
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Continuous design control for machine learning in certified medical systems

© The Author(s) 2022

Published version

Stirbu, Vlad; Granlund, Tuomas; Mikkonen, Tommi

Stirbu, V., Granlund, T., & Mikkonen, T. (2023). Continuous design control for machine learning
in certified medical systems. Software Quality Journal, 31, 307-333.
https://doi.org/10.1007/s11219-022-09601-5

2023

Vol.:(0123456789)

Software Quality Journal
https://doi.org/10.1007/s11219-022-09601-5

1 3

Continuous design control for machine learning in certified
medical systems

Vlad Stirbu1,5 · Tuomas Granlund2,3 · Tommi Mikkonen4,5

Accepted: 1 September 2022
© The Author(s) 2022

Abstract
Continuous software engineering has become commonplace in numerous fields. However,
in regulating intensive sectors, where additional concerns need to be taken into account, it
is often considered difficult to apply continuous development approaches, such as devops.
In this paper, we present an approach for using pull requests as design controls, and apply
this approach to machine learning in certified medical systems leveraging model cards, a
novel technique developed to add explainability to machine learning systems, as a regula-
tory audit trail. The approach is demonstrated with an industrial system that we have used
previously to show how medical systems can be developed in a continuous fashion.

Keywords Machine learning · ML · MLOps · CD4ML · Design control · Medical
software · Regulated software · Continuous engineering

1 Introduction

During the latest decade, the Web has silently become the dominant platform for software
applications. Effectively, this process has made releasing software so simple and cheap
that to a degree, development and deployment activities are entangled. New parts of soft-
ware are experimentally deployed, and feedback from released software is used to assist in

Tuomas Granlund and Tommi Mikkonen have contributed equally to this work

 * Vlad Stirbu
 vlad.stirbu@compliancepal.eu

 Tuomas Granlund
 tuomas.granlund@solita.fi

 Tommi Mikkonen
 tommi.j.mikkonen@jyu.fi; tommi.mikkonen@helsinki.fi

1 CompliancePal, Tampere, Finland
2 Solita, Tampere, Finland
3 Tampere University, Tampere, Finland
4 University of Jyväskylä, Jyväskylä, Finland
5 University of Helsinki, Helsinki, Finland

http://orcid.org/0000-0001-9462-5922
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-022-09601-5&domain=pdf

 Software Quality Journal

1 3

development. As pointed out in Taivalsaari et al. (2008), this leads to a new type of devel-
opment approach, advancing in evolutionary fashion, where software is always on, and
updates are tiny changes in the code. Concrete models for such continuous software engi-
neering (Fitzgerald & Stol, 2017) include continuous delivery (Humble & Farley, 2010)
and DevOps (Ebert et al., 2016).

However, not all software lives on the Web, where applications can constantly evolve
behind the curtains. Instead, numerous applications are used to power factories, control
electronics, provide guidance for drones, and so on. For these, it is common that addi-
tional concerns are added in the development process. These can be added to the continu-
ous development process as add-ons or amalgamations, sometimes also reflected in their
respective names, such as DevSecOps (Myrbakken & Colomo-Palacios, 2017) for DevOps
used to develop secure systems, RegOps (Drvar et al., 2020) for digitalizing the regulatory
value chain, or MLOps (Treveil et al., 2020) for continuous delivery of Machine Learning
(ML) features.

Unfortunately, these approaches focus on one particular aspect that is added to the con-
tinuous software engineering pipeline, and do not consider how to integrate them to a big-
ger whole. Hence, their interoperability remains weak. Consequently, relating regulatory
compliance and ML, for instance, requires additional considerations which are not a part
of any off-the-shelf approach. As an example, consider the MLOps pipeline visualized in
Fig. 1, consisting of data operations, executed by data engineers, data analysis and ML
operations, run by data scientists, and developers who implement and deploy the final
application. In contrast, RegOps focuses only on software development — the final part,
performed by software developers — but overlooks the rest (Toivakka et al., 2021; Stirbu
& Mikkonen, 2018). Hence, while MLOps helps in forming a pipeline for the whole devel-
opment effort, RegOps only supports the final parts with regulatory considerations and
design controls.

In this paper, we introduce continuous design controls for ML in certified medical sys-
tems, covering the MLOps pipeline. The proposed approach starts with continuous soft-
ware engineering practices, which is then expanded with ML and data processing facilities.
Then, we introduce the necessary regulatory processes, which cover both software and ML
parts of the development. To simplify presentation, details of data operations, which in any
case are often specific to certain organization (Aho et al., 2020), are largely overlooked,
although practical techniques that bind them to continuous software engineering practices

training
code

Buildlabeled
data

model Deploy

app
code

data engineers data scientists developers and ops

Fig. 1 Simplified MLOps pipeline. Figure adapted from Granlund et al. (2021)

Software Quality Journal

1 3

are included in the paper. The resulting model is then demonstrated with an industrial case
study that we have used in our previous paper (Granlund et al., 2021), with an extended
discussion regarding the proposed improvements.

The rest of this paper is structured as follows. In Sect. 2, we introduce the necessary
background of the paper. In Sect. 3, we propose a solution for continuous design controls.
In Sect. 4, we demonstrate the solution with an industry example. In Sect. 5, we discuss the
implications of the proposed solution. In Sect. 6, we draw some final conclusions.

2 Background

Because of multi-faceted nature of this work, it combines several different research fields,
including continuous software development, ML, and the landscape of medical regulations.
In the following, we present recent advances in these fields, so that we can introduce the
proposed practical pipeline for regulated MLOps.

2.1 Continuous software engineering practices

The core of continuous software engineering practices is twofold. On one hand, it con-
sists of a mindset where the developers take responsibility for the whole software as a
whole, and, while a single developer works on a particular feature, the bigger whole is
constructed in terms of developers’ collaborative effort. On the other hand, it includes a
toolset that allows deploying new features to use as soon as they are available (Fitzgerald
& Stol, 2017). The goal is to produce continuous flow of value adding software artifacts
from the development to the actual production use, with quality assurance also happening
continuously as a part of the flow.

A particular flavor of continuous software engineering is called DevOps (Debois, 2011;
Rajkumar et al., 2016). It can be described as a set of practices whose goal is to shorten the
commit feedback cycle without compromising quality (Bass et al., 2015), and to expand
the development team with the operators. In addition, the continuous software engineer-
ing toolset is expanded with monitoring capabilities, ensuring that each stakeholder gets a
timely access to what they need.

Finally, it is important to notice that the automated pipeline is not about software going
into production without any operator supervision, but rather the pipeline provides a feed-
back loop to each of the stakeholders from all stages of the delivery process. Moreover, as
the software progresses through the pipeline, different stages can be triggered for example
by operations and test teams by the click of a button.

2.2 ML life cycle challenges

The typical process of developing a ML application starts with transforming input data
from a variety of sources into a collection of labeled data, a procedure performed by data
engineers. This collection is then used by data scientists to perform a series of experiments
that allows then to build a set of candidate models. The model that fulfills best the desired
criteria captured in the functional and non-functional requirements is selected for deploy-
ment. Finally, the selected model is incorporated into the software system and deployed
to the production environment, a procedure that is performed by software and operations
engineers.

 Software Quality Journal

1 3

Using continuous software engineering practices throughout ML application life cycle
is not straightforward. In Fig. 1, we can see that the development is performed across three
competence clusters: data engineers, data scientist and software developers. The level of
expertise and skills related to continuous engineering practices varies among these special-
ties: while software developers use tooling to achieve a high degree of automation in their
daily work, data scientist and, to a lesser extent, data engineers have a less structured way
of working. Many data scientists are not aware of tools like version control systems that
can track efficiently changes in the training code and the data used to perform the experi-
ments, or ticketing systems that enable them to track progress from the feature implementa-
tion to requirements. Instead, they rely on bespoke solutions that might not be appropriate
when practiced in the development process of safety critical systems.

To incorporate ML features in software development, several techniques have been
proposed. In this work, we build on Continuous Delivery for ML (Sato et al., 2019) and
ML Model Cards (Mitchell et al., 2019). These techniques are briefly introduced in the
following.

