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Cross-sectional associations
between cardiorespiratory
fitness and NMR-derived
metabolic biomarkers in
children – the PANIC study

Eero A. Haapala1,2*, Marja H. Leppänen1,3, Maarit Lehti 1,
Niina Lintu2, Tuomo Tompuri2,4, Anna Viitasalo2,
Ursula Schwab5,6 and Timo A. Lakka2,4,7

1Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland, 2Institute of
Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland, 3Folkhälsan Research
Center, Helsinki, Finland, 4Department of Clinical Physiology and Nuclear Medicine, Kuopio University
Hospital, Kuopio, Finland, 5Institute of Public Health and Clinical Nutrition, School of Medicine, University
of Eastern Finland, Kuopio, Finland, 6Department of Medicine, Endocrinology and Clinical Nutrition,
Kuopio University Hospital, Kuopio, Finland, 7Foundation for Research in Health Exercise and Nutrition,
Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
Objective: Cardiorespiratory fitness has been inversely associated with

cardiovascular risk across the lifespan. Some studies in adults suggest that

higher cardiorespiratory fitness is associated with cardioprotective metabolite

profile, but the evidence in children is lacking. Therefore, we investigated the

cross-sectional association of cardiorespiratory fitness with serum nuclear

magnetic resonance derived metabolic biomarkers in children.

Methods: A population sample of 450 children aged 6–8 years was examined.

Cardiorespiratory fitness was assessed by a maximal exercise test on a cycle

ergometer and quantified as maximal power output normalised for lean body

mass assessed by dual-energy X-ray absorbtiometry. Serum metabolites were

assessed using a high throughput nuclear magnetic resonance platform. The

data were analysed using linear regression analyses adjusted for age and sex

and subsequently for body fat percentage (BF%) assessed by DXA.

Results: Cardiorespiratory fitness was directly associated with high density

lipoprotein (HDL) cholesterol (b=0.138, 95% CI=0.042 to 0.135, p=0.005),

average HDL particle diameter (b=0.102, 95% CI=0.004 to 0.199, p=0.041),

and the concentrations of extra-large HDL particles (b=0.103, 95% CI=0.006 to

0.201, p=0.038), large HDL particles (b=0.122, 95% CI=0.025 to 0.220,

p=0.014), and medium HDL particles (b=0.143, 95% CI=0.047 to 0.239,

p=0.004) after adjustment for age and sex. Higher cardiorespiratory fitness

was also associated with higher concentrations of ApoA1 (b=0.145, 95%

CI=0.047 to 0.242, p=0.003), glutamine (b=0.161, 95% CI=0.064 to 0.257,

p=0.001), and phenylalanine (b=0.187, 95% CI=0.091 to 0.283, p<0.001).

However, only the direct associations of cardiorespiratory fitness with the
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concentrations of HDL cholesterol (b=0.114, 95% CI=0.018 to 0.210, p=0.021),

medium HDL particles (b=0.126, 95% CI=0.030 to 0.223, p=0.010), ApoA1

(b=0.126, 95% CI=0.030 to 0.223, p=0.011), glutamine (b=0.147, 95% CI=0.050

to 0.224, p=0.003), and phenylalanine (b=0.217, 95% CI=0.122 to 0.311,

p<0.001) remained statistically significant after further adjustment for BF%.

Conclusions: Higher cardiorespiratory fitness was associated with a

cardioprotective biomarker profile in children. Most associations were

independent of BF% suggesting that the differences in serum metabolites

between children are driven by cardiorespiratory fitness and not adiposity.
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Introduction

Low cardiorespiratory fitness has been associated with

increased risk for cardiovascular diseases and cardiovascular

events in adults (1, 2). Nevertheless, pathophysiological

processes for atherosclerotic cardiovascular diseases start

already in childhood. Accordingly, the early signs of

atherosclerotic cardiovascular diseases such as increased

arterial stiffness (3, 4) and increased carotid intima media

thickness and distensibility (4, 5), have been detected already

in children and adolescents. In addition, some evidence suggests

that increasing cardiorespiratory fitness since youth could

stagnate the development of early signs of atherosclerotic

cardiovascular diseases over the life course (6). Nevertheless,

cardiorespiratory fitness has been found to have weak if any

associations with traditional cardiovascular disease risk factors,

such as insulin resistance, dyslipidaemia, and blood pressure in

children (7–10), leaving a knowledge gap on how

cardiorespiratory fitness could contribute to cardiovascular

health in a general population of children. Thus, while

cardiorespiratory fitness may protect against atherosclerotic

cardiovascular diseases, the mechanisms are not well

understood, especially in children and more studies are

warranted. Serum metabolomics provides a novel approach to

deepen our understanding of the mechanisms underlying the

health benefits of cardiorespiratory fitness.

