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Abstract
We propose an approach for the planning of longitudi-
nal covariate measurements in follow-up studies where
covariates are time-varying. We assume that the entire
cohort cannot be selected for longitudinal measure-
ments due to financial limitations, and study how a
subset of the cohort should be selected optimally, in
order to obtain precise estimates of covariate effects in
a survival model. In our approach, the study will be
designed sequentially utilizing the data collected in pre-
vious measurements of the individuals as prior informa-
tion. We propose using a Bayesian optimality criterion in
the subcohort selections, which is compared with sim-
ple random sampling using simulated and real follow-up
data. Our work improves the computational approach
compared to the previous research on the topic so that
designs with several covariates and measurement points
can be implemented. As an example we derive the opti-
mal design for studying the effect of body mass index and
smoking on all-cause mortality in a Finnish longitudinal
study. Our results support the conclusion that the preci-
sion of the estimates can be clearly improved by optimal
design.
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1 INTRODUCTION

Longitudinal covariate measurements are often carried out in follow-up studies when the covari-
ates are time varying. These measurements give useful information about the trajectories of the
covariates. Frequent remeasurements provide more information than infrequent ones, but in
practice, limited resources may restrict the number of measurements and researchers have to
consider how to design the study cost efficiently.

We study optimal design in a scenario where we cannot afford to remeasure the entire
cohort but can only select a subset of the cohort, called a subcohort. The goal is to estimate
the effects of the covariates on survival as precisely as possible. The study is designed sequen-
tially, which here means that the subcohorts are selected just before the measurement times
and all information collected prior to a new measurement is utilized. This kind of design pro-
cedure is realizable if researchers can clearly define beforehand the purpose of data collection,
that is, the parameters of interest to be estimated from the data. In addition, the outcome data
must already be available during the follow-up. The proposed method requires especially that
up-to-date survival information can be obtained when needed. This is possible, for example,
in Finland, where data on mortality and hospitalizations are available from administrative
registries.

Use of a Bayesian version of Ds-optimality, an optimality criterion based on Fisher informa-
tion, is proposed for the selection of the subcohort. In addition to the Ds-criterion, there are also
other optimality criteria, which were originally developed for design of experiments (Atkinson,
Donev, & Tobias, 2007; Pukelsheim, 1993), but can also be applied in observational studies. For
example, Karvanen, Kulathinal, and Gasbarra (2009) considered optimal subset selection for
genotyping in a follow-up study, Buzoianu and Kadane (2009) investigated selection of patients
for a diagnostic test and Mehtälä, Auranen, and Kulathinal (2015) studied optimal time spacings
for observations of a multistate Markov process.

Reinikainen, Karvanen, and Tolonen (2016) studied the same problem with a frequentist
approach that was restricted to one time-varying covariate and one remeasurement after the
baseline. The limitation of this approach is that there is no straightforward way to generalize it
to more realistic scenarios where several covariates and measurement points are allowed. The
Bayesian approach presented in this paper offers flexibility that makes it possible to handle these
challenges.

In a multivariate setting with multiple longitudinal measurements, several computational
challenges are faced. Because of the very large discrete design space, it is practically impossible
to evaluate all possible designs. Thus, some heuristic method is needed to find an approximate
solution. Bayesian analysis with Markov chain Monte Carlo (MCMC) offers flexibility in the mod-
eling, but requires computational resources. Selecting only subcohorts for remeasurement creates
a large amount of missing data, which further complicates the data analysis.

The data missing by design have previously (Reinikainen et al., 2016) been handled with mul-
tiple imputation and a likelihood-based approach with numerical integration. These approaches
do not look promising for the generalized problem because multiple imputation of covariates
conditioned on survival data would be complicated and numerical integration would become
infeasible as increasing the number of covariates increases the dimension of the integral. Here,
we handle missing data by using Bayesian data augmentation, which is expected to be a more
flexible method when the number of measurement points and covariates is increased. Parallel
computing is utilized in a simulation study.
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The optimal subcohort selection is studied using simulated and real data. The real data
consist of the Finnish cohorts from the Seven Countries Study (Keys, 1970), an international
epidemiologic study characterized by a long follow-up time and several longitudinal covariate
measurements. We use body mass index and smoking as time-varying covariates and all-cause
mortality as the outcome. With these data, the proposed selection procedure is compared with
simple random sampling (SRS) of individuals to be remeasured and with a case where the entire
cohort is selected for remeasurement.

2 SURVIVAL MODEL

In this section, we introduce the notation for our study design and survival model. These are later
used to present our optimal subcohort selection procedure. Many of the following assumptions
are made to be suitable for the real data example of Section 6, but the general idea is applicable
to other designs and models as well.

Let us consider a follow-up study in which survival time is the response variable and M
longitudinal measurements are carried out for the time-varying covariates after the baseline
measurement. We denote the covariate values by xmjh for the measurement m = 0, … ,M, the
individual j = 1, … ,N and the covariate h = 1, … ,H. The corresponding random variables are
denoted by Xmjh and for all the covariates and individuals shortly by Xm. The measurements for
the covariates are carried out at time points 𝜏0, … , 𝜏M in calendar time for the individuals who
are alive and have been selected to be measured. The individuals in the cohort may be of different
ages at the time of the baseline measurement and the start of the follow-up 𝜏0. The follow-up has
a predetermined length ending at the time 𝜏M+1.

The exact survival times are available from a registry. The observed survival information at
the time of mth remeasurement for the individual j is denoted by ymj = (tmj, 𝛿mj), where tmj is the
continuously measured survival time with age as the time scale and 𝛿mj is the status indicator
telling the vital status at time 𝜏m (𝛿mj = 1 for an event and 𝛿mj = 0 for censoring). Thus, if 𝛿mj = 1,
tmj is the age at the event and if 𝛿mj = 0, tmj is the age at 𝜏m.