2.2.1 Continuous delivery for ML

Probably the best-known MLOps implementation, Continuous Delivery for Machine
Learning (CD4ML) (Sato et al., 2019) by ThoughtWorks, aims at automating the ML
application life cycle in an end-to-end fashion (Fig. 2). In CD4ML, a cross-functional team
produces applications based on code, data, and models in small and safe increments that
can be reproduced and reliably released at any time, in short adaptation cycles. Three dis-
tinct steps are included: (i) identify suitable data sources and prepare the data for training,
(ii) experiment with different models to find the best performing candidate, and (iii) deploy
and use the selected model in production as a part of a bigger software system.

regulatory
"lo

cke
d"

boundary
Building

Evaluation and
Experimentation

Packaging

Testing

Deployment

Monitoring

training
data

candidate
model

selected
model

packaged
model

packaged
model

training
code

application
code

validation
data

test
codemetrics

application
bundle

machine learning pipeline deployment pipeline

data scientists developers and opsdata engineers

data
source

data labeling pipeline

test
data

Fig. 2 CD4ML pipelines and artifacts. Figure adapted from Granlund et al. (2021)

Software Quality Journal

1 3

CD4ML is not the only solution that aims to prevent the accumulation of hidden tech-
nical dept in machine learning applications (Sculley et al., 2015). While other solutions
are heavily optimized for a particular cloud infrastructure (AWS Solutions, 2021; Google
Cloud Solutions, 2021), an ML software stack implementation (Baylor et al., 2017), or con-
ceptual characteristics of the approach like MLOps (John et al., 2021), the CD4ML model
has the advantage that it can be used as a reference model in any application domain. Fur-
thermore, it has the necessary phases documented at the appropriate level, and the imple-
mentation is based on open source components. Hence, it serves as a solid foundation for
experimentation, and to translate the results to other MLOps pipelines.

2.2.2 ML model cards

ML model cards is a framework for transparent communication of information that facili-
tates the correct utilization of machine learning models (Mitchell et al., 2019). Intended as
documentation that accompanies a trained machine learning model, the model card con-
tains information about intended use case, benchmark evaluation in a variety of relevant
conditions, such as demographics or geographic location, or any other information that the
creators consider suitable for the proper use of the trained model. Although the original
proposal presented the model card as a visual representation, recent developments1 propose
a programmatic mechanism to generate the model cards, and a machine-readable serializa-
tion2 that facilitates the consumption of model cards by scripts in ML pipelines.

While the machine-readable serialization of the model card is a step in the good direc-
tion, the information included in the card is limited to specific audiences, like data scien-
tists or machine learning engineers. To fulfill the model cards potential, the information
should be extended to include the needs of other stakeholders. The model card metadata
becomes a model from which various views targeted at different stakeholders can be
derived, in a similar fashion as various software architecture views can be derived from
a single software model. The approach will turn the model card into a must have artifact
that conveys not only the information about the model’s intended use or performance, but
also what other activities have been conducted in relation with the model (e.g., regulatory
risk management), or metadata about data sets that facilitate downstream testing (Granlund
et al., 2021).

2.3 Medical regulatory landscape

The manufacturing of medical devices is strictly controlled by authorities, and manufac-
turers must conform to the region’s regulatory requirements in which a medical device is
being marketed for use. For this reason, medical software systems must also be developed
according to the requirements of the target area. For example, the development is regulated
by Medical Device Regulation (MDR) (European Parliament and the Council, 2017) and
In Vitro Diagnostics Regulation (IVDR) (European Parliament and the Council, 2017) in
the EU region and by Federal Food, Drug, and Cosmetic Act (FD&C Act) (U.S. Depart-
ment of Health and Human Services, 2021) in the USA.

1 https:// github. com/ tenso rflow/ model- card- toolk it
2 Tenso rFlow model card schema

https://github.com/tensorflow/model-card-toolkit
https://github.com/tensorflow/model-card-toolkit/blob/master/model_card_toolkit/schema/v0.0.2/model_card.schema.json

 Software Quality Journal

1 3

2.3.1 Design control

The regulatory framework aims to ensure that a medical device is safe to use and clinically
effective for its intended medical purpose. In practice, there are certain mandatory pro-
cesses that include control mechanisms for the whole software life cycle, including design,
development, and manufacturing of the product. The regulatory requirements related to
these process phases are generally referred to as the Design Controls (FDA - Center for
Devices and Radiological Health, 1997).

The purpose of the Design Control process (depicted in Fig. 3), is to promote a well-
designed development process that includes traceability between process inputs and out-
puts at different stages of the process. Starting from user needs converted into design
inputs, continuing with the design process that transforms the inputs into design outputs,
and finally forming the resulting medical device. In addition, the reviews during each step
of the process verifies and validates that the requirements are met by the implementation,
reducing the possibility of design and implementation defects. In general, these regula-
tory boundaries are addressed in software development with dedicated medical software
life cycle management tools, such as Polarion3.

For software medical devices the design control is implemented in two layers, depicted
in Fig. 4: the product and system development activities (IEC 82304 (International Elec-
trotechnical Commission, 2016)), and the software development activities (IEC 62304
(International Electrotechnical Commission, 2015)). At the product level, the identi-
fied user needs are converted to system requirements that serve as design inputs for the
software development process. During software development, the system requirements
are transformed into high level software requirements that cover the software system and

Review
User Needs

Review
Design Input

Review
Design Process

Verification
Review

Design Output

Validation Medical Device

Fig. 3 Design control process for medical devices. Figure adapted from FDA - Center for Devices and
Radiological Health (1997)

3 https:// polar ion. plm. autom ation. sieme ns. com/ produ cts/ polar ion- alm

https://polarion.plm.automation.siemens.com/products/polarion-alm

Software Quality Journal

1 3

architectural concerns. Later on, the high level software requirements are further distilled
into low level software requirements that serve as design input for implementation.

The architectural design activity defines the major structural components of the soft-
ware, known as software items. It identifies their key responsibilities, their externally
visible properties, and the relationship among them. The resulting software architecture
artifact ensures the correct implementation of the software requirements, and is complete
when all software requirements can be implemented by the identified software items. The
architectural decisions are extremely important for implementing effective risk control
measures. The proper understanding and accurate documentation of software items behav-
ior are essential for ensuring that the software system is safe. Detailed design activities
refine the identified software items during architecture design into smaller software items.
When a software item is not decomposed further it is called software unit. In the end, the
manufacturer is responsible for the granularity of the software decomposition, and should
ensure that the activity performed to the appropriate detail to allow a safe and effective
implementation.

The resulting code, test cases and various other artifacts, such as architecture and
detailed module design documentation, created during the software development activi-
ties, serve as the design outputs. The review of the artifacts and the test result provide an
effective verification procedure at unit, integration and system level. The acceptance tests
together with the result reports of clinical trials serve as the validation procedure. All these
procedures ensure that the proper design controls have been applied during development,
resulting in a medical product that meets the user needs

2.3.2 Design control for ML: the missing parts

Although the design control process for medical software is otherwise well-defined, the
regulatory frameworks of the major market areas, such as the EU and USA, do not currently
explicitly address the requirements related to AI/ML technologies. While AI/ML-based

High level SW
requirements/

Architectural design

Low level SW
requirements/

Detailed design
Unit test

Integration test

System test

Acceptance test

System
requirements

Use requirements

User needs User needs met

System development activities

Software development activities

Implementation

IEC 82304

IEC 62304

Verification

Verification

Verification

Validation

Fig. 4 System and software development design control activities

 Software Quality Journal

1 3

medical devices have great potential to improve care for individual patients, they carry
some unique risks. For example, certain ML systems may be designed to learn and optimize
their functionality in real time. As a result, the user-facing risk profile of these systems may
change over time which is an incompatible idea compared to general design control prac-
tices. Evidently, the current lack of precise requirements for AI/ML is a severe shortcoming
in the legislation as it creates particular challenges and uncertainties for the manufacturers
on how to prove AI/ML device safety and efficiency when seeking device approvals.

In general, the AI/ML devices must comply with requirements applicable to all medi-
cal device software. Therefore, manufacturers are required to manage the risks related
to their products throughout the devices’ whole life cycle (European Parliament and the
Council, 2017; Granlund et al., 2021). In practice, medical software risk management
activities are implemented according to the requirements of ISO 14971 (International
Organization for Standardization, 2019) and IEC 62304 (International Electrotechnical
Commission, 2015). However, the risk management activities described in detail in the
standards mentioned assume that the device’s functionality remains the same as during the
product development phase, even after deployment, and does not change over time. As a
result, it may be difficult for the AI/ML manufacturer to prove the effectiveness of the
implemented risk management activities against the current requirements.

Furthermore, specific AI/ML models can be complex and data-intensive, so they may
be complicated to understand fully. As a result, it may not be easy to assess how the model
has reached a decision. In addition, the quality of data plays a significant role and may con-
tain biases not visible for a human auditor. Also, specific challenges related to model train-
ing, such as overfitting and underfitting, must be considered when validating the system’s
clinical efficiency and safety.