Impaired lipid metabolism, such as increased low-density

lipoprotein (LDL) cholesterol concentration and apolipoprotein

B (ApoB), is well-known risk factor for atherosclerotic

cardiovascular diseases (11). Metabolomics can provide further

characterisation of lipids improving the cardiovascular risk

estimation (12). For example, increased very-low-density

lipoprotein (VLDL) concentration and reduced high density
02
lipoprotein (HDL) concentration and size have been associated

with an increased risk of atherosclerotic cardiovascular diseases

(13–16). Furthermore, traditional lipid biomarkers, such as LDL

cholesterol, HDL cholesterol, and triglycerides were not

associated with carotid atherosclerosis or carotid-femoral pulse

wave velocity, whereas a total HDL particle concentration and

average HDL size were inversely associated with them in obese

youth aged 18 years (17). The studies utilising metabolomics

have also found that increased concentrations of branched-chain

amino acids are associated with increased risk of atherosclerotic

cardiovascular diseases (15, 18) and increased carotid artery

intima media thickness, and exercise induced myocardial

ischaemia (19) in adults. However, it should be noted that

there are only few studies on the associations between

metabolites and the measures of cardiovascular health among

youth. However, one study found that none of the investigated

metabolites were associated with carotid intima-media thickness

or pulse wave velocity after adjustment for body mass index and

blood pressure in children (20).

Cardiorespiratory fitness has been inversely associated with

lipid metabolites and branched-chain amino acids in adults (21),

but there are paucity of data in children. Nevertheless, one small

study in adolescents found that cardiorespiratory fitness was

inversely associated with amino acids valerate, glutamate, and

tyrosine (22). However, cardiorespiratory fitness was assessed by

maximal oxygen uptake (V̇O2max) normalised for whole body

mass, a measure of cardiorespiratory fitness strongly

confounded by adiposity (23). Similarly, another study in

young adults showed that higher cardiorespiratory fitness

quantified, as estimated V̇O2max normalised for whole body

mass, was inversely associated with the concentrations of

extra-large to small size VLDL, large to small size LDL, ApoB,

and ApoB to apolipoprotein A1 (ApoA1) ratio and directly
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associated with the concentrations of extra-large to medium size

HDL and ApoA1 (24). Furthermore, cardiorespiratory fitness

has been inversely associated with branched-chain amino acids

and phenylalanine, tyrosine and positively associated with

glutamine (24). However, when body fat percentage (BF%)

was controlled for, cardiorespiratory fitness was associated

only with the concentrations of large HDL, ApoA1, and

medium size VLDL (24) suggesting that adiposity is a strong

confounder in these associations.

There is limited evidence on the associations of

cardiorespiratory fitness with serum nuclear magnetic

resonance (NMR) derived metabolic biomarkers in children,

although pathophysiological process leading to atherosclerotic

cardiovascular diseases often begin in childhood. Therefore, we

first investigated the associations of cardiorespiratory fitness

with serum NMR-derived biomarkers related to lipoproteins,

triglycerides, apolipoproteins, and amino acids in a general

population of children. Second, we investigated whether BF%

modifies these associations. Finally, because HDL characteristics

potentially have specific effects on cardiovascular health and the

determinants of cardiorespiratory fitness (25–27), we also

investigated the associations of cardiorespiratory fitness with

various HDL characteristics.
Methods

Participants

The present cross-sectional data are from the baseline

assessments of the Physical Activity and Nutrition in Children

(PANIC) Study, which is an 8-year physical activity and dietary

intervention study and a long-term follow-up study in a

population sample of children from the city of Kuopio,

Finland (28). The Research Ethics Committee of the Hospital

District of Northern Savo approved the study protocol in 2006

(Statement 69/2006). The parents or caregivers of the children

gave their written informed consent, and the children provided

their assent to participation. The PANIC study has been carried

out in accordance with the principles of the Declaration of

Helsinki as revised in 2008.

