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Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, kevät 2022.

Tämän tutkielman tarkoituksena on tarkastella henkivakuutussopimukseen liit-
tyvää diskontattua tulevaisuuden varantoa (prospective reserve). Tavoitteena on
yleistää käsitteitä ja teorioita Markovilaisesta asetelmasta epä-Markovilaiseen tilanteeseen
luopumalla Markovilaisista oletuksista. Markov-prosessin lisäykset ovat aina toisis-
taan ja ajasta riippumattomia, jota emme oleta yleisten hyppyprosessien kohdalla.
Henkivakuutussopimuksen tilaa kuvataan diskreetillä hyppyprosessilla, joka voi ker-
toa esimerkiksi, onko asiakas vielä elossa ja onko sopimus loppunut vai ei.

Tulemme osoittamaan, että tulevaisuuden varannolla on vaihtoehtoinen esitys-
muoto takaperoisen stokastisen differentiaaliyhtälön (TSDY) ratkaisuna myös epä-
Markovilaisessa tapauksessa. Lisäksi tutkimme epälineaarista varannonkeruuta, jossa
varallisuusprosessi saa riippua sopimukseen liittyvästä kerättävästä maksureservistä.
Yleensä tämä tapahtuu, kun otetaan huomioon mahdolliset sopimusmuutokset kesken
sopimuskauden. Yleinen tapa on hyödyntää jo kerättyä osuutta odotetusta reservistä
muutoksista aiheutuvien kulujen hyvittämiseen, ja ylijäämä käsitellään usein asi-
akkaan varallisuutena. Tällöin kerättävää reserviä voidaan pitää yhtenä varallisuus-
prosessin osana, joka aiheuttaa iteratiivisen kierteen määritelmässä, ja tulevaisuuden
varannon määritelmän oikeellisuutta pitää jatkotarkastella.

Tutkielman tärkeimmät tulokset ovat analoginen jatkumo sekä Thielen yhtälölle
että Cantellin Teorialle epä-Markovilaiseen asetelmaan. Thielen yhtälöä käytetään
yleisesti henkivakuutusmatematiikassa TSDY-esityksen löytämiseen tulevaisuuden varan-
nolle. Cantellin Teoria taas takaa tarpeelliset ehdot aktuaarisen tasapainon säilyt-
tämiseen sopimusmuutoksissa.

Lopuksi rakennamme paljon teoriaa hyppyprosessien, niiden kompensaattorien
sekä kompensoitujen martingaalien ympärille. Esittelemme eksplisiittisen kaavan
kompensaattoreille ja todistamme Itô isometriaa vastaavan tuloksen kompensoiduille
hyppyprosesseille. Tulemme myös johtamaan eksplisiittisen ratkaisun Martingaaliesi-
tys Teoriaan minkä tahansa integroitavan satunnaismuuttujan ehdolliselle odotusar-
volle. Myöhemmissä kappaleissa hyödynnämme tätä tulosta tulevaisuuden varannon
TSDY-esityksen validoimiseen.
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Abstract: Tapani Simola, The prospective reserve of a life insurance contract with
modifications in a Non-Markovian setting, Master’s Thesis in Mathematics, 62 pp.,
University of Jyväskylä, Department of Mathematics and Statistics, spring of 2022.

In this thesis we inspect the prospective reserve of a life insurance contract. The
objective is to generalize the concepts from the Markovian framework into the non-
Markovian setting. A Markov process has independent increments which is not as-
sumed for pure jump processes. The changes of the state of the life insurance contract
can therefore posses dependencies among themselves.

The prospective reserve will have a backward stochastic differential equation rep-
resentation even in the non-Markovian setting. Furthermore we will consider the case
of non-linear reserving where the payment process is allowed to be depended on the
prospective reserve. This occurs under contract modifications where the current pre-
mium reserve is utilized to cover the liabilities induced by the modification and the
rest is viewed as the assets of the customer. In other words the charged premiums in
the life insurance contract are allowed to be calculated utilizing the present expected
premium reserve as a part of the payment process. This creates a iterative cycle which
questions the validity of the definition of the prospective reserve.

The main theorems in this thesis are analogous extensions of the Thiele equation
and the Cantelli Theorem to the non-Markovian setting. The Thiele equation is
utilized to prove the BSDE representation for the prospective reserve and the Cantelli
Theorem yields means to sustain the actuarial equivalence at contract modifications.

Lastly we construct a lot of theory around jump processes, their compensators
and compensated martingales even providing an explicit formula for the stochastic
intensities and an Itô type of isometry for the compensated jump processes. We also
prove an explicit solution to the Martingale Representation Theorem for a specific
type of a stochastic process, which is applied to the prospective reserve.
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CHAPTER 1

Introduction

The actuarial literature concerning a Markovian jump process displaying the con-
tract states is well established. We will be focusing on the more general jump processes
without the Markov-assumption in the context of the life insurance mathematics. A
common theme in the life insurance is maintaining on average a balance between
the liabilities and the assets of the contractor over the life insurance contracts. One
utilized tool to prepare for the future insurance compensations as an insurance con-
tractor is called the prospective reserve. This is essentially equivalent to the expected
net present value of the contract given the history that has happened all ready during
the contract period. One must also consider the present value of the future cash flow
by discounting it with respect to the inflation rate. With higher sum insured the risk
involved also contributes to proportionally higher net premiums required to possibly
counterbalance the increased future liabilities towards the customer.

A more natural way of defining the prospective reserve is straight from the pay-
ment process which illustrates the value of the contract at each given time during the
contract period. This is referred to linear reserving and we will see in the Chapter 4
that the prospective reserve satisfies a Thiele type of backward stochastic differential
equation (BSDE) also in the non-Markovian setting. The foundations to this will
be constructed in the Chapter 3 which displays general theory about jump processes
without the Poisson process -correspondence. A critical note is that we will only treat
life insurance contract with a terminal time T . This means that the contract dissolves
upon reaching the predetermined time T if the contract has not been redeemed before
that.

According to [8, 6.8] the reserve part of the premiums could be considered to
being an asset of the insured. Therefore in the case of contract modifications the
prospective reserve can be conveniently utilized to finance any expenses induced by
the policy alterations. This creates a circular dependence between the cash flow and
the net premium reserve and makes the definition of the reserve significantly more
intricate. In the latter part of the Chapter 4 we will deliberate this aforementioned
phenomenon coined nonlinear reserving. It turns out in the Theorem 4.4 that the
BSDE validates the definition of the prospective reserve in the nonlinear case also
maintaining the actuarial equivalence, given the generator of the BSDE satisfies some
standard conditions. [6, Theorem 5.1]

Lastly in the Chapter 5 we will incorporate the contract modifications to the non-
Gaussian framework and prove the existence of the prospective reserve. The Extended
Cantelli Theorem proves that this is equal with the assumption that the accumulated
net premium reserve covers the insurance benefit at the time of the conversion of
the insurance policy terms. In the literature this is referred to sum-at-risk being
zero at the occurrence of the contract modification. We will introduce a new part

1



1. INTRODUCTION 2

to the payment process which regards the expenses associated to the modification.
The thesis is constructed base on the research paper published by Christiansen and
Djehiche in 2021. [4]



CHAPTER 2

Preliminaries

2.1. Probability space

We will start by recalling the definition of a probability space.

Definition 2.1 (σ-algebra). Let Ω be a non-empty set. Then the collection of
sets F is called a σ-algebra in Ω, if

(1) For all A ∈ F also A ⊂ Ω,
(2) Ω ∈ F ,
(3) For all A ∈ F also AC ∈ F ,
(4) For all A1, A2, · · · ∈ F also ∪∞i=1Ai ∈ F .

The pair (Ω,F) defined in Definition 2.1 is called a measurable space. The σ-
algebra will act as a domain for the probability measure.

Definition 2.2 (Probability measure). The function P : F → [0, 1] is called a
probability measure if

(1) P(Ω) = 1,
(2) For all disjoint sets A1, A2, · · · ∈ F it holds that

P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai).

The triplet (Ω,F ,P) is called a probability space.

Definition 2.3 (Complete probability space). A probability space (Ω,F ,P) is
called complete, if for all E ∈ F such that P(E) = 0 it holds

A ∈ F , for all A ⊆ E.

2.2. Stochastic processes

Definition 2.4 (Random variable). Let (Ω,F) and (E, E) be measurable spaces.
A function f : Ω→ E is called measurable, if for all B ∈ E it holds that

f−1(B) ∈ F .
In the probability theory a measurable function is called a random variable.

Definition 2.5 (Stochastic process). Let (Ω,F) and (E, E) be measurable spaces.
Assume for some index set I the random variables Xt : Ω→ E, t ∈ I. The family of
random variables (Xt)t∈I is called a stochastic process.

Remark 2.6. The measurable space (E, E) in Definition 2.5 is called the state
space.

3



2.2. STOCHASTIC PROCESSES 4

For the further classification of stochastic processes we will introduce the notion
of filtration.

Definition 2.7 (Filtration, [10, Definition 3.1.1]). Assume a measurable space
(Ω,F) and an index set I. The collection of σ-algebras (Ft)t∈I is a filtration, if

Ft ⊂ Fs ⊂ F for all s, t ∈ I, t ≤ s

Definition 2.8. A probability space (Ω,F ,P) and its filtration (Ft)t≥0 together
is a called a stochastic basis and is denoted by (Ω,F ,P, (Ft)t≥0).

Remark 2.9. A filtration is said to be generated by a process X = (Xt)t≥0 and
is marked (FXt )t≥0, if for all t ≥ 0 it holds that FXt = σ(Xs : s ∈ [0, t]), where σ(X)
denotes the smallest σ-algebra such that the mapping X is a random variable. The
filtration (FXt )t≥0 is called a natural filtration of the process X.

Definition 2.10 (Augmented filtration). A filtration (Ft)t≥0 with respect to a
complete probability space (Ω,F ,P) is called augmented, given for all E ∈ F with
P(E) = 0 it holds E ∈ F0.

Definition 2.11 (Right-continuous filtration). Assume a measurable space (Ω,F).
A filtration (Ft)t≥0 is right-continuous on (Ω,F) if and only if for all t ≥ 0 it holds

Ft =
⋂
s:s>t

Fs.

Definition 2.12 (Usual conditions,[9, Definition 2.25]). Given a complete prob-
ability space (Ω,F ,P) a filtration fulfills the usual conditions if it is right-continuous
and augmented.

Remark 2.13. As described in [11] any probability space can be completed by
including the null-sets from Definition 2.3. In the setting of complete probability
space any filtration with respect to the probability space can be augmented by adding
all of the null sets of the underlying probability space to each of the σ-algebras in
the filtration ([11]). Moreover any filtration (Ft)t≥0 can be expanded to be right-
continuous by defining Gt := ∩s:s>tFs for each t, and replacing the filtration (Ft)t≥0

with the filtration (Gt)t≥0 ([11]). This is an expansion, because of the relation Ft ⊆ Fs
for all t ≤ s.

Definition 2.14 (Adapted process). Let (Ω,F ,P, (Ft)t≥0) be a stochastic basis.
A process (Xt)t≥0 is called adapted to the filtration (Ft)t≥0, if Xt is Ft measurable for
all t ≥ 0.

Remark 2.15. Note that any process is always adapted with respect to its natural
filtration, due to the construction of the filtration.

Definition 2.16 (Progressively measurable process, [9, Section 1.1. Definition
1.11]). Assume a stochastic basis (Ω,F ,P, (Ft)t≥0) and state space (E, E). A stochas-
tic process X is progressively measurable with respect to the filtration (Ft)t≥0 if for
all t ≥ 0 the mapping X : [0, t]×Ω→ E, (s, ω) 7→ X(s, ω) is measurable between the
measurable spaces ([0, t]× Ω,B([0, t])⊗F) and (E, E).
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Definition 2.17 (Predictable process, [3, I D4]). Assume a stochastic basis
(Ω,F ,P, (Ft)t≥0). The σ-algebra P over (0,∞)× Ω defined as

P := σ({(s, t]× A : 0 ≤ s ≤ t, A ∈ Fs})

is called a predictable σ-algebra. A stochastic process (Xt)t≥0 is called predictable, if
it is measurable with respect to the σ-algebra P .

Remark 2.18. Any left-continuous adapted process is also predictable ([2, Propo-
sition 3.5.2 (ii)]). The predictable σ-algebra P can also be generated by all continuous
and (Ft)t≥0-adapted processes ([2, Proposition 3.5.2 (ii)]).

Definition 2.19 (Counting process,[12, I 2.3]). Assume a stochastic basis (Ω,F ,P, (Ft)t≥0).
Let (Tn)∞n=0 be a sequence of random variables such that 0 = T0 < T1 < T2 < . . .
almost surely, and define

Nt :=
∞∑
n=1

1{t≥Tn}

Then the process N = (Nt)t≥0 is called a counting process. The state space of the

process N is (N̄, 2N̄), where N̄ = N ∪ {∞}.

2.3. Martingales

We denote the expected value of a random variable X by EX =
∫

Ω
X dP, assuming

it exists. If the expected value is finite for a random variable X, then the random
variable X is called integrable. For a rigorous construction of the expected value,
reader is referred to [7, Chapter 6] or [14, Chapters 5 & 6].

Proposition 2.20 (Theorem of Radon-Nikodym, [7, Theorem 7.2.1]). Assume
a probability space (Ω,F ,P) and a signed measure µ. If µ � P then there exists an
integrable and measurable L : Ω→ R which satisfies

µ(A) =

∫
A

LdP ∀A ∈ F .

Definition 2.21 (Radon-Nikodym-derivative, [7, Definition 7.2.2]). We call the
random variable L from the Proposition 2.20 the Radon-Nikodym-derivative and mark

L =
dµ

dP
.

Moreover it holds that ∫
Ω

1A dµ =

∫
Ω

1ALdP, for A ∈ F .(2.1)

Definition 2.22 (Conditional expectation, [14, Section 9.2.]). Assume a prob-
ability space (Ω,F ,P), a sub-σ-algebra G ⊂ F and an integrable random variable
X : Ω→ R. An integrable random variable Y fulfilling the properties

(1) Y is G-measurable and
(2) for all A ∈ G it holds E[Y 1A] = E[X1A]

is called conditional expectation of X given G. Random variable Y is denoted by
Y = E[X|G] a.s.
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Remark 2.23. The conditional expectation exists and is a.s.-unique as a con-
sequence of the Radon-Nikodym Theorem. Here are some of the properties of the
conditional expectation [14, Section 9.7.]. The setting is the same as in the Definition
2.22.

(1) If Z is G-measurable and bounded, then it holds that

E[ZX|G] = ZE[X|G], a.s.

We refer to this as take out what is known.
(2) If for sub-σ-algebra H ⊂ F it holds H ⊂ G, then we have the so called tower

property :

E
[
E[X|G]

∣∣H] = E
[
E[X|H]

∣∣G] = E[X|H], a.s.

Definition 2.24 (Martingale). Let (Ω,F ,P, (Ft)t≥0) be a stochastic basis. An
adapted process X = (Xt)t≥0 is a (Ft)t≥0-martingale if

(1) E|Xt| <∞ for all t ≥ 0.
(2) For all 0 ≤ s ≤ t

E[Xt|Fs] = Xs a.s.

Definition 2.25 (Square-integrable martingale, [3, I D4]). Let (Ω,F ,P, (Ft)t≥0)
be a stochastic basis. A martingale X = (Xt)t≥0 is square-integrable over [0, c], if

E[X2
c ] <∞.

Definition 2.26 (Stopping time, [3, A2 Definition 1]). Let (Ω,F) be a measurable
space and let (Ft)t≥0 be a filtration. A random variable τ : Ω → [0,∞] is called a
(Ft)t≥0-stopping time if

{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft
for all t ≥ 0.

Definition 2.27 (Stopped σ-algebra, [3, A2 Definition 3]). Let (Ω,F) be a mea-
surable space, let (Ft)t≥0 be a filtration and assume a stopping time τ : Ω → [0,∞].
The past at time τ is defined as

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

Proposition 2.28 (Doob’s optional sampling, [9, Theorem 3.22]). Assume a
stochastic basis (Ω,F ,P, (Ft)t≥0). Let (Xt)t≥0 be a right-continuous martingale and
let S and T , S(ω) ≤ T (ω) ≤ N <∞, be bounded (Ft)t≥0-stopping times. Then

E(XT |FS) = XS P− a.s.