There are currently certain ongoing efforts to address the problem of missing AI/ML
regulatory guidance. For example, in the EU, the theme “Artificial Intelligence under
MDR/IVDR framework” will be addressed within the forthcoming guidance document
by the Medical Device Coordination Group (MDCG) (Medical Device Coordination
Group, 2021). Furthermore, in the USA, the US Food and Drug Administration (FDA)
has released an action plan document “Artificial Intelligence/Machine Learning (AI/ML)-
Based Software as a Medical Device (SaMD) Action Plan” (U.S. Food and Drug Admin-
istration (FDA), 2021). While specific and binding regulatory requirements are still under
development, the Interest Group of the Notified Bodies for Medical Devices in Germany
(IG-NB) has created perhaps the most detailed and concrete guideline available currently,
“Guideline for Artificial Intelligence in Medical Devices” (der Benannten Stellen für
Medizinprodukte in Deutschland (IG-NB), 2021). The IG-NB guideline can be used as a
basis to gain an understanding of the expectation level of the notified bodies related to AI/
ML products.

3 Proposed solution

The proposed design control process for CD4ML pipelines aims at formalizing software
development so that it be used for QMS purposes. This is achieved by using pull requests
as basis for reviews that forms the design control, and using model cards metadata as the
design output artifact that serves also as an audit trail for regulatory activities such as clini-
cal validation and risk management.

Software Quality Journal

1 3

3.1 Applicability considerations and background

The proposed solution is used in an environment where modern software engineering
methodologies (e.g., continuous software engineering), tools (e.g., Git) and practices (e.g.,
change management with Git pull requests) are used. These facilites are used as enablers
to implement traceability and design control activities for medical certified systems are
implemented.

3.1.1 Traceability

Vendors like GitHub and GitLab offer a wide range of capabilities, in addition to the origi-
nal version control system enabled by Git4. For example, issue are used during implemen-
tation to track tasks or bugs, but also to plan future work by collecting ideas and feedback.
Linking issues allows building a graph that enables the users of these systems to navigate
the links to understand how the individual items of work relate to each other. These capa-
bilities can be used to build an effective traceability system that is familiar to developers
working in agile projects (Stirbu & Mikkonen, 2021).

A traceability information model, described in Fig. 5, starts from user needs that are
decomposed recursively into system and software requirements. Requirements are resolved
by the change requests that are verified by test cases. Each requirement is mapped to the
corresponding software system, item or unit resulted from the software decomposition
activity.

User needs

Requirement

Change request

Test case

refines

resolves

verifies

validates

part of

1

1

1

1..n

1..n

0..n

1..n

1
1

1

Software
system/item/unit

affects

1

1

Fig. 5 Traceability information model

4 https:// git- scm. com

https://git-scm.com

 Software Quality Journal

1 3

3.1.2 Design control with pull requests

Using pull requests has become the main practice used by development teams to introduce
code changes into the code baseline. As depicted in Fig. 6, the process starts with creating a
new branch that will contain the changes needed to resolve a requirement. During the develop-
ment phase, software architects, software developers, data engineers and data scientists create
new artifacts that are added to the branch as commits. When they consider that the implemen-
tation is ready they open a pull request to signal the rest of the team that the review can start.
During the review, the team members that conduct code review activities are joined by other
specialists that perform regulatory activities such as risk management. The new functionality
can be merged into the baseline when the review is complete and all required activities have
been completed successfully. For each commit the Git vendor system performs a set of auto-
mated checks that enables team members to focus on important activities that require human
supervision, leaving many compliance repetitive tasks to tooling.

The pull request practice provides a team wide venue for conducting sophisticated reviews
that are not limited to code only (Stirbu & Mikkonen, 2018). Team specialists that are not
typically involved in software development are able to perform their activities during the
pull request review, at the granularity of each introduced change. As all team members work
towards a common goal during each iteration, the baseline is always up to date from regula-
tory perspective (Granlund et al., 2022).

From a design control perspective, the requirement constitutes the design input, the set of
artifacts committed to the branch during the iteration, seen as design development, represent
the design output, and the pull request review correspond to review, and verification or valida-
tion. Overall the pull request is an effective design control mechanism for feature-branching
development model. Besides the review, the pull request serves also as a traceability audit trail
artifact.

Although we have described the design control implementation using pull request, a simi-
lar result can be obtained for teams using the trunk-based development model, in which all
changes are committed into the baseline. The team practices can include additional conven-
tions, such as adding the requirement identifier to the commit message, that serve as an effec-
tive traceability mechanism for relating commits and corresponding merge reviews to a single
requirement.

3.2 Integrating ML models into certified medical systems

Machine learning models must be integrated into the larger software system before they can
be used. In general, the selected model is integrated using one of the following integration

baseline

feature

br
an

ch

op
en

 p
ul

l r
eq

ue
st

m
er

ge

re
vi

ew
 c

om
pl

et
e

implementation review

software architect
software developer

data scientist
data engineer

quality manager
risk manager

Fig. 6 Design control with pull request

Software Quality Journal

1 3

patterns: include the model in the application code as a library, run the model as a service,
or dynamically load the model as data at runtime from a remote repository.

The use of machine learning technologies in medical systems is governed by domain
specific restrictions, which are typically introduced in the US and EU implementation
guidelines. To properly handle the risk that is inherent with the non-deterministic behav-
ior of machine learning, the models must be in a locked state, which means that it is not
allowed to change the models once they are deployed in production. Considering this
restriction, we can assume that the practical ways of integrating machine learning models
into medical systems is either as a library in the software item in which the model will
be used, or as a machine learning service that exposes its functionality to other software
components over the network. In this work, we assume that this library or service must be
associated with the corresponding chain of provenance.

Looking from the perspective of the architectural and detail design regulatory activities,
in which the medical system is decomposed into items and units, we can observe that the
ML model developed by the data scientists is integrated into the medical system as a soft-
ware unit. The selected model is first packaged as a library, and then is integrated into an
application or service, to reflect the integration options listed above. The software decom-
position and the model integration, mapped on the four abstraction layers defined in C45
model for visualizing software architecture, is depicted in Fig. 7.

3.3 Continuous ML design control

Pull requests have been proposed to act as a design control for regulated software develop-
ment (Stirbu & Mikkonen, 2018) in the spirit of DevOps. Since the whole CD4ML pipe-
line relies on software, we expand the same concept to data engineers and data scientists
tasks, related to the pipeline. This effectively means expanding the types of artifacts that

Fig. 7 Example software decom-
position of a medical software
device, mapped to the four
abstraction layers introduced by
the C4 model

Components

Medical Device
«system»

Applicattion/Service
«item»

Context

Containers

ML Library
«item»

Code ML Model
«unit»

5 https:// c4mod el. com

https://c4model.com

 Software Quality Journal

1 3

are stored and versioned to data. In other words, pull requests become the design control
for all changes in the development.

3.3.1 Activities performed during implementation

The model implementation starts with data engineers loading and labeling data from dif-
ferent sources and transforming the input into two datasets that are used for training and
testing. The training dataset is used to develop a model and to perform a series of experi-
ments that determines which model candidate perform best. A model card metadata docu-
ment is created once the best performing model candidate is selected. The medatada docu-
ment, which contains the model’s documentation and the associated artifacts that enable
quality control when the model, is integrated in the medical system.

The model card document, presented in Fig. 8, contains a thorough description of
the model and its usage (preferably in Markdown format), versioning information, and
information about the datasets used for training and testing, together with the informa-
tion about the data sources (e.g., x_sources) used to create the datasets. The infor-
mation about the dataset is used in the pipelines during the packaging and integration
steps. Additionally, metadata includes the information collected during the clinical
evaluation of the selected model. The content of the metadata document is created or

Fig. 8 Expanded model card metadata

Software Quality Journal

1 3

updated by the data scientists and data engineers that contributed to the development of
the corresponding model iteration.

The modelcard metadata document together with the model code and the test dataset
constitutes the design output. To perform an effective continuous design control pro-
cess, the artifacts must be reviewed and ensure that they fulfill the requirements using
the team established change request procedures that leverage the pull request. From the
CD4ML perspective, these activities corresponds to the building and evaluation and
experimentation phases. Additionally, when the selected model is merged into the main-
line, it is packaged and published into a model repository from where it can be used
downstream.

3.3.2 Activities performed during integration

The ML model is integrated into the medical system either directly into an application that
uses it locally, or as a service that is invoked over the network by other components in the
system. Depending on the integration option, the manufacturer must ensure with appropri-
ate design control procedures that the ML model is used as intended by its creators. The
integration testing must include a test suite that ensures that no deviations are introduced in
the use of the ML model. The test suite makes use of the test dataset provided in the model
card metadata document. The result of the integration test represents the clinical perfor-
mance evaluation and should be included in the quantitative_analysis section of
the model card metadata document. These activities are part of the regulatory software
development life cycle integration’s activities and the CD4ML’s testing and deployment
steps.