Altogether 736 children 6–8 years of age from primary

schools of Kuopio were invited to participate in the baseline

examination in 2007–2009. A total of 512 children, who

represented 70% of those invited, participated in the baseline

examinations. Six children were excluded from the study at

baseline because of physical disabilities that could hamper

participation in the intervention or no time or motivation to

attend in the study. The participants did not differ in sex

distribution, age, or body mass index standard deviation score

(BMI-SDS) from all children who started the first grade in 2007–

2009 based on data from the standard school health

examinations performed for all Finnish children before the
Frontiers in Endocrinology 03
first grade (data not shown). Complete data on variables used

in the analyses on the associations of cardiorespiratory fitness

with serum metabolites were available for 450 children (217

girls, 233 boys).
Assessment of body size and
composition

Whole body mass was measured twice with the children

having fasted for 12 hours, emptied the bladder, and standing in

light underwear by a calibrated InBody® 720 bioelectrical

impedance device (Biospace, Seoul, South Korea) to an

accuracy of 0.1 kg. The mean of these two values was used in

the analyses. Stature was measured three times with the children

standing in the Frankfurt plane without shoes using a wall-

mounted stadiometer to an accuracy of 0.1 cm. The mean of the

nearest two values was used in the analyses. BMI was calculated

by dividing body mass (kg) by body height (m) squared. BMI-

SDS was calculated based on Finnish reference data (29). The

prevalence of overweight and obesity was defined using the cut-

off values provided by Cole et al. (30). Total fat mass, BF%, and

lean mass (LM) were measured by the Lunar® dual-energy X-ray

absorptiometry device (GE Medical Systems, Madison, WI,

USA) using standardised protocols (31).
Assessment of cardiorespiratory fitness

We assessed cardiorespiratory fitness by a maximal exercise

test using an electromagnetically braked Ergoselect 200 K® cycle

ergometer coupled with a paediatric saddle module (Ergoline,

Bitz, Germany) (32). The exercise test protocol included a 2.5-

minute anticipatory period with the child sitting on the

ergometer; a 3-minute warm-up period with a workload of 5

watts; a 1-minute steady-state period with a workload of 20

watts; an exercise period with an increase in the workload of 1

watt per 6 seconds until exhaustion, and a 4-minute recovery

period with a workload of 5 watts.

The children were asked to keep the cadence stable and

within 70–80 revolutions per minute. Exhaustion was defined as

the inability to maintain the cadence above 65 revolutions per

minute regardless of vigorous verbal exhortation. The exercise

test was considered maximal by an experienced physician (TT)

supervising the test, if objective and subjective criteria (heart rate

>85% of predicted, sweating, flushing, inability to continue

exercise test regardless of strong verbal encouragement)

indicated maximal effort and maximal cardiovascular capacity.

Heart rate was measured continuously during the last five

minutes of the supine rest prior to commencing the exercise

test protocol right through to the 5-minute supine post-exercise

rest period using a 12-lead electrocardiogram registered by the

Cardiosoft® V6.5 Diagnostic System (GE Healthcare Medical
frontiersin.org
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Systems, Freiburg, Germany) and the highest heart rate during

the test was defined as peak heart rate. Maximal power output

(Wmax) measured at the end of the exercise test divided by LM-1

were used as a measure of cardiorespiratory fitness. We used

Wmax as a measure of cardiorespiratory fitness because we did

not perform respiratory gas analyses at baseline and it has been

found to be a good surrogate measure of cardiorespiratory

fitness in children (33). Wmax x kg of LM-1 was no associated

with LM (b=0.072, 95% CI=-0.013 to 0.156) and the sex

interaction was not statistically significant (p=0.235)

suggesting the validity of the scaling procedure.
Assessment of metabolic biomarkers

A research nurse took blood samples in the morning, after

children had fasted overnight for at least 12 hours. Blood was

immediately centrifuged and stored at a temperature of -75°C

until biochemical analyses. The Nightingale high-throughput

NMR platform was used to quantify serum metabolic

biomarkers (34). The Nightingale NMR platform quantifies

different metabolic biomarkers in absolute concentration units.

Based on the aims of the study and previous literature, we

selected metabolites related to lipoprotein, triglyceride,

apolipoprotein, and amino acid metabolism and specifically

focused on 49 HDL characteristics.
Assessment of confounding factors

The research physician assessed pubertal status using the 5-

stage scale described by Tanner (35, 36). The boys were defined

as having entered clinical puberty if their testicular volume

assessed by an orchidometer was ≥4 mL (stage ≥2). The girls

were defined having entered clinical puberty if their breast

development had started (stage ≥2). Maturity was assessed as

the difference between the current age from the age at predicted

peak height velocity and it was computed using a sex-specific

formula described by Moore et al. (37). Physical activity energy

expenditure (PAEE) and time accumulated in moderate to

vigorous physical activity (MVPA) were assessed by a

combined heart rate and movement monitor (38). We

included all children who had device-assessed data on physical

activity regardless of wearing time requirements used in our

previous studies (38, 39). The mean (standard deviation, SD)

