified MLOps pipeline. Figure adapted from Granlund et al. (2021)
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are included in the paper. The resulting model is then demonstrated with an industrial case 
study that we have used in our previous paper (Granlund et al., 2021), with an extended 
discussion regarding the proposed improvements.

The rest of this paper is structured as follows. In Sect. 2, we introduce the necessary 
background of the paper. In Sect. 3, we propose a solution for continuous design controls. 
In Sect. 4, we demonstrate the solution with an industry example. In Sect. 5, we discuss the 
implications of the proposed solution. In Sect. 6, we draw some final conclusions.

2  Background

Because of multi-faceted nature of this work, it combines several different research fields, 
including continuous software development, ML, and the landscape of medical regulations. 
In the following, we present recent advances in these fields, so that we can introduce the 
proposed practical pipeline for regulated MLOps.

2.1  Continuous software engineering practices

The core of continuous software engineering practices is twofold. On one hand, it con-
sists of a mindset where the developers take responsibility for the whole software as a 
whole, and, while a single developer works on a particular feature, the bigger whole is 
constructed in terms of developers’ collaborative effort. On the other hand, it includes a 
toolset that allows deploying new features to use as soon as they are available (Fitzgerald 
& Stol, 2017). The goal is to produce continuous flow of value adding software artifacts 
from the development to the actual production use, with quality assurance also happening 
continuously as a part of the flow.

A particular flavor of continuous software engineering is called DevOps (Debois, 2011; 
Rajkumar et al., 2016). It can be described as a set of practices whose goal is to shorten the 
commit feedback cycle without compromising quality (Bass et al., 2015), and to expand 
the development team with the operators. In addition, the continuous software engineer-
ing toolset is expanded with monitoring capabilities, ensuring that each stakeholder gets a 
timely access to what they need.

Finally, it is important to notice that the automated pipeline is not about software going 
into production without any operator supervision, but rather the pipeline provides a feed-
back loop to each of the stakeholders from all stages of the delivery process. Moreover, as 
the software progresses through the pipeline, different stages can be triggered for example 
by operations and test teams by the click of a button.

2.2  ML life cycle challenges

The typical process of developing a ML application starts with transforming input data 
from a variety of sources into a collection of labeled data, a procedure performed by data 
engineers. This collection is then used by data scientists to perform a series of experiments 
that allows then to build a set of candidate models. The model that fulfills best the desired 
criteria captured in the functional and non-functional requirements is selected for deploy-
ment. Finally, the selected model is incorporated into the software system and deployed 
to the production environment, a procedure that is performed by software and operations 
engineers.
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Using continuous software engineering practices throughout ML application life cycle 
is not straightforward. In Fig. 1, we can see that the development is performed across three 
competence clusters: data engineers, data scientist and software developers. The level of 
expertise and skills related to continuous engineering practices varies among these special-
ties: while software developers use tooling to achieve a high degree of automation in their 
daily work, data scientist and, to a lesser extent, data engineers have a less structured way 
of working. Many data scientists are not aware of tools like version control systems that 
can track efficiently changes in the training code and the data used to perform the experi-
ments, or ticketing systems that enable them to track progress from the feature implementa-
tion to requirements. Instead, they rely on bespoke solutions that might not be appropriate 
when practiced in the development process of safety critical systems.

To incorporate ML features in software development, several techniques have been 
proposed. In this work, we build on Continuous Delivery for ML (Sato et al., 2019) and 
ML Model Cards (Mitchell et  al.,  2019). These techniques are briefly introduced in the 
following.

2.2.1  Continuous delivery for ML

Probably the best-known MLOps implementation, Continuous Delivery for Machine 
Learning (CD4ML) (Sato et  al.,  2019) by ThoughtWorks, aims at automating the ML 
application life cycle in an end-to-end fashion (Fig. 2). In CD4ML, a cross-functional team 
produces applications based on code, data, and models in small and safe increments that 
can be reproduced and reliably released at any time, in short adaptation cycles. Three dis-
tinct steps are included: (i) identify suitable data sources and prepare the data for training, 
(ii) experiment with different models to find the best performing candidate, and (iii) deploy 
and use the selected model in production as a part of a bigger software system.

regulatory 
"lo

cke
d"

boundary
Building

Evaluation and
Experimentation

Packaging

Testing

Deployment

Monitoring

training
data

candidate
model

selected
model

packaged
model

packaged
model

training
code

application
code

validation
data

test
codemetrics

application
bundle

machine learning pipeline deployment pipeline

data scientists developers and opsdata engineers

data
source

data labeling pipeline

test
data

Fig. 2  CD4ML pipelines and artifacts. Figure adapted from Granlund et al. (2021)
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CD4ML is not the only solution that aims to prevent the accumulation of hidden tech-
nical dept in machine learning applications (Sculley et  al.,  2015). While other solutions 
are heavily optimized for a particular cloud infrastructure (AWS Solutions, 2021; Google 
Cloud Solutions, 2021), an ML software stack implementation (Baylor et al., 2017), or con-
ceptual characteristics of the approach like MLOps (John et al., 2021), the CD4ML model 
has the advantage that it can be used as a reference model in any application domain. Fur-
thermore, it has the necessary phases documented at the appropriate level, and the imple-
mentation is based on open source components. Hence, it serves as a solid foundation for 
experimentation, and to translate the results to other MLOps pipelines.