3.3.3 Activities performed during release

When releasing the medical system the model card metadata should be used to automati-
cally generate the clinical validation report in a format appropriate for regulatory purpose
(e.g., auditors, certification). At this point, the resulting documents can be published to an
external document management system.

3.4 Risk management with model cards

When developing the machine learning model, the team needs to perform risk analysis
throughout development life cycle. From a regulatory perspective, a medical system life
cycle consists of two major parts: pre-market defining the period during which the product
is initially developed, and post-market defining the period in which the products are used
by intended users, during which the product is maintained. From a continuous engineering
perspective, where the product is continuously improved the pre/post-market separation is
not that strict as development and maintenance activities are routinely performed during
a single increment. As machine learning models in medical systems are in a regulatory
locked state, all changes and risk management activities are allowed only in pre-market
phase, the post-market being reserved for collecting user’s feedback or for handling the
faults and anomalies detected by the monitoring systems.

 Software Quality Journal

1 3

3.4.1 Risk management activities performed pre‑market

Algorithms are an essential ingredient of machine learning. The risks inherent to algo-
rithm design propagate to medical machine learning applications due to their increased
complexity, lack of transparency, inappropriate use, or weak governance. Algorithmic
risk can be split into three categories (Deloitte, 2017): input data, algorithm design and
output decisions. Flaws in input data such as biases in the data used for training, the
quality of the data can lead to mismatches between the data used for training and the
data used during normal use. Output decisions flaws relate to incorrect interpretation or
use of the output. Algorithm design flaws can be expanded in human biases — cognitive
biases of model developers and users can lead to flawed output, technical flaws — lack
of technical rigour or conceptual soundness during development, training, testing and
validation, usage flaws — incorrect implementation or integration in operations can lead
to inappropriate decision-making, or security flaws — threat actors can manipulate the
inputs to produce deliberate flawed outputs.

The machine learning related risk analysis activities should document their findings.
The data labeling process needs to be accompanied by the justification on why the data
sources used for building the training data is enough to fulfill the clinical validation.
The documentation needs to be added to the training dataset section in the model card
metadata document. The identified risks and the possible mitigation strategies needs to
be documented as requirements and serve as input documents for development. Simi-
larly, limitations, trade-offs and ethical considerations need to be documented in the
appropriate section of the metadata document (e.g., considerations).

3.4.2 Risk management activities performed post‑market

As the model in a deployed medical system is in locked state, any corrective actions for
mitigating the anomalies and deviations detected by the users or by monitoring systems
serve as input for a future development iteration. For example, the monitoring infra-
structure that has the ability to detect deviations in the average accuracy and confidence
of a deployed model can lead to the discovery of new input data, that may relate to
model drift, or changes in the underlying relationships between input and output data,
that may reveal the possibility for concept drift. These events have to be documented
using the regulatory required user feedback procedures (International Organization for
Standardization, 2016), or as software bugs and converted into new requirements, fol-
lowing a specific root cause analysis investigation activity. From the CD4ML perspec-
tive, the ML model corrective activities are part of the feedback loop that connects the
monitoring stage to the building stage.

3.5 Revised design control process

Our approach for implementing continuous design control aligns the activities con-
ducted while developing machine learning applications, exemplified with the CD4ML
pipeline, with the rigour expected when developing certified software medical systems.
The alignment of these activities is twofold: to harmonize the terminology and to iden-
tify the artifacts that serve as audit trails that the machine learning development has

Software Quality Journal

1 3

been implemented in line with the requirements of IEC 62304, which governs the devel-
opment of software used in medical products.

In practical terms, the pull request constitutes the design control mechanism that ensure
that the evolution of the system is systematically reviewed and that the code baseline is
always up to date from a regulatory perspective. Besides aligning the development and
the regulatory activities, we identified the model card metadata as an ideal candidate for
documenting not only the model but also the regulatory specific activities performed
during model’s development, such as dataset justification or clinical performance evalu-
ation, among other pre-market risk management activities. The model card metadata docu-
ment, together with the model code, serves effectively as the design output artifact. Being
machine-readable, the model card metadata can be used in pipelines to generate automati-
cally additional documents intended for end users (e.g., the model card), and regulatory
authorities (e.g., clinical validation report). Post-market monitoring and maintenance activ-
ities that identify deviations from the expected model behavior are identified and captured
as bug reports or feedback and fed into the team backlog as requirements. The terminol-
ogy and development phase harmonization together with the design output artifacts are
described in Fig. 9.

4 Case study: Oravizio process revised

In our previous work, we have introduced Oravizio6, CE certified medical software for
assessing the risks of joint replacement surgeries (Granlund et al., 2021). We use this sys-
tem to demonstrate how to apply continuous design control for ML in certified medical
systems. The work is a concept prototype in its nature; it builds on experiences from an
industry system, but the proposed implementation has not been deployed to industrial use.

Our previous work with Oravizio has introduced a continuous training pipeline. The
pipeline allows to overcome regulatory constraints associated with Oravizio ML model
training and to simultaneously achieve automation goals associated with MLOps (Granlund

Perf
orm

an
ce

ev
alu

ati
on

Ide
nti

fy

de
via

tio
ns

Ide
nti

fy
ris

ks
 an

d

mitig
ati

on
s

Detailed design

Software unit implementation and verification

Software
integration and

integration testing

Software system
testing Software release

Data preparation Building Evaluation and
experimentation Packaging Testing Deployment Monitoring

CD4ML

IEC 62304
Maintenance

M
ar

ke
t

pre post

Software risk management (ML)

Data
se

t

jus
tifi

ca
tio

n

Gen
era

te
va

lid
ati

on

rep
ort

Fig. 9 Design control process

6 https:// oraviz. io/

https://oraviz.io/

 Software Quality Journal

1 3

et al., 2021). In addition, the pipeline addresses the medical device software design control
requirements by design.

For this paper, we have revised the pipeline by extending it with a carefully selected set
of model card documents, to demonstrate the proposed solution. Figure 10 presents the
pipeline of Granlund et al. (2021), with the proposed model card extensions marked with a
darker color.

4.1 Continuous training with MLOps pipeline

The data used to train and re-train the Oravizio ML models is generated within the clinical
processes of a collaborating partner hospital, and, by design, Oravizio does not generate
corresponding data in production use. Because of the sensitive nature of data, access to
the hospital’s computational environment is strictly restricted. As a result, the continuous
training pipeline was designed to operate inside the clinical partner’s controlled environ-
ment and fetch new data from the data store based on pre-defined triggers. Furthermore,
as the models are deterministic by nature, their technical performance can be validated
according to the principles of clinical evaluation with test data in a restricted environment

Data Store

- scheme
- values

Data Extract

- configurable per
installation

Data Validation

Data
snapshot

Verification

Training &
Building

Packaging &
validation support

Trigger

Performance
& validation

report

Packaged model

Audit trail

Manual resolution

Anomaly detected

Performance
decreased

Isolated & restricted environment
(e.g. hospital's computational environment)

Deployment pipeline

Design and
development output
review & validation

Data engineers and data scientists

Software developers and ops
Risk managers and compliance officers

Data Quality
Control

Risk
Management

Performance
requirements

Data Preparation
- anonymous data

Management of
data sets

Fig. 10 Continuous training pipeline with model cards. Arrows indicate data flows

Software Quality Journal

1 3

without the need to do the intended medical use specific validation in the final production
environment. Finally, Oravizio was designed to be deployed in a production environment
with its ML model in a “locked” state for regulatory reasons. In practice, Oravizio’s models
are trained during the development phase, and their ability to improve the outcome on the
fly is disabled in production use. Despite this limitation, the pipeline enables the laborious
task of re-training to be automated.

In addition, the fact that the development team does not need access to the restricted
environment beyond the pipeline’s installation and maintenance is a valuable design fea-
ture. Furthermore, the pipeline can automatically generate the required documentation
needed to assess the model performance in the clinical performance evaluation. All created
artifacts are delivered to the development team from the isolated environment.

4.2 Design control documentation with model cards

Even if the original version of the pipeline in Granlund et al. (2021) contains the required
design control documentation, which can be generated automatically, the documentation
format has not been based on any generally known standard. The reason is that at the time
of implementing the pipeline, no such format was available (Mitchell et al., 2019). In addi-
tion, the selected document templates have been similar to more traditional quality man-
agement system types of records targeted to regulatory stakeholders and without the tech-
nical ability to be serialized. To address these challenges and further support continuous
design control for ML, we expanded the pipeline with the model cards tailored to address
the design control documentation requirements.