wear time was 113 (40) hours for the 402 children who met the

wear time requirements and 61 (33) hours for the 33 children

who did not meet these requirements. PAEE, MVPA, BF%,

cardiorespiratory fitness, maturity, or diet quality did not differ

between these two groups (p>0.290). Diet quality was assessed

by four day dietary records (28), and the overall diet quality was

computed using the Finnish Children Healthy Eating Index

(FCHEI) (41). Homeostatic Model Assessment of Insulin
Frontiers in Endocrinology 04
Resistance (HOMA-IR) as a measure of insulin resistance was

computed from the fasting plasma glucose and serum insulin as

prescribed earlier (42). Missing data were replaced using the

sample mean values.
Statistical methods

The analyses were performed using the Jamovi statistical

software, version 2.2 (Jamovi project 2021). First, we investigated

the differences in basic characteristics between girls and boys

using the Welch’s -test for normally distributed continuous

variables, the Mann-Whitney U -test for continuous variables

with skewed distributions, and the c2 test for categorical

var iab les . Second, we studied the assoc ia t ions of

cardiorespiratory fitness with metabolites using the linear

regression analyses adjusted for age and sex (Model 1) and

additionally for BF% (Model 2). We also investigated whether

sex or BF% modified the associations of cardiorespiratory fitness

with serum metabolites by adding the interaction term of sex or

BF% and cardiorespiratory fitness into the models. If the

interaction was statistically significant, we analysed the

associations of cardiorespiratory fitness with metabolites

separately among children below and at or above the sex-

specific median of BF% or among girls and boys. The data

were corrected for multiple comparisons using the Benjamini-

Hochberg false discovery rate (FDR) using the FDR value of 0.2

(FDR0.2) and 0.1 (FDR0.1). The data were further adjusted for

maturity, PAEE, MVPA, FCHEI, or HOMA-IR. The data on the

associations between cardiorespiratory fitness and amino acids

were further adjusted for protein intake as a percentage of total

energy. We did not adjust the data for clinical puberty because

few children had signs of clinical puberty.
Results

Basic characteristics

Girls were shorter and more likely to have entered clinical

puberty and had advanced maturity, higher BF%, and lower LM

than boys (Table 1). Girls also had lower cardiorespiratory

fitness and accumulated less PAEE and MVPA than boys.
Associations of cardiorespiratory fitness
with metabolic biomarkers

Cardiorespiratory fitness was directly associated with HDL

cholesterol concentration, average HDL diameter, and the

concentrations of extra-large, large, and medium size HDL

particles as well as ApoA1, glutamine, and phenylalanine after

adjustment for age and sex (Table 2). These associations
frontiersin.org
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remained after FDR0.2 correction, and even after FDR0.1

correction, except the association between cardiorespiratory

fitness and the concentration of extra-large HDL particles. The

direct associations of cardiorespiratory fitness with HDL

cholesterol concentration, the concentration of medium size

HDL particles, ApoA1, glutamine, and phenylalanine

remained statistically significant even after further adjustment

for BF%. Further adjustment for maturity, PAEE, MVPA,

FCHEI, HOMA-IR, or protein intake had no effect on the

magnitude of these associations (data not shown).

BF% modified the associations of cardiorespiratory fitness

with LDL cholesterol concentration, average LDL diameter, and

the concentrations of small HDL particles and ApoB (Table 2).

Cardiorespiratory fitness was directly associated with average

LDL diameter (b=0.198, 95% CI=0.062 to 0.334, p=0.004) and

the concentration of small HDL particles (b=0.139, 95%

CI=0.004 to 0.274, p=0.043) in children with higher BF%, but

not in children with lower BF% (b=-0.074, 95% CI=-0.215 to

0.067, p=0.301, and b=-0.010, 95% CI=-0.130 to 0.151, p=0.887,

respectively). Further adjustment for maturity, FCHEI, PAEE,

MVPA, or HOMA-IR had no effect on the magnitude

of these associations (data not shown). Other associations

among children with higher or lower BF% were not

statistically significant.
Associations of cardiorespiratory fitness
with HDL characteristics

The associations of cardiorespiratory fitness with HDL

characteristics are presented in Supplementary Table.
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Cardiorespiratory fitness was directly associated with

phospholipids, cholesteryl esters, free cholesterol, and total

lipids in HDL. Cardiorespiratory fitness was also directly

associated with total concentration, concentration of total

lipids, phospholipids, cholesterol, cholesteryl esters, and free

cholesterol of medium HDL particles and with the

concentration of total lipids and phospholipids in small HDL

particles after adjustment for age, sex, and BF%. All but one of

these associations remained after FDR0.2 and FDR0.1 correction.