Although the survival time is observed continuously, the piece-wise modeling approach uses
separate time and status variables for each measurement time interval. The individual j has
time-to-event variables t1j, t2j, … for each part of the follow-up where they are still alive. We
denote the random variables related to survival information by Ymj and for all the individuals by
Ym.

We use notation xm = (xm1, … , xmH)T and 𝜷 = (𝛽1, … , 𝛽H)T and assume that the covariate
effects fulfill the Markov property

𝜆(tm+1|x0, … , xm, 𝛿m = 0) = 𝜆(tm+1|xm, 𝛿m = 0).

We continue by assuming that the covariates are related to the hazard of the event through the
proportional hazards model

𝜆(tm+1|xm, 𝛿m = 0) = 𝜆0(tm+1|𝛿m = 0) exp(𝜷Txm). (1)

Conditioning on 𝛿m = 0 means that only those individuals contribute here who have not died
before the mth remeasurement. As the covariate information is updated during the follow-up,
also the hazard of an individual is assumed to change correspondingly. The survival times are
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assumed to follow the Weibull distribution, when the baseline hazard function has the form

𝜆0(tm+1|𝛿m = 0) = a
b

( tm+1

b

)a−1
,

where a is the shape parameter and b is the scale parameter. Then model (1) becomes a parametric
form of the time-dependent Cox model (Therneau & Grambsch, 2000). Other distributions than
the Weibull could also be used for the survival times.

Now, we can write the survival function and the density function as

S(tm+1|xm, 𝛿m = 0) = S0(tm+1|𝛿m = 0)exp(𝜷T xm) and
p(tm+1|xm, 𝛿m = 0) = 𝜆(tm+1|xm, 𝛿m = 0)S(tm+1|xm, 𝛿m = 0),

where S0(tm+1|𝛿m = 0) is the baseline survival function. The modeling is carried out piecewisely
in time, because the covariate information changes at the measurement points. For this reason
we have to deal with left-truncated and possibly right-censored Weibull distributions in the time
intervals (𝜏0, 𝜏1], (𝜏1, 𝜏2], … . Survival times are left-truncated at the lower limit of a time interval
by scaling the likelihood with S(tmj|xmj, 𝛿m = 0) because an observed survival time tm+1,j cannot be
smaller than tmj. This is a sequential conditioning where the likelihood is scaled with the survival
probability at age tmj. In addition, left-truncation is necessary because the age of an individual is
used as the time scale and we do not assume that the follow-up would begin at time zero, which
would be the time of birth. Thus, we have to take into account that persons who have died before
the start of the follow-up did not have an opportunity to be included in the cohort. The likelihood
contribution for the individual j for the parameters 𝛽1, … , 𝛽H , a and b is

Lj(𝛽1, … , 𝛽H , a, b) =
m′

j∏

m=0

(p(tm+1,j|xmj, 𝛿m = 0)
S(tmj|xmj, 𝛿m = 0)

)
𝛿m+1,j

(S(tm+1,j|xmj, 𝛿m = 0)
S(tmj|xmj, 𝛿m = 0)

)1−𝛿m+1,j

, (2)

where m′
j = max{0, … ,M ∶ 𝛿mj = 0}.

3 OPTIMAL SUBCOHORT SELECTION

If the entire cohort cannot be remeasured because of financial limitations, we have to select a
subcohort, which we can afford to measure. The optimal selection aims to make the estimates of
the parameters of interest as precise as possible subject to financial constraints. In this paper, we
focus on the estimation of regression parameters 𝜷.

Assume that baseline covariate measurements (and possibly some longitudinal measure-
ments) have been carried out and that continuous survival information can be obtained during
the study for all individuals. When we want to carry out the next longitudinal measurement for
a subcohort, we proceed by taking the following general steps:

1. Just before the new longitudinal measurement, use the data already collected to obtain prior
information about the parameters of interest

2. Define the optimality criterion as an expectation over the prior distribution
3. Maximize the optimality criterion and select an optimal subcohort for the remeasurement
4. Remeasure the covariates for the selected subcohort
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The rest of this section and Section 4.1 provides a description of one possible way to perform
steps 2. and 3. Section 4.2 focuses on step 1.

3.1 Bayesian optimal design in a general form

An optimal design problem can be seen as a problem of maximizing the expected utility U(𝝃)
for a design 𝝃 from a design space Ξ (Chaloner & Verdinelli, 1995). See the seminal paper by
Lindley (1956) on Bayesian optimal design and Woods, Overstall, Adamou, and Waite (2017) for a
recent review on the topic. In our problem, 𝝃 is an indicator matrix with individuals on rows and
measurement times on columns, where an element (j,m) is 1 if individual j has been selected for
measurement m and 0 otherwise. The constraint of limited resources means here that the column
sums are fixed in 𝝃. The column sums need not be the same, because we may have different
amount of resources for different re-examinations.

Data w = (x, y), where x corresponds to covariate data and y to survival outcome, come from
a sample space  . The outcome data y and the baseline covariate measurements are assumed
to be available on all individuals, whereas longitudinal covariate data is collected according to
the design 𝝃. The data are assumed to follow a model p(w|𝜽), where parameters 𝜽 belong to the
parameter space Θ.

The fully Bayesian solution for the optimal design problem would involve integrating a mea-
sure of observed utility over data w and the posterior distribution of parameters 𝜽. Instead of this,
we use a common approach (Atkinson et al., 2007; Chaloner & Verdinelli, 1995) where the inte-
gration is done over the prior density distribution of 𝜽 and the utility is defined as a function of
the expected information. With this notation, the expected utility can be written as

U(𝝃) =
∫Θ

g
[
Ew|𝜽,𝝃{Iw(𝜽)}

]
p(𝜽)d𝜽, (3)

where g is a function such as determinant (D-optimality), Ew|𝜽,𝝃{Iw(𝜽)} is an expectation of the
Fisher infromation of the parameters 𝜽 over data w and p(𝜽) is the prior density distribution
of 𝜽.