Proof. See the proof of Theorem 3.22 in [9]. �

Definition 2.29 (Local martingale, [2, Definition 2.1.8]). Given a stochastic basis
(Ω,F ,P, (Ft)t≥0) a process X is said to be a local martingale, if for every ε > 0 and
T ∈ (0,∞) there exists a stopping time τ such that P(T < τ) < ε and the process
Xτ = (Xt∧τ )t≥0 is a martingale.



CHAPTER 3

Explicit solution to the Martingale Representation

3.1. The setting

We will recall the definition of a pure jump process.

Definition 3.1 (Jump times, [3, Section 2.1]). Assume a probability space (Ω,F ,P).
A sequence of random variables (Tn)n∈N0 is called jump times if

(1) Tn ∈ [0,∞] for all n ∈ N0

(2) T0 ≡ 0
(3) For all Tn <∞ it holds that Tn < Tn+1.

Definition 3.2 (Pure jump process). Assume a probability space (Ω,F ,P). A
stochastic process X = (X(t))t≥0 with a state space (E, E) is called a pure jump
process, if the set E is countable and there exists

(1) Jump times (Tn)n∈N0 ,
(2) For each n ∈ N0 there exists state s ∈ E,

such that

X(t, ω) = s, ∀ t ∈ [Tn, Tn+1),P-a.s.

Remark 3.3 ([3, Section 2.1]). A jump process X = (X(t))t≥0 with corresponding
jump times (Tn)n∈N0 is nonexplosive if and only if limn→∞ Tn =∞.

We will consider an insurance policy with finitely many different states S ⊂ N0,
which will be modelled as follows. Let us assume a complete probability space
(Ω,F ,P). The state of the policy will be indicated by a right-continuous pure jump
process X = (Xt)t∈I with left limits, where X(ω, t) ∈ S are defined in (Ω,F ,P).
Furthermore we will equip the probability space with a natural filtration (FXt )t≥0 of
the process X = (X(t))t≥0 so that the process X is adapted.

Lemma 3.4. Assume a probability space (Ω,F ,P) and a measurable state space
(S,S). Let process X be a jump process with jump times (Tn)n∈N0. Then the natural
filtration (FXt )t≥0 of the process X is right-continuous.

Proof. We will apply [3, A2 Theorem 25]. Indeed the sequence (Tn, X(Tn))n∈N∗
can be seen as an S-marked point process, where 0 < T1 < T2 < . . . denote the jump
times of the process X. The definition of a S-marked point process can be found in
[3, A2 D22]. �

To fulfill the usual conditions we augment the natural filtration while maintaining
the right-continuity property.

Proposition 3.5. Assume a probability space (Ω,F ,P) and a measurable state
space (S,S). The augmented natural filtration of a càdlàg pure jump process X =
(Xt)t≥0 is right-continuous.

7
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Proof. Denote the augmented natural filtration as F̃X := (F̃Xt )t≥0. Since the

filtration (Ft)t≥0 is increasing, then the collection F̃X is also increasing. Therefore
to conclude the right-continuity of the augmented natural filtration it is sufficient to
confirm the equation

F̃Xt =
⋂
n∈N∗
F̃X
t+ 1

n
, ∀t.(3.1)

The inclusion ”⊂” in (3.1) is true by the definition of the filtration being nested. We
will proceed with the proof of the inclusion ”⊃”.

Assume an element A ∈ ∩n≥1F̃Xt+1/n. By definition it holds for all n ≥ 1 that

A ∈ F̃Xt+1/n.

Therefore from augmentation we are able to acquire for all n ≥ 1 an element Bn ∈
FXt+1/n such that

P(A4Bn) = 0,

where A4Bn := (A ∪Bn) \ (A ∩Bn) denotes the symmetric difference.
For this paragraph we will follow the proof in [13, Answer by Saz]. Let us consider

now the set

B :=
∞⋃
k=1

∞⋂
n=k

Bn.

Fix an integer N ∈ N∗. The objective is to prove that the set B belongs to the
σ-algebra FXt+1/N . Since for all n ≥ N it holds

Bn ∈ Ft+1/n ⊂ FXt+1/N

we have for all k ≥ N that

∞⋂
n=k

Bn ∈ FXt+1/N .

Moreover
(⋂

n≥k Bn

)
k∈N is an increasing sequence so therefore

(3.2) B =
∞⋃
k=1

∞⋂
n=k

Bn =
∞⋃
k=N

∞⋂
n=k

Bn ∈ FXt+1/N .

Note that the number N was arbitrary, so the equation (3.2) holds for all N ≥ 1. The
Lemma 3.4 yields that the natural filtration (FXt )t≥0 is right-continuous, therefore

B ∈
⋂
N≥1

FXt+1/N = FXt .
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Now the objective is to show that A ∈ F̃Xt . Applying basic set operations we may
deduce

A4B = A4

(
∞⋃
k=1

∞⋂
n=k

Bn

)

=

(
A ∪

(
∞⋃
k=1

∞⋂
n=k

Bn

))
∩

(
A ∩

(
∞⋃
k=1

∞⋂
n=k

Bn

))C

=

(
∞⋃
k=1

∞⋂
n=k

(A ∪Bn)

)
∩

(
∞⋃
k=1

∞⋂
n=k

(A ∩Bn)

)C

.(3.3)

Furthermore by de Morgan’s law [7, Lemma 2.5.2 (3)] we receive(
∞⋃
k=1

∞⋂
n=k

(A ∩Bn)

)C

=
∞⋂
k=1

∞⋃
n=k

(
(A ∩Bn)C

)
.(3.4)

The Lemma of Fatou [7, Theorem 2.5.3] yields

∞⋃
k=1

∞⋂
n=k

(A ∪Bn) ⊆
∞⋂
k=1

∞⋃
n=k

(A ∪Bn)(3.5)

Combining the results of the equations (3.3), (3.4) and (3.5) gives

A4B ⊆
∞⋂
k=1

∞⋃
n=k

(
(A ∪Bn) ∩ (A ∩Bn)C

)
Finally the following is true:

A4B ⊆
∞⋃
n=1

(
(A ∪Bn) ∩ (A ∩Bn)C

)
.

Utilizing the monotonicity and the additivity of the probability measure we receive

0 ≤ P(A4B) ≤ P

(⋃
n≥1

[A4Bn]

)
≤
∑
n≥1

P(A4Bn) = 0.(3.6)

Note that because of the augmentation we have that

B ∈ FXt ⊂ F̃Xt

and because of the equation (3.6) and the σ-algebra F̃Xt is augmented, also

A4B ∈ F̃Xt .

Lastly we have that the σ-algebra F̃Xt is closed under set operations, therefore

A = B4(A4B) ∈ F̃Xt ,

which proves the last inclusion
⋂
n≥1

F̃X
t+ 1

n

⊂ F̃Xt .

�
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The usual conditions are then satisfied because the probability space (Ω,F ,P)
was assumed to be complete. Denote the augmented natural filtration of the process
X from now onward as FX := (F̃Xt )t≥0.

To specify the state of process X at time t we may formulate an indicator process.
For every state i ∈ S we define

Ii(t, ω) := 1{X(t)=i}(ω),

for all t ∈ I and ω ∈ Ω. In addition to the indicator processes we may also define
processes (Nij(t))t≥0 for i, j ∈ S such that i 6= j counting the number of jumps
occurring from state i to state j until time t. For all states i, j ∈ S such that i 6= j
we assign

Nij(t) :=

{
#{s ∈ (0, t] : X(s−) = i,X(s) = j}, t > 0

0, t = 0.
(3.7)

Because the process X was assumed to be càdlàg , the processes (Nij(t))t≥0 are
also càdlàg and are counting processes in the sense of the Definition 2.19. The afore-
mentioned processes should be adapted for further purposes, which is indeed the case.
Due to the definition of the processes (Nij(t))t≥0 and (Ii(t))t≥0 they depend on the
information the process X. Therefore, likewise the process X, they are adapted and
càdlàg.

Lastly we shall define the jump times 0 = T0 < T1 < T2 < . . . of the process X
more rigorously. For n ∈ N∗ the time of the n-th jump of the process X is provided
by

Tn := inf{t ≥ 0 :
∑
i,j:i 6=j

Nij(t) = n}.

3.2. Stieltjes-Lebesgue integral

This section will follow the construction of Stieltjes-Lebesgue integral given in [3,
A4]. In the beginning we will define a suitable space of integrator functions.

Definition 3.6 (Variation, [3] A4 D1). Let t ≥ 0 and D denote the set of all
partitions 0 = t0 < t1 < · · · < tN = t of [0, t]. If for a function f(t) it holds that

Vf (t) := sup
(t0,...,tN )∈D:N∈N

N∑
i=1

|f(ti)− f(ti−1)| <∞,

then f is called to be of bounded variation over finite intervals. Moreover the function
Vf is referred to as the variation of f .

For further definitions we consider a set of functions which are càdlàg, zero in
t = 0 and of bounded variation over finite intervals. Such a function is denoted as
being BV. For any BV function f : R+ → R we have the decomposition

f(t) = Vf (t)− (−f(t) + Vf (t)), ∀t > 0.

Defining the functions

a(t) := Vf (t) and b(t) := −f(t) + Vf (t)

we have that they are both right-continuous and non-decreasing.
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Following the definitions we set the weight functions of an interval to be

τa((s, t]) := a(t)− a(s) and τb((s, t]) := b(t)− b(s),

for 0 ≤ s < t < ∞ ([1] 7.1). Moreover set τa(∅) = τb(∅) := 0. Due to function f
being of bounded variation over finite intervals, the measures are σ-finite measures
on ((0,∞),B((0,∞))). They are indeed measures, since the functions a and b are
non-negative non-decreasing functions. Therefore countable additivity in (0,∞) is
achieved ([1] 7.1.1).

Parallel to the construction of the Lebesgue integral we define the Stieltjes-Lebesgue
outer measure

µ∗a(A) = inf

{
∞∑
i=1

τa
(
(ai, bi]

)
: A ⊂

∞⋃
i=1

(ai, bi]

}
,

for any A ⊂ R+ ([1] Definition 7.1.1). The same construction is used for the outer
measure µ∗b respectively. Finally the Stieltjes-Lebesgue measures µa, µb : B(R+)→ R+

are attained in the similar fashion to the Lebesgue measure construction. Reader
is advised to refer to [1, Chapter 5] for a more rigorous approach for the measure
construction.

The Stieltjes-Lebesgue integral is now defined like the Lebesgue integral with
respect to the signed measure µa − µb. The integral with respect to the variation is
defined as ∫

(0,∞)

u(s) |df(s)| :=
∫

(0,∞)

u(s) dµa.

Definition 3.7. ([3] A4) Let f be a BV function and let u be a Borel-measurable
function. If ∫

(0,∞)

|u(s)| |df(s)| <∞,

then the function u is Stieltjes-Lebesgue integrable with respect to the function f .
The Stieltjes-Lebesgue integral of the function u with respect to the function f is the
difference of the integrals∫

(0,∞)

u(s) df(s) :=

∫
(0,∞)

u(s) dµa(s)−
∫

(0,∞)

u(s) dµb(s).

Remark 3.8 ([3, A1 Equation (1.6)]). The assumption
∫

(0,∞)
|u(s)| dµa(s) < ∞

implies also that
∫

(0,∞)
|u(s)| dµb(s) <∞, because of the inequality |f(t)| ≤ Vf (t) and

therefore µb(A) ≤ 2µa(A) for all A ∈ B(R).

For the jump process Nij we know that it is non-decreasing and Nij(0) = 0 by the
definition. The variation of the process Nij is then for fixed i, j ∈ S of the form

VNij(t) = sup
(t0,...,tM )∈D:M∈N

M∑
i=1

[
Nij(ti)−Nij(ti−1)

]
= Nij(tM)−Nij(t0) = Nij(t).

The Stieltjes-Lebesgue measure for the process Nij is therefore µa((0, t]) = Nij(t) and
µb((0, t]) = 0. Applying the previous results we may derive the Stieltjes-Lebesgue
integral of a predictable process Z with respect to the process Nij.
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∫
(0,∞)

Z(t) dNij(t) =

∫
(0,∞)

Z(t) dµa(t)

= sup
(t0,...,tM )∈D

M∑
k=1

Z(tk)
(
Nij(tk)−Nij(tk−1)

)
=
∞∑
n=1

Z(tn),

where tn := inf{t ∈ (0,∞) : Nij(t) = n} for all n ∈ N. In order to extend the
definition of the integral over Borel sets we define∫

A

Z(t) dNij(t) :=

∫
(0,∞)

1A(t)Z(t) dNij(t),

when ever A ∈ B((0,∞)).

3.2.1. Integration by parts. To construct an interpretation for the notation dN2
ij(t)

we introduce the integration by parts formula for the Stieltjes-Lebesgue integral.

Proposition 3.9 ([3] A4 T2). Suppose that two càdlàg functions f and g are of
bounded variation over finite intervals. Then it holds that

f(t)g(t) = f(0)g(0) +

∫
(0,t]

f(s) dg(s) +

∫
(0,t]

g(s−) df(s).

Proof. We follow closely the proof given in [3]. Firstly we have by the Stieltjes-
Lebesgue definition that(

f(t)− f(0)
)(
g(t)− g(0)

)
=

∫
(0,t]

df(x)

∫
(0,t]

dg(y).

Using Fubini’s theorem we are able to deduce∫
(0,t]

df(x)

∫
(0,t]

dg(y) =

∫∫
(0,t]×(0,t]

df(x) dg(y).

Define the sets D1 = {(x, y) : 0 < x ≤ y ≤ t} and D2 = {(x, y) : 0 < y < x ≤ t}.
By additivity of the integral we receive∫∫

(0,t]×(0,t]

df(x) dg(y) =

∫∫
D1

df(x) dg(y) +

∫∫
D2

df(x) dg(y).

Once again applying Fubini’s theorem it follows that∫∫
D1

df(x) dg(y) =

∫
(0,t]

(∫
(0,y]

df(x)

)
dg(y)

=

∫
(0,t]

f(y)− f(0) dg(y)

=

∫
(0,t]

f(y) dg(y)− f(0)
(
g(t)− g(0)

)
.
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In a similar fashion∫∫
D2

df(x) dg(y) =

∫
(0,t]

(∫
(0,x)

dg(y)

)
df(x)

=

∫
(0,t]

g(x−)− g(0) df(x)

=

∫
(0,t]

g(x−) df(x)− g(0)
(
f(t)− f(0)

)
.

By combining all of the results(
f(t)− f(0)

)(
g(t)− g(0)

)
=

∫
(0,t]

f(y) dg(y)− f(0)
(
g(t)− g(0)

)
+∫

(0,t]

g(x−) df(x)− g(0)
(
f(t)− f(0)

)
and therefore

f(t)g(t) =

∫
(0,t]

f(y) dg(y) +

∫
(0,t]

g(x−) df(x)− f(0)g(t) + f(0)g(0)−

g(0)f(t) + g(0)f(0) + f(t)g(0) + f(0)g(t)− g(0)f(0)

=f(0)g(0) +

∫
(0,t]

f(y) dg(y) +

∫
(0,t]

g(x−) df(x).

�

3.3. Compensated processes

Definition 3.10 (Jump intensity, [3, Chapter II D7]). Let (Ω,F ,P, (Ft)t≥0) be
a stochastic basis and assume an adapted jump process N = (N(t))t≥0. Let λ =
(λ(t))t≥0 be a progressively measurable non-negative process with

E
∫ t

0

λ(s) ds <∞ for all t ≥ 0.

If the equation

E
[∫

(0,∞)

C(s) dN(s)

]
= E

[∫ ∞
0

C(s)λ(s) ds

]
holds for every nonnegative predictable process (C(t))t≥0, then N admits the (Ft)t≥0-
intensity λ.

Recall the definition of the indicator process as Ii(t) = 1{X(t)=i} for all i ∈ S. In the
succeeding sections we will present an explicit form for the intensities, simultaneously
proving the existence of an intensity for any counting process. Therefore we assume,
when ever i, j ∈ S and i 6= j, that for every counting process (Nij(t))0≤t≤T there
exists an intensity (λij(t))0≤t≤T , such that

E

(∫ T

0

∑
i,j:i 6=j

Ii(s−)λij(s) ds

)
<∞.