The only except ion was the assoc ia t ion between

cardiorespiratory fitness and phospholipids in extra-large HDL

particles that did not remain after FDR0.1 correction. Further

adjustments for maturity, PAEE, MVPA, and HOMA-IR had no

effect on the magnitude of the associations. However,

adjustment for FCHEI slightly attenuated the association of

cardiorespiratory fitness with the concentration of total lipids

(b=0.081, 95% CI=-0.016 to 0.179, p=0.103), phospholipids

(b=0.092, 95% CI=-0.006 to 0.190, p=0.065), and free

cholesterol (b=0.093, 95% CI=-0.005 to 0.192, p=0.063) in

small HDL particles.

Sex modified the associations of cardiorespiratory fitness

and some HDL particle characteristics (p ≤ 0.05 for

cardiorespiratory fitness x sex interactions). Cardiorespiratory

fitness was inversely associated with the proportion of

phospholipids in large HDL particles (b=-0.149, 95% CI=-

0.279 to -0.020, p=0.024) and proportion of cholesterol in

large HDL particles (b=0.133, 95% CI=0.003 to 0.263,

p=0.045) among boys, but not in girls (b=0.118, 95% CI=-

0.021 to 0.257, p=0.095 and b=-0.125, 95% CI=-0.263 to 0.014,

p=0.077, respectively). However, the inverse associations of

cardiorespiratory fitness with HDL characteristics in boys were
TABLE 1 Characteristics of participants.

All children (n=450) Girls (n=217) Boys (n=233) p

Age (years) 7.6 (0.4) 7.6 (0.4) 7.7 (0.4) 0.362

Stature (cm) 129 (5.5) 128 (5.7) 130 (5.2) <0.001

Body weight (kg) 26.0 (23.6 to 29.3) 25.5 (23.1 to 29.0) 26.6 (23.9 to 29.4) 0.059

Clinical puberty (%) 2.5 4.3 0.8 0.031

Maturity (years) -4.1 (-4.4 to -3.6) -3.6 (0.3) -4.4 (0.3) <0.001

Body mass index standard deviation score -0.18 (1.1) -0.15 (1.1) -0.20 (1.1) 0.642

Prevalence of overweight (%) 13.1 15.2 11.2 0.204

Body fat percentage (%) 18.7 (13.3 to 24.2) 20.8 (17.4 to 27.0) 15.0 (11.4 to 21.5) <0.001

Lean body mass (kg) 20.6 (2.4) 19.5 (2.1) 21.6 (2.2) <0.001

Homeostatic Model Assessment of Insulin Resistance

Absolute peak power output (W) 76.7 (15.3) 69.9 (12.9) 82.9 (14.6) <0.001

Relative peak power output (W x kg of LM-1) 3.7 (0.5) 3.6 (0.5) 3.8 (0.5) <0.001

Physical activity energy expenditure (kcal x kg-1 x d-1) 98.4 (32.4) 90.5 (28.1) 106 (34.3) <0.001

Moderate to vigorous physical activity (min-1 x d-1) 115 (61.3) 97.5 (53.2) 132 (63.8) <0.001

Finnish Children Healthy Eating Index 22.8 (7.0) 23.4 (6.5) 22.3 (7.2) 0.094
frontier
The data are mean (standard deviation) or median (interquartile range). P-values are for the difference between girls and boys from the Students t -test, Mann-Whitney U -test, or c2 test.
Statistically significant differences are bolded. LM, lean mass. Maturity was assessed as the difference between the current age from the age at predicted peak height velocity and was
computed using a sex-specific formula described by Moore and coworkers (37).
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not statistically significant after further adjustment for BF%

(b=0.100, 95% CI=-0.023 to 0.222, p=0.110 and b=0.095, 95%
CI=-0.035 to 0.226, p=0.152, respectively).

BF% modified the associations between cardiorespiratory

fitness with characteristics of small HDL particles.