2.2.2  ML model cards

ML model cards is a framework for transparent communication of information that facili-
tates the correct utilization of machine learning models (Mitchell et al., 2019). Intended as 
documentation that accompanies a trained machine learning model, the model card con-
tains information about intended use case, benchmark evaluation in a variety of relevant 
conditions, such as demographics or geographic location, or any other information that the 
creators consider suitable for the proper use of the trained model. Although the original 
proposal presented the model card as a visual representation, recent developments1 propose 
a programmatic mechanism to generate the model cards, and a machine-readable serializa-
tion2 that facilitates the consumption of model cards by scripts in ML pipelines.

While the machine-readable serialization of the model card is a step in the good direc-
tion, the information included in the card is limited to specific audiences, like data scien-
tists or machine learning engineers. To fulfill the model cards potential, the information 
should be extended to include the needs of other stakeholders. The model card metadata 
becomes a model from which various views targeted at different stakeholders can be 
derived, in a similar fashion as various software architecture views can be derived from 
a single software model. The approach will turn the model card into a must have artifact 
that conveys not only the information about the model’s intended use or performance, but 
also what other activities have been conducted in relation with the model (e.g., regulatory 
risk management), or metadata about data sets that facilitate downstream testing (Granlund 
et al., 2021).

2.3  Medical regulatory landscape

The manufacturing of medical devices is strictly controlled by authorities, and manufac-
turers must conform to the region’s regulatory requirements in which a medical device is 
being marketed for use. For this reason, medical software systems must also be developed 
according to the requirements of the target area. For example, the development is regulated 
by Medical Device Regulation (MDR) (European Parliament and the Council, 2017) and 
In Vitro Diagnostics Regulation (IVDR) (European Parliament and the Council, 2017) in 
the EU region and by Federal Food, Drug, and Cosmetic Act (FD&C Act) (U.S. Depart-
ment of Health and Human Services, 2021) in the USA.

1 https:// github. com/ tenso rflow/ model- card- toolk it
2 Tenso rFlow  model  card schema

https://github.com/tensorflow/model-card-toolkit
https://github.com/tensorflow/model-card-toolkit/blob/master/model_card_toolkit/schema/v0.0.2/model_card.schema.json
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2.3.1  Design control

The regulatory framework aims to ensure that a medical device is safe to use and clinically 
effective for its intended medical purpose. In practice, there are certain mandatory pro-
cesses that include control mechanisms for the whole software life cycle, including design, 
development, and manufacturing of the product. The regulatory requirements related to 
these process phases are generally referred to as the Design Controls (FDA - Center for 
Devices and Radiological Health, 1997).

The purpose of the Design Control process (depicted in Fig. 3), is to promote a well-
designed development process that includes traceability between process inputs and out-
puts at different stages of the process. Starting from user needs converted into design 
inputs, continuing with the design process that transforms the inputs into design outputs, 
and finally forming the resulting medical device. In addition, the reviews during each step 
of the process verifies and validates that the requirements are met by the implementation, 
reducing the possibility of design and implementation defects. In general, these regula-
tory boundaries are addressed in software development with dedicated medical software 
life cycle management tools, such as Polarion3.

For software medical devices the design control is implemented in two layers, depicted 
in Fig. 4: the product and system development activities (IEC 82304 (International Elec-
trotechnical Commission,  2016)), and the software development activities (IEC 62304 
(International Electrotechnical Commission,  2015)). At the product level, the identi-
fied user needs are converted to system requirements that serve as design inputs for the 
software development process. During software development, the system requirements 
are transformed into high level software requirements that cover the software system and 

Review
User Needs

Review
Design Input

Review
Design Process

Verification
Review

Design Output

Validation Medical Device

Fig. 3  Design control process for medical devices. Figure adapted from FDA - Center for Devices and 
Radiological Health (1997)

3 https:// polar ion. plm. autom ation. sieme ns. com/ produ cts/ polar ion- alm

https://polarion.plm.automation.siemens.com/products/polarion-alm
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architectural concerns. Later on, the high level software requirements are further distilled 
into low level software requirements that serve as design input for implementation.

The architectural design activity defines the major structural components of the soft-
ware, known as software items. It identifies their key responsibilities, their externally 
visible properties, and the relationship among them. The resulting software architecture 
artifact ensures the correct implementation of the software requirements, and is complete 
when all software requirements can be implemented by the identified software items. The 
architectural decisions are extremely important for implementing effective risk control 
measures. The proper understanding and accurate documentation of software items behav-
ior are essential for ensuring that the software system is safe. Detailed design activities 
refine the identified software items during architecture design into smaller software items. 
When a software item is not decomposed further it is called software unit. In the end, the 
manufacturer is responsible for the granularity of the software decomposition, and should 
ensure that the activity performed to the appropriate detail to allow a safe and effective 
implementation.