4.2.1 Data set management

To ensure the required performance of the models, the selected data set must be representa-
tive of the target population. In Oravizio’s case, data sources could differ per installation,
and, as a result, the procedure for data extraction must be configurable. In addition, there
are many related documentation requirements, which can be documented with a model
card. Firstly, the allowed data sources must be listed with the specific requirements and
descriptions for a data source. Secondly, the data inclusion and exclusion criteria must be
defined with the procedure for invalid data management. Thirdly, data protection policy
needs to be defined with clear instructions on how to ensure data protection at later stages
of data processing. Finally, potential biases in the data must be reflected and the selections
made justified accordingly.

4.2.2 Data quality control

As part of data quality control for a system using supervised learning, such as Oravizio, the
labeling and label verification procedures are essential. Moreover, when utilizing automa-
tion in re-learning, the correctness of labeling needs to be constantly monitored. It is pos-
sible to use different pre-defined schemas and boundaries to validate the data quality, both
in terms of format and content. As model cards are already in a machine-readable format,
they can be used simultaneously as a documentary and a validating artifact. If the rate of
error in the data validation rises above the acceptable limit, the re-learning cannot continue
automatically, and the anomaly must be resolved manually.

 Software Quality Journal

1 3

4.2.3 Risk management

In conjunction with clinical evaluation, effective risk management provides a practical
tool for the manufacturer to prove the safety and clinical efficiency of the device. As
the ML models are a central part of Oravizio, the models have a considerable impact on
the device’s risk profile. As a result, the potential risks related to the models need to be
carefully addressed.

When utilizing model cards, the identified model-related hazards and correspond-
ing risk mitigations are documented on the model card document. It is worth noticing
that certain risks, both in terms of patient safety and data security, are unique to AI/ML
systems. These risks include, for instance, model drift, the drift in data distribution, and
risks related to continuous learning systems. In addition, also risks related to adversarial
attacks need to be considered.

4.2.4 Performance requirements

According to the regulatory requirements, manufacturers of medical devices must docu-
ment the intended purpose of their device, including specification of indications, con-
traindications, patient target groups, and operating parameters and limitations (European
Parliament and the Council, 2017). In addition, performance characteristics, accuracy,
and the limits of accuracy, precision, and analytical performance must be addressed if
applicable.

Many of the above requirements apply directly to Oravizio’s ML models. Moreover,
they can be conveniently documented within a model card.

5 Discussion

In this section, we provide an extended discussion regarding the proposed approach,
highlighting how it brings benefits to the involved stakeholders. In addition, we discuss
limitations of this work.

5.1 Aligning ML development and regulatory practices

The use of ML technologies in certified medical devices is an emerging trend in a noto-
riously conservative industry. Consequently, the regulatory practice is not as established
as the practices in the development of traditional software medical devices.

Our proposal brings together the ML application life cycle, demonstrated using
CD4ML, and the medical device software life cycle process standard IEC 62304. The
result lowers the cognitive barriers between the machine learning model developers,
such as data engineers and data scientists, and regulatory practitioners, allowing them
to work together to effectively develop medical devices that include machine learning
technologies.

Software Quality Journal

1 3

5.1.1 Avoiding common ML system design problems

In general, ML models constitute only a subset of the final system that incorporates the
respective ML technology and makes it available to the end users (Sculley et al., 2015).
With this in mind, the continuous design control approach for handling ML in certified
medical systems development fits under the process management and tools category.

Table 1 describes how the activities developed as part of the continuous design con-
trol help mitigate design problems, such as the accumulation of technical dept, and
the role played by the model cards documents as the audit trail of performing these
activities.

5.1.2 Answering regulators’ concerns

Although the use of ML technology within the medical devices is relatively new, the regu-
lators are actively engaged in a dialog with the industry to guide its adoption (Food and
Drug Administration, 2021). This indicates that the regulators are aware of the new tech-
nologies, and are considering how to best regulate the development of medical devices
that include ML features. Table 2 describes how our approach addresses the regulators’
concerns.

5.2 Model card metadata as audit trail

The emerging model card ecosystem increases the engineering maturity of machine
learning model development. The model card metadata document provides an extensible
machine-readable medium in which concerns related to the model development can be cap-
tured. In our work, we leveraged the model card metadata document to capture the regu-
latory aspects, such as intended use, the sources of data used for training, or the clinical
performance evaluation, relevant when the machine learning model is used in a certified
medical device.

In doing so, we refined existing properties defined in the TensorFlow’s model card
metadata schema and added new properties when needed (e.g., model_parameters.
data[].x_sources). We found that the description properties defined in the
schema document as string are not structured enough and we used Markdown to have a
template driven representation for the intended use of the model (e.g., model_details.
documentation), and for the description of the datasets used in model training (e.g.,
model_parameters.data[].description). The approach allowed us to iterate
fast, enabling the team members to focus on adding content. The experience, backed with
feedback from other implementers, will allow us to identify the relevant information that
can eventually be extracted and formalized into model card schema extensions.

The combination of using a structured document with the semi-structured markdown
description is appropriate for the target audience formed by engineers and regulatory pro-
fessionals, each category contributing using specific modalities. Although the approach is
effective at collecting the needed information that serves as an audit trail of the activities
performed by the team members, editing the metadata document using text editors does not
provide the best user experience for all users.

 Software Quality Journal

1 3

Ta
bl

e
1

 M
iti

ga
te

 c
om

m
on

 M
L

sy
ste

m
 d

es
ig

n
pr

ob
le

m
s (

Sc
ul

le
y

et
 a

l.,
 2

01
5)

 w
ith

 c
on

tin
uo

us
 d

es
ig

n
co

nt
ro

l

M
L

sy
ste

m
 d

es
ig

n
pr

ob
le

m
s

M
iti

ga
tio

n
str

at
eg

y
M

od
el

 c
ar

d
do

cu
m

en
t r

ol
e

C
on

fig
ur

at
io

n:
 D

o
we

 k
no

w
 a

ll
co

nfi
gu

ra
tio

n
op

tio
ns

an

d
th

ei
r e

ffe
ct

s?
Co

nfi
gu

ra
tio

n
m

an
ag

em
en

t i
s a

 p
rim

e c
on

ce
rn

 in
 th

e
SD

LC
 o

f m
ed

ic
al

 sy
ste

m
s (

In
te

rn
at

io
na

l E
le

ct
ro

te
ch

ni
ca

l
Co

m
m

iss
io

n,
 2

01
5)

. T
he

 ex
ist

in
g

pr
ac

tic
es

 es
ta

bl
ish

ed

by
 th

e m
ed

ic
al

 d
ev

ic
e m

an
uf

ac
tu

re
r f

or
 co

nfi
gu

ra
tio

n
an

d
so

ftw
ar

e
ris

k
m

an
ag

em
en

t c
an

 b
e e

xp
an

de
d

to
 co

ve
r

th
e c

on
fig

ur
at

io
ns

 o
f t

he
 M

L
m

od
el

 in
te

gr
at

ed
 in

to
 th

e
m

ed
ic

al
 sy

ste
m

.

C
on

ta
in

s t
he

 M
L

m
od

el
 p

ar
am

et
er

s a
nd

 th
ei

r v
al

id
 ra

ng
es

fo

r t
he

 in
te

nd
ed

 u
se

.

D
at

a
co

lle
ct

io
n

&
 F

ea
tu

re
 e

xt
ra

ct
io

n:
 D

o
we

 k
no

w
 if

 th
e

in
pu

t d
at

a
an

d
fe

at
ur

es
 d

ev
el

op
ed

 a
re

 e
no

ug
h

fo
r t

he

in
te

nd
ed

 u
se

?

Th
e

re
vi

ew
 in

cl
ud

es
 a

n
an

al
ys

is
 o

f t
he

 se
le

ct
ed

 d
at

a
so

ur
ce

s a
nd

 th
e

m
et

ho
ds

 u
se

d
fo

r f
ea

tu
re

 e
xt

ra
ct

io
n.

Th
e

m
od

el
 c

ar
d

is
 e

xt
en

de
d

to
 c

ap
tu

re
 th

e
so

ur
ce

 fo
r e

ac
h

da
ta

 se
t.