Here, we use the Ds-criterion (Atkinson et al., 2007), which is a special case of the widely used
D-optimality criterion. The D-optimal design maximizes the determinant of the Fisher informa-
tion matrix or equivalently minimizes the determinant of the covariance matrix. Ds-optimality
considers only a subset of s parameters. If the parameter vector 𝜽 = (𝜃1, … , 𝜃s, … , 𝜃p)T includes
first the s parameters of interest and then p − s nuisance parameters, Ds-optimal design mini-
mizes the determinant of the s × s upper left submatrix of I(𝜽)−1

. In our case, s is the number of
𝛽-parameters in the survival model, and thus we will call the criterion D

𝛽
-optimality.

3.2 Selection criterion for the Weibull proportional hazards model

Let us consider the Fisher information matrix of the model introduced in Section 2 including
parameters 𝜽∗ = (𝛽1, … , 𝛽H , a, b):

IX ,Y (𝜽∗) = −E
(
𝜕

2 log p(X0, … ,XM ,Y1, … ,YM+1)
𝜕𝜽∗2

)

, (4)
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where Ym = (Tm, 𝛿m). The parameter vector 𝜽∗ includes the parameters
of the survival model but not the parameters of covariate processes. We
assume Markov properties p(Ym+1|X0, … ,Xm,Y1, … ,Ym) = p(Ym+1|Xm,Ym) and
p(Xm|X0, … ,Xm−1,Y1, … ,Ym) = p(Xm|Xm−1), and decompose the logarithmic joint distri-
bution as log p(X0, … ,XM ,Y1, … ,YM+1) = log p(X0) + log p(Y1|X0) + … + log p(XM|XM−1)
+ log p(YM+1|XM ,YM), which allows us to decompose IX ,Y (𝜽∗) similarly. The Markov assumption
is made here to avoid unnecessarily complicating the description of the method. Other depen-
dency structures could be assumed as well, depending on the data for which the method is applied.

When we are selecting individuals for the mth remeasurement, we have measured covariates
X0, … ,Xm−1, which may include missing values and survival information is observed up to the
time of the mth remeasurement, that is, Ym is known. Therefore, the selection for the mth remea-
surement is based on the expectations of Xm and Ym+1 utilizing the previously observed data. Only
those individuals who have not yet died or been censored can be considered as candidates for the
remeasurement. That is, optimization is carried out by selecting individuals who are still in the
risk set for further examination. Individuals whose covariates have not been measured previously
are also candidates for the remeasurement. Due to the Markov assumptions, it is sufficient that
the selection is based only on the expectations with respect to the next unobserved part and not
of all the forthcoming parts of the follow-up.

Now, using the above-mentioned decomposition in matrix (4), the information matrix used
in the selection for the mth remeasurement can be written as

Im
X ,Y (𝜽

∗) = −E
[
𝜕

2

𝜕𝜽∗2

{
log p(X0) + log p(Y1|X0) + …

+ log p(Xm−1|Xm−2) + log p(Ym|Xm−1,Ym−1)
}

+E
{(

𝜕

2

𝜕𝜽∗2 log p(Xm|Xm−1) +
𝜕

2

𝜕𝜽∗2 log p(Ym+1|Xm,Ym)
)
|
|
|
X0, … ,Xm−1,Ym

}]

.

In the presentation of this matrix, the last term includes unobserved values, which is why an
additional conditional expectation is taken on it. Above, the terms which do not include variable Y
vanish, because they do not include the survival model parameters 𝜽∗ (parameters of the Weibull
proportional hazards model). This leads to

Im
X ,Y (𝜽

∗) = E
[

− 𝜕

2

𝜕𝜽∗2

{
log p(Y1|X0) + · · · + log p(Ym|Xm−1,Ym−1)

}
]

+ E
[

E
{

− 𝜕

2

𝜕𝜽∗2 log p(Ym+1|Xm,Ym)
|
|
|
X0, … ,Xm−1,Ym

}]

= IY1|X0(𝜽
∗) + · · · + IYm|Xm−1,Ym−1(𝜽

∗) + E{IYm+1|Xm,Ym(𝜽
∗)}, (5)

where the outer expectation of the last term is with respect to unobserved data Ym+1|Xm,Ym.

As values Y1, … ,Ym and X0, … ,Xm−1 are already observed, the first m terms in (5) are
replaced by the observed information J(𝜽∗). The information matrix is then a mixture of observed
and expected information and its element in row i and column k is

Ψm
X ,Y (𝜽

∗)i,k = JY1|X0(𝜽
∗)i,k + · · · + JYm|Xm−1,Ym−1(𝜽

∗)i,k + E{IYm+1|Xm,Ym (𝜽
∗)}i,k

= −
N∑

j=1

[
𝜕

2

𝜕𝜃

∗
i 𝜕𝜃

∗
k

log p(y1j|x0j)
]
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− · · · −
Nm−1∑

j=1

[
𝜕

2

𝜕𝜃

∗
i 𝜕𝜃

∗
k

log p(ymj|xm−1,j, ym−1,j)
]

−
nm∑

j=1

[

E
{

𝜕

2

𝜕𝜃

∗
i 𝜕𝜃

∗
k

log p(Ym+1,j|Xmj, ymj)
|
|
|
x0,j, … , xm−1,j, ymj

}]

, (6)

where Nm−1 is the number of individuals who have not had an event or been censored before
the measurement m − 1 and nm is the number of individuals to be selected for the mth measure-
ment. Note that when only a subcohort has been selected for the measurements at a time point
𝜏m′ ,m′ ∈ {1, … ,m − 1}, then covariates are missing for the individuals not selected. We describe
in Section 4.2, how these missing data are handled. The subcohort selection is carried out just
before the new measurement, so Ym+1 and Xm are not observed for anyone. The expectation can
be calculated by Monte Carlo integration.