The resulting code, test cases and various other artifacts, such as architecture and 
detailed module design documentation, created during the software development activi-
ties, serve as the design outputs. The review of the artifacts and the test result provide an 
effective verification procedure at unit, integration and system level. The acceptance tests 
together with the result reports of clinical trials serve as the validation procedure. All these 
procedures ensure that the proper design controls have been applied during development, 
resulting in a medical product that meets the user needs

2.3.2  Design control for ML: the missing parts

Although the design control process for medical software is otherwise well-defined, the  
regulatory frameworks of the major market areas, such as the EU and USA, do not currently 
explicitly address the requirements related to AI/ML technologies. While AI/ML-based 
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Fig. 4  System and software development design control activities
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medical devices have great potential to improve care for individual patients, they carry 
some unique risks. For example, certain ML systems may be designed to learn and optimize 
their functionality in real time. As a result, the user-facing risk profile of these systems may 
change over time which is an incompatible idea compared to general design control prac-
tices. Evidently, the current lack of precise requirements for AI/ML is a severe shortcoming 
in the legislation as it creates particular challenges and uncertainties for the manufacturers 
on how to prove AI/ML device safety and efficiency when seeking device approvals.

In general, the AI/ML devices must comply with requirements applicable to all medi-
cal device software. Therefore, manufacturers are required to manage the risks related 
to their products throughout the devices’ whole life cycle (European Parliament and the 
Council,  2017; Granlund et  al.,  2021). In practice, medical software risk management 
activities are implemented according to the requirements of ISO 14971 (International 
Organization for Standardization,  2019) and IEC 62304 (International Electrotechnical 
Commission,  2015). However, the risk management activities described in detail in the 
standards mentioned assume that the device’s functionality remains the same as during the  
product development phase, even after deployment, and does not change over time. As a  
result, it may be difficult for the AI/ML manufacturer to prove the effectiveness of the 
implemented risk management activities against the current requirements.

Furthermore, specific AI/ML models can be complex and data-intensive, so they may  
be complicated to understand fully. As a result, it may not be easy to assess how the model 
has reached a decision. In addition, the quality of data plays a significant role and may con-
tain biases not visible for a human auditor. Also, specific challenges related to model train-
ing, such as overfitting and underfitting, must be considered when validating the system’s  
clinical efficiency and safety.

There are currently certain ongoing efforts to address the problem of missing AI/ML 
regulatory guidance. For example, in the EU, the theme “Artificial Intelligence under 
MDR/IVDR framework” will be addressed within the forthcoming guidance document 
by the Medical Device Coordination Group (MDCG) (Medical Device Coordination 
Group,  2021). Furthermore, in the USA, the US Food and Drug Administration (FDA) 
has released an action plan document “Artificial Intelligence/Machine Learning (AI/ML)-
Based Software as a Medical Device (SaMD) Action Plan” (U.S. Food and Drug Admin-
istration (FDA), 2021). While specific and binding regulatory requirements are still under 
development, the Interest Group of the Notified Bodies for Medical Devices in Germany 
(IG-NB) has created perhaps the most detailed and concrete guideline available currently, 
“Guideline for Artificial Intelligence in Medical Devices” (der Benannten Stellen für 
Medizinprodukte in Deutschland (IG-NB), 2021). The IG-NB guideline can be used as a 
basis to gain an understanding of the expectation level of the notified bodies related to AI/
ML products.

3  Proposed solution

The proposed design control process for CD4ML pipelines aims at formalizing software 
development so that it be used for QMS purposes. This is achieved by using pull requests 
as basis for reviews that forms the design control, and using model cards metadata as the 
design output artifact that serves also as an audit trail for regulatory activities such as clini-
cal validation and risk management.
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3.1  Applicability considerations and background

The proposed solution is used in an environment where modern software engineering 
methodologies (e.g., continuous software engineering), tools (e.g., Git) and practices (e.g., 
change management with Git pull requests) are used. These facilites are used as enablers 
to implement traceability and design control activities for medical certified systems are 
implemented.

3.1.1  Traceability

Vendors like GitHub and GitLab offer a wide range of capabilities, in addition to the origi-
nal version control system enabled by Git4. For example, issue are used during implemen-
tation to track tasks or bugs, but also to plan future work by collecting ideas and feedback. 
Linking issues allows building a graph that enables the users of these systems to navigate 
the links to understand how the individual items of work relate to each other. These capa-
bilities can be used to build an effective traceability system that is familiar to developers 
working in agile projects (Stirbu & Mikkonen, 2021).

A traceability information model, described in Fig. 5, starts from user needs that are 
decomposed recursively into system and software requirements. Requirements are resolved 
by the change requests that are verified by test cases. Each requirement is mapped to the 
corresponding software system, item or unit resulted from the software decomposition 
activity.

User needs

Requirement

Change request

Test case

refines

resolves

verifies

validates

part of

1

1

1

1..n

1..n

0..n

1..n

1
1

1
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system/item/unit

affects

1

1

Fig. 5  Traceability information model

4 https:// git- scm. com

https://git-scm.com
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3.1.2  Design control with pull requests

Using pull requests has become the main practice used by development teams to introduce 
code changes into the code baseline. As depicted in Fig. 6, the process starts with creating a 
new branch that will contain the changes needed to resolve a requirement. During the develop-
ment phase, software architects, software developers, data engineers and data scientists create 
new artifacts that are added to the branch as commits. When they consider that the implemen-
tation is ready they open a pull request to signal the rest of the team that the review can start. 
During the review, the team members that conduct code review activities are joined by other 
specialists that perform regulatory activities such as risk management. The new functionality 
can be merged into the baseline when the review is complete and all required activities have 
been completed successfully. For each commit the Git vendor system performs a set of auto-
mated checks that enables team members to focus on important activities that require human 
supervision, leaving many compliance repetitive tasks to tooling.