To
ge

th
er

 w
ith

 th
e

ju
sti

fic
at

io
n

se
ct

io
n

in
cl

ud
ed

de

sc
rip

tio
n,

 it
 p

ro
vi

de
s t

he
 e

vi
de

nc
e

of
 n

ee
de

d
to

 fu
lfi

ll
th

e
cl

in
ic

al
 e

va
lu

at
io

n.
D

at
a

ve
rifi

ca
tio

n
Th

e
re

le
va

nt
 d

at
a

se
t i

s u
se

d
to

 v
er

ify
 th

e
in

te
gr

at
io

n
fo

r
ea

ch
 c

ha
ng

e
re

qu
es

t.
Th

e
ve

rifi
ca

tio
n

da
ta

 se
t i

s i
nc

lu
de

d
in

 th
e

m
od

el
 c

ar
d,

an

d
sh

ou
ld

 b
e

us
ed

 b
y

th
e

re
le

va
nt

 M
LO

ps
 in

te
gr

at
io

n
st

ag
es

.
Re

so
ur

ce
 m

an
ag

em
en

t:
D

o
we

 k
no

w
 th

at
 th

e
ne

ed
ed

ha

rd
wa

re
 a

nd
 so

ftw
ar

e
re

so
ur

ce
s a

re
 a

va
ila

bl
e

to

en
su

re
 th

e
m

od
el

 p
er

fo
rm

s c
or

re
ct

ly
?

Th
e

qu
al

ity
 m

an
ag

em
en

t s
ys

te
m

, i
m

pl
em

en
te

d
by

th

e
m

an
uf

ac
tu

re
r t

o
fu

lfi
ll

re
gu

la
to

ry
 re

qu
ire

m
en

ts
(In

te
rn

at
io

na
l O

rg
an

iz
at

io
n

fo
r S

ta
nd

ar
di

za
tio

n,
 2

01
6)

,
en

su
re

s t
ha

t t
he

 n
ee

de
d

re
so

ur
ce

s f
or

 th
e

pr
op

er

fu
nc

tio
ni

ng
 o

f t
he

 m
ed

ic
al

 p
ro

du
ct

 a
re

 a
llo

ca
te

d.

Th
e

m
od

el
 c

ar
d

co
nt

ai
ns

 th
e

in
fo

rm
at

io
n

ab
ou

t t
he

sp

ec
ia

l r
es

ou
rc

es
 th

at
 a

re
 n

ee
de

d
to

 ru
n

th
e

m
od

el
. T

he

in
fo

rm
at

io
n

sh
ou

ld
 b

e
us

ed
 d

ow
ns

tre
am

 w
he

n
pl

an
ni

ng

th
e

re
so

ur
ce

 a
llo

ca
tio

n.

Se
rv

in
g

in
fr

as
tru

ct
ur

e:
 D

o
we

 k
no

w
 th

at
 th

e
m

od
el

 is

in
te

gr
at

ed
 a

nd
 w

or
ks

 p
ro

pe
rly

?
M

L
m

od
el

s a
re

 p
ac

ka
ge

d
an

d
in

te
gr

at
ed

 in
to

 m
ed

ic
al

sy

ste
m

s a
s l

ib
ra

ri
es

 (s
ee

 S
ec

t.
3.

2)
. A

s s
uc

h,
 th

ei
r

fu
nc

tio
na

lit
y

is
 e

xp
os

ed
 v

ia
 a

n
A

PI
 a

nd
 c

ha
ng

es
 to

 th
e

M
L

m
od

el
 a

re
 c

on
ta

in
ed

.

-

M
on

ito
rin

g:
 C

an
 w

e
de

te
ct

 d
ev

ia
tio

ns
 w

hi
le

 th
e

m
od

el
 is

us

ed
 w

ith
 p

ro
du

ct
io

n
da

ta
?

M
ed

ic
al

 d
ev

ic
e

m
an

uf
ac

tu
re

rs
 m

us
t e

sta
bl

ish
 p

os
t-m

ar
ke

t
su

rv
ei

lla
nc

e
pr

og
ra

m
 (I

nt
er

na
tio

na
l O

rg
an

iz
at

io
n

fo
r

St
an

da
rd

iz
at

io
n,

 2
01

6;
 In

te
rn

at
io

na
l E

le
ct

ro
te

ch
ni

ca
l

Co
m

m
iss

io
n,

 2
01

5)
. T

he
 p

ro
gr

am
 sh

ou
ld

 c
ov

er
 th

e
m

on
ito

rin
g

th
e

M
L

co
m

po
ne

nt
s i

n
us

e.

Th
e

qu
an

tit
at

iv
e

da
ta

 in
cl

ud
ed

 in
 th

e
m

od
el

 c
ar

d
do

cu
m

en
t

se
rv

es
 a

s i
np

ut
 fo

r m
on

ito
rin

g
co

m
po

ne
nt

s t
ha

t d
et

ec
t

de
vi

at
io

ns
.

Software Quality Journal

1 3

In the future, we plan to explore with having dedicated editors for regulatory profession-
als so that they can introduce their content using more familiar approaches, such as what
you see is what you get editors.

5.3 Pull request as continuous design control

The pull request is the practice typically used by software development teams to man-
age changes. Our proposal extends the use of pull request throughout the machine learn-
ing development life cycle. Besides software engineers, data engineers and data scientist
use the pull request to manage the evolution of the software products within their area of

Table 2 Supporting the good ML practice guiding principles (Food and Drug Administration, 2021) with
continuous design control

Guiding principles Implementation

Multi-disciplinary expertise is leveraged throughout
the total product life cycle

The pull request is the venue to perform multi-
disciplinary reviews during all development stages

Good software engineering and security practices
are implemented

ML development is integrated into the product and
software development leveraging best practices and
tools

Clinical study participants and data sets are
representative of the intended patient population

Although clinical studies can be seen as partly
outside the scope of product development, the
model card document can be used to document
data collection protocols and data characteristics
that are relevant to the intended patient population.
In addition, continuous design control promotes
traceability from clinical study data sets to the final
model

Training data sets are independent of test sets Following the continuous design practice ensures that
the test data set is reviewed, versioned and it is not
used during model development

Selected reference data sets are based upon best
available methods

If accepted reference data sets are available, their use
in the model development should be promoted and
documented in the model card document

Model design is tailored to the available data and
reflects the intended use of the device

Continuous design control ensures, by including the
justification in the model card document, that the
data sets are enough to satisfy the intended use

Focus is placed on the performance of the human-ai
team

Testing at different development stages (e.g., training,
integration, system) ensures that the different
stakeholders’ interests are captured

Testing demonstrates device performance during
clinically relevant conditions

Continuous testing in staging environments that
mimic the clinically relevant conditions

Users are provided clear, essential information The regulatory required documentation contains
information that can be collected in the model card
documents during development. The continuous
design and review activities ensures that the end
user documentation fits their needs

Deployed models are monitored for performance
and re-training risks are managed

The monitoring stage of the MLOps pipeline,
implementing common techniques for detecting model
performance anomalies, together with the regulatory
required post-market monitoring practices enable the
manufacturer to identify deviations and perform the
necessary corrective actions

 Software Quality Journal

1 3

responsibility. As the pull request is linked with requirements (e.g., design inputs), and
the introduced changes consist mainly of the machine learning model and the model card
metadata (e.g., design outputs), we have an effective quality gate that ensures that design
reviews are performed systematically and the appropriate audit trails are build at every iter-
ation throughout the development life cycle.

5.4 Handling model anomalies

One of the critical advantages of utilizing interpretable machine learning models is that
they allow for more efficient anomaly detection and analysis. The ML model can be inter-
preted as consisting of different components, such as inputs, features, parameters, and
weights, and the understandability of the model increases if it can be decomposed into
different explainable parts (Lipton, 2018). Our proposed approach provides a solid founda-
tion to document different model aspects to support explainability, which can, in turn, help
the engineering team to perform anomaly and root cause analysis activities. Furthermore,
even if initially designed to promote regulatory activities in the form of an audit trail, the
fine-grained traceability provides additional support for the anomaly analysis. Based on the
results, the team can determine the appropriate corrective actions needed to be performed
and included in subsequent model releases.

5.5 Safe continuous self‑learning

The ability to learn after being deployed to real-world use is undoubtedly one of the critical
differences between an AI/ML-enabled system and a more traditional rule-based system.
However, as discussed previously, due to the current regulatory uncertainties, manufactur-
ers of medical device AI/ML-enabled systems may prefer such AI/ML models that can be
deployed in a locked state. It is evident that such a design approach can seriously reduce
the benefits of AI/ML-enabled technology. Therefore, alternative yet patient safety ensur-
ing design and development methods are needed.