The calculation of Ψm
X ,Y (𝜽

∗) requires the second-order partial derivatives of
log p(y1|x0), … , log p(ym+1|xm). The value of the D

𝛽
-criterion is obtained by taking the determi-

nant of the H ×H upper left submatrix of Ψm
X ,Y (𝜽

∗)−1
, where 𝜽∗ = (𝛽1, … , 𝛽H , a, b). We denote

this value of the criterion by Dm
𝛽

(𝝃m
,𝜽∗), where 𝝃m is an indicator matrix describing which indi-

viduals have been measured at the time points 𝜏0, … , 𝜏m and 𝜽∗ emphasizes that the criterion
depends on the parameters.

3.3 Bayesian selection

Now, we combine the Bayesian optimal design theory introduced in Section 3.1 and the criterion
derived in Section 3.2. Here, the optimal selection is presented in a general form and the practical
solution for the search problem is given in Section 4.1. Fisher information matrices of nonlinear
models usually depend on model parameters (Chaloner & Verdinelli, 1995), which is also the
case in our application. Therefore, some prior information about the parameters is needed in
order to use the D

𝛽
-criterion. In the Bayesian approach the information obtained from the data

already collected during the follow-up and/or from previous studies can be used to provide prior
distributions of the parameters when applying the optimality criterion. In other words, we use
informative priors, which are actually posteriors from the data already collected, in the subcohort
selections. In the selection for the mth remeasurement, the prior probability density distribution
pm(𝜽∗) is, in fact, the posterior p(𝜽∗|x0, … , xm−1, y1, … , ym).

To minimize the D
𝛽
-criterion, we specify the last column of 𝝃m so that the expected utility

U(𝝃m) = −
∫𝜽∗

Dm
𝛽

(𝝃m
,𝜽∗)pm(𝜽∗)d𝜽∗, (7)

will be maximized. Above, Dm
𝛽

(𝝃m
,𝜽∗) is the value of the D

𝛽
-criterion for the mth remeasurement

depending on the design 𝝃m and the parameters 𝜽∗. This is a specific form of the Equation (3).

4 COMPUTATIONAL IMPLEMENTATION

4.1 Search for optimal design

The integral in (7) can be approximated by sampling parameter values from the multivariate prior
probability density distribution pm(𝜽∗), generating data (Xm,Ym+1) given the parameters and then
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replacing the integral with a mean 1
q

∑q
l=1Dm

𝛽

(𝝃,𝜽∗l ),where q is the number of realizations sampled
from pm(𝜽∗) (Atkinson, Demetrio, & Zocchi, 1995). The priors become more informative during
the follow-up as the amount of collected data increases.

In addition to the model parameters and the new data, the missing covariate values are also
treated as unknown parameters. The predictive distributions of the missing values are used as the
prior distributions in the selections. This means that if the previous measurements include miss-
ing data, the criterion (7) averages also over these informative prior distributions of the missing
values. We draw q realizations from the priors of the missing values and use them similarly to the
realizations from pm(𝜽∗).

In practice, the number of different subcohorts that could be selected for the new measure-
ment is easily so large that it is computationally impossible to go through each of them. Therefore
some heuristic method is needed. We use a so-called greedy method (Wright & Bailer, 2006), also
known as sequential search (Dykstra, 1971), to find an approximately optimal subcohort. This
method selects n individuals sequentially one by one: when k − 1 individuals (0 < k < n) have
been selected for the subcohort, the kth selection is made so that the expected utility is maxi-
mized on the condition that information from previously selected k − 1 individuals is included in
the calculation of the criterion. The procedure goes on similarly by selecting the next individual
to be included in the subcohort so that the expected utility is maximized taking into account the
information obtained from the previously selected individuals.

From the beginning of the selection procedure, the information matrix (6) includes all the
information already collected during the follow-up. All the individuals who have not had an event
are considered as candidates for the new measurement. The procedure continues by testing which
candidate should be included in the expectation part on the last row of (6) in order to obtain the
minimum value of the Bayesian optimality criterion Dm

𝛽

(𝝃m
,𝜽∗). If there are two or more indi-

viduals who would minimize the criterion, the selection between them can be done randomly.
The expected information of the selected individual is then included permanently into (6) and
the procedure continues until the subcohort has reached the predetermined size. The covariate
measurements are carried out after the whole subcohort has been selected.

4.2 Parameter estimation

The estimation of the parameters 𝜽∗ of the survival model (2) is needed before each subcohort
selection and finally when the follow-up study has ended. It should be emphasized that the model
used in the subcohort selections need not be the same as the model used in the final analysis of
the data, although the subcohort will be optimal with respect to the selection model. Once the
data have been collected, the validity of the model assumptions can be reassessed and the model
can be changed if needed. If the variables are the same in both models, the selected subcohort is
likely to be better than a simple random sample, although the final analysis model could be more
complex than the selection model. This is exemplified in Section 6.

In the subcohort selections, the estimated posterior distributions of the parameters are used as
informative prior density distributions. The parameters are estimated using a Bayesian approach
with MCMC sampling. We use noninformative priors for the parameters: 𝜷 ∼ N(0, 104 ⋅ I), r ∼
Gamma(1, 0.0001) and 𝛼 ∼ N(0, 104), where r and 𝛼 are reparameterized Weibull parameters, so
that r = a and 𝛼 = −a log b, 0 is a zero vector and I is an H ×H identity matrix.