The pull request practice provides a team wide venue for conducting sophisticated reviews 
that are not limited to code only (Stirbu & Mikkonen, 2018). Team specialists that are not 
typically involved in software development are able to perform their activities during the 
pull request review, at the granularity of each introduced change. As all team members work 
towards a common goal during each iteration, the baseline is always up to date from regula-
tory perspective (Granlund et al., 2022).

From a design control perspective, the requirement constitutes the design input, the set of 
artifacts committed to the branch during the iteration, seen as design development, represent 
the design output, and the pull request review correspond to review, and verification or valida-
tion. Overall the pull request is an effective design control mechanism for feature-branching 
development model. Besides the review, the pull request serves also as a traceability audit trail 
artifact.

Although we have described the design control implementation using pull request, a simi-
lar result can be obtained for teams using the trunk-based development model, in which all 
changes are committed into the baseline. The team practices can include additional conven-
tions, such as adding the requirement identifier to the commit message, that serve as an effec-
tive traceability mechanism for relating commits and corresponding merge reviews to a single 
requirement.

3.2  Integrating ML models into certified medical systems

Machine learning models must be integrated into the larger software system before they can 
be used. In general, the selected model is integrated using one of the following integration 
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patterns: include the model in the application code as a library, run the model as a service, 
or dynamically load the model as data at runtime from a remote repository.

The use of machine learning technologies in medical systems is governed by domain 
specific restrictions, which are typically introduced in the US and EU implementation 
guidelines. To properly handle the risk that is inherent with the non-deterministic behav-
ior of machine learning, the models must be in a locked state, which means that it is not 
allowed to change the models once they are deployed in production. Considering this 
restriction, we can assume that the practical ways of integrating machine learning models 
into medical systems is either as a library in the software item in which the model will 
be used, or as a machine learning service that exposes its functionality to other software 
components over the network. In this work, we assume that this library or service must be 
associated with the corresponding chain of provenance.

Looking from the perspective of the architectural and detail design regulatory activities, 
in which the medical system is decomposed into items and units, we can observe that the 
ML model developed by the data scientists is integrated into the medical system as a soft-
ware unit. The selected model is first packaged as a library, and then is integrated into an 
application or service, to reflect the integration options listed above. The software decom-
position and the model integration, mapped on the four abstraction layers defined in C45 
model for visualizing software architecture, is depicted in Fig. 7.

3.3  Continuous ML design control

Pull requests have been proposed to act as a design control for regulated software develop-
ment (Stirbu & Mikkonen, 2018) in the spirit of DevOps. Since the whole CD4ML pipe-
line relies on software, we expand the same concept to data engineers and data scientists 
tasks, related to the pipeline. This effectively means expanding the types of artifacts that 

Fig. 7  Example software decom-
position of a medical software 
device, mapped to the four 
abstraction layers introduced by 
the C4 model
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5 https:// c4mod el. com
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are stored and versioned to data. In other words, pull requests become the design control 
for all changes in the development.

3.3.1  Activities performed during implementation

The model implementation starts with data engineers loading and labeling data from dif-
ferent sources and transforming the input into two datasets that are used for training and 
testing. The training dataset is used to develop a model and to perform a series of experi-
ments that determines which model candidate perform best. A model card metadata docu-
ment is created once the best performing model candidate is selected. The medatada docu-
ment, which contains the model’s documentation and the associated artifacts that enable 
quality control when the model, is integrated in the medical system.

The model card document, presented in Fig.  8, contains a thorough description of 
the model and its usage (preferably in Markdown format), versioning information, and 
information about the datasets used for training and testing, together with the informa-
tion about the data sources (e.g., x_sources) used to create the datasets. The infor-
mation about the dataset is used in the pipelines during the packaging and integration 
steps. Additionally, metadata includes the information collected during the clinical 
evaluation of the selected model. The content of the metadata document is created or 

Fig. 8  Expanded model card metadata



Software Quality Journal 

1 3

updated by the data scientists and data engineers that contributed to the development of 
the corresponding model iteration.

The modelcard metadata document together with the model code and the test dataset 
constitutes the design output. To perform an effective continuous design control pro-
cess, the artifacts must be reviewed and ensure that they fulfill the requirements using 
the team established change request procedures that leverage the pull request. From the 
CD4ML perspective, these activities corresponds to the building and evaluation and 
experimentation phases. Additionally, when the selected model is merged into the main-
line, it is packaged and published into a model repository from where it can be used 
downstream.

3.3.2  Activities performed during integration

The ML model is integrated into the medical system either directly into an application that 
uses it locally, or as a service that is invoked over the network by other components in the 
system. Depending on the integration option, the manufacturer must ensure with appropri-
ate design control procedures that the ML model is used as intended by its creators. The 
integration testing must include a test suite that ensures that no deviations are introduced in 
the use of the ML model. The test suite makes use of the test dataset provided in the model 
card metadata document. The result of the integration test represents the clinical perfor-
mance evaluation and should be included in the quantitative_analysis section of 
the model card metadata document. These activities are part of the regulatory software 
development life cycle integration’s activities and the CD4ML’s testing and deployment 
steps.

3.3.3  Activities performed during release

When releasing the medical system the model card metadata should be used to automati-
cally generate the clinical validation report in a format appropriate for regulatory purpose 
(e.g., auditors, certification). At this point, the resulting documents can be published to an 
external document management system.