3.3. COMPENSATED PROCESSES 14

The compensated jump processes of the processes Nij are defined by setting

Mij(t) := Nij(t)−
∫ t

0

Ii(s−)λij(s) ds, 0 ≤ t ≤ T

and Mij(0) := 0 for all i, j ∈ S, i 6= j.

Proposition 3.11 ([3, II L2]). Let (Ω,F ,P, (Ft)t≥0) be a stochastic basis. Assume
that a jump process N = (N(t))t≥0 admits an intensity (λ(t))t≥0. Then the process N
is nonexplosive and

M :=

(
N(t)−

∫ t

0

λ(s) ds

)
t≥0

is a local martingale.

Proof. Let us prove first that the process N is nonexplosive. Define the process
A = (A(t))t≥0 with A(t) :=

∫ t
0
λ(s) ds. Following the proof in [3, II L2] we set the

hitting times

Sn := inf {t : A(t) ∈ (n,∞)} , ∀n ∈ N0,

with the convention that inf ∅ =∞. From the definition of the intensity λ, it follows
that the process A is càdlàg and adapted. Furthermore the set (n,∞) is open, there-
fore Sn is a stopping time for all n ([12, I 1 Theorem 3]). The process (1{t≤Sn}(t))t≥0

is càdlàg and adapted, so it is predictable (Remark 2.18). We have by the definition
of the intensity that

E [N(Sn)] = E
[∫ ∞

0

1{t≤Sn}(s) dN(s)

]
= E

[∫ ∞
0

1{t≤Sn}(s)λ(s) ds

]
= E [A(Sn)] ,

(3.8)

where we used that the counting process N is increasing. Because of the definition of

the intensity we have A(t) <∞ a.s., therefore N(t) <∞ a.s. and Sn
n↑∞→ ∞ a.s. and

the process N is nonexplosive.
Now we will prove that the process M is a local martingale. The idea is the same

as in the proof of the Corollary 6.7 [5, 5.6]. At first note that M is adapted and
E[M(t ∧ Sn)] = 0 for all t, Sn by (3.8). Assume 0 ≤ s < t < ∞. Then the random
variables Sn∧ t and Sn∧s are also stopping times. As we previously deduced, it holds
for the stopping times Sn that Sn →∞. To show the local martingale property, it is
sufficient to prove that

E [M(Sn ∧ t)−M(Sn ∧ s)|Fs] = 0, a.s.(3.9)

To yield (3.9) it is enough to show that for all A ∈ Fs it holds

E
[
1A
(
M(Sn ∧ t)−M(Sn ∧ s)

)]
= 0,(3.10)

because by the definition of the conditional expectation (Definition 2.22) we would
then have the preceding (3.9).



3.3. COMPENSATED PROCESSES 15

By a straight forward calculation we obtain that

E
[
1A
(
M(Sn ∧ t)−M(Sn ∧ s)

)]
= E

[
1A

(∫
(Sn∧s,Sn∧t]

dM(u)

)]
= E

[∫
(Sn∧s,Sn∧t]

1A(dN(u)− λ(u) du)

]
= E

[∫
(0,∞)

1(Sn∧s,Sn∧t](u)1A(dN(u)− λ(u) du)

]
.

Because of the assumption 1A ∈ Fs and the random times Sn∧s, Sn∧t and u ∈ (0,∞)
are stopping times, we have that 1A1{Sn∧s<u},1A1{Sn∧≥u} ∈ Fs ([5, 5.1 Th 1.16d]).
Then the process 1(Sn∧s,Sn∧t](u)1A is adapted, and being a left-continuous process it
is also predictable (Remark 2.18). Therefore by the definition of the intensity we have

E
[∫

(0,∞)

1(Sn∧s,Sn∧t](u)1A(dN(u)− λ(u) du)

]
= 0,

which proves the equation (3.9). �

The converse is also true for the Proposition 3.11, so in fact we have an equivalency
between the definition of the intensity and the martingale characterization.

Proposition 3.12. [3, II 3 T9] Let (Ω,F ,P, (Ft)t≥0) be a stochastic basis. Assume
an adapted non-explosive jump process N = (N(t))t≥0. If there exists a non-negative
and progressively measurable process (λ(t))t≥0 such, that

M :=

(
N(t)−

∫ t

0

λ(s) ds

)
t≥0

is a local martingale,

then the process N admits the intensity λ.

Proof. The idea of the proof is the same as in [5, 5.6 Theorem 6.5]. We are
required to prove that

E
[∫

(0,∞)

C(s) dN(s)

]
= E

[∫ ∞
0

C(s)λ(s) ds

]
(3.11)

for every non-negative predictable process (C(t))t≥0. At first we will verify the equa-
tion (3.11) for the simple processes of the predictable σ-algebra

P := σ({(s, t]× A : 0 ≤ s ≤ t, A ∈ Fs}).

Then the Monotone Class Theorem for functions will be applied to generalize the
result. Note here that the indicator functions are non-negative.

For 0 ≤ s ≤ t set C(ω, u) = 1A×(s,t](ω, u), where the set A is Fs-measurable. Then
it holds by the right-continuity of the process N that

E
[∫

(0,∞)

C(u) dN(u)

]
= E

[
1A

∫
(0,∞)

1(s,t](u) dN(u)

]
= E[1A(N(t)−N(s))].
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By the tower property and ”take out what is known” we receive

E[1A(N(t)−N(s))] = E
[
1AE[N(t)−N(s)|Fs]

]
.(3.12)

Here we may utilize the assumption of the process M being a local martingale. For
a localizing sequence T0 ≤ T1 ≤ . . . it holds

E[M(t ∧ Tn)−M(s ∧ Tn)|Fs] = M(s ∧ Tn)−M(s ∧ Tn) = 0 a.s.,

which is equal to stating that

E[N(t ∧ Tn)−N(s ∧ Tn)|Fs] = E
[∫ t∧Tn

0

λ(u) du−
∫ s∧Tn

0

λ(u) du

∣∣∣∣Fs] a.s.

Letting the index n→∞ implies Tn →∞ and

E[N(t)−N(s)|Fs] = E
[∫ t

0

λ(u) du−
∫ s

0

λ(u) du

∣∣∣∣Fs] a.s.(3.13)

Combining the results of the equations (3.12) and (3.13) we may complete the first
step of the proof:

E
[
1AE[N(t)−N(s)|Fs]

]
= E

[
1AE

[∫ t

0

λ(u) du−
∫ s

0

λ(u) du

∣∣∣∣Fs]]
= E

[
1A

∫ t

s

λ(u) du

]
= E

[∫ ∞
0

1A×(s,t](u)λ(u) du

]
.

The case for C = 1A×{0} where A ∈ F0 follows in similar fashion. This proves the
(3.11) for simple predictable non-negative processes. For the generalization we notice
that the set of non-negative predictable processes (C(t))t≥0 for which (3.11) holds is
a monotone class. To validate this we will provide some arguments. Remark the set
of predictable non-negative processes fulfilling (3.11) as P+.

(1) 1A×(s,t] ∈ P+ for 0 ≤ s ≤ t <∞ and A ∈ Fs as was shown.
(2) P+ is a vector space in R.
(3) Any increasing and bounded sequence of non-negative predictable processes

converges into a predictable non-negative process. Moreover by applying
the Monotone Convergence Theorem to the Lebesgue integrals and to the
Stieltjes-Lebesgue integrals separately on both sides also the equation (3.11)
holds.[5, 5.6. Th 6.5]

Here the σ-algebra generated by the π-system {(s, t]×A : 0 ≤ s ≤ t, A ∈ Fs} is by
definition the predictable σ-algebra P . The Monotone Class Theorem for functions
[7, Proposition 10.3.3] then implies that the set P+ contains all P-measurable and
bounded process.

�

In the literature the process M is called the accompanying martingale of the
process N . The process A in the Proposition 3.11 is known as the compensator of
the process N . ([12, III 5])
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3.4. Square integrable martingales

Assume a set {(Zij(t))0≤t≤T : i 6= j} of predictable processes on the stochastic
basis (Ω,F ,P, (FXt )0≤t≤T ). The focus shifts now on to the stochastic integral∫

(0,t]

Z(s) dM(s) :=
∑
i,j:i 6=j

∫
(0,t]

Zij(s) dMij(s)(3.14)

:=
∑
i,j:i 6=j

∫
(0,t]

Zij(s) (dNij(s)− Ii(s−)λij(s) ds),

for 0 ≤ t ≤ T , where Ii(t) = 1{X(t)=i}. Firstly denote a norm with respect to the
jump intensities Λ := {λij : i 6= j} as

‖Z(t)‖2
Λ :=

∑
i,j:i 6=j

Z2
ijIi(t−)λij(t), 0 ≤ t ≤ T.(3.15)

We will now show that the stochastic integral in (3.14) under the constrain

E
[∫ T

0
‖Z(s)‖2

Λ ds
]
< ∞ is a square-integrable martingale with respect to the sto-

chastic basis (Ω,F ,P, (FXt )0≤t≤T ). We will start with a result that can be interpreted
as the Itô isometry for a jump process.

Proposition 3.13. Let (Ω,F ,P, (Ft)0≤t≤T ) fulfill the usual assumptions. Assume
for i, j ∈ S, i 6= j the counting processes (Nij(t))t≥0 that admit intensities (λij(t))t≥0.

Let (Zij(t))t≥0 be predictable processes such that E
[∫ T

0
‖Z(s)‖2

Λ ds
]
<∞. Then

E
(∫

(0,T ]

Z(s) dM(s)

)2

= E
∫ T

0

‖Z(s)‖2
Λ ds.

Proof. By applying the integration by parts formula (Proposition 3.9) we receive(∫
(0,T ]

Z(s) dM(s)

)2

=

∫
(0,T ]

∫
(0,s)

Z(u) dM(u) d

(∫
(0,s]

Z(u) dM(u)

)
+∫

(0,T ]

∫
(0,s]

Z(u) dM(u) d

(∫
(0,s]

Z(u) dM(u)

)
=

∫
(0,T ]

(∫
(0,s)

Z(u) dM(u)Z(s) +

∫
(0,s)

Z(u) dM(u)Z(s) +∫
{s}
Z(u) dM(u)Z(s)

)
dM(s)

=

∫
(0,T ]

(
2

∫
(0,s)

Z(u) dM(u)

)
Z(s) dM(s)+∫

(0,T ]

Z(s)

∫
{s}
Z(u) dM(u) dM(s).(3.16)
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By right-continuity of the process M we may deduce for the last line of the equation
(3.16) that∫

(0,T ]

Z(s)

∫
{s}
Z(u) dM(u) dM(s) =

∫
(0,T ]

Z2(s)
(
M(s)−M(s−)

)
dM(s).(3.17)

Here we will use the definition of the process M to achieve

M(s)−M(s−) = N(s)−N(s−)−
(∫

(0,s]

λ(u) du−
∫

(0,s)

λ(u) du

)
= N(s)−N(s−)−

∫
{s}
λ(u) du

= 1{dN(s)=1}.(3.18)

Now applying the (3.18) to the right hand side of the equation (3.17) we receive∫
(0,T ]

Z2(s)
(
M(s)−M(s−)

)
dM(s)

=

∫
(0,T ]

Z2(s)1{dN(s)=1}
(
dN(s)− λ(s) ds

)
=

∑
s∈(0,T ]:dN(s)=1

Z2(s).

This is by the definition of the integral∑
s∈(0,T ]:dN(s)=1

Z2(s) =

∫
(0,T ]

Z2(s) dN(s).

Combining all of the previous results we are left with the equality(∫
(0,T ]

Z(s) dM(s)

)2

=

∫
(0,T ]

(
2

∫
(0,s)

Z(u) dM(u)

)
Z(s) dM(s) +

∫
(0,T ]

Z2(s) dN(s).(3.19)

Note that we have now a predictable non-negative process (Z2(t))0≤t≤T which in
conjunction with the Definition 3.10 of the jump intensity implies∫

(0,T ]

Z2(s) dN(s) =

∫
(0,T ]

Z2(s)λ(s) ds(3.20)

in the equation (3.19). Moreover with the definition of the norm in (3.15) we may
further mark ∫

(0,T ]

Z2(s)λ(s) ds =

∫ T

0

‖Z(s)‖2
Λ ds

in the equation (3.19).
Let us inspect the process∫

(0,T ]

(
2

∫
(0,s)

Z(u) dM(u)

)
Z(s) dM(s)(3.21)
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from the equation (3.19). We have that the stochastic integral
∫

(0,s)
Z(u) dM(u) is

path-wise left-continuous with respect to the variable s:

lim
t→s−

∫
(0,t)

Z(u) dM(u) =

∫
(0,s)

Z(u) dM(u).

Therefore it is also predictable by the Remark 2.18. Moreover the process Z is pre-
dictable by assumption, and the measurability is preserved in arithmetic operations,

so the process
(∫

(0,s)
Z(u) dM(u)Z(s)

)
s∈[0,T ]

is predictable. Also the process M was

proven to be a local martingale in the Proposition 3.11. This validates the stochastic
integral in (3.21) to be interpreted as a predictable process being integrated with
respect to a local martingale M . According to the Theorem 29 in [12, IV 2] the
stochastic integral in (3.21) is then also a local martingale, given that the predictable
process is locally bounded. This last constraint follows directly from the assumption

E
[∫ T

0
‖Z(s)‖2

Λ ds
]
<∞.

We have proven that there exists a localizing sequence τ1, τ2, . . . with limn→∞ τn →
T such that the process(∫

(0,t∧τn]

2

∫
(0,s)

Z(u) dM(u)Z(s) dM(s)

)
t∈(0,T ]

is a martingale for all n ∈ N. Therefore we may deduce that

E

[(∫
(0,T∧τn]

Z(s) dM(s)

)2
]

= E
[∫ T∧τn

0

‖Z(s)‖2
Λ ds

]
.(3.22)

for all n ∈ N. Letting τn → T we achieve

E

[(∫
(0,T )

Z(s) dM(s)

)2
]

= E
[∫ T

0

‖Z(s)‖2
Λ ds

]
.(3.23)

What is left to show is that

E

[(∫
(0,T )

Z(s) dM(s)

)2
]

= E

[(∫
(0,T ]

Z(s) dM(s)

)2
]
.(3.24)

The right hand side can be further disintegrated:

E

[(∫
(0,T ]

Z(s) dM(s)

)2
]

=E

[(∫
(0,T )

Z(s) dM(s)

)2
]

+

2E
[∫

(0,T )

Z(s) dM(s)(M(T )−M(T−))Z(T )

]
+(3.25)

E
[
(M(T )−M(T−))2Z2(T )

]
(3.26)

As was proven previously we may deduce for the term (3.26) that

E
[
(M(T )−M(T−))2Z2(T )

]
= E

[
(N(T )−N(T−))2Z2(T )

]
.

This is equal to zero, because the probability of a jump N(T ) − N(T−) = 1 at
time T is zero. Similar reasoning is applicable to the term (3.25) and therefore the
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equality (3.24) holds. Combining the equations (3.24) and (3.23) we have acquired
the isometry of the norms:

E
(∫

(0,T ]

Z(s) dM(s)

)2

= E
∫ T

0

‖Z(s)‖2
Λ ds.

�

Proposition 3.14. Let (Ω,F ,P, (Ft)0≤t≤T ) fulfill the usual assumptions. Assume
for i, j ∈ S, i 6= j the counting processes (Nij(t))t≥0 that admit intensities (λij(t))t≥0.

Let (Zij(t))t≥0 be a predictable process such that E
[∫ T

0
‖Z(s)‖2

Λ ds
]
< ∞. Then the

process (∫
(0,t]

Z(s) dM(s)

)
0≤t≤T

as defined in (3.14) is a square-integrable (Ft)0≤t≤T -martingale.

Proof. The adaptability follows directly from the definition of the processes.
The Doob’s maximal inequality for martingales gives

E sup
t∈[0,T ]

(∫
(0,t]

Z(s) dM(s)

)2

≤ 4E
(∫

(0,T ]

Z(s) dM(s)

)2

.(3.27)

Then the square-integrability is a consequence of the Proposition 3.13 and the as-
sumption of this proposition which yield

4E
(∫

(0,T ]

Z(s) dM(s)

)2

= 4E
∫ T

0

‖Z(s)‖2
Λ ds <∞.