A robust and effective risk management process is the basis of safe medical device soft-
ware development. As the process starts with risk identification (International Organiza-
tion for Standardization, 2019), the development team must be competent in assessing the
product’s specific ML change-related aspects, particularly when the chosen technology’s
complexity and opaqueness increase. In practice, a cross-functional development team
should include knowledgeable and experienced data scientists, in addition to the typical set
of clinical and product development specialists.

According to the regulations, medical device manufacturers must seek approval for
changes to the approved design of a device prior to making the change, where the change
has a substantial impact or can affect the device’s conformity with the general safety and
performance requirements (European Parliament and the Council, 2017). Therefore, it is
clear that if enabled, self-learning can only occur within a pre-determined tolerance and
change control plan. In addition, the manufacturer is responsible for demonstrating that the
change tolerance complies with the device’s intended use, use environment, user groups,
and other medical claims prior to placing the device on the market.

Finally, an essential aspect of self-learning and safety is the ability to monitor the
device’s performance as a part of the device’s post-market surveillance activities. Contrary
to the first thought, it can be argued that self-learning AI/ML systems are, in fact, more
tolerant against model drift than the locked systems as they are constantly improving their

Software Quality Journal

1 3

performance with the new data. However, monitoring the constantly changing system can
be more difficult as there are additional aspects to consider and measure. The most impor-
tant thing is to ensure that the device’s performance cannot decrease due to an upgrade.

5.6 Cross domain terminology challenges

A conflicting terminology is a common problem when several domains — such as medical
device regulatory concepts, data science, and software engineering — are combined within
a single project. This problem can lead to miscommunication, misunderstandings, and, at
worst, poor decision-making (Vogel, 2011). The terminology conflicts were also emergent
within this paper’s context, particularly regarding the term validation. Within the field of
ML alone, the term has been used with two different meanings: for data curation (i.e., data
validation) or ML model tuning. To make matters even more complicated, in the context
of medical device development, validation means confirmation that the particular require-
ments for specific intended use can be consistently fulfilled (International Medical Device
Regulators Forum, 2022). As a practical solution, we propose favoring regulatory termi-
nology in the documents that demonstrate conformity, and, in general enforcing explicit
communication to avoid confusion.

5.7 Information security considerations

The model card metadata document serves as an effective audit trail of the model devel-
opment. As such, it contains a plethora of information that should be considered private,
as it might contain personal data, information that is not open to public, or even critical
trade secrets. While the document should serve as input for generating the public technical
documentation of the medical device, as expected by regulation and applicable standards,
manufacturers should employ the necessary information management practices to ensure
that the properties classified as private are not included in the model card representations
intended for public consumption.

5.8 Limitations

Our implementation of the proposed approach leverages existing tools and processes
widely used by software development teams, such as Git for version control, issues for
tracking requirements and work items, or pull requests for reviews and change manage-
ment. However, we wish to point out that our implementation has not been exposed to
a wide range of real life medical products, except Oravizio. For example, managing the
evolution of the medical product has been implemented using the feature-branch approach,
in which a new branch is created from the mainline, for each requirement, and merged
following a successful review. Other development models such as trunk-based develop-
ment (Jørgensen, 2001) have not been investigated thoroughly, although equivalent review
facilities are supported by tools used for this development strategy. Therefore, the pro-
posed approach is not intended to be a model that suits any medical product or situation,
which one must follow in a verbatim fashion. Rather, we want to emphasize that systematic
reviews and using the model card as the audit trail of regulatory activities represent an
effective form of design control that is compatible with the regulatory requirements that

 Software Quality Journal

1 3

govern medical devices that contain software. Similar approaches to track the model card
metadata and performing equivalent activities will most likely result in a satisfactory solu-
tion from a regulatory perspective.

Operations related to data have been overlooked in the paper, because much of the work
happens in data engineers’ own environment, following their own ways of working (Aho
et al., 2020). However, we proposed model cards as a mechanism to record the trail of prov-
enance from data operations to the model, so that this part can be included in the MLOps
pipeline as well. Therefore, exploring the data operations and their relation to model cards
is a part of future work we plan to carry out.

6 Conclusions

The software engineering industry has widely adopted continuous development and deploy-
ment of new features. These features may include AI/ML functions, which have become
commonplace in numerous applications, calling for deployment pipelines where such func-
tions can be included in mainstream development activities. Such continuous setup forms
a sharp contrast to the development of medical systems, where design controls are often
interpreted to require waterfall-like development approach.

In this paper, we propose using an approach where continuous design control for ML
is enabled while developing medical systems. The proposed approach builds on our ear-
lier work on MLOps, but extends it with the design controls that are explicitly included in
the MLOps pipeline. The approach was demonstrated with an industry system, which is in
active use. As future work, we plan to investigate data operations, related to building ML
models, in more depth.

Acknowledgements The authors wish to thank project AHMED and associated consortium, funded by
Business Finland, for supporting this research.

Funding Open Access funding provided by University of Helsinki.

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Declarations

Conflict of interest The authors declare no competing interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/

Software Quality Journal

1 3

References

Aho, T., Sievi-Korte, O., Kilamo, T., Yaman, S., Mikkonen, T. (2020). Demystifying data science projects:
A look on the people and process of data science today. In: International Conference on Product-
focused Software Process Improvement (PROFES’20), pp. 153–167. Springer.

AWS Solutions. (2021). AWS MLOps Framework. https:// docs. aws. amazon. com/ solut ions/ latest/ aws- mlops-
frame work/ welco me. html. Retrieved 14 March 2021.

Bass, L., Weber, I., Zhu, L. (2015). DevOps: A Software Architect’s Perspective. Addison-Wesley
Professional.

Baylor, D., Breck, E., Cheng, H.-T., Fiedel, N., Foo, C. Y., Haque, Z., Haykal, S., Ispir, M., Jain, V., Koc,
L., Koo, C. Y., Lew, L., Mewald, C., Modi, A. N., Polyzotis, N., Ramesh, S., Roy, S., Whang, S.
E., Wicke, M., Wilkiewicz, J., Zhang, X., Zinkevich, M. (2017). Tfx: A tensorflow-based production-
scale machine learning platform. In: Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. KDD ’17, pp. 1387–1395. Association for Computing
Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 30979 83. 30980 21

Debois, P. (2011). DevOps: A software revolution in the making. Cutter IT Journal 24(8).
Deloitte. (2017). Managing algorithmic risks – Safeguarding the use of complex algorithms and machine learning.

https:// www2. deloi tte. com/ us/ en/ pages/ risk/ artic les/ algor ithmic- machi ne- learn ing- risk- manag ement. html
der Benannten Stellen für Medizinprodukte in Deutschland (IG-NB), I. (2021). Fragenkatalog Künstli-

che Intelligenz bei Medizinprodukten. https:// www. ig- nb. de/ dok_ view? oid= 861877. Retrieved 29
December 2021.

Drvar, M., Turner, J., Piechocki, M., Stiegeler, E., Münch, D. (2020). The future of data collection and
data management: Agile RegOps for digitalizing the regulatory value chain. BearingPoint Software
Solutions GmbH, Frankfurt.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. IEEE Software, 33(3), 94–100.
European Parliament and the Council. (2017). Regulation (EU) 2017/745 on medical devices. https:// eur-

lex. europa. eu/ legal- conte nt/ EN/ TXT/? uri= CELEX: 02017 R0745- 20200 424# tocId 168. Retrieved 21
November 2021.

European Parliament and the Council. (2017). Regulation (EU) 2017/746 on in vitro diagnostic medical
devices. https:// eur- lex. europa. eu/ legal- conte nt/ EN/ TXT/? uri= CELEX: 02017 R0746- 20170 505#
tocId 157. Retrieved 21 November 2021.

FDA - Center for Devices and Radiological Health. (1997). Design Control Guidance for Medical Device
Manufacturers.

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda. Journal of
Systems and Software, 123, 176–189.

Food and Drug Administration. (2021). Good Machine Learning Practice for Medical Device Develop-
ment Guiding Principles. https:// www. regul ations. gov/ docum ent/ FDA- 2019-N- 1185- 0156

Google Cloud Solutions. (2021). MLOps: Continuous delivery and automation pipelines in machine
learning. Google Cloud. https:// cloud. google. com/ solut ions/ machi ne- learn ing/ mlops- conti nuous-
deliv ery- and- autom ation- pipel ines- in- machi ne- learn ing. Accessed 14 March 2021.