3.4  Risk management with model cards

When developing the machine learning model, the team needs to perform risk analysis 
throughout development life cycle. From a regulatory perspective, a medical system life 
cycle consists of two major parts: pre-market defining the period during which the product 
is initially developed, and post-market defining the period in which the products are used 
by intended users, during which the product is maintained. From a continuous engineering 
perspective, where the product is continuously improved the pre/post-market separation is 
not that strict as development and maintenance activities are routinely performed during 
a single increment. As machine learning models in medical systems are in a regulatory 
locked state, all changes and risk management activities are allowed only in pre-market 
phase, the post-market being reserved for collecting user’s feedback or for handling the 
faults and anomalies detected by the monitoring systems.
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3.4.1  Risk management activities performed pre‑market

Algorithms are an essential ingredient of machine learning. The risks inherent to algo-
rithm design propagate to medical machine learning applications due to their increased 
complexity, lack of transparency, inappropriate use, or weak governance. Algorithmic 
risk can be split into three categories (Deloitte, 2017): input data, algorithm design and 
output decisions. Flaws in input data such as biases in the data used for training, the 
quality of the data can lead to mismatches between the data used for training and the 
data used during normal use. Output decisions flaws relate to incorrect interpretation or 
use of the output. Algorithm design flaws can be expanded in human biases — cognitive 
biases of model developers and users can lead to flawed output, technical flaws — lack 
of technical rigour or conceptual soundness during development, training, testing and 
validation, usage flaws — incorrect implementation or integration in operations can lead 
to inappropriate decision-making, or security flaws — threat actors can manipulate the 
inputs to produce deliberate flawed outputs.

The machine learning related risk analysis activities should document their findings. 
The data labeling process needs to be accompanied by the justification on why the data 
sources used for building the training data is enough to fulfill the clinical validation. 
The documentation needs to be added to the training dataset section in the model card 
metadata document. The identified risks and the possible mitigation strategies needs to 
be documented as requirements and serve as input documents for development. Simi-
larly, limitations, trade-offs and ethical considerations need to be documented in the 
appropriate section of the metadata document (e.g., considerations).

3.4.2  Risk management activities performed post‑market

As the model in a deployed medical system is in locked state, any corrective actions for 
mitigating the anomalies and deviations detected by the users or by monitoring systems 
serve as input for a future development iteration. For example, the monitoring infra-
structure that has the ability to detect deviations in the average accuracy and confidence 
of a deployed model can lead to the discovery of new input data, that may relate to 
model drift, or changes in the underlying relationships between input and output data, 
that may reveal the possibility for concept drift. These events have to be documented 
using the regulatory required user feedback procedures (International Organization for 
Standardization, 2016), or as software bugs and converted into new requirements, fol-
lowing a specific root cause analysis investigation activity. From the CD4ML perspec-
tive, the ML model corrective activities are part of the feedback loop that connects the 
monitoring stage to the building stage.

3.5  Revised design control process

Our approach for implementing continuous design control aligns the activities con-
ducted while developing machine learning applications, exemplified with the CD4ML 
pipeline, with the rigour expected when developing certified software medical systems. 
The alignment of these activities is twofold: to harmonize the terminology and to iden-
tify the artifacts that serve as audit trails that the machine learning development has 
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been implemented in line with the requirements of IEC 62304, which governs the devel-
opment of software used in medical products.

In practical terms, the pull request constitutes the design control mechanism that ensure 
that the evolution of the system is systematically reviewed and that the code baseline is 
always up to date from a regulatory perspective. Besides aligning the development and 
the regulatory activities, we identified the model card metadata as an ideal candidate for 
documenting not only the model but also the regulatory specific activities performed 
during model’s development, such as dataset justification or clinical performance evalu-
ation, among other pre-market risk management activities. The model card metadata docu-
ment, together with the model code, serves effectively as the design output artifact. Being 
machine-readable, the model card metadata can be used in pipelines to generate automati-
cally additional documents intended for end users (e.g., the model card), and regulatory 
authorities (e.g., clinical validation report). Post-market monitoring and maintenance activ-
ities that identify deviations from the expected model behavior are identified and captured 
as bug reports or feedback and fed into the team backlog as requirements. The terminol-
ogy and development phase harmonization together with the design output artifacts are 
described in Fig. 9.

4  Case study: Oravizio process revised

In our previous work, we have introduced Oravizio6, CE certified medical software for 
assessing the risks of joint replacement surgeries (Granlund et al., 2021). We use this sys-
tem to demonstrate how to apply continuous design control for ML in certified medical 
systems. The work is a concept prototype in its nature; it builds on experiences from an 
industry system, but the proposed implementation has not been deployed to industrial use.

Our previous work with Oravizio has introduced a continuous training pipeline. The 
pipeline allows to overcome regulatory constraints associated with Oravizio ML model 
training and to simultaneously achieve automation goals associated with MLOps (Granlund 
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et al., 2021). In addition, the pipeline addresses the medical device software design control 
requirements by design.

For this paper, we have revised the pipeline by extending it with a carefully selected set 
of model card documents, to demonstrate the proposed solution. Figure  10 presents the 
pipeline of Granlund et al. (2021), with the proposed model card extensions marked with a 
darker color.