To prove the martingale property we are required to verify that for all t, s such
that 0 ≤ s ≤ t ≤ T it holds that

E
[∫

(0,t]

Z(u) dM(u)

∣∣∣∣Fs] =

∫
(0,s]

Z(u) dM(u) a.s.(3.28)

By utilizing the measurability of the right hand side with respect to the σ-algebra Fs
it is equivalent to show that

E
[∫

(s,t]

Z(u) dM(u)

∣∣∣∣Fs] = 0 a.s.(3.29)

Here we may split the predictable process Z in to the positive and negative part and
apply the linearity of the integrals:

E
[∫

(s,t]

Z(u) dM(u)

∣∣∣∣Fs]
=E

[∫
(s,t]

Z+(u)− Z−(u) dM(u)

∣∣∣∣Fs]
=E

[∫
(s,t]

Z+(u) dM(u)

∣∣∣∣Fs]− E
[∫

(s,t]

Z−(u) dM(u)

∣∣∣∣Fs] a.s.



3.4. SQUARE INTEGRABLE MARTINGALES 21

The proof will be concluded following the proof of the Corollary 6.7 in [5, 5.6]. Now
since the processes (Z+(t))0≤t≤T and (Z−(t))0≤t≤T are non-negative and predictable
it is sufficient to prove

E
[∫

(s,t]

Z+(u) dM(u)

∣∣∣∣Fs] = 0 a.s.(3.30)

which will yield the desired result (3.29). Due to the definition of the conditional
expectation it is equivalent to prove that for all A ∈ Fs it holds

E
[
1A

∫
(s,t]

Z+(u) dM(u)

]
= 0.(3.31)

The left hand side in (3.31) is equal to

E
[∫

(0,T ]

1(s,t](u)1AZ
+(u) dM(u)

]
=E

[ ∑
i,j∈S:i 6=j

∫
(0,T ]

1(s,t](u)1AZ
+(u)

(
dNij(u)− Ii(s−)λij ds

)]
.

Here the process (1(s,t]1AZ
+(u))0≤u≤T is still predictable and non-negative with re-

spect to the variable u, so we may implement the definition of the intensity λij to
yield

E
[∫

(0,T ]

1(s,t](u)1AZ
+(u) dNij(u)

]
= E

[∫
(0,T ]

1(s,t](u)1AZ
+(u) Ii(u−)λij du

]
.

(3.32)

for all i, j ∈ S such that i 6= j. The equation (3.32) proves the equation (3.31) which
analogously proves the martingale property (3.28).

�

Proposition 3.15 ([3, III T11]). Let (Ω,F ,P, (Ft)0≤t≤T ) fulfill the usual as-
sumptions. Assume for i, j ∈ S, i 6= j the counting processes (Nij(t))t≥0 that admit
intensities (λij(t))t≥0. Let (Zij(t))t≥0 be predictable processes such that the process
J := (

∫
(0,t]

Z(s) dM(s))0≤t≤T is a càdlàg square-integrable martingale. Then

E
[∫ T

0

‖Z(s)‖2
Λ ds

]
<∞.

Proof. We will utilize the integration by parts formula from the Proposition 3.9
applied to the product J2, which was formulated in the Proposition 3.13 equation
(3.19):

J2(t) = J2(0) +

∫
(0,t]

2J(s−)Z(s) dM(s) +

∫
(0,t]

Z2(s) dN(s)

= J2(0) +

∫
(0,t]

2J(s−)Z(s) dM(s) +

∫
(0,t]

Z2(s) (dN(s)− λ(s) ds+ λ(s) ds)

= J2(0) +

∫
(0,t]

(
2J(s−) + Z(s)

)
Z(s) dM(s) +

∫
(0,t]

Z2(s)λ(s) ds).(3.33)
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We continue by truncating the stochastic integral with the stopping times (Un)n and
(Vn)n where

Un := inf{t : M(t−) +

∫ t

0

λ(s) ds ≥ n} and(3.34)

Vn := inf{t :

∫ Z

0

(s)2λ(s) ds ≥ n},

with the convention that inf ∅ =∞. Now it holds also that

J2(t ∧ Un ∧ Vm) = J2(0) +

∫
(0,t∧Un∧Vm]

(
2J(s−) + Z(s)

)
Z(s) dM(s)

+

∫
(0,t∧Un∧Vm]

Z2(s)λ(s) ds.(3.35)

The term H(t) :=
∫

(0,t∧Un∧Vm]
(2J(s−) + Z(s))Z(s) dM(s) is a martingale, which we

will prove. By the Lemma 3 of [3], to prove that H is a martingale it is sufficient to

show that E[
∫ t

0
|H(s)|λ(s) ds] < ∞ for all t ∈ [0, T ]. We shall inspect the condition

further. By triangle inequation and monotonicity of the Lebesgue integral we have

E[

∫ t

0

|H(s)|λ(s) ds] ≤ E
[∫ t∧Un∧Vm

0

|2J(s−) + Z(s)||Z(s)|λ(s) ds

]
≤ E

[∫ t

0

1{s≤Un}1{s≤Vn}

(
|2J(s−)||Z(s)|+ |Z(s)|2

)
λ(s) ds

]
.

Due to the definition of the stopping time Un it holds

1{s≤Un}|2J(s−)| ≤ 2n.

We have that ∫ t∧Vm

0

2n|Z(s)|λ(s) ds ≤
∫ t∧Vm

0

2n(Z2(s) + 1)λ(s) ds.

It also holds that∫ t∧Un∧Vm

0

(Z2(s) + 1)λ(s) ds =

∫ t∧Vm

0

Z2(s)λ(s) ds+

∫ t∧Un∧Vm

0

λ(s) ds ≤ m+ n.

Therefore we may conclude that

E[

∫ t

0

|H(s)|λ(s) ds] ≤ 2n(m+ n) +m <∞

and the process J is a martingale with mean zero.
As a consequence of this we may take expected values on both sides of (3.33) to

reach

E
[∫

(0,t∧Un∧Vm]

Z2(s)λ(s) ds

]
= E[J2(t ∧ Un ∧ Vm)]− E[M2(0)] ≤ E[J2(t ∧ Un ∧ Vm)].

Recall the definition of the stopping times (Un)n in (3.34). Due to the process
(J(t−))0 ≤ t ≤ T being square-integrable and left continuous it holds limn→∞ Un =
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∞. We have reached

E
[∫

(0,t∧Vm]

Z2(s)λ(s) ds

]
≤ E[J2(t ∧ Vm)].(3.36)

The square-integrability yields also E[J2(t ∧ Vm)] < ∞ because by applying Fatou’s
lemma we have

E[J2(Vm)] = E[ lim
t→∞

J2(t ∧ Vm)] ≤ lim
t→∞

E[J2(t ∧ Vm)](3.37)

and we may apply Doob’s optional sampling theorem for sub-martingales to reach

lim
t→∞

E[J2(t ∧ Vm)] ≤ lim
t→∞

sup
0≤s≤t

E[J2(s)] <∞.(3.38)

Therefore in (3.36) we have

E
[∫

(0,t∧Vm]

Z2(s)λ(s) ds

]
<∞

which implies because of the definition (Vm)m that

E
[∫ T

0

‖Z(s)‖2
Λ ds

]
= E

[∫
(0,t]

Z2(s)λ(s) ds

]
<∞.

�

Corollary 3.16. For a compensated process M := ((N(t)−
∫ t

0
λ(s) ds)(t))0≤t≤T

and a predictable process (Z(t))0≤t≤T the following statements are equivalent:

(1) E
[∫ T

0
‖Z(s)‖2

Λ ds
]
<∞,

(2) M is a square-integrable martingale.

If either of the (1) or (2) holds, then we have the isometry

E
(∫

(0,T ]

Z(s) dM(s)

)2

= E
∫ T

0

‖Z(s)‖2
Λ ds.(3.39)

Proof. This is a summary of the Propositions 3.13, 3.14 and 3.15.
�

3.5. Preliminary results for stopping times

Recall the notation from the beginning of the chapter. For the augmented natural
filtration of the jump process X := (X(t))0≤t≤T we mark FX := (F̃Xt )0≤t≤T . The
corresponding counting processes (Nij(t))0≤t≤T for i 6= j are assigned as

Nij(t) :=

{
#{s ∈ (0, t] : X(s−) = i,X(s) = j}, t > 0

0, t = 0,

and the convention N(t) :=
∑

i,j∈S:i 6=j
Nij(t). Lastly the jump times (Tn)n∈N of the jump

process X are defined as Tn := inf{t ≥ 0 : N(t) = n}.

Proposition 3.17 ([3, A2 T23]). The jump times 0 < T1 < T2 < . . . of the
process (X(t))0≤t≤T are stopping times in FX .
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Proof. We have that the counting processes Nij are adapted to the filtration,
because they share the same information with the jump process. Moreover we have
the representation

{Tn ≤ t} = {N(t) ≥ n} = {
∑

i,j∈S:i 6=j

Nij(t) ≥ n} ∈ F̃Xt .

�

We may then define the stopped σ-algebras with respect to the stopping times as

FTn := {A ∈ F : A ∩ {Tn ≤ t} ∈ F̃Xt for all t ≥ 0}.

Proposition 3.18 ([3, A2 T28]). Assume a jump process X and denote its natural
filtration as (FXt )t≥0. Then for all stopping times τ it holds

Fτ = σ(X(t ∧ τ) : t ≥ 0).(3.40)

Proof. See the proof of Theorem 28 in [3].
�

Proposition 3.19 ([3, A2 T30]). Assume a jump process (X(t))0≤t≤T and its
augmented natural filtration FX . We set Xn := (X(t))t∈[Tn,Tn+1) with the convention
that T0 ≡ 0. Then for the jump times 0 < T1 < T2 < . . . it holds for all n ∈ N that

FTn = σ(X0, T1, X1, . . . , Tn, Xn).

Proof. To prove the inclusion σ(X0, T1, X1, . . . , Tn, Xn) ⊂ FTn it is sufficient to
show that

{Xi ∈ A} ∈ FTn(3.41)

for all i such that 0 ≤ i ≤ n and all A ⊂ S. We have that the process X is left-
continuous and adapted to its natural filtration, so therefore it is also progressively
measurable. This implies that the random variables XTn are FTn measurable. More-
over for all i ≤ n it holds FTi ⊂ FTn and therefore the random variables XTi are
FTn-measurable. Finally the stopping times Ti are also FTn-measurable.

The inclusion FTn ⊂ σ(X0, T1, X1, . . . , Tn, Xn) is more trivial due to the structure
of the σ-algebra FTn . Indeed the Proposition ?? shows that all of the sets A ∈ FTn
are σ(X(t ∧ Tn) : t ≥ 0)-measurable. Therefore they are also σ(N(t ∧ Tn) : t ≥ 0)-
measurable. Moreover we have the relationship

N(t ∧ Tn) =
∑
m≥1

1{Tm≤t∧Tn}(3.42)

and the sets A are also σ(Tm : 1 ≤ m ≤ n)-measurable.
�

Proposition 3.20 ([3, A2 T32]). Assume a jump process (X(t))0≤t≤T and its
augmented natural filtration FX . Let Tn denote the jump times of the process X.
Then for any bounded stopping time τ it holds

Fτ ∩ {Tn ≤ τ < Tn+1} = FTn ∩ {Tn ≤ τ < Tn+1}(3.43)
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Proof. The Proposition 3.18 implies that the σ-algebra Fτ is generated by the
sets {X(t ∧ τ) : t ≥ 0} and also a similar result holds for FTn = σ(X(t ∧ Tn) : t ≥ 0).
Moreover

{X(t ∧ τ) ∈ A} ∩ {Tn ≤ τ < Tn+1} = {X(t ∧ Tn) ∈ A} ∩ {Tn ≤ τ < Tn+1},
for A ⊂ S which tells that the collections in (3.43) must be equal, since the σ-algebras
posses the same generating sets.

�

Corollary 3.21. [3, A2 T33] Assume a jump process (X(t))0≤t≤T and the re-
spective jump times (Tn)n∈N. For any (FXt )t≥0 -stopping time τ there exists a sequence
(Rn)n∈N of random variables with

τ ∧ Tn+1 = (Tn +Rn) ∧ Tn+1,

when ever τ ≥ Tn.

Proof. From the Proposition 3.20 we receive

Fτ ∩ {Tn ≤ τ < Tn+1} = FTn ∩ {Tn ≤ τ < Tn+1}.
The Proposition 3.19 further improves the result with

FTn ∩ {Tn ≤ τ < Tn+1} = σ(X0, T1, X1, . . . , Tn, Xn) ∩ {Tn ≤ τ < Tn+1}.
Based on this we may represent the stopping time τ as

τ · 1{Tn≤τ<Tn+1} = ψn(X0, T1, X1, . . . , Tn, Xn) · 1{Tn≤τ<Tn+1},

for some measurable function ψn for all n. Now choose (Rn)n∈N with

Rn := (ψn(X0, T1, X1, . . . , Tn, Xn)− Tn)+

as the sequence of random variables which concludes the proof. Note that the Propo-
sition 3.19 states FTn = σ(X0, T1, X1, . . . , Tn, Xn) for all n. Therefore the random
variables Rn are FTn-measurable by construction.

�

3.6. Explicit form of the intensity

We will now proceed with an explicit expression for the intensities. Before the
representation one technical lemma is still required.

Lemma 3.22 ([3, I 2 E7]). Let (Ω,F ,P, (Ft)t≥0) be a stochastic basis. Assume
that (X(t))t≥0 is an (Ft)t≥0-progressive process. If for all bounded stopping times T

E[XT ] = E[X0] <∞,
then the process (X(t))t≥0 is a martingale.

Proof. [3, I E7]
Let 0 ≤ s ≤ t and A ∈ Fs. Then we choose the stopping times

T (ω) = t and S(ω) =

{
s ω ∈ A,
t ω ∈ AC .

The random variable T is a stopping time because {T ≤ v} ∈ {∅,Ω} ⊂ Fv for
all v ∈ [0,∞). Moreover for the random variable S it holds for 0 ≤ v < s that
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{S ≤ v} = ∅ ∈ Fv. When s ≤ v < t we have that {S ≤ v} = A ∈ Fs ⊂ Fv, and for
the final interval v > t it is true that {S ≤ v} = Ω ∈ Fv.

The random variables S and T are therefore stopping times, and by the assumption
we may deduce that

E[XT ] = E[X0] = E[XS].(3.44)

Now utilizing the definitions of the stopping times we get

EXS = E[Xs1A] + E[Xt1AC ] and EXT = E[Xt1A] + E[Xt1AC ].

The equation (3.44) then receives the form

E[Xs1A] = E[Xt1A],

for all A ∈ Fs, which is by the definition of the conditional expectation equal to the
martingale assumption

E[Xt|Fs] = Xs a.s.

�

Following the construction in [3, III 2] we assume that the waiting times Tn+1−Tn
given the history FTn admit densities. For the densities we remark

P[Tn+1 − Tn ∈ A,XTn+1 = j,XTn = i|FTn ] =

∫
A

g(n+1)(x, i, j) dx(3.45)

and

g(n+1)(x) :=
∑

i,j∈S:i 6=j

g(n+1)(x, i, j),(3.46)

where S is the finite state space of the jump process (X(t))0≤t≤T . Then it also holds
in the notation that ∫

A

g(n+1)(x) dx = P[Tn+1 − Tn ∈ A|FTn ].(3.47)

The following proposition yields a representation for the intensities. It also entails
an important corollary in the aspect of the martingale representation in the next
chapter.