Cardiorespiratory fitness was directly associated with free

cholesterol in small HDL particles in children with higher BF

% (b=0.146, 95% CI=0.011 to 0.282, p=0.035), but not in

children with lower BF% (b=0.034, 95% CI=0.107 to 0.175,

p=0.633). Further adjustments had no effect on the magnitude

of this association (data not shown).
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Discussion

We found that cardiorespiratory fitness was directly

associated with serum HDL characteristics, ApoA1, glutamine,

and phenylalanine in a general population of children. While

adiposity explained part of the associations between

cardiorespiratory fitness and HDL characteristics, most

associations of cardiorespiratory fitness and metabolites were

independent of adiposity, maturity, physical activity, diet

quality, and insulin resistance. Cardiorespiratory fitness had

weak if any associations with other lipoproteins, amino acids,
TABLE 2 Associations of cardiorespiratory fitness with NMR-derived metabolic biomarkers.

Model 1 Model 2 BF% x CRF interaction

b (95% CI) p b (95% CI) p p

Metabolic biomarker

Lipoproteins and triglycerides

VLDL cholesterol (mmol/l) -0.022 (-0.118 to 0.075) 0.662 0.005 (-0.091 to 0.101) 0.922 0.136

LDL cholesterol (mmol/l) -0.047 (-0.153 to 0.058) 0.379 0.027 (-0.070 to 0.124) 0.580 0.017

HDL cholesterol (mmol/l) 0.138 (0.042 to 0.135) 0.005 0.114 (0.018 to 0.210) 0.021 0.276

Total triglycerides (mmol/l) 0.024 (-0.073 to 0.122) 0.630 0.047 (-0.051 to 0.144) 0.349 0.868

Average VLDL diameter (nm) 0.001 (-0.096 to 0.090) 0.952 0.032 (-0.064 to 0.129) 0.510 0.856

Average LDL diameter (nm) 0.063 (-0.035 to 0.161) 0.204 0.062 (-0.037 to 0.161) 0.222 0.030

Average HDL diameter (nm) 0.102 (0.004 to 0.199) 0.041 0.051 (-0.034 to 0.155) 0.208 0.768

Concentration of medium VLDL particles (mmol/l) -0.005 (-0.103 to 0.092) 0.913 0.024 (-0.073 to 0.120) 0.631 0.139

Concentration of small VLDL particles (mmol/l) -0.009 (-0.107 to 0.088) 0.853 0.017 (-0.080 to 0.114) 0.731 0.508

Concentration of extra-small VLDL particles (mmol/l) 0.002 (-0.095 to 0.099) 0.968 0.012 (-0.085 to 0.110) 0.802 0.202

Concentration of extra-large HDL particles (mmol/l) 0.103 (0.006 to 0.201) 0.038 0.068 (-0.027 to 0.163) 0.161 0.940

Concentration of large HDL particles (mmol/l) 0.122 (0.025 to 0.220) 0.014 0.089 (-0.007 to 0.184) 0.069 0.730

Concentration of medium HDL particles (mmol/l) 0.143 (0.047 to 0.239) 0.004 0.126 (0.030 to 0.223) 0.010 0.224

Concentration of small HDL particles (mmol/l) 0.073 (-0.025 to 0.170) 0.143 0.095 (-0.002 to 0.192) 0.056 0.020

Apolipoproteins

Apolipoprotein B (g/l) 0.003 (-0.094 to 0.101) 0.946 0.024 (-0.073 to 0.121) 0.630 0.029

Apolipoprotein A1 (g/l) 0.145 (0.048 to 0.242) 0.003 0.126 (0.030 to 0.223) 0.011 0.231

Apolipoprotein B to Apolipoprotein A1 ratio -0.084 (-0.180 to 0.012) 0.086 -0.051 (-0.145 to 0.043) 0.287 0.180

Amino acids

Alanine (mmol/l) 0.004 (-0.054 to 0.142) 0.377 0.061 (-0.038 to 0.159) 0.226 0.697

Glutamine (mmol/l) 0.161 (0.064 to 0.257) 0.001 0.147 (0.050 to 0.244) 0.003 0.387

Glycine (mmol/l) 0.068 (-0.030 to 0.165) 0.172 0.054 (-0.044 to 0.152) 0.278 0.919

Histidine (mmol/l) 0.079 (-0.118 to 0.177) 0.110 0.085 (-0.013 to 0.183) 0.090 0.578

Phenylalanine (mmol/l) 0.187 (0.091 to 0.283) <0.001 0.217 (0.122 to 0.311) <0.001 0.480

Tyrosine (mmol/l) 0.031 (-0.067 to 0.129) 0.537 0.060 (-0.036 to 0.157) 0.220 0.283