4.1  Continuous training with MLOps pipeline

The data used to train and re-train the Oravizio ML models is generated within the clinical 
processes of a collaborating partner hospital, and, by design, Oravizio does not generate 
corresponding data in production use. Because of the sensitive nature of data, access to 
the hospital’s computational environment is strictly restricted. As a result, the continuous 
training pipeline was designed to operate inside the clinical partner’s controlled environ-
ment and fetch new data from the data store based on pre-defined triggers. Furthermore, 
as the models are deterministic by nature, their technical performance can be validated 
according to the principles of clinical evaluation with test data in a restricted environment 
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Fig. 10  Continuous training pipeline with model cards. Arrows indicate data flows
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without the need to do the intended medical use specific validation in the final production 
environment. Finally, Oravizio was designed to be deployed in a production environment 
with its ML model in a “locked” state for regulatory reasons. In practice, Oravizio’s models 
are trained during the development phase, and their ability to improve the outcome on the 
fly is disabled in production use. Despite this limitation, the pipeline enables the laborious 
task of re-training to be automated.

In addition, the fact that the development team does not need access to the restricted 
environment beyond the pipeline’s installation and maintenance is a valuable design fea-
ture. Furthermore, the pipeline can automatically generate the required documentation 
needed to assess the model performance in the clinical performance evaluation. All created 
artifacts are delivered to the development team from the isolated environment.

4.2  Design control documentation with model cards

Even if the original version of the pipeline in Granlund et al. (2021) contains the required 
design control documentation, which can be generated automatically, the documentation 
format has not been based on any generally known standard. The reason is that at the time 
of implementing the pipeline, no such format was available (Mitchell et al., 2019). In addi-
tion, the selected document templates have been similar to more traditional quality man-
agement system types of records targeted to regulatory stakeholders and without the tech-
nical ability to be serialized. To address these challenges and further support continuous 
design control for ML, we expanded the pipeline with the model cards tailored to address 
the design control documentation requirements.

4.2.1  Data set management

To ensure the required performance of the models, the selected data set must be representa-
tive of the target population. In Oravizio’s case, data sources could differ per installation, 
and, as a result, the procedure for data extraction must be configurable. In addition, there 
are many related documentation requirements, which can be documented with a model 
card. Firstly, the allowed data sources must be listed with the specific requirements and 
descriptions for a data source. Secondly, the data inclusion and exclusion criteria must be 
defined with the procedure for invalid data management. Thirdly, data protection policy 
needs to be defined with clear instructions on how to ensure data protection at later stages 
of data processing. Finally, potential biases in the data must be reflected and the selections 
made justified accordingly.

4.2.2  Data quality control

As part of data quality control for a system using supervised learning, such as Oravizio, the 
labeling and label verification procedures are essential. Moreover, when utilizing automa-
tion in re-learning, the correctness of labeling needs to be constantly monitored. It is pos-
sible to use different pre-defined schemas and boundaries to validate the data quality, both 
in terms of format and content. As model cards are already in a machine-readable format, 
they can be used simultaneously as a documentary and a validating artifact. If the rate of 
error in the data validation rises above the acceptable limit, the re-learning cannot continue 
automatically, and the anomaly must be resolved manually.
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4.2.3  Risk management

In conjunction with clinical evaluation, effective risk management provides a practical 
tool for the manufacturer to prove the safety and clinical efficiency of the device. As 
the ML models are a central part of Oravizio, the models have a considerable impact on 
the device’s risk profile. As a result, the potential risks related to the models need to be 
carefully addressed.

When utilizing model cards, the identified model-related hazards and correspond-
ing risk mitigations are documented on the model card document. It is worth noticing 
that certain risks, both in terms of patient safety and data security, are unique to AI/ML 
systems. These risks include, for instance, model drift, the drift in data distribution, and 
risks related to continuous learning systems. In addition, also risks related to adversarial 
attacks need to be considered.

4.2.4  Performance requirements

According to the regulatory requirements, manufacturers of medical devices must docu-
ment the intended purpose of their device, including specification of indications, con-
traindications, patient target groups, and operating parameters and limitations (European 
Parliament and the Council, 2017). In addition, performance characteristics, accuracy, 
and the limits of accuracy, precision, and analytical performance must be addressed if 
applicable.

Many of the above requirements apply directly to Oravizio’s ML models. Moreover, 
they can be conveniently documented within a model card.

5  Discussion

In this section, we provide an extended discussion regarding the proposed approach, 
highlighting how it brings benefits to the involved stakeholders. In addition, we discuss 
limitations of this work.

5.1  Aligning ML development and regulatory practices

The use of ML technologies in certified medical devices is an emerging trend in a noto-
riously conservative industry. Consequently, the regulatory practice is not as established 
as the practices in the development of traditional software medical devices.

Our proposal brings together the ML application life cycle, demonstrated using 
CD4ML, and the medical device software life cycle process standard IEC 62304. The 
result lowers the cognitive barriers between the machine learning model developers, 
such as data engineers and data scientists, and regulatory practitioners, allowing them 
to work together to effectively develop medical devices that include machine learning 
technologies.
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5.1.1  Avoiding common ML system design problems

In general, ML models constitute only a subset of the final system that incorporates the 
respective ML technology and makes it available to the end users (Sculley et al., 2015). 
With this in mind, the continuous design control approach for handling ML in certified 
medical systems development fits under the process management and tools category.