The subcohort selection may lead to a large amount of data “missing by design,” which we
handle by Bayesian data augmentation (Tanner & Wong, 1987). The data missing by design are
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missing at random because the selection can depend only on variables that have already been
measured. Bayesian data augmentation has previously been used for data missing by design by
for example, Kulathinal and Arjas (2006).

We consider continuous and binary covariates. The covariate models are estimated as a part
of the entire Bayesian model. Recall the previously made Markov assumption

p(xm|x0, … , xm−1, y1, … , ym) = p(xm|xm−1, 𝛿m = 0).

If x1 is a continuous covariate (body mass index in our application), the mth remeasurement of
the covariate x1 of individual j is modeled with a linear regression

xmj1 = c + 𝛾xm−1,j,1 + 𝜀mj,

where c is a constant and 𝜀mj ∼ N(0, v). The constant c, the coefficient 𝛾 and the error variance v
could also be different at each measurement time if the structure of the covariate process should be
allowed to vary over time. We assign priors c ∼ N(0,100), 𝛾 ∼ N(0,100) and v ∼ Gamma(1, 0.01),
which are uninformative (vague) with respect to the scale of the covariate x1 in the application.

If x2 is a binary covariate, we use a logistic regression model

xmj2 ∼ Bernoulli(𝜋)
logit(𝜋) = d0 + d1xm−1,j,2.

Above, all the parameters remain constant in time, but this assumption could be relaxed if
required. Uninformative priors (d0, d1)T ∼ N(0, 104 ⋅ I) are used. Note that the parameters of the
covariate process do not include those of the survival model and the priors of these two models
are independent. Usually, there is some prior information available about the relationships of the
variables and thus the use of informative priors would be justified. When applying these missing
data models with MCMC estimation, it is recommended to center the covariates to improve the
convergence (Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2012).

5 SIMULATION STUDY

5.1 Description of the simulation study

Simulation studies were performed to illustrate what kind of subcohort should be selected accord-
ing to the D

𝛽
-criterion and what is the benefit of using it. We compared the use of D

𝛽
-optimal

subcohort selection with SRS and evaluated how much precision is lost in the estimation when
compared with measuring the entire cohort.

We considered a setting with two independent continuous covariates and a 30-year follow-up
with three measurement times at time points 0, 10, and 20 years. The size of the cohort was
1,500 individuals and the baseline ages were generated from the uniform distribution with the
range from 45 to 65 years. Baseline measurements of continuous covariates x0 and z0 were made
to follow N(0, 1) distribution, first remeasurements x1 and z1 were drawn from N(𝛾x0, 𝜎

2
𝜀

) and
N(𝛾z0, 𝜎

2
𝜀

) and second remeasurements x2 and z2 from N(𝛾x1, 𝜎
2
𝜀

) and N(𝛾z1, 𝜎
2
𝜀

), where 𝛾 = 0.5
and 𝜎2

𝜀

= 0.75. These parameter values lead to serial correlation of 0.5 between consecutive mea-
surements and to a constant variance of the covariates at each measurement. The covariates were
generated independently of each other and independently of age.
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Survival times, that is, the ages at the event, were simulated from the Weibull distribution
conditioned on the covariates through a time-dependent Weibull proportional hazards model.
The shape parameter of the Weibull distribution was set to a = 6.3 and the scale parameter to
b = 27900 (in days), which roughly equal the parameters estimated from the real data used in
Section 6. To investigate if the magnitude of hazard ratios of the covariates has some effect on
the selection, we used different regression coefficients for the two covariates. The coefficients
were 𝛽x = 0.1 (e𝛽x = 1.11) and 𝛽z = 0.4 (e𝛽z = 1.49), respectively, for covariates x and z. If the event
had not occurred at the end of the follow-up (30 years after the baseline), the survival time was
censored. The measurement times were the same for all the individuals in calendar time, but as
the individuals were of different ages, the measurements were not carried out at the same time
points in age.

The simulation was repeated 100 times on a supercomputer of CSC–IT Center for Science
Ltd by utilizing parallel computing. The three design approaches (D

𝛽
, SRS and full cohort)

were applied to each simulated dataset. In the beginning of the follow-up, the cohort included
1,500 individuals, at the time of the second measurement, on average, 1,173 individuals were
alive, at the time of the third measurement, on average, 712 individuals were alive and at
the end of the follow-up, on average, 299 individuals were alive. Model parameters were esti-
mated using the OpenBUGS version 3.2.3 (Lunn, Spiegelhalter, Thomas, & Best, 2009) and the
rest of the calculations were carried out using the R statistical software version 3.1.1 (R Core
Team, 2014).

5.2 Subcohort selection

The subcohort selections are carried out using the Weibull proportional hazards model as the
underlying model with age as the time scale. The left panels of Figure 1 show what kind of indi-
viduals are selected by the D

𝛽
-criterion for the second measurement. The selections for the second

and third measurements are carried out up to 600 individuals sequentially one by one, but it is
worth noting that the order is irrelevant when analyzing the data. The older individuals are clearly
preferred in the selection, which may arise from the fact that older individuals are more likely to
have an event during the next part of the follow-up and therefore provide more information than
those who are likely to be censored. On the other hand, individuals with extreme covariate values
are selected first. This is a reflection of the result that extreme selection is optimal for first-order
linear regression models (Elfving, 1952).

The individuals are plotted separately by baseline covariates x and z, but there seems not to be a
clear difference in the selection patterns, despite the different regression coefficients. The bottom
left panel of Figure 1 shows the selection order against the sum of the absolute values, |x| + |z|.
This is presented to illustrate better how extremity of the combination of the two independent
covariates are preferred.