Granlund, T., Stirbu, V., & Mikkonen, T. (2022). Medical software needs calm compliance. IEEE Soft-
ware, 39(1), 19–28. https:// doi. org/ 10. 1109/ MS. 2021. 31172 92

Granlund, T., Stirbu, V., & Mikkonen, T. (2021). Towards regulatory-compliant MLOps: Oravizio’s
journey from a machine learning experiment to a deployed certified medical product. SN Computer
Science, 2(5), 342. https:// doi. org/ 10. 1007/ s42979- 021- 00726-1

Granlund, T., Vedenpää, J., Stirbu, V., Mikkonen, T. (2021). On medical device cybersecurity compli-
ance in eu. In: 2021 IEEE/ACM 3rd International Workshop on Software Engineering for Health-
care (SEH), pp. 20–23. https:// doi. org/ 10. 1109/ SEH52 539. 2021. 00011

Humble, J., Farley, D. (2010). Continuous Delivery: Reliable Software Releases Through Build, Test,
and Deployment Automation. Pearson Education.

International Electrotechnical Commission. (2015). IEC 62304:2006/A1:2015. Medical device software
- Software life-cycle processes.

International Electrotechnical Commission. (2016). IEC 82304-1:2016. Health software - Part 1: Gen-
eral requirements for product safety.

International Medical Device Regulators Forum. (2022). Machine Learning-enabled Medical Devices:
Key Terms and Definitions.

International Organization for Standardization. (2016). ISO 13485:2016. Medical devices - Quality man-
agement systems - Requirements for regulatory purposes.

International Organization for Standardization. (2019). ISO 14971:2019. Medical devices - Application
of risk management to medical devices.

https://docs.aws.amazon.com/solutions/%20latest/aws-mlops-framework/welcome.html
https://docs.aws.amazon.com/solutions/%20latest/aws-mlops-framework/welcome.html
https://doi.org/10.1145/3097983.3098021
https://www2.deloitte.com/us/en/pages/risk/articles/algorithmic-machine-learning-risk-management.html
https://www.ig-nb.de/dok_view?oid=861877
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02017R0745-20200424#tocId168
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02017R0745-20200424#tocId168
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02017R0746-20170505#tocId157
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02017R0746-20170505#tocId157
https://www.regulations.gov/document/FDA-2019-N-1185-0156
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://doi.org/10.1109/MS.2021.3117292
https://doi.org/10.1007/s42979-021-00726-1
https://doi.org/10.1109/SEH52539.2021.00011

 Software Quality Journal

1 3

John, M. M., Olsson, H. H., Bosch, J. (2021). Towards MLOps: A framework and maturity model. In:
2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA’21),
pp. 1–8. IEEE.

Jørgensen, N. (2001). Putting it all in the trunk: Incremental software development in the FreeBSD open
source project. Information Systems Journal, 11(4), 321–336.

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of inter-
pretability is both important and slippery. Queue, 16(3), 31–57.

Medical Device Coordination Group. (2021). Ongoing guidance development and deliverables of
MDCG Subgroups - October 2021. https:// ec. europa. eu/ health/ sites/ defau lt/ files/ md_ sector/ docs/
mdcg_ ongoi ng_ guida ncedo cs_ en. pdf. Retrieved 29 December 2021.

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., Gebru, T.
(2019). Model cards for model reporting. In: Proceedings of the Conference on Fairness, Accountability, and
Transparency, pp. 220–229.

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D.,
Gebru, T. (2019). Model cards for model reporting. In: Proceedings of the Conference on Fairness,
Accountability, and Transparency. FAT* ’19, pp. 220–229. Association for Computing Machinery,
New York, NY, USA. https:// doi. org/ 10. 1145/ 32875 60. 32875 96

Myrbakken, H., Colomo-Palacios, R. (2017). DevSecOps: A multivocal literature review. In: Interna-
tional Conference on Software Process Improvement and Capability Determination, pp. 17–29.
Springer.

Rajkumar, M., Pole, A. K., Adige, V. S., Mahanta, P. (2016). Devops culture and its impact on cloud
delivery and software development. In: 2016 International Conference on Advances in Computing,
Communication, & Automation (ICACCA)(Spring), pp. 1–6. IEEE.

Sato, D., Wilder, A., Windheuser, C. (2019). Continuous Delivery for Machine Learning. https://
marti nfowl er. com/ artic les/ cd4ml. html Retrieved 21 December 2020.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo,
J.-F., Dennison, D. (2015). Hidden technical debt in machine learning systems. In: Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume 2. NIPS’15, pp.
2503–2511. MIT Press, Cambridge, MA, USA.

Stirbu, V., Mikkonen, T. (2021). Introducing traceability in github for medical software development. In:
Product-Focused Software Process Improvement (PROFES’21). Springer

Stirbu, V., Mikkonen, T. (2018). Towards agile yet regulatory-compliant development of medical soft-
ware. In: 2018 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), pp. 337–340. IEEE.

Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K. (2008). Web browser as an application platform.
In: 2008 34th Euromicro Conference Software Engineering and Advanced Applications, pp. 293–
302. IEEE.

Toivakka, H., Granlund, T., Poranen, T., Zhang, Z. (2021). Towards RegOps: A DevOps Pipeline for
Medical Device Software. In: Product Focused Software Improvement (PROFES’21). Springer.

Treveil, M., Omont, N., Stenac, C., Lefevre, K., Phan, D., Zentici, J., Lavoillotte, A., Miyazaki, M.,
Heidmann, L. (2020). Introducing MLOps. O’Reilly Media, Inc.

U.S. Department of Health and Human Services. (2021). Federal Food, Drug, and Cosmetic Act.
https:// www. fda. gov/ regul atory- infor mation/ laws- enfor ced- fda/ feder al- food- drug- and- cosme tic-
act- fdc- act. Retrieved 21 November 2021.

U.S. Food and Drug Administration (FDA). (2021). Artificial Intelligence/Machine Learning (AI/ML)-
Based Software as a Medical Device (SaMD) Action Plan. https:// www. fda. gov/ media/ 145022/
downl oad

Vogel, D. A. (2011). Medical Device Software Verification, Validation and Compliance. Artech House,
Boston/London.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://ec.europa.eu/health/sites/default/files/md_sector/docs/%20mdcg_ongoing_guidancedocs_en.pdf
https://ec.europa.eu/health/sites/default/files/md_sector/docs/%20mdcg_ongoing_guidancedocs_en.pdf
https://doi.org/10.1145/3287560.3287596
https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html
https://www.fda.gov/regulatory-information/laws-enforced-fda/federal-food-drug-and-cosmetic-act-fdc-act
https://www.fda.gov/regulatory-information/laws-enforced-fda/federal-food-drug-and-cosmetic-act-fdc-act
https://www.fda.gov/media/145022/download
https://www.fda.gov/media/145022/download

Software Quality Journal

1 3

Vlad Stirbu is the founder of CompliancePal. He received his D.Sc
(Tech) in software engineering from Tampere University of Technol-
ogy. His research interests include continuous software engineering
practices in the context of regulated industries.

Tuomas Granlund is a quality manager and a regulatory compliance
specialist at Solita Ltd., Finland, and a doctoral student at Tampere Uni-
versity, Finland.

Tommi Mikkonen is a professor of software engineering at University
of Jyväskylä. He received his doctoral degree in 1999 from Tampere
University of Technology.

	Continuous design control for machine learning in certified medical systems
	Abstract
	1 Introduction
	2 Background
	2.1 Continuous software engineering practices
	2.2 ML life cycle challenges
	2.2.1 Continuous delivery for ML
	2.2.2 ML model cards

	2.3 Medical regulatory landscape
	2.3.1 Design control
	2.3.2 Design control for ML: the missing parts

	3 Proposed solution
	3.1 Applicability considerations and background
	3.1.1 Traceability
	3.1.2 Design control with pull requests

	3.2 Integrating ML models into certified medical systems
	3.3 Continuous ML design control
	3.3.1 Activities performed during implementation
	3.3.2 Activities performed during integration
	3.3.3 Activities performed during release

	3.4 Risk management with model cards
	3.4.1 Risk management activities performed pre-market
	3.4.2 Risk management activities performed post-market

	3.5 Revised design control process

	4 Case study: Oravizio process revised
	4.1 Continuous training with MLOps pipeline
	4.2 Design control documentation with model cards
	4.2.1 Data set management
	4.2.2 Data quality control
	4.2.3 Risk management
	4.2.4 Performance requirements

	5 Discussion
	5.1 Aligning ML development and regulatory practices
	5.1.1 Avoiding common ML system design problems
	5.1.2 Answering regulators’ concerns

	5.2 Model card metadata as audit trail
	5.3 Pull request as continuous design control
	5.4 Handling model anomalies
	5.5 Safe continuous self-learning
	5.6 Cross domain terminology challenges
	5.7 Information security considerations
	5.8 Limitations

	6 Conclusions
	Acknowledgements
	References