Table 1 describes how the activities developed as part of the continuous design con-
trol help mitigate design problems, such as the accumulation of technical dept, and 
the role played by the model cards documents as the audit trail of performing these 
activities.

5.1.2  Answering regulators’ concerns

Although the use of ML technology within the medical devices is relatively new, the regu-
lators are actively engaged in a dialog with the industry to guide its adoption (Food and 
Drug Administration, 2021). This indicates that the regulators are aware of the new tech-
nologies, and are considering how to best regulate the development of medical devices 
that include ML features. Table  2 describes how our approach addresses the regulators’ 
concerns.

5.2  Model card metadata as audit trail

The emerging model card ecosystem increases the engineering maturity of machine 
learning model development. The model card metadata document provides an extensible 
machine-readable medium in which concerns related to the model development can be cap-
tured. In our work, we leveraged the model card metadata document to capture the regu-
latory aspects, such as intended use, the sources of data used for training, or the clinical 
performance evaluation, relevant when the machine learning model is used in a certified 
medical device.

In doing so, we refined existing properties defined in the TensorFlow’s model card 
metadata schema and added new properties when needed (e.g., model_parameters.
data[].x_sources). We found that the description properties defined in the 
schema document as string are not structured enough and we used Markdown to have a 
template driven representation for the intended use of the model (e.g., model_details.
documentation), and for the description of the datasets used in model training (e.g., 
model_parameters.data[].description). The approach allowed us to iterate 
fast, enabling the team members to focus on adding content. The experience, backed with 
feedback from other implementers, will allow us to identify the relevant information that 
can eventually be extracted and formalized into model card schema extensions.

The combination of using a structured document with the semi-structured markdown 
description is appropriate for the target audience formed by engineers and regulatory pro-
fessionals, each category contributing using specific modalities. Although the approach is 
effective at collecting the needed information that serves as an audit trail of the activities 
performed by the team members, editing the metadata document using text editors does not 
provide the best user experience for all users.
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In the future, we plan to explore with having dedicated editors for regulatory profession-
als so that they can introduce their content using more familiar approaches, such as what 
you see is what you get editors.

5.3  Pull request as continuous design control

The pull request is the practice typically used by software development teams to man-
age changes. Our proposal extends the use of pull request throughout the machine learn-
ing development life cycle. Besides software engineers, data engineers and data scientist 
use the pull request to manage the evolution of the software products within their area of 

Table 2  Supporting the good ML practice guiding principles (Food and Drug Administration, 2021) with 
continuous design control

Guiding principles Implementation

Multi-disciplinary expertise is leveraged throughout 
the total product life cycle

The pull request is the venue to perform multi- 
disciplinary reviews during all development stages

Good software engineering and security practices 
are implemented

ML development is integrated into the product and 
software development leveraging best practices and 
tools

Clinical study participants and data sets are  
representative of the intended patient population

Although clinical studies can be seen as partly 
outside the scope of product development, the 
model card document can be used to document 
data collection protocols and data characteristics 
that are relevant to the intended patient population. 
In addition, continuous design control promotes 
traceability from clinical study data sets to the final 
model

Training data sets are independent of test sets Following the continuous design practice ensures that 
the test data set is reviewed, versioned and it is not 
used during model development

Selected reference data sets are based upon best 
available methods

If accepted reference data sets are available, their use 
in the model development should be promoted and 
documented in the model card document

Model design is tailored to the available data and 
reflects the intended use of the device

Continuous design control ensures, by including the 
justification in the model card document, that the 
data sets are enough to satisfy the intended use

Focus is placed on the performance of the human-ai 
team

Testing at different development stages (e.g., training, 
integration, system) ensures that the different  
stakeholders’ interests are captured

Testing demonstrates device performance during 
clinically relevant conditions

Continuous testing in staging environments that 
mimic the clinically relevant conditions

Users are provided clear, essential information The regulatory required documentation contains 
information that can be collected in the model card 
documents during development. The continuous 
design and review activities ensures that the end 
user documentation fits their needs

Deployed models are monitored for performance 
and re-training risks are managed

The monitoring stage of the MLOps pipeline,  
implementing common techniques for detecting model 
performance anomalies, together with the regulatory 
required post-market monitoring practices enable the 
manufacturer to identify deviations and perform the 
necessary corrective actions



 Software Quality Journal

1 3

responsibility. As the pull request is linked with requirements (e.g., design inputs), and 
the introduced changes consist mainly of the machine learning model and the model card 
metadata (e.g., design outputs), we have an effective quality gate that ensures that design 
reviews are performed systematically and the appropriate audit trails are build at every iter-
ation throughout the development life cycle.

5.4  Handling model anomalies

One of the critical advantages of utilizing interpretable machine learning models is that 
they allow for more efficient anomaly detection and analysis. The ML model can be inter-
preted as consisting of different components, such as inputs, features, parameters, and 
weights, and the understandability of the model increases if it can be decomposed into 
different explainable parts (Lipton, 2018). Our proposed approach provides a solid founda-
tion to document different model aspects to support explainability, which can, in turn, help 
the engineering team to perform anomaly and root cause analysis activities. Furthermore, 
even if initially designed to promote regulatory activities in the form of an audit trail, the 
fine-grained traceability provides additional support for the anomaly analysis. Based on the 
results, the team can determine the appropriate corrective actions needed to be performed 
and included in subsequent model releases.