Proposition 3.23 ([3, III T7]). Let (Ω,F ,P) be a probability space. Assume a
jump process (X(t))0≤t≤T with a finite state space S and its respective counting pro-
cesses Nij = (Nij(t))0≤t≤T . Mark the augmented natural filtration of X as (FXt )0≤t≤T .
Let (Tn)n∈N denote the jump times Tn = inf{t ≥ 0 :

∑
i 6=j∈S Nij(t) = n}. If we define

the processes λij = (λij(t))0≤t≤T for all i, j ∈ S such that i 6= j with

λij(t) :=
∑
n≥0

g(n+1)(t− Tn, i, j)
1−

∫ t−Tn
0

g(n+1)(x) dx
1{Tn≤t<Tn+1},

then the processes Mij := (Mij(t))0≤t≤T where

Mij(t) := Nij(t)−
∫ t

0

λij(s) ds

are local martingales for i, j ∈ S and i 6= j, with the localizing sequence (Tn)n∈N.
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Proof. The idea is the same as in the proof of [3, III T7]. Lemma 3.22 shows
that in order to prove that the processes(

Nij(t ∧ Tn)−
∫ t∧Tn

0

λij(s) ds

)
0≤t≤T

are martingales for every n it is sufficient to prove that

E[Mij(S ∧ Tn)] = E[Mij(0 ∧ Tn)] = 0.

holds for every bounded stopping time S for all n. This is equal to showing

E[Nij(S ∧ Tn)] = E
[∫ S∧Tn

0

λij(s) ds

]
(3.48)

for all n and bounded S.
We shall begin by representing the stopping time S ∧ Tn more conveniently uti-

lizing FTn-measurable functions. The Corollary 3.21 justifies the existence of FTn-
measurable random variables (Rn)n∈N such that

S ∧ Tn+1 = (Tn +Rn) ∧ Tn+1,

when ever S ≥ Tn.
By applying this to the equation (3.48) the right hand side becomes

E
[∫ S∧Tn

0

λij(s) ds

]
= E

[
n−1∑
k=0

(
1{S≥Tk}

∫ (Tk+Rk)∧Tk+1

Tk

λij(s) ds

)]

= E

[
n−1∑
k=0

(
1{S≥Tk}

∫ (Tk+Rk)∧Tk+1

Tk

∑
`≥0

g(`+1)(s− T`, i, j)
1−

∫ s−T`
0

g(`+1)(x) dx
1{T`≤s<T`+1} ds

)]

= E

[
n−1∑
k=0

(
1{S≥Tk}

∫ (Tk+Rk)∧Tk+1

Tk

g(k+1)(s− Tk, i, j)
1−

∫ s−Tk
0

g(k+1)(x) dx
ds

)]

= E

[
n−1∑
k=0

(
1{S≥Tk}

∫ Rk∧(Tk+1−Tk)

0

g(k+1)(s, i, j)

1−
∫ s

0
g(k+1)(x) dx

ds

)]
,

where we utilized the change of variable with the integral. We may now take advantage
of the Tower property and the information that {S ≥ Tk} is FTk-measurable to get

E

[
n−1∑
k=0

(
1{S≥Tk}

∫ Rk∧(Tk+1−Tk)

0

g(k+1)(s, i, j)

1−
∫ s

0
g(k+1)(x) dx

ds

)]

= E

[
n−1∑
k=0

(
E

[
1{S≥Tk}

∫ Rk∧(Tk+1−Tk)

0

g(k+1)(s, i, j)

1−
∫ s

0
g(k+1)(x) dx

ds

∣∣∣∣FTj
])]

= E

[
n−1∑
k=0

(
1{S≥Tk}E

[∫ Rk∧(Tk+1−Tk)

0

g(k+1)(s, i, j)

1−
∫ s

0
g(k+1)(x) dx

ds

∣∣∣∣FTj
])]

.
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The inner conditional expectation becomes of our interest. We have by the defi-
nition of the conditional expectation that

E

[∫ Rk∧(Tk+1−Tk)

0

g(k+1)(s, i, j)

1−
∫ s

0
g(k+1)(x) dx

ds

∣∣∣∣FTj
]

=

∫ ∞
0

g(k+1)(u)

∫ Rk∧u

0

g(k+1)(s, i, j)

1−
∫ s

0
g(k+1)(x) dx

ds du(3.49)

Fubini’s theorem can now be utilized to reverse the order of integration. The integra-
tion boundaries become

{(u, s) : 0 < u <∞, 0 < s < Rk ∧ u} = {(s, u) : 0 < s < Rk, s < u <∞},

so the (3.49) equals after Fubini

∫ Rk

0

g(k+1)(s, i, j)

1−
∫ s

0
g(k+1)(x) dx

∫ ∞
s

g(k+1)(u) du ds

=

∫ Rk

0

g(k+1)(s, i, j)
1−

∫ s
0
g(k+1)(u) du

1−
∫ s

0
g(k+1)(x) dx

ds

=

∫ Rk

0

g(k+1)(s, i, j) ds.

So far we have reached the equality

E
[∫ S∧Tn

0

λij(s) ds

]
= E

[
n−1∑
k=0

1{S≥Tk}

∫ Rk

0

g(k+1)(s, i, j) ds

]
.(3.50)

We will now turn our attention towards the left hand side of the equation (3.48).
We may inspect

E[Nij(S ∧ Tn)] = E

[
n−1∑
k=0

1{S≥Tk}

(
Nij(S ∧ Tk+1)−Nij(S ∧ Tk)

)]

= E

[
n−1∑
k=0

1{S≥Tk}1{Rk≥Tk+1−Tk}1{XTk=i}1{XTk+1
=j}

]
.
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Once again by the Tower property and the FTk-measurability of the set {S ≥ Tk} we
have

E

[
n−1∑
k=0

1{S≥Tk}1{Rk≥Tk+1−Tk}1{XTk=i}1{XTk+1
=j}

]

= E

[
n−1∑
k=0

E
[
1{S≥Tk}1{Rk≥Tk+1−Tk}1{XTk=i}1{XTk+1

=j}

∣∣∣FTk]
]

= E

[
n−1∑
k=0

1{S≥Tk}E
[
1{Rk≥Tk+1−Tk}1{XTk=i}1{XTk+1

=j}

∣∣∣FTk]
]

= E

[
n−1∑
k=0

1{S≥Tk}P
(
Rk ≥ Tk+1 − Tk, XTk = i,XTk+1

= j
∣∣∣FTk)

]
.

Remark the definition of the densities g(n), which yields

P
(
Rk ≥ Tk+1 − Tk, XTk = i,XTk+1

= j
∣∣∣FTk) =

∫ Rk

0

g(k+1)(s, i, j) ds.

Therefore we may conclude

E[Nij(S ∧ Tn)] = E

[
n−1∑
k=0

1{S≥Tk}

∫ Rk

0

g(k+1)(s, i, j) ds

]
.(3.51)

The equations (3.50) and (3.51) together confirm the desired result of (3.48), so the
processes Mij are local martingales with a localizing sequence (Tn)n∈N.

�

Corollary 3.24. Given the same assumptions as in the Proposition 3.23, the
processes (Nij(t))0≤t≤T admit the intensities (λij(t))0≤t≤T , where i, j ∈ S and i 6= j.

Proof. From the Proposition 3.23 we may deduce that the processes(
Nij(t ∧ Tn)−

∫ t∧Tn

0

λij(s) ds

)
0≤t≤T

are martingales for all Tn. Therefore by the Proposition 3.12 the processes (Nij(t))0≤t≤T
admit the intensities (λij(t))0≤t≤T .

�

3.7. Martingale representation

In this section we will present an explicit solution to the Martingale Representation
Theorem when the representable process is a conditional expectation of a integrable
random variable. This theorem is essential in the context of the prospective reserve
which is also defined via a conditional expectation of the payment process of the
life insurance contract discounted to the present value. We shall present the rigorous
definitions in the next chapter. This is only to emphasize the necessity of the following
result in regard to the rest of the analyses.



3.7. MARTINGALE REPRESENTATION 30

Theorem 3.25 ([3, III 3 T9]). Assume a jump process X = (X(t))0≤t≤T on
(Ω,F ,P) with a finite state space S and denote the augmented natural filtration of the
process X as (Ft)0≤t≤T . Let (Nij(t))0≤t≤T be the counting processes of the process X
and (λij(t))0≤t≤T be the corresponding intensities. Assume a right-continuous process
(Y (t))0≤t≤T given by Y (t) := E[ζ|Ft] with ζ being an integrable random variable.
Then there exist a.s-unique predictable processes Zij = (Zij(t))0≤t≤T such that for all
i, j ∈ S with i 6= j it holds∫ t

0

|Zij(s)|λij(s) ds <∞, P− a.s.

and the processes (Zij(t))0≤t≤T satisfy

Yt = Y0 +
∑

i,j∈S:i 6=j

∫
(0,t]

Zij(s)(dNij(s)− λij(s) ds), P− a.s.(3.52)

Remark 3.26. With the notation of this chapter the equation (3.52) is simplified
into a more general form of

Y (t) = Y (0) +

∫
(0,t]

Z(s) dM(s) a.s.

for all 0 ≤ t ≤ T .

Proof. The proof of the Theorem 3.25 follows the proof given in [3, III 3 T9].
At first we will present some notation before the main part of the proof. From the
Proposition 3.23 we will use the form of the intensities λij where

λij(t) =
∑
n≥0

g(n+1)(t− Tn, i, j)
1−

∫ t−Tn
0

g(n+1)(x) dx
1(Tn ≤ t < Tn+1).(3.53)

Furthermore the a.s.-unique solutions Zij will have an explicit form of

Zij(t) =
∑
n≥0

f (n)(t− Tn, i, j)−

∑
i,j∈S:i 6=j

∫∞
t−Tn f

(n)(s, i, j)g(n+1)(s, i, j) ds

1−
∫ t−Tn

0
g(n+1)(x) dx

1{Tn<t≤Tn+1},

(3.54)

where for all n ∈ N the functions f (n) are FTn⊗B((0,∞))-measurable mappings with

f (n)
(
Tn+1 − Tn, X(Tn), X(Tn+1)

)
= Y (Tn+1),(3.55)

for Tn+1 <∞.
Now we will utilize the Doob’s optional sampling theorem (Proposition 2.28) to the

stopping times Tn+1 ∧ t and Tn+1. The theorem argues that the martingale property
E[XT |S] = XS holds almost surely for all bounded stopping times T ≥ S and right-
continuous martingales (Xt)t≥0. Here we require that Tn < ∞. Therefore we have
that

E[Y (t)1{t<Tn+1}|Ft∧Tn+1 ] = E[Y (t)|Ft∧Tn+1 ]1{t<Tn+1}

= Y (t ∧ Tn+1)1{t<Tn+1} a.s.,
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where we applied the Ft∧Tn+1-measurability of the random variable 1{t<Tn+1}. Note
that here t ≤ Tn+1 and the arriving times Tn are bounded by the terminal time T .
Utilizing the Doob’s theorem again for the stopping times t∧ Tn+1 ≤ Tn+1 we receive

Y (t ∧ Tn+1)1{t<Tn+1} = E[Y (Tn+1)|Ft∧Tn+1 ]1{t<Tn+1}

= E[Y (Tn+1)1{t<Tn+1}|Ft∧Tn+1 ] a.s.

Now note that the events {Tn ≤ t} are Ft∧Tn+1-measurable for all n because of the
equality

{Tn ≤ t} = {Tn ≤ t ∧ Tn+1} ∈ Ft∧Tn+1 .

Therefore applying Doob’s optional sampling theorem twice in the similar fashion to
the previous examinations we may deduce

E[Y (t)1{Tn≤t<Tn+1}|Ft∧Tn+1 ]

= E[Y (t)|Ft∧Tn+1 ]1{Tn≤t<Tn+1}

= E[Y (Tn+1)|Ft∧Tn+1 ]1{Tn≤t<Tn+1}

= E[Y (Tn+1)1{Tn≤t<Tn+1}|Ft∧Tn+1 ] a.s.

So far we have proven that

E[1AY (t)1{Tn≤t<Tn+1}] = E[1AY (Tn+1)1{Tn≤t<Tn+1}](3.56)

for all A ∈ Ft∧Tn+1 .
Lastly we will prove the result for the σ-algebra FTn . Let therefore C ∈ FTn . The

Proposition 3.20 proves that there exists a set A ∈ Ft∧Tn+1 such that

C ∩ {Tn ≤ t < Tn+1} = A ∩ {Tn ≤ t < Tn+1}.(3.57)

We may now proceed by combining the equalities (3.56) and (3.57). By the definition
of the conditional expectation we may state

E[1CY (t)1{Tn≤t<Tn+1}]

= E[1AY (t)1{Tn≤t<Tn+1}]

= E[1AY (Tn+1)1{Tn≤t<Tn+1}]

= E[1CY (Tn+1)1{Tn≤t<Tn+1}].

Therefore we have reached the conclusion that

E[Y (t)1{Tn≤t<Tn+1}|FTn ] = E[Y (Tn+1)1{Tn≤t<Tn+1}|FTn ].(3.58)

We will now consider a different representations for the both sides of the equation
(3.58). The next step is to express the process Y with FTn-measurable processes as in
[3, III E9]. Fix t0 ∈ [Tn, Tn+1). Then there exists a sequence of Ft0-simple functions
(qk)k∈N with

qk(ω) =
∞∑
`=1

α`1A` , α` ∈ R, A` ∈ Ft0 ,

such that the sequence converges to the random variable Y (t0) as k → ∞. But
Proposition 3.20 proves that the simple functions have FTn-measurable counterparts:
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For all A` ∈ Ft0 there exist C` ∈ FTn such that

A` ∩ {Tn ≤ t ≤ Tn+1} = C` ∩ {Tn ≤ t ≤ Tn+1}
and therefore there exists a sequence of FTn-measurable simple functions (pk)k∈N
with pk(ω) = qk(ω) for all k. The sequence also converges so denote the limit as
h(n) := limk→∞ pk. Moreover by the definition of the process Y and the tower property
it holds

E[Y (t)|FTn ] = E[E[ζ|Ft]|FTn ] = E[ζ|FTn ] = Y (Tn), a.s.(3.59)

Then for the left side of the (3.58) we have

E[Y (t)1{Tn≤t<Tn+1}|FTn ] = E[h
(n)
t 1{Tn≤t<Tn+1}|FTn ]

= E[h
(n)
t 1{Tn≤t}1{Tn+1>t}|FTn ].

The random variable 1{Tn≤t}h
(n)
t is FTn measurable because the random variables

1{Tn≤t} and h
(n)
t are FTn-measurable. We may conclude therefore that

E[Y (t)1{Tn≤t<Tn+1}|FTn ] = h
(n)
t 1{Tn≤t}E[1{Tn+1>t}|FTn ]

= h
(n)
t 1{Tn≤t}P[Tn+1 − Tn > t− Tn|FTn ]

= h
(n)
t 1{Tn≤t}

∫ ∞
t−Tn

g(n+1)(x) dx, a.s.(3.60)

where we applied the definition of the densities g(n).
Now we turn our attention towards the right side of the equation (3.58). Recall

the functions f (n) from the (3.55). We receive a representation for the conditional
expectation of the random variables Y (Tn):

E[Y (Tn+1)1{Tn≤t<Tn+1}|FTn ] = E[f (n)(Tn+1 − Tn, Zn+1)1{Tn≤t<Tn+1}|FTn ].

It is convenient to split the indicator function into

1{Tn≤t<Tn+1} = 1{Tn≤t}1{Tn+1>t} = 1{Tn≤t}1{Tn+1−Tn>t−Tn}.

The indicator function 1{Tn≤t} is FTn-measurable by the Proposition 3.19. Therefore
we can take it out of the conditional expectation and receive

E[Y (Tn+1)1{Tn≤t<Tn+1}|FTn ]

= E[f (n)(Tn+1 − Tn, Zn+1)1{Tn≤t}1{Tn+1−Tn>t−Tn}|FTn ]

= 1{Tn≤t}E
[
f (n)(Tn+1 − Tn, Zn+1)1{Tn+1−Tn>t−Tn}|FTn

]
= 1{Tn≤t}

∫ ∞
t−Tn

f (n)(s, Zn+1)g(n+1)(s) ds

= 1{Tn≤t}
∑

i,j∈S:i 6=j

∫ ∞
t−Tn

f (n)(s, i, j)g(n+1)(s, i, j) ds, a.s.(3.61)

By unifying both of the results (3.61) and (3.60) with the original equation (3.58)
we receive

h
(n)
t 1{Tn≤t}

∫ ∞
t−Tn

g(n+1)(x) dx = 1{Tn≤t}
∑

i,j∈S:i 6=j

∫ ∞
t−Tn

f (n)(s, i, j)g(n+1)(s, i, j) ds.
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This is equivalent with

h
(n)
t 1{Tn≤t} =

1{Tn≤t}
∑

i,j∈S:i 6=j

∫∞
t−Tn f

(n)(s, i, j)g(n+1)(s, i, j) ds∫∞
t−Tn g

(n+1)(x) dx
.(3.62)

We also have that Y (Tn) = h
(n)
Tn

because of (3.59), the information E[Y (t)|FTn ] =

E[h
(n)
t |FTn ] on t ∈ [Tn, Tn+1) and the FTn-measurability of the processes h(n). There-

fore we may deduce from the representation (3.62) that

Y (Tn) = h
(n)
Tn
1{Tn≤Tn}

=

1{Tn≤Tn}
∑

i,j∈S:i 6=j

∫∞
Tn−Tn f

(n)(s, i, j)g(n+1)(s, i, j) ds∫∞
Tn−Tn g

(n+1)(x) dx

=
∑

i,j∈S:i 6=j

∫ ∞
0

f (n)(s, i, j)g(n+1)(s, i, j) ds.