The selection of individuals for the third measurement, seen in the right panels of Figure 1,
seems to be quite similar to the previous selection. The individuals first selected for the third
measurement have also been selected for the second measurement. After approximately 200
individuals, the selection also includes individuals who were not selected for the second mea-
surement. In the figure, the values plotted for missing measurements represent averages of 100
independent values generated for each missing value in an MCMC estimation. The preference for
higher age in the selection is also seen with thes individuals.
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F I G U R E 1 Selection orders of individuals for the second and third measurements for any n up to 600
using D

𝛽
-optimality and simulated data. Each point corresponds to one individual: the color shows the age of the

individual at the time of the selection, the vertical axis shows the value of the covariate in the previous
measurement (x in the uppermost, z in the middle and |x| + |z| in the lowest panel) and the horizontal axis
shows the round when the individual was selected in the greedy algorithm
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T A B L E 1 Simulation results for different designs from 100 simulation runs and for different sizes of the
subcohorts (n). The entire cohort was measured at baseline. 𝛽x and 𝛽z indicate the means of the posterior means
of 𝛽x and 𝛽z. SD is the standard deviation of the posterior means and Mean (SE) is the mean of the standard
errors estimated from the Markov chain Monte Carlo (MCMC) chains

Covariate x (𝜷x = 0.1) Covariate z (𝜷z = 0.4)

Design 𝜷x SD Mean (SE) 𝜷z SD Mean (SE)

Full cohort 0.096 0.031 0.029 0.40 0.028 0.030

n = 600 SRS 0.096 0.036 0.032 0.40 0.031 0.033

D
𝛽

0.095 0.033 0.031 0.40 0.032 0.032

n = 500 SRS 0.096 0.036 0.033 0.40 0.033 0.035

D
𝛽

0.095 0.034 0.032 0.40 0.032 0.034

n = 400 SRS 0.098 0.041 0.036 0.40 0.042 0.039

D
𝛽

0.094 0.036 0.034 0.40 0.034 0.035

n = 300 SRS 0.093 0.043 0.043 0.42 0.063 0.059

D
𝛽

0.095 0.037 0.036 0.40 0.040 0.038

Abbreviation: SRS, simple random sampling.

5.3 Design comparisons

The analysis was carried out using the SRS-designs, D
𝛽
-designs and the entire simulated data set

without subcohort selections. The sizes of the subcohorts varied from 300 to 600. In each design,
the entire cohort was measured at baseline and the same subcohort size was used in both the
second and the third measurements. We compared the bias and SEs of 𝛽x and 𝛽z between the
D
𝛽
-design and SRS.
The results in Table 1 show that there is no considerable bias in the estimates when only a

subcohort is selected for remeasurements. According to sds of the estimates and mean SEs, the
D
𝛽
-design seems to lead almost consistently to more precise estimation of the coefficients than

the SRS-design. The difference becomes more prominent when the subcohort size decreases. We
achieve virtually the same precision when comparing the D

𝛽
-design with subcohort size 400 to

the SRS-design with subcohort size 500, or when comparing the D
𝛽
-design with subcohort size

300 to the SRS-design with subcohort size 400.
An important observation is that the precision does not decrease dramatically although only

300 individuals are remeasured. 300 is only on average 26% of the individuals alive at the time
of the second measurement and on average 42% of the individuals alive at the time of the third
measurement.

6 RESULTS FOR THE EAST-WEST STUDY

Next, we will present an application to data from a real follow-up study, the East–West
study (Reinikainen, Laatikainen, Karvanen, & Tolonen, 2015). The East–West study was started
as the Finnish part of the international Seven Countries Study (Keys, 1970) initiated in the
late 1950s to investigate cardiovascular diseases and their risk factors across different coun-
tries and cultures. The Finnish cohorts consist of all men born between 1900 and 1919 and
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living in two geographically defined areas in Eastern Finland and in South–Western Finland
(N = 1711). The data include baseline measurements carried out in 1959 and longitudinal mea-
surements in 1964, 1969, 1974, 1984, 1989, 1994, 1999 and follow-up for mortality until the end
of 2011.

Our analysis with the East–West data is an example of using a binary covariate and a con-
tinuous covariate with nonlinear effect. For this example only a part of the data is used. We
consider the measurement in the year 1964 as the baseline measurement, measurements in 1974
and 1984 as remeasurements and 1994 as the end of the follow-up, when censoring is carried out.
After removing individuals who died before 1964, we had 1,594 individuals. In the setting of this
example, at the time of the second measurement 1,225 individuals were alive, at the time of the
third measurement 766 individuals were alive and at the end of the follow-up 320 individuals
were alive.

All-cause mortality is the outcome in the analyses and age is chosen as the time scale. Smok-
ing status is used as a binary covariate and body mass index (BMI) as a continuous covariate,
whose effect on survival is assumed to be quadratic. Some studies have reported U-shaped asso-
ciations between BMI and all-cause mortality (Corrada, Kawas, Mozaffar, & Paganini-Hill, 2006;
Zhao et al., 2014) and this was also found in the East–West cohorts. The quadratic effect is imple-
mented in the survival model simply by adding a squared term in BMI. Note that the final analysis
of the data could still be carried out by using other methods, for example, splines (Therneau &
Grambsch, 2000), even if polynomials were used in subcohort selection. Before the second mea-
surement, there was no information in the data about the changes in smoking, so we assumed in
the calculation of the expectation in (6) that a smoker at the baseline will be a nonsmoker in sec-
ond measurement with probability 0.4 and a nonsmoker will become a smoker with probability
0.1. In the selection for the third measurement, these probabilities were estimated from the data.
The correlation structures of the data implicated that AR(1) models can be used for the covariate
processes.