5.5  Safe continuous self‑learning

The ability to learn after being deployed to real-world use is undoubtedly one of the critical 
differences between an AI/ML-enabled system and a more traditional rule-based system. 
However, as discussed previously, due to the current regulatory uncertainties, manufactur-
ers of medical device AI/ML-enabled systems may prefer such AI/ML models that can be 
deployed in a locked state. It is evident that such a design approach can seriously reduce 
the benefits of AI/ML-enabled technology. Therefore, alternative yet patient safety ensur-
ing design and development methods are needed.

A robust and effective risk management process is the basis of safe medical device soft-
ware development. As the process starts with risk identification (International Organiza-
tion for Standardization, 2019), the development team must be competent in assessing the 
product’s specific ML change-related aspects, particularly when the chosen technology’s 
complexity and opaqueness increase. In practice, a cross-functional development team 
should include knowledgeable and experienced data scientists, in addition to the typical set 
of clinical and product development specialists.

According to the regulations, medical device manufacturers must seek approval for 
changes to the approved design of a device prior to making the change, where the change 
has a substantial impact or can affect the device’s conformity with the general safety and 
performance requirements (European Parliament and the Council, 2017). Therefore, it is 
clear that if enabled, self-learning can only occur within a pre-determined tolerance and 
change control plan. In addition, the manufacturer is responsible for demonstrating that the 
change tolerance complies with the device’s intended use, use environment, user groups, 
and other medical claims prior to placing the device on the market.

Finally, an essential aspect of self-learning and safety is the ability to monitor the 
device’s performance as a part of the device’s post-market surveillance activities. Contrary 
to the first thought, it can be argued that self-learning AI/ML systems are, in fact, more 
tolerant against model drift than the locked systems as they are constantly improving their 
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performance with the new data. However, monitoring the constantly changing system can 
be more difficult as there are additional aspects to consider and measure. The most impor-
tant thing is to ensure that the device’s performance cannot decrease due to an upgrade.

5.6  Cross domain terminology challenges

A conflicting terminology is a common problem when several domains — such as medical 
device regulatory concepts, data science, and software engineering — are combined within 
a single project. This problem can lead to miscommunication, misunderstandings, and, at 
worst, poor decision-making (Vogel, 2011). The terminology conflicts were also emergent 
within this paper’s context, particularly regarding the term validation. Within the field of 
ML alone, the term has been used with two different meanings: for data curation (i.e., data 
validation) or ML model tuning. To make matters even more complicated, in the context 
of medical device development, validation means confirmation that the particular require-
ments for specific intended use can be consistently fulfilled (International Medical Device 
Regulators Forum, 2022). As a practical solution, we propose favoring regulatory termi-
nology in the documents that demonstrate conformity, and, in general enforcing explicit 
communication to avoid confusion.

5.7  Information security considerations

The model card metadata document serves as an effective audit trail of the model devel-
opment. As such, it contains a plethora of information that should be considered private, 
as it might contain personal data, information that is not open to public, or even critical 
trade secrets. While the document should serve as input for generating the public technical 
documentation of the medical device, as expected by regulation and applicable standards, 
manufacturers should employ the necessary information management practices to ensure 
that the properties classified as private are not included in the model card representations 
intended for public consumption.

5.8  Limitations

Our implementation of the proposed approach leverages existing tools and processes 
widely used by software development teams, such as Git for version control, issues for 
tracking requirements and work items, or pull requests for reviews and change manage-
ment. However, we wish to point out that our implementation has not been exposed to 
a wide range of real life medical products, except Oravizio. For example, managing the 
evolution of the medical product has been implemented using the feature-branch approach, 
in which a new branch is created from the mainline, for each requirement, and merged 
following a successful review. Other development models such as trunk-based develop-
ment (Jørgensen, 2001) have not been investigated thoroughly, although equivalent review 
facilities are supported by tools used for this development strategy. Therefore, the pro-
posed approach is not intended to be a model that suits any medical product or situation, 
which one must follow in a verbatim fashion. Rather, we want to emphasize that systematic 
reviews and using the model card as the audit trail of regulatory activities represent an 
effective form of design control that is compatible with the regulatory requirements that 
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govern medical devices that contain software. Similar approaches to track the model card 
metadata and performing equivalent activities will most likely result in a satisfactory solu-
tion from a regulatory perspective.

Operations related to data have been overlooked in the paper, because much of the work 
happens in data engineers’ own environment, following their own ways of working (Aho 
et al., 2020). However, we proposed model cards as a mechanism to record the trail of prov-
enance from data operations to the model, so that this part can be included in the MLOps 
pipeline as well. Therefore, exploring the data operations and their relation to model cards 
is a part of future work we plan to carry out.

6  Conclusions

The software engineering industry has widely adopted continuous development and deploy-
ment of new features. These features may include AI/ML functions, which have become  
commonplace in numerous applications, calling for deployment pipelines where such func-
tions can be included in mainstream development activities. Such continuous setup forms 
a sharp contrast to the development of medical systems, where design controls are often 
interpreted to require waterfall-like development approach.

In this paper, we propose using an approach where continuous design control for ML 
is enabled while developing medical systems. The proposed approach builds on our ear-
lier work on MLOps, but extends it with the design controls that are explicitly included in 
the MLOps pipeline. The approach was demonstrated with an industry system, which is in 
active use. As future work, we plan to investigate data operations, related to building ML 
models, in more depth.
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