In the denominator we used the information that∫ ∞
Tn−Tn

g(n+1)(x) dx = P
[
Tn+1 − Tn ∈ [0,∞]

∣∣FTn] = 1.

This previous result alongside with the examination in (3.62) yields the formula for
the process Y in between the jumps: For all t ∈ [Tn, Tn+1) where Tn < T it holds

Y (t)− Y (Tn) =
∑

i,j∈S:i 6=j

(∫∞
t−Tn f

(n)(s, i, j)g(n+1)(s, i, j) ds∫∞
t−Tn g

(n+1)(x) dx
−
∫ ∞

0

f (n)(s, i, j)g(n+1)(s, i, j) ds

)
.

(3.63)

Our objective now is to express the difference Mt−MTn in terms of the processes
Zij and the intensities λij, which were defined in (3.54) and (3.53) respectively. To
proceed towards the martingale representation and to clarify the subsequent analyses
we shall now shorten our notation with

a(t) =

∫ ∞
t

g(n+1)(x) dx and

b(t) =
∑

i,j∈S:i 6=j

∫ ∞
t

f (n)(s, i, j)g(n+1)(s, i, j) ds.

Due to the definition of the densities g(n) we have a(0) = 1. The equation (3.63)
becomes then

Y (t)− Y (Tn) =
b(t− Tn)

a(t− Tn)
− b(0)

a(0)
,

when ever t ∈ [Tn, Tn+1) and Tn < T . By applying the integration by parts formula
(Proposition 3.9) to the functions b(t) and 1/a(t) it follows that

b(t)

a(t)
=
b(0)

a(0)
+

∫
(0,t]

1

a(s)
db(s)−

∫
(0,t]

b(s)

(a(s))2
da(s).
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Therefore it holds that

Y (t)− Y (Tn) =

∫
(0,t−Tn]

1

a(s)
db(s)−

∫
(0,t−Tn]

b(s)

(a(s))2
da(s), ∀t ∈ [Tn, Tn+1).

(3.64)

Keeping in mind the notation and the constraints t ∈ [Tn, Tn+1) and Tn < T , the
equation (3.64) transforms into

Y (t)− Y (Tn) =

∫
(0,t−Tn]

1∫∞
s
g(n+1)(x) dx

d

( ∑
i,j∈S:i 6=j

∫ ∞
s

f (n)(u, i, j)g(n+1)(u, i, j) du

)
−

∫
(0,t−Tn]

∑
i,j∈S:i 6=j

∫∞
s
f (n)(u, i, j)g(n+1)(u, i, j) du(∫∞
s
g(n+1)(x) dx

)2 d

(∫ ∞
s

g(n+1)(x) dx

)

=−
∫

(0,t−Tn]

∑
i,j∈S:i 6=j

f (n)(s, i, j)g(n+1)(s, i, j)∫∞
s
g(n+1)(x) dx

ds +(3.65)

∫
(0,t−Tn]

∑
i,j∈S:i 6=j

∫∞
s

(
f (n)(u, i, j)g(n+1)(u, i, j)

)
du g(n+1)(s)(∫∞

s
g(n+1)(x) dx

)2 ds.

In the last conclusion we utilized the Fundamental Theorem of Calculus which re-
versed the signs of the terms.

In order to reach the representation which includes the processes Zij and λij, the
difference in (3.65) must still be modified. The first term becomes

∫
(0,t−Tn]

∑
i,j∈S:i 6=j

f (n)(s, i, j)g(n+1)(s, i, j)∫∞
s
g(n+1)(x) dx

ds

=

∫
(Tn,t]

∑
i,j∈S:i 6=j

f (n)(s− Tn, i, j)g(n+1)(s− Tn, i, j)∫∞
s−Tn g

(n+1)(x) dx
ds

=
∑

i,j∈S:i 6=j

∫ t

Tn

f (n)(s− Tn, i, j)
g(n+1)(s− Tn, i, j)∫∞
s−Tn g

(n+1)(x) dx
ds.

Because of the definition g(n+1)(x) :=
∑

i,j∈S:i 6=j g
(n+1)(x, i, j) the second term becomes

∫
(0,t−Tn]

∑
i,j∈S:i 6=j

∫∞
s

(
f (n)(u, i)g(n+1)(u, i, j)

)
du g(n+1)(s)(∫∞

s
g(n+1)(x) dx

)2 ds

=
∑

i,j∈S:i 6=j

∫ t

Tn

∑
i,j∈S:i 6=j

∫∞
s−Tn f

(n)(x, i, j)g(n+1)(x, i, j) dx∫∞
s−Tn g

(n+1)(x) dx
· g

(n+1)(s− Tn, i, j)∫∞
s−Tn g

(n+1)(x) dx
ds.
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Therefore we may finally conclude that with t ∈ [Tn, Tn+1) and Tn < T it holds that

Y (t)− Y (Tn) =
∑

i,j∈S:i 6=j

∫ t

Tn

[
−

(
f (n)(s− Tn)−

∑
i,j∈S:i 6=j

∫∞
s−Tn f

(n)(x, i, j)g(n+1)(x, i, j) dx∫∞
s−Tn g

(n+1)(u, i, j) du

)
·

g(n+1)(s− Tn, i, j)∫∞
s−Tn g

(n+1)(u, i, j) du

]
ds

= −
∑

i,j∈S:i 6=j

∫ t

Tn

Zij(s)λij(s) ds.

(3.66)

We will have to consider what happens at the jumps before terminating the proof.
The process M is right continuous with left limits. As a consequence of the equations
(3.55) and (3.62) it holds that

Y (Tn+1)− Y (Tn+1−)

= f (n)
(
Tn+1 − Tn, X(Tn)

)
− lim

t→Tn+1−

∑
i,j∈S:i 6=j

∫∞
t−Tn f

(n)(s, i, j)g(n+1)(s, i, j) ds∫∞
t−Tn g

(n+1)(x) dx

= f (n)
(
Tn+1 − Tn, X(Tn)

)
−

∑
i,j∈S:i 6=j

∫∞
Tn+1−Tn f

(n)(s, i)g(n+1)(s, i) ds∫∞
Tn+1−Tn g

(n+1)(x) dx

=
∑

i,j∈S:i 6=j

f (n)
(
Tn+1 − Tn, i, j

)
−

∑
i,j∈S:i 6=j

∫∞
Tn+1−Tn f

(n)(s, i)g(n+1)(s, i) ds∫∞
Tn+1−Tn g

(n+1)(x) dx

=
∑

i,j∈S:i 6=j

Zij(Tn+1).

In the final step we utilized the definition of the process Zij in (3.54). Note that
due to the jump occuring at the time Tn+1 it holds that Nij(Tn+1)−Nij(Tn+1−) = 1
and ∆Nij(t) = 0 for all t ∈ [Tn, Tn+1). Therefore due to the right-continuity of the
processes Zij we have

∑
i,j∈S:i 6=j

Zij(Tn+1) =
∑

i,j∈S:i 6=j

∫
(Tn,Tn+1]

Zij(s) dNij(s).(3.67)
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A direct consequence of the revelations (3.67) and (3.66) is that for t ∈ [Tn, Tn+1)
such that Tn <∞ it is true that

Y (t)− Y (0) = Y (t) +
n∑
k=1

(
− Y (Tk) + Y (Tk)− Y (Tk−) + Y (Tk−)

)
− Y (0)

= Y (t)− Y (Tn) +
n∑
k=1

(
Y (Tk)− Y (Tk−) + Y (Tk−)− Y (Tk−1)

)
=

∑
i,j∈S:i 6=j

(
−
∫ t

Tn

Zij(s)λij(s) ds+
n∑
k=1

(∫
(Tk−1,Tk]

Zij(s) dNij(s)−

∫ Tk−

Tk−1

Zij(s)λij(s) ds

))

=
∑

i,j∈S:i 6=j

(
−
∫ t

Tn

Z(s)λ(s) ds+

∫
(0,Tn]

Z(s)(dN(s)− λ(s) ds)

)
=

∑
i,j∈S:i 6=j

(∫
(Tn,t]

Zij(s)(dNij(s)− λij(s) ds) +

∫
(0,Tn]

Zij(s)(dNij(s)− λij(s) ds)
)

=
∑

i,j∈S:i 6=j

∫
(0,t]

Zij(s)
(
dNij(s)− λij(s) ds

)
.

(3.68)

This is equivalent with the desired result of (3.52).
�

Corollary 3.27 ([4, Proposition 2.4.]). Assume a jump process X = (X(t))0≤t≤T
on (Ω,F ,P) with a finite state space S and denote the augmented natural filtration of
the process X as (Ft)0≤t≤T . Let (Nij(t))0≤t≤T be the counting processes of the process
X and (λij(t))0≤t≤T be the corresponding intensities. Assume an integrable random
variable ζ and let Y = (Y (t))t∈[0,T ] be a unique right-continuous process such that

Y (t) := E[ζ|Ft].

If we define the processes Zij = (Zij(t))0≤t≤T as

Zij(t) :=
∞∑
n=0

1Tn<t≤Tn+1

(
E[ζ|FTn , Tn+1 = t,X(Tn+1) = j]−

E[ζ1{t<Tn+1}|FTn ]

E[1{t<Tn+1}|FTn ]

)
,

(3.69)

then the process Y satisfies the Martingale representation equation

Yt = Y0 +
∑

i,j∈S:i 6=j

∫
(0,t]

Zij(s)(dNij(s)− λij(s) ds), P− a.s.(3.70)
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Proof. From the Theorem 3.25 we may extract that the processes (Zij(t))0≤t≤T
satisfying the (3.70) are of the form

Zij(t) =
∑
n≥0

f (n)(t− Tn, i, j)−

∑
i,j∈S:i 6=j

∫∞
t−Tn f

(n)(s, i, j)g(n+1)(s, i, j) ds

1−
∫ t−Tn

0
g(n+1)(x) dx

1{Tn<t≤Tn+1}.

(3.71)

We shall prove the equivalence to the equation (3.69) by inspecting the parts individ-
ually.

For the term 1−
∫ t−Tn

0
g(n+1)(x) dx it holds

(1−
∫ t−Tn

0

g(n+1)(x) dx)1{Tn<t≤Tn+1} = 1{Tn<t≤Tn+1}P(Tn+1 − Tn ∈ (t− Tn,∞)|FTn)

= 1{Tn<t≤Tn+1}P(t < Tn+1|FTn)

= 1{Tn<t≤Tn+1}E[1{t<Tn+1}|FTn ].

Inspecting another term in (3.71) we may deduce by the definition of the functions
f (n) that

f (n)(t− Tn, i, j)1{Tn<t≤Tn+1}

= f (n)(Tn+1 − Tn, X(Tn), X(Tn+1))1{Tn<t≤Tn+1}1{X(Tn)=i,X(Tn+1)=j,t=Tn+1}

= Y (Tn+1)1{Tn<t≤Tn+1}1{X(Tn)=i,X(Tn+1)=j,t=Tn+1}.

Given the assumptions in the Corollary we may proceed with

Y (Tn+1)1{Tn<t≤Tn+1}1{X(Tn)=i,X(Tn+1)=j,t=Tn+1} = E[ζ|FTn , Tn+1 = t,X(Tn+1) = j]1{Tn<t≤Tn+1}.

For the final term in (3.71) we have∑
i,j∈S:i 6=j

∫ ∞
t−Tn

f (n)(s, i, j)g(n+1)(s, i, j) ds1{Tn<t≤Tn+1}

=
∑

i,j∈S:i 6=j

∫ ∞
Tn+1−Tn

f (n)(s,X(Tn), X(Tn+1))g(n+1)(s, i, j) ds

× 1{Tn<t≤Tn+1}1{X(Tn)=i,X(Tn+1)=j,t=Tn+1}

= E[ζ1{t<Tn+1}|FTn ].

We have successfully proven the equivalences between the different terms of the rep-
resentations for the processes (Zij(t))0 ≤ t ≤ T . Therefore the claim follows as a
corollary of the Theorem 3.25.

�

Corollary 3.28 ([4, Corollary 2.5]). Assume a jump process X = (X(t))0≤t≤T
on (Ω,F ,P). Let (Ft)t≥0 be the augmented natural filtration of the process X and
(Mij(t))0≤t≤T be the compensated processes associated to the process X. Consider an
integrable càdlàg process (ζ(t))0≤t≤T such that for all t ∈ [0, T ] the random variable
ζ(t)− ζ(0) is Ft-measurable.
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If we define the processes (Zij(t))0≤t≤T as

Zij(t) :=
∞∑
n=0

1{Tn<t≤Tn+1}

(
E[ζ(t−)|FTn , Tn+1 = t,X(Tn+1) = j]−

E[ζ(t−)1{t<Tn+1}|FTn ]

E[1{t<Tn+1}|FTn ]

)
,

then the process (Y (t))0≤t≤T with Y (t) = E[ζ(t)|Ft] satisfies for t ∈ [0, T ] the SDE

Y (t) = ζ(t)− ζ(0) +
∑

i,j∈S:i 6=j

∫
(0,t]

Zij(s) dMij(s).

Proof. Because the random variable (ζ(t)−ζ(0)) is Ft-measurable for fixed t we
have by the take out what is known principle

E[ζ(0)|Ft] = E[ζ(t)− ζ(t) + ζ(0)|Ft] = E[ζ(t)|Ft]− (ζ(t)− ζ(0)).(3.72)

We will utilize the Corollary 3.27 to the process W = (W (t))0≤t≤T with W (t) =
E[ζ(0)|Ft]. Now it holds for

Zij(t) =
∞∑
n=0

1Tn<t≤Tn+1

(
E[ζ(0)|FTn , Tn+1 = t,X(Tn+1) = j]−

E[ζ(0)1{t<Tn+1}|FTn ]

E[1{t<Tn+1}|FTn ]

)
,

that

W (t) = W (0) +

∫
(0,t]

Z(s) dM(s).

Because of the (3.72) the previous equation is equivalent with

E[ζ(t)|Ft] = ζ(t)− ζ(0) +

∫
(0,t]

Z(s) dM(s).

Finally we will note that

1Tn<t≤Tn+1E[ζ(t−)1{t<Tn+1}|FTn ]

= 1Tn<t≤Tn+1E[(ζ(t)− E[ζ(t)− ζ(t−)|Ft])1{t<Tn+1}|FTn ]

= 1Tn<t≤Tn+1E[(ζ(t)− (ζ(t)− ζ(0)))1{t<Tn+1}|FTn ]

= 1Tn<t≤Tn+1E[ζ(0)1{t<Tn+1}|FTn ]

and a similar reasoning applies to the

E[ζ(0)|FTn , Tn+1 = t,X(Tn+1) = j] = E[ζ(t−)|FTn , Tn+1 = t,X(Tn+1) = j].

Therefore we also have that

Zij(t) =
∞∑
n=0

1{Tn<t≤Tn+1}

(
E[ζ(t−)|FTn , Tn+1 = t,X(Tn+1) = j]−

E[ζ(t−)1{t<Tn+1}|FTn ]

E[1{t<Tn+1}|FTn ]

)
and the claim follows from the Corollary 3.27.

�



CHAPTER 4

Life insurance models

In this chapter we will construct a model to describe the price of a life insurance
contract. Recall the essential definitions of the Chapter 3. The contract termination
time is assumed to be T ∈ (0,∞). The states of the contract are assumed to be a
finite set S. If not specifically stated, we all ways assume i, j ∈ S with i 6= j when
writing the indexes. The probability space (Ω,F ,P) is equipped with the augmented
natural filtration F of a finite jump process X = (X(t))t∈[0,T ] with the state space
S. Denote the corresponding counting processes with Nij = (Nij(t))t∈[0,T ] that count
the jumps occurring from the state i of the policy to the state j. The state of the
policy is denote with the jump process X. The counting processes have intensities
(λij(t))t∈[0,T ] accordingly. Denote the indicator process of the state of the process X
with Ii(t) := 1{X(t)=i} for all t ∈ [0, T ]. The compensated processes (Mij(t))t∈[0,T ] are
denote by

Mij(t) := Nij(t)−
∫ t

0

Ii(s−)λij(s) ds.