T A B L E 2 Results for the East–West data for different sizes of the subcohorts (n). The
entire cohort was measured at baseline. For simple random sampling (SRS), 𝛽1, 𝛽2, 𝛽3 and
SE are means of the posterior means and standard errors estimated from the Markov chain
Monte Carlo chains from 1,000 analyses

BMI (linear) BMI (quadratic) Smoking

Design 𝜷1 (SE) 𝜷2 (SE) 𝜷3 (SE)

Full cohort −0.043 (0.0086) 0.0065 (0.0011) 0.39 (0.069)

n = 600 SRS −0.045 (0.0138) 0.0071 (0.0017) 0.45 (0.075)

D
𝛽

−0.041 (0.0087) 0.0063 (0.0011) 0.45 (0.067)

n = 500 SRS −0.049 (0.0176) 0.0078 (0.0022) 0.47 (0.080)

D
𝛽

−0.043 (0.0091) 0.0062 (0.0011) 0.42 (0.071)

n = 400 SRS −0.052 (0.0218) 0.0086 (0.0022) 0.48 (0.083)

D
𝛽

−0.042 (0.0093) 0.0071 (0.0012) 0.45 (0.073)

n = 300 SRS −0.044 (0.0232) 0.0094 (0.0017) 0.47 (0.080)

D
𝛽

−0.040 (0.0110) 0.0058 (0.0015) 0.48 (0.075)

Abbreviation: BMI, body mass index.
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F I G U R E 2 Selection order of individuals for the second measurement (left panel) and for the third
measurement (right panel) for any n up to 600 using D

𝛽
-optimality and the East–West data. Each point

corresponds to one individual: the color shows the age of the individual at the time of the selection, the vertical
axis shows the value of body mass index (BMI) in the previous measurement and the horizontal axis shows the
round when the individual was selected in the greedy algorithm. Individuals with missing previous BMI are
indicated by triangle symbols regardless of the missingness of the smoking status. Usually, the missingness of
BMI means also the missingness of the smoking status in the data

In order to improve the convergence in MCMC estimation, all the covariates were centered
before analysis by subtracting the means of observed baseline values from the corresponding
covariate values. The mean of baseline BMI observations was 24.25 and the centered baseline
BMI ranged from −9.25 to 21.62. The estimates of the analysis with the full cohort (Table 2)
correspond to an upward opening parabola, which has minimum risk with centered BMI
of 3.31.

The selection order of 600 individuals for the second measurement according to D
𝛽

can be seen
in the left panel of Figure 2. The preference for extreme BMI values is clear. Although baseline
measurements are missing for some individuals in the original data, some of these are still selected
into the subcohort. At a fixed BMI level, older individuals seem to be selected before younger. We
have a quadratic model in BMI, so one could have expected that in addition to extreme values
also average values of BMI would have been preferred. The average values are, however, not so
important in the second measurement, because we have baseline measurements for all individu-
als and thus have observed average values already much more than extreme values. The selected
subcohort includes 327 individuals who were smokers at the baseline and 232 baseline non-
smokers. At the baseline, there were also clearly more smokers than nonsmokers. Apparently the
selection procedure tries to balance the expected number of smokers and nonsmokers measured
altogether.

Figure 2 (right panel) shows the subcohort selection for the third measurement. Similar pat-
terns can be observed here as in the previous selection. One big difference is the large number
of individuals who have missing previous measurements. This can be explained by the fact that
many old individuals who were measured in the second measurement are already dead at the time
of the third measurement. The effect of age does not seem to be so strong, but this comes mainly
from the mixing of smokers and nonsmokers in the plot. These are separated in Figure 3, which
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F I G U R E 3 Selection order of individuals for the third measurement using D
𝛽
-optimality and the

East–West data. These panels represent the right panel of Figure 2 decomposed into smokers, nonsmokers and
those who have missing value of body mass index (BMI) in the second measurement. Individuals with missing
BMI are indicated by triangle symbols regardless of the missingness of the smoking status. Usually, the
missingness of BMI means also the missingness of the smoking status in the data

T A B L E 3 Results for comparisons of using different models in the subcohort selections and in the final
analysis using the East–West data. 500 individuals were selected for the second and third measurements. For
simple random sampling (SRS), 𝛽1, 𝛽2 and SE are means of the posterior means and standard errors estimated
from the Markov chain Monte Carlo chains from 1,000 analyses

BMI (linear) BMI (quadratic)

Analysis model Selection 𝜷1 (SE) 𝜷2 (SE)

Quadratic Full cohort −0.059 (0.0082) 0.0073 (0.0011)

SRS −0.059 (0.0096) 0.0079 (0.0013)

D
𝛽

(quadr. model) −0.059 (0.0085) 0.0077 (0.0011)

D
𝛽

(lin. model) −0.059 (0.0087) 0.0073 (0.0011)

Linear Full cohort −0.038 (0.0077)

SRS −0.033 (0.0084)

D
𝛽

(quadr. model) −0.038 (0.0084)

D
𝛽

(lin. model) −0.037 (0.0084)

Abbreviation: BMI, body mass index.

reveals that there are less smokers than nonsmokers in the selected subcohort. In fact, there were
104 smokers, 203 nonsmokers and 459 individuals with missing smoking status among the candi-
dates for the third measurement, of which all 104 smokers, 138 nonsmokers and 358 individuals
with missing smoking status were selected for the third measurement.

Table 2 shows that there is clear benefit of using the D
𝛽
-design instead of the SRS. All the

standard errors in the D
𝛽
-design are smaller than in the SRS-design for each subcohort size used.

The D
𝛽
-selection leads usually to estimates closer to those obtained using the full cohort, than

the SRS. Surprisingly, both selection methods seem to lead to greater estimates of the effect of
smoking than the full cohort.
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The standard errors of the quadratic term of BMI and smoking, obtained using SRS, are
smaller when n = 300 than when n = 400, which is an unexpected result. Three hundred individ-
uals are only 24% of the individuals alive at the time of the second measurement and 39% of those
alive at the time of the third measurement, which may be too small proportions in a real study to
obtain reliable estimates. Estimation may become sensitive to model misspecification when the
proportion of missing data becomes large (Saarela, Kulathinal, & Karvanen, 2012).