Isoleucine (mmol/l) 0.006 (-0.092 to 0.104) 0.904 0.019 (-0.079 to 0.118) 0.669 0.336

Leucine (mmol/l) 0.049 (-0.049 to 0.147) 0.325 0.071 (-0.027 to 0.169) 0.156 0.547

Valine (mmol/l) 0.042 (-0.056 to 0.140) 0.400 0.075 (-0.021 to 0.171) 0.126 0.630

Total branched-chain amino acids (mmol/l) 0.040 (-0.058 to 0.138) 0.426 0.067 (-0.030 to 0.164) 0.173 0.524
The data are standardised regression coeffiecients (b) and their 95% confidence intervals (95% CI) adjusted for age and sex (Model 1) and additionally for body fat percentage (model 2).
P-values for statistically significant associations and interactions are bolded. BF%, body fat percentage; CRF, cardiorespiratory fitness; HDL, high density lipoprotein; LDL, low density
lipoprotein; VLDL, very-low-density lipoprotein.
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or triglycerides. Furthermore, we found that adiposity modified

the associations of cardiorespiratory fitness with average LDL

diameter and the concentration of small HDL particles.

Higher cardiorespiratory fitness has been associated with higher

HDL cholesterol, lower total cholesterol, lower total cholesterol to

HDL cholesterol ratio, and lower triglycerides in children and

adolescents (7), but the evidence remains mixed and thus

prevents firm conclusions (8). Furthermore, higher V̇O2max

normalised for body mass has been associated with higher total

cholesterol to HDL cholesterol ratio, while V̇O2max normalised for

lean body mass exhibited no association with blood lipids (9). This

suggests that adiposity confounds the associations between

cardiorespiratory fitness and blood lipids. However, traditional

lipid measurements may not be sensitive enough to provide a full

picture of the associations of cardiorespiratory fitness with

atherogenic and cardioprotective blood lipid profile and previous

studies have not used NMR metabolomics to assess blood HDL

characteristics in children. We found consistent associations of

cardiorespiratory fitness with HDL characteristics, but controlling

for adiposity attenuated several of these associations. Nevertheless,

several associations, particularly those with medium size HDL

particle characteristics, were also independent of adiposity and

other potential confounders. One reason for the positive

associations between cardiorespiratory fitness and HDL

characteristics could be the positive associations of HDL particles

on cardiac and artery structures and functions. For example, HDL

particles participate in endothelial vasodilatory functions by

stimulating the release and production of nitric oxide from the

artery wall (43), and arterial vasolidatory function is important for

high cardiorespiratory fitness (44). Accordingly, a recent study in

youth suggested that healthy arterial structures could enhance

cardiorespiratory fitness (4). HDL may also directly or indirectly

improve cardiac structures and functions and thereby increase

cardiorespiratory fitness (27). Moreover, HDL has been found to

improve cellular and mitochondrial functions (25, 26). Therefore, it

is possible that HDL improves cardiovascular and skeletal muscle

structures and functions that are central components of

cardiorespiratory fitness. Finally, although the cross-sectional

associations of cardiorespiratory fitness with HDL characteristics

observed in our study were largely independent of current physical

activity levels, these associations may reflect the effects of previous

longer-term physical activity behaviour (45).

Children with higher adiposity exhibited a direct association

between cardiorespiratory fitness and the concentration of small

HDL particles. Duparc et al. (12) reported an inverse association

between the concentration of small HDL particles and

cardiovascular mortality. Small HDL particles have been

suggested to provide cardioprotection through cholesterol efflux,

antioxidant, anti-inflammatory, cytoprotective, and anti-
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thrombotic mechanisms (43, 46, 47). They also protect LDL from

oxidation (47). Therefore, it is possible that higher concentration of

small HDL particles along with higher cardiorespiratory fitness in

children is an adaptive mechanism protecting against

cardiovascular damage caused by increased adiposity.

Consistently, we have previously found that physical activity is

inversely associated with biomarkers of inflammation particularly

in children with higher levels of adiposity (48). However, Shah et al.

(17) found a direct association between the concentration of small

HDL particles and pulse wave velocity in obese youth indicating a

worse arterial health. It is possible that these latter observations

reflect a decreased antioxidative capacity of small HDL particles

observed in adults those with type 2 diabetes (49), suggesting that

not only HDL particle size but also composition is important for

arterial health. Nevertheless, it is yet to be investigated whether

higher small HDL concentration improves cardiovascular health

among children and adolescents with higher levels of adiposity and

cardiorespiratory fitness compared to their peers with lower

cardiorespiratory fitness.