The jump times of the process X are marked with (Tn)n∈N∗ .

4.1. Payment process

According to [4, 2.3.] a common choice for the payment process is of the form

A(t) =
∑
i∈S

∫
(0,t]

1{X(s−)=i}

(
αi(s) ds+ ai(s) dν(s)

)
+

∑
i,j∈S:i 6=j

∫
(0,t]

βij(s) dNij(s).

(4.1)

The predictable processes (αi(t))t∈[0,T ] describe the continuous part of the payment
in each of the states i ∈ S. The processes (ai(t))t∈[0,T ] are also predictable and
represent the lump payments in the state i. They are accompanied by the step process
(ν(t))t∈[0,T ] with ∆ν(t) ∈ {0, 1} for all t, that determines the rate of the payments,
for example monthly or annual arrival of the charges. The final term consists of the
predictable processes (βij(t))t∈[0,T ] that reflect the immediate transition fee induced
by the contract changing states from the state i to the state j. Finally we present a
notational convenience that

αX(t−)(t) :=
∑
i∈S

1{X(t−)=i}αi(t)

aX(t−)(t) :=
∑
i∈S

1{X(t−)=i}ai(t).

The terminal time T ∈ [0,∞) ∪ {∞} at which the contract ends is assumed to
be finite analogous to the previous chapter. All though much research has been done

39
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on the case T = ∞ we are particularly interest only in the case T < ∞ due to the
inclusion of backward stochastic differential equations in the later sections.

4.2. Prospective reserve

An essential part of determining the correct price of the life insurance contract
is calculating the expected value of the upcoming charges. The result is called the
prospective reserve of the payment process A = (A(t))t∈[0,T ]. We shall note the
compensator processes (λij(t))t∈[0,T ] associated to the jump process (X(t))t∈[0,T ] col-
lectively with Λ := (λij)ij.

Definition 4.1 (Prospective reserve, [4, Definition 3.1]). Let X = (X(t))t∈[0,T ]

be a jump process, Λ be the respective compensators of the process X and denote the
natural filtration of the X as (Ft)t≥0. Assume a payment process A = (A(t))t∈[0,T ]

and a bounded progressively measurable discount rate (δ(t))t∈[0,T ]. The prospective
reserve Y = (Y (t))t∈[0,T ] of the payment process A is

Y (t) := E
[∫

(t,T ]

e−
∫ s
t δ(u) du dA(s)

∣∣∣Ft] , t ∈ [0, T ].(4.2)

Remark 4.2. The term e−
∫ s
t δ(u) du is utilized to discount the future cash flow. The

process (dA(t))t∈[0,T ] describes the changes in the balance between the (discounted)
benefits and premiums. The conditional expectation averages the amount of prospec-
tive reserve required given the history Ft.

4.2.1. Linear reserve. The prospective reserve predicts the expected amount of
future premiums with the given information Ft. The cash flow of the life insurance
contract may depend on the prospective reserve, in which case we refer to the act
of non-linear reserving. We will first discuss about the more simple case which is
linear reserving. In that case the payment processes (ai(t))t∈[0,T ], (αi(t))t∈[0,T ] and
(βij(t))t∈[0,T ] do not depend on the prospective reserve Y . The payments processes
are assumed to be predictable and satisfy the condition

E
[∫ T

0

(|αX(t−)(t)|2 + ‖β(t)‖2
Λ) dt+

∫
(0,T ]

|aX(t−)(t)|2 dν(t)

]
<∞.(4.3)

Here we have utilized the notation

‖β(t)‖2
Λ :=

∑
i,j∈S:i 6=j

β2
ij(t)1{X(t−)=i}(t)λij(t), for t ∈ (0, T ].

4.2.2. Formula for the prospective reserve in linear case. We will formulate the
prospective reserve utilizing a backwards stochastic differential equation in the case of
linear reserving. Before doing so we will establish some essential results and notions.
The assumptions relating to the payment processes are assumed to hold, including
the condition (4.3).

At first we define the process M̃i := (M̃i(t))t∈[0,T ] with

M̃i(t) :=
∑

j∈S:j 6=i

∫ t

0

βij(s) dMij(s).
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The processes M̃i are square-integrable martingales as a consequence of the Propo-
sition 3.14. Indeed the processes (βij(t))t∈[0,T ] are predictable by definition and from
the assumption (4.3) it follows that

E
[∫ T

0

‖β(s)‖2
Λ ds

]
<∞.

With that in mind we may rewrite

A(t) =
∑
i∈S

∫
(0,t]

1{X(s−)=i}

(
αi(s) ds+ ai(s) dν(s)

)
+

∑
i,j∈S:i 6=j

∫
(0,t]

βij(s) dNij(s)

(4.4)

=
∑
i∈S

∫
(0,t]

1{X(s−)=i}

(
αi(s) ds+ ai(s) dν(s)

)(4.5)

+
∑

j∈S:j 6=i

∫ t

0

βij(s) (dMij(s) + 1{X(s−)=i}λij(s) ds)

(4.6)

=
∑
i∈S

∫ t

0

(
αX(s−)(s) ds+

∑
j∈S:j 6=i

βij(s)1{X(s−)=i}λij(s) ds
)

+

∫
(0,t]

aX(s−) dν(s) + M̃X(t−),

(4.7)

where we have defined M̃X(t−) :=
∑

i∈S M̃i(t)1{X(t−)=i}.
Therefore we may express the form (4.1) of the payment process (A(t))t∈[0,T ] with

dA(t) = γX(t−)(t) dt+ aX(t−)(t) dν(t) +
∑
i∈S

dM̃i(t)(4.8)

where the process γ := (γ(t))t∈[0,T ] is defined as

γi(t) := αi(t) +
∑

j∈S:j 6=i

βij(t)1{X(t−)=i}λij(t), i ∈ S.(4.9)

Recall the fact that the processes M̃i are square-integrable martingales. Because
of the definition of the discount rate δ the process

(
e−

∫ s
t δ(u) du

)
s∈(t,T ]

is bounded and

predictable. Then according to the Theorem 11 in [12, IV] the process(∫
(t,T ]

e−
∫ s
t δ(u) du dM̃i(s)

)
t∈[0,T ]

is also a square-integrable martingale. The martingale property implies then that∑
i∈S

E
[∫

(t,T ]

e−
∫ s
t δ(u) du dM̃i(s)

∣∣∣Ft] =
∑
i∈S

∫
∅
e−

∫ s
t δ(u) du dM̃i(s) = 0.(4.10)

This result combined with the new form of the payment process A in (4.8) justifies
for the prospective reserve Y that

Y (t) = E
[∫

(t,T ]

e−
∫ s
t δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)∣∣∣Ft] .(4.11)
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From the equation (4.11) we may acquire an equivalent equation

Y (t)e−
∫ t
0 δ(u) du = E

[∫
(t,T ]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)∣∣∣Ft]
and furthermore by adding to the both sides

Y (t)e−
∫ t
0 δ(u) du +

∫
(0,t]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)
= E

[ ∫
(0,T ]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)∣∣∣Ft].
On the left hand side we utilized the Ft-measurability of the stochastic integral in-
duced by the integration limits.

Theorem 4.3 ([4, Proposition 3.2.]). Let (X(t))t∈[0,T ] be a jump process with finite
state space S and (Ft)t≥0 be its augmented natural filtration. Assume the associated
counting processes (Nij(t))t∈[0,T ], compensators Λ := (λij)ij and compensated processes

(Mij(t))t∈[0,T ], where Mij(t) := Nij(t)−
∫ t

0
1{X(s−)=i}λij(s) ds and Mij(0) ≡ 0. Assume

a payment process (A(t))t∈[0,T ] satisfying (4.1). Let the prospective reserve (Y (t))t∈[0,T ]

be given by Y (t) = E[
∫

(t,T ]
e−

∫ s
t δ(u) du dA(s)|Ft], where the process (δ(t))t∈[0,T ] is a

predictable and progressively measurable discount rate. Let the combined payment
process (γ(t))t∈[0,T ] be defined as in (4.9).

Then there exist unique predictable processes (Zij(t))t∈[0,T ] almost surely satisfying

1{X(t−)=i}Zij(t) = 1{X(t−)=i}

(
βij(t) + E[Y (t)|Ft−, X(t) = j]− E[Y (t)|Ft−, X(t) = i]

)
,

such that the prospective reserve Y is a solution to the BSDE{
dY (t) =

(
− δ(t)Y (t) + γX(t−)(t)

)
dt+ aX(t−)(t) dν(t) + Z(t) dM(t),

Y (T ) = 0.
(4.12)

Proof. The idea is the same as in the proof of the Proposition 3.2 in [4]. We shall
take advantage of the explicit solution to the Martingale Representation Theorem
from the previous chapter. Consider the process ζ := (ζ(t))t∈[0,T ] with

ζ(t) :=

∫
(t,T ]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)
.(4.13)

We have that the process ζ is càdlàg because the processes that define it are càdlàg
or predictable. Moreover the process ζ is also integrable, which can be verified:

E|ζ(t)| ≤ E
[∫ T

t

e−
∫ s
0 δ(u) du|γX(s−)(s)| ds+

∫
(t,T ]

e−
∫ s
0 δ(u) du|aX(s−)(s)| dν(s)

)]
.

The process (δ(t))t∈[0,T ] is bounded, therefore there existsR ∈ R such that e−
∫ T
0 δ(u) du <

R. The payment processes were assumed to be square-integrable in (4.3) so that they
are also integrable, therefore we may conclude that E|ζ(t)| <∞ for all t ∈ [0, T ].

Lastly for all t ∈ [0, T ] the random variable

ζ(t)− ζ(0) = −
∫

(0,t]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)
(4.14)
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is Ft-measurable as a result of the measurability of its defining processes.
We may therefore apply the Corollary 3.28 to the process which yields

E[ζ(t)|Ft] = ζ(t)− ζ(0) +
∑

i,j∈:i 6=j

∫
(0,t]

Ẑij(s) dMij(s)(4.15)

for t ∈ [0, T ] and

Ẑij(t) :=
∞∑
n=0

1{Tn<t≤Tn+1}

(
E[ζ(t−)|FTn , Tn+1 = t,X(Tn+1) = j]−

E[ζ(t−)1{t<Tn+1}|FTn ]

E[1{t<Tn+1}|FTn ]

)
.

(4.16)

We will now interpret the SDE in (4.15) to yield a solution to the BSDE in (4.3).
Recalling the definition of the process (ζ(t))t∈[0,T ] gives

E[ζ(t)|Ft] = E
[∫

(t,T ]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)∣∣∣∣Ft]
= E

[∫
(t,T ]

e−
∫ s
t δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)∣∣∣∣Ft] e− ∫ t
0 δ(u) du.

As was previously established in (4.11) we may utilize the new form of the prospective
reserve Y to the last step of the previous equation to reach

E[ζ(t)|Ft] = Y (t)e−
∫ t
0 δ(u) du.(4.17)

Let us now inspect the term ζ(t)− ζ(0). By the equation (4.14) it holds that

ζ(t)− ζ(0) = −
∫

(0,t]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)
.(4.18)

Only the last term in (4.15) still requires interpretation. For the stochastic process
dMij(t) we may write∫

(0,t]

Ẑij(s) dMij(t) =

∫
(0,t]

Ẑij(s)
(
1{X(t−)=i} dMij(t)

)
.

Proceeding forward the definition of the processes Zij in (4.16) yields that on t ∈
(Tn, Tn+1] it holds

1{X(t−)=i}Zij(t) = 1{X(t−)=i}

(
E[ζ(t−)|FTn , Tn+1 = t,X(Tn+1) = j]−(4.19)

E[ζ(t−)1{t<Tn+1}|FTn ]

E[1{t<Tn+1}|FTn ]

)
.

In an attempt to simplify this we may conclude that on t ∈ (Tn, Tn+1]

1{X(t−)=i}E[1{t<Tn+1}|FTn ] = 1{X(t−)=i}P(Tn+1 > t|FTn) = 1{X(t−)=i}(4.20)

due to the relationship {X(t−) = i} = {t ≤ Tn+1}.
The Proposition 3.20 argues that on Tn < t ≤ Tn+1 the histories FTn and Ft−

share identical information due to the jump not happening before the time t and the
process X is right-continuous. Therefore it holds in (4.19) that

1{X(t−)=i}E[ζ(t−)|FTn , Tn+1 = t,X(Tn+1) = j] = 1{X(t−)=i}E[ζ(t−)|Ft−, X(t) = j].
(4.21)



4.2. PROSPECTIVE RESERVE 44

Similar arguments can be presented to verify

1{X(t−)=i}E[ζ(t−)1{t<Tn+1}|FTn ] = 1{X(t−)=i}E[ζ(t−)|Ft−, X(t) = i].(4.22)

Therefore

1{X(t−)=i}Zij(t) = 1{X(t−)=i}

(
E[ζ(t−)|Ft−, X(t) = j]− E[ζ(t−)|Ft−, X(t) = i]

)
.

In this equation we can use ζ(t) instead of ζ(t−) because

ζ(t)− ζ(t−) = −
∫

(t−,t]
e−

∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)
= a(t)(ν(t)− ν(t−))

and the processes a and ν are Ft−-measurable being predictable. Then it follows that
ζ(t)− ζ(t−) is Ft−-measurable and

E[ζ(t−)|Ft−, X(t) = j]− E[ζ(t−)|Ft−, X(t) = i]

= E[ζ(t−)|Ft−, X(t) = j] +
(
ζ(t)− ζ(t−)

)
−

E[ζ(t−)|Ft−, X(t) = i]−
(
ζ(t)− ζ(t−)

)
= E[ζ(t)|Ft−, X(t) = j]− E[ζ(t)|Ft−, X(t) = i].

Now we may utilize the Tower Property and the form (4.17) for the function
E[ζ(t)|Ft] to yield

E[ζ(t)|Ft−, X(t) = j] = E[E[ζ(t)|Ft]|Ft−]

= E[Y (t)e−
∫ t
0 δ(u) du]|Ft−]

= e−
∫ t
0 δ(u) duE[Y (t)|Ft−] a.s.(4.23)

This combined with the revelations (4.20), (4.21) and (4.22) together prove the con-

nection between the processes Ẑ and Z:∑
i,j∈:i 6=j

∫
(0,t]

Ẑij(s) dMij(s) =
∑

i,j∈:i 6=j

∫
(0,t]

e−
∫ t
0 δ(u) duZij(s) dMij(s).(4.24)

So far as a conclusion of the (4.15), (4.17), (4.18) and (4.24) we have proven that

Y (t)e−
∫ t
0 δ(u) du = −

∫
(0,t]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)
+∑

i,j∈S:i 6=j

∫
(0,t]

e−
∫ t
0 δ(u) duZij(s) dMij(s)(4.25)

for the process (Zij(t))t∈[0,T ] satisfying

1{X(t−)=i}Zij(t) = 1{X(t−)=i}

(
E[Y (t)|Ft−, X(t) = j]− E[Y (t)|Ft−, X(t) = i]

)
.

The next step in the proof is to display that the backwards stochastic differential
equation (4.12) can be derived from the (4.25).

Recall the integration by parts formula for càdlàg processes of bounded varia-
tion from the Proposition 3.9. We apply the integration by parts to the product



4.2. PROSPECTIVE RESERVE 45

Y (t)e−
∫ t
0 δ(u) du on the left hand side of the equation (4.25) to receive

Y (t)e−
∫ t
0 δ(u) du = Y (0)e−

∫ 0
0 δ(u) du +

∫
(0,t]

e−
∫ (
0 s−)δ(u) du dY (s) +

∫ t

0

Y (s) d
(
e−

∫ s
0 δ(u) du

)
=

∫
(0,t]

e−
∫ s
0 δ(u) du dY (s)−

∫ t

0

Y (s)e−
∫ s
0 δ(u) duδ(s) ds.

Here we utilized the Fundamental Theorem of Calculus to differentiate the inner
function of the exponential function. The equation (4.25) is therefore equivalent with

∫
(0,t]

e−
∫ s
0 δ(u) du dY (s) = −

∫
(0,t]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)
+

(4.26)

∑
i,j∈S:i 6=j

∫
(0,t]

Zij(s) dMij(s) +

∫ t

0

Y (s)e−
∫ s
0 δ(u) duδ(s) ds.(4.27)

Now the right hand side of the SDE (4.27) can be simplified which will be done
next. We have by the definition that∑

i,j∈S:i 6=j

∫
(0,t]

e−
∫ t
0 δ(u) duZij(s) dMij(s) =:

∫
(0,t]

e−
∫ t
0 δ(u) duZ(s) dM(s).