In practice, an analyst would not necessarily like to use the same model in optimal selection
and in the final analysis. Table 3 shows the results from an example of using different models in
the selections and final analysis. Here, we use the same data as in the previous example, but (cen-
tered) BMI as the only covariate. When the analysis model is quadratic, the quadratic selection
model leads to slightly better precision than the linear selection model but both selection models
still outperform SRS. When the analysis model is linear, the results do not deteriorate even if the
quadratic selection model is used.

7 DISCUSSION

The cost-efficiency of a follow-up study can be improved by careful planning of longitudinal
measurements. The present paper considered the scenario where we can afford measuring the
time-varying covariates only for a subset of the cohort. We proposed using a Bayesian approach in
optimal subcohort selection with a Fisher information based D

𝛽
-optimality. Our work overcomes

the limitations of the previous paper (Reinikainen et al., 2016), where a simple scenario with only
one covariate and one re-measurement was considered.

The estimates and their precision corresponding to the D
𝛽
-selection and SRS were compared.

The use of the D
𝛽
-optimality led to more precise estimates and the precision was seen to remain

satisfactory compared with the full cohort design.
The results indicated that in order to obtain estimates as precise as possible for regression

parameters of the survival model, old individuals with extreme covariate values should be pre-
ferred, which is consistent with our previous results (Reinikainen et al., 2016). A similar result
was obtained when we used a covariate with quadratic effect (BMI) in the real follow-up data
example. Another covariate used in this example was smoking status as a binary variable. Optimal
selection seemed to balance the expected number of smokers and nonsmokers measured.

The general idea of measuring only a subcohort is applied in many epidemiological study
designs, like case-control and case-cohort designs and their variants (Keogh & White, 2013;
Kulathinal et al., 2007; Sun, Joffe, Chen, & Brunelli, 2010). However, in our application the setup
is different. We use an approach with an explicit utility function describing the goal of the study.
The presented approach borrows elements from optimal design of experiments and applies them
to the design of an observational study.

We recommend the use of a Bayesian approach in this kind of sequential study design
problem. Some prior knowledge is always required in nonlinear design problems, because opti-
mal designs depend on model parameters and so a Bayesian approach with informative priors is
a natural way to incorporate this knowledge into design optimization. Bayesian data augmenta-
tion appears here to be a flexible method for the handling of missing data when we increase the
number of measurement points and covariates.

The proposed approach can be adopted to other scenarios where repeated measurements are
conducted. However, it is difficult to provide a general purpose software implementation because
the details of Bayesian models differ case by case and the forms of survival model and optimality
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criterion should be selected to fit the available data and the aims of the study. We recommend
that researchers test the performance of their implementations in simulations similar to those
presented in Table 1 before applying them in real study design.

In experiments, the optimal design for a linear model might consist of only two design points,
which would give no power for detecting nonlinear effects. In principle, the same applies also
in our setup, but in practice, the problem is not realized in observational studies with continu-
ous covariates and moderate sample size. The reason for this is that only a few individuals with
the optimal covariate values are available in the cohort and after they are selected, the selection
procedure must rely on individuals with a wider variety of covariate values.

Although the covariate processes were assumed to be piece-wise constant in the subcohort
selections, a joint model of survival and longitudinal data (Rizopoulos, 2012) could be consid-
ered in the final analysis for more realistic treatment of time-varying covariates. In the general
case with multiple longitudinal covariates, joint modeling is, however, computationally very
demanding and would be further complicated in our approach with a large amount of missing
data.

We considered the design optimization with respect to only one model at a time. However, if
two or more models or utility functions would be of interest, compound design criteria could be
applied (Atkinson et al., 2007). Then, the optimality criterion should include the parameters of
all models of interest. If we later want to use the collected data to some purpose not addressed in
subcohort selection, the optimality does not hold anymore, and in an extreme case the selected
subcohort could perform even worse than SRS. This situation is unlikely to occur, if a new out-
come variable has the same covariates as the one used in optimal selection, or if new covariates
are correlated with those used in optimization. The situation is similar to case-control studies
where the controls for a specific outcome can be used for other outcomes (Saarela et al., 2012;
Saarela, Kulathinal, Arjas, & Läärä, 2008) although they are not optimal.

The selection procedure presented in this paper requires that up-to-date survival information
is already available during the study. The information of the measured covariates is also needed
during the study if it is used in the optimal selection. The proposed approach is also applicable
to some retrospective designs. For instance, consider a study where blood samples or other bio-
logical specimen are collected and stored for all individuals and years later some biomarkers are
measured from the stored sample. Selecting only a subcohort for these measurements may be a
reasonable option if the extraction of the biomarkers is expensive. Then an approach similar to
one presented in this paper could be used to optimally select the subcohort.

The proposed selection method is nonrandom in the sense that individuals are selected deter-
ministically according to the selection criterion, but we do not see this as a disadvantage when
the parameters of a survival model are of interest. Distributions of the covariates or absolute risks
of the outcome in the population can also be assessed using the estimated analysis model. If it
is important to assess the distributions of the covariates without relying on model assumptions,
the subcohort should be selected as a random sample (Kulathinal et al., 2007). In this setting
a randomized version of the sequential design construction could be considered (Atkinson &
Biswas, 2014). Our method may introduce some selection bias, if the effect of a covariate changes
with age and this has not been taken into account in the selection. The procedure could also be
developed to include the costs of data collection in the optimization (Fedorov & Leonov, 2013).
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