In line with the studies in adults (24), we observed a direct

association between cardiorespiratory fitness and ApoA1

concentration. ApoA1 is a main protein component of HDL

and ApoA1 containing particles mediate the reverse cholesterol

transport (50). Furthermore, a higher ApoA1 has been associated

with better artery structure and function (51) suggesting that the

mechanisms explaining these associations are probably similar

than those of HDL characteristics (50). Furthermore, we did not

find associations of cardiorespiratory fitness with LDL or VLDL

characteristics. Previous studies in adults have observed such

associations, but they have used measures of cardiorespiratory

fitness that are confounded by adiposity, perhaps explaining the

discrepancy between the results. Furthermore, we found that

cardiorespiratory fitness was directly associated with average

LDL diameter. Small dense LDL is a potent atherogenic

lipoprotein (40, 52), and LDL particle size has been inversely

associated with insulin resistance (17, 53). Therefore, it is possible

that increased average LDL diameter would be seen as a

cardioprotective response in children with higher BF% and

increased insulin resistance (42). However, it remains unknown

whether increased average LDL diameter would serve as a

cardioprotective mechanisms between cardiorespiratory fitness

and cardiovascular health.

We found that cardiorespiratory fitness was directly associated

with amino acid glutamine in conjunction with some studies in

adults (24). We also found, in contrast to the results by Kujala et al.

(24), that the association was independent of BF%. One explanation

why cardiorespiratory fitness is associated with glutamine may be

that glutamine serves a precursor for l-arginine, that is used to

synthetise a vasodilator nitric oxide (54, 55), which in turn is
frontiersin.org

https://doi.org/10.3389/fendo.2022.954418
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Haapala et al. 10.3389/fendo.2022.954418
expected to improve cardiorespiratory fitness. It is also possible that

an increased glutamine concentration reflects reduced systemic

inflammation and oxidative stress (54, 55). The use of glutamine

supplements has been associated with decreased markers of fatigue

(56), that in turn may improve cardiorespiratory fitness. Taken

together, these results suggest that cardiorespiratory fitness could be

associated with cardioprotective and performance enhancing

metabolic alterations related to amino acids metabolism.

However, in contrast to adult studies, we found a positive

association between cardiorespiratory fitness and phenylalanine

(24) that has been directly associated with the risk of

cardiovascular events (57). The reason for the direct association

between cardiorespiratory fitness and phenylalanine in our study is

unclear. However, the results of some studies suggest that l-

phenylalanine could be associated with improved endothelial

functions (58, 59), that could partly explain our finding.

Nevertheless, more research is warranted to investigate the

association between cardiorespiratory fitness and phenylalanine

and its role in cardiovascular health since childhood.

While branched-chain amino acids have been associated

with increased risk of cardiovascular disease in adults (15, 18),

we did not find an association between cardiorespiratory fitness

and these amino acids in children. This could be because

branched-chain amino acids are more related to adiposity, as

suggested by previous studies on the associations of adiposity

and cardiorespiratory fitness with amino acids in adults (24).

Therefore, our results together with previous studies suggest that

the cardioprotective role of higher cardiorespiratory fitness is

not explained by its effects on branched-chain amino acids.

The strengths of the present study include the valid and

reproducible measurements of cardiorespiratory fitness using an

exercise test until exhaustion, serum metabolic biomarkers using a

NMR platform, and body composition using whole-body DXA in a

population sample of children. We were also able to control for

several confounding factors, including physical activity, diet quality,

insulin resistance, and maturation. Nevertheless, we usedWmax as a

measure of cardiorespiratory fitness instead of directly measured

V̇O2max. Additional studies investigating whether the associations of

maximal oxygen uptake with serummetabolites are similar to those

of peak performance with these metabolites are warranted. We also

investigated only the associations between cardiorespiratory fitness

and NMR-derived metabolic biomarkers and studies investigating

whether HDL characteristics mediate the associations between

cardiorespiratory fitness and arterial structures and functions.

Finally, our study was cross-sectional which limits our ability to

make causal inferences.

In conclusion, we found that higher cardiorespiratory fitness

was associated with several cardioprotective NMR-derived

metabolic biomarkers, especially those of related to HDL

characteristics, independent of several confounding factors. Future

studies are warranted to investigate whether the identified

metabolites and especially those of HDL characteristics mediate
Frontiers in Endocrinology 08
the cardioprotective effects of cardiorespiratory fitness on arterial

structures and functions since childhood.
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