Moreover with a straightforward calculation∫ t

0

Y (s)e−
∫ s
0 δ(u) duδ(s) ds−

∫
(0,t]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)
=

∫ t

0

e−
∫ s
0 δ(u) du

(
δ(s)Y (s)− γX(s−)(s)

)
ds−

∫
(0,t]

e−
∫ s
0 δ(u) duaX(s−)(s) dν(s)

=

∫
(0,t]

e−
∫ s
0 δ(u) du

[(
δ(s)Y (s)− γX(s−)(s)

)
− aX(s−)(s) dν(s)

]
.

With this in mind we may once again rewrite the equation (4.27) in an equivalent
form ∫

(0,t]

e−
∫ s
0 δ(u) du dY (s) =

∫
(0,t]

e−
∫ s
0 δ(u) du

[(
δ(s)Y (s)− γX(s−)(s)

)
−

aX(s−)(s) dν(s) + Z(s) dM(s)
]
.(4.28)

From this by subtracting the equation at the time t from the equation at the time T
it follows∫

(t,T ]

e−
∫ s
0 δ(u) du dY (s) =

∫
(t,T ]

e−
∫ s
0 δ(u) du

[(
δ(s)Y (s)− γX(s−)(s)

)
−

aX(s−)(s) dν(s) + Z(s) dM(s)
]
.

By applying the Theorem of Radon-Nikodym to the change of measures this gives
the desired BSDE

dY (t) =
(
− δ(t)Y (t) + γX(t−)(t)

)
dt+ aX(t−)(t) dν(t) + Z(t) dM(t),
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with Y (T ) = 0 which is provided by the Definition 4.1 of the prospective reserve at
the termination time.

�

4.3. Nonlinear reserve

In the previous sections we assumed the act of linear reserving. We shall now
extend our analysis to the nonlinear case. The payment processes (αi(t))t∈[0,T ],
(ai(t))t∈[0,T ] and (βij(t))t∈[0,T ] are now permitted to depend on the prospective reserve
(Y (t−))t∈[0,T ] and the process (Z(t))t∈[0,T ], hence making the definition and existence
of the prospective reserve more complicated. In this section we shall discuss some
sufficient conditions to make the definition of the prospective reserve valid. Assume
now that for all i, j ∈ S such that i 6= j and

αi(t) := αi(t, Y (t−), Z(t)),

ai(t) := ai(t, Y (t−), Z(t)),

βi(t) := βi(t, Y (t−), Z(t))(4.29)

the processes (αi(t))t∈[0,T ], (ai(t))t∈[0,T ] and (βij(t))t∈[0,T ] are predictable. Moreover
denote for all i ∈ S the combined price processe (γi(t))t∈[0,T ] with

γi(t) := αi(t) +
∑
j:j 6=i

βij(t)1{X(t−)=i}λij(t),(4.30)

which is also dependent on the processes (Y (t))t∈[0,T ] and (Z(t))t∈[0,T ].
Recall the definition of the norm

‖Z(t)‖2
Λ :=

∑
i,j∈S:i 6=j

Z2
ij(t)1{X(t−)=i}(t)λij(t), t ∈ (0, T ],

for processes (Zij(t))t∈[0,T ] and intensities (λij(t))t∈[0,T ] where i, j ∈ S and i 6= j. We
require some degree of boundedness on finite intervals from the payment processes.
Let t ∈ [0, T ].

For each y, ȳ, zij, z̄ij ∈ R there should P-a.s. exist a constant C ∈ [0,∞) such that

|γi(t, y, z)(ω)− γi(t, ȳ, z̄)(ω)| ≤ C(|y − ȳ|+ ‖z − z̄‖Λ), i ∈ S.(4.31)

Moreover for each y, ȳ, zij, z̄ij ∈ R there should P× ν-a.s. exist constants C1 ∈ [0, 1)
and C2 ∈ [0,∞) such that

|ai(t, y, z)(ω)− ai(t, ȳ, z̄)(ω)| ≤ C1|y − ȳ|+ C2‖z − z̄‖Λ, i ∈ S.(4.32)

In addition to the two limitations the payment process (γ(t, 0, 0))t∈[0,T ] should be
square-integrable:

E
[∫ T

0

|γi(t, 0, 0)|2 dt
]
<∞, i ∈ S.(4.33)

The assumption (4.31) is referred to as the process (γi(t))t∈[0,T ] being uniformly Lips-
chitz continuous and the stronger condition in (4.32) is called a firm Lipschitz bound
on the process (ai(t))t∈[0,T ]. [6, Theorem 5.1] The utilized condition depends on the
continuity of the measure that the process is integrated with respect to. These re-
quirements guarantee the existence and uniqueness of a solution to a BSDE involving
the generator process that satisfies the requirements. [6, Theorem 5.1]



4.3. NONLINEAR RESERVE 47

Given these requirements the prospective reserve in the case of nonlinear reserving
is well defined and a similar result to the Theorem 4.3 holds:

Proposition 4.4 ([4, Proposition 3.5]). Assume payment processes (ai(t))t∈[0,T ]

and (γi(t))t∈[0,T ] that satisfy (4.29) and (4.30). If all of the conditions (4.31), (4.32)
and (4.33) hold for the payment processes, then there exists a unique solution (Y, Z)
to the backward SDE{

dY (t) =
(
− δ(t)Y (t) + γX(t−)(t)

)
dt+ aX(t−)(t) dν(t) + Z(t) dM(t),

Y (T ) = 0,
(4.34)

satisfying simultaneously also

Y (t) = E
[∫

(t,T ]

e−
∫ s
t δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s)

)∣∣∣Ft](4.35)

and

Ii(t−)Zij(t) = Ii(t−) (βij(t) + E[Y (t)|Ft−, X(t) = j]− E[Y (t)|Ft−, X(t) = i]) , a.s.
(4.36)

Moreover the process (Y (t))t∈[0,T ] is adapted and the processes (Zij(t))t∈[0,T ] are pre-
dictable with

E

[
sup
t∈[0,t]

|Y (t)|2 +

∫ T

0

‖Z(t)‖2
Λ dt

]
<∞.(4.37)

Proof. The existence and uniqueness of the solution (Y, Z) with the given data
given the assumptions of the Proposition follows from the theory of BSDE’s which
we will inspect. The Definition 3.1 in [6] presents the following form for a BSDE:

Y (T ) = Y (t)−
∫

(t,T ]

F
(
ω, s, Y (s−), Z(s)

)
dµ(s) +

∑
i,j∈S:i 6=j

∫
(t,T ]

Zij(s) dMij(s).

(4.38)

Here the number of the processes Zij must be countable and it must hold Y (T ) ∈ L2.
A solution to the BSDE is a pair (Y, Z) such that the processes Z := {Zij}ij are
predictable, the process Y is adapted and they satisfy the equation (4.38).

We have for the original BSDE with Y (T ) = 0 that(
− δ(t)Y (t) + γX(t−)(t)

)
dt+ aX(t−)(t) dν(t) + Z(t) dM(t)

= −δ(t)Y (t) dt+
(
1{∆ν(t)=0}γX(t−)(t) + 1{∆ν(t) 6=0}aX(t−)(t)

) (
dt+ dν(t)

)
+ Z(t) dM(t).

We will therefore apply the Theorem 5.1 of [6] to the generator process (F (t))t∈[0,T ]

with

F (t) := 1{∆ν(t)=0}γX(t−)(t) + 1{∆ν(t)>0}aX(t−)(t)

and (µ(t))t∈[0,T ] such that

dµ(t) := dt+ dν(t).
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It states that if given a progressively measurable and predictable function F that has
a firm Lipschitz bound, and the assumptions

E
∫

[0,T ]

‖F (t, 0, 0)‖2 dµ(t) <∞

and

C1∆µ(t) < 1,(4.39)

hold, then there exists a unique solution (Y, Z) to the BSDE{
dY (t) = −δ(t)Y (t) dt+ F (t) dµ(t) + Z(t) dM(t),

Y (T ) = 0.
(4.40)

The firm Lipschitz bound is presented in the assumptions (4.31) and (4.32). The
condition (4.39) holds also due to the definition of the jump process ∆ν(t) ≤ 1 and
C1 ∈ [0, 1) by (4.32). Lastly we have because of the proposed assumption (4.33) and
the condition of the payment processes (4.3) that

E
∫

[0,T ]

‖F (t, 0, 0)‖2 dµ(t) ≤ E
∫ T

0

|γi(t, 0, 0)|2 dt+ E
∫

[0,T ]

|ai(t, 0, 0)|2 dν <∞.

(4.41)

By the definition of solution the processes Zij are predictable and the process Y
is adapted. Moreover the Theorem 5.1 in [6] states that

Y ∈

{
Y : Ω× [0, T ]→ RK ,E sup

t∈[0,t]

‖Y (t)‖2 <∞

}
(4.42)

and

Z ∈
{
Z : Ω× [0, T ]→ RK×∞,E

∫ T

0

‖Z(t)‖2
Λ dt <∞

}
(4.43)

validating the statement (4.37).
We are still required to show that the unique solution (Y, Z) has the forms (4.35)

and (4.36). By defining the process Ỹ := (e−
∫ t
0 δ(u) duY (t))t∈[0,T ] we have by the

integration by parts formula that

Ỹ (t) = −
∫ T

t

δ(t)e−
∫ t
0 δ(u) duY (t) dt+

∫
(0,t]

e−
∫ t
0 δ(u) du dY (t).

The (Y, Z) is a solution to the BSDE in (4.40), therefore we have

Ỹ (t) =

∫
(t,T ]

e−
∫ s
0 δ(u) du

(
− δ(s)Y (s) ds+ dY (s)

)
=

∫
(t,T ]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s) + Z(s) dM(s)

)
.

The process Ỹ is adapted. Then we may take the conditional expectation with
respect to the Ft from the both sides to yield

Ỹ (t) = E
[∫

(t,T ]

e−
∫ s
0 δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s) + Z(s) dM(s)

)∣∣∣Ft] .
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But this is equal to our original prospective reserve equation in the Definition 4.1 if

we divide both sides with e−
∫ t
0 δ(u) du. Thus we receive equivalently

Y (t) = E
[ ∫

(t,T ]

e−
∫ s
t δ(u) du

(
γX(s−)(s) ds+ aX(s−)(s) dν(s) + Z(s) dM(s)

)∣∣∣Ft].
(4.44)

We have reached now a conclusion that the first process in the unique solution
(Y, Z) satisfies the definition of the prospective reserve. Therefore we may apply the
Theorem 4.3 in this nonlinear case as well to supply a representation for the processes
Zij. We have then

Ii(t−)Zij(t) = Ii(t−)
(
βij(t) + E[Y (t)|Ft−, X(t) = j]− E[Y (t)|Ft−, X(t) = i]

)
, a.s.,

where we utilized the indicator functions Ii(t−) := 1{X(t−)=i}.
�



CHAPTER 5

Modifications to the contract

In this chapter we will include the option for modifying the contract mid term.
We allow for example the changes in the maturity of the contract or in the value of the
contract benefits. A common practice in the field of life insurance is to treat the all
ready accumulated prospective reserve as a part of the insured’s wealth. It is utilized
to cover up the lump sum expenses of the of the new insurance contract. This way
the payment processes will become dependent of the amount of prospective reserve in
case of a future contract modifications. Therefore we are required to use the nonlinear
reserving models. We will keep performing the analyses in a non-Markovian setting,
which is more general compared to the Markovian case.

Consider a model where a jump process process (X(t))t∈[0,T ] denotes the current
state of the policy holder. The jump process (J(t))t∈[0,T ] corresponds to the different
states of the contract itself due to the possible contract modifications. The objective of
this chapter is to extend the Cantelli Theorem from the Markov processes to the non-
Markovian framework. If (X, J) is a Markov process and do not jump simultaneously
then the Cantelli Theorem states that the contract modifications can be ignored
while determining the state-wise prospective reserves if the insurance benefit and the
prospective reserve are equal at the time of the contract modification. [4, 4.] The
equilibrium of the insurance benefit and the prospective reserve is called the risk at
sum.

5.1. Fundamentals of the expanded state space

Our aim is to extend the analyses from the previous chapter to hold for the new
process (X, J). This requires establishing first some fundamentals concerning the new
setting.

Assume a probability space (Ω,F ,P) and fix a real number T ∈ (0,∞). Let
(X, J) := (X(t), J(t))t∈[0,T ] be a càdlàg jump process and equip the probability space
with the augmented natural filtration (Ft)t≥0 of the process (X, J). We will notate
the state space of the process (J(t))t∈[0,T ] with J ⊂ N, which describes the different
modes of the contract and is allowed to be countable in contrast to the state space S
of the process (X(t))t∈[0,T ] only being finite.

The jump times (τn)n of the process (J(t))t∈[0,T ] denoted as

τn := inf
{
t ≥ 0 :

∑
i,j∈J :i 6=j

#
{
s ∈ (0, t] : J(s−) = i, J(s) = j

}
= n

}
are stopping times in (Ft)t≥0 by the Proposition 3.17. For the convenience we assume
that the process (X, J) does not have simultaneous jumps within its coordinate pro-
cesses. According to [4, 4.1] the assumption is not necessary for the upcoming results
but reduces the technicality in the proofs.

50
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Now we will define the indicator processes and the counting processes for each indi-
vidual process (X(t))t∈[0,T ] and (J(t))t∈[0,T ]. For the processes (I0

i (t))t∈[0,T ], (I1
k(t))t∈[0,T ],

(N0
ij(t))t∈[0,T ] and (N0

kl(t))t∈[0,T ] we set

I0
i (t) := 1{X(t−)=i},

I1
k(t) := 1{J(t−)=k},

N0
ij(t) := #{s ∈ (0, t] : X(s−) = i,X(s) = j} and

N0
kl(t) := #{s ∈ (0, t] : J(s−) = k, J(s) = l}.

Furthermore we define the processes (N0(t))t∈[0,T ] and (N1(t))t∈[0,T ] that count the
total number of jumps with

N0(t) :=
∑

i,j∈S:i 6=j

N0
ij(t) and

N1(t) :=
∑

k,l∈J :k 6=l

N1
kl(t).(5.1)

With Λ0 := (λ0
ij)ij and Λ1 := (λ1

kl)kl we mark the jump intensities of the processes
(X(t))t∈[0,T ] and (J(t))t∈[0,T ] respectively. We inspected the intensities more in detail
in the section Explicit form of the intensity. Furthermore we make the assumption
regarding the integrability of the intensities:

E

[∫ T

0

( ∑
i,j∈S:i 6=j

I0
i (t−)λ0

ij(t) +
∑

k,l∈J :k 6=l

I1
i (t−)λ1

kl(t)

)
dt

]
<∞.(5.2)

Due to the processes (X(t))t∈[0,T ] and (J(t))t∈[0,T ] not having concurrent jumps

we may consider the process X̃ := (X, J) as a state space extension for the process
X. All of the previous analyses considering the jump process X can now be applied
also to the extended jump process X̃. Lastly we define the compensated martingales
(M0

ij(t))t∈[0,T ] and (M1
kl(t))t∈[0,T ] for both of the processes with

M0
ij(t) = N0

ij(t)−
∫ t

0

I0
i (s−)λ0

ij(s) ds where M0
ij(0) ≡ 0,

M1
kl(t) = N1

kl(t)−
∫ t

0

I1
i (s−)λ1

kl(s) ds where M1
kl(0) ≡ 0.

5.2. Notation and assumptions

The problems occur when we require the premiums to be equivalent with the pre-
mium reserves which is referred to actuarial equivalence. If we relieve the conditions
and do not emphasis the actuarial equivalence for the duration of the life insurance
contract, the calculations can be executed in a similar fashion to the previous chapter.
All though this requires less theory it not a general result and does not take advantage
of the full potential to the practical applications. We shall begin by introducing the
essential modifications to the notation.
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We will utilize a payment process (A(t))t∈[0,T ] that satisfies the SDE

dA(t) =
(
αX̃(t−)(t) dt+ aX̃(t−)(t) dν(t)

)
+

∑
i,j∈S:i 6=j

β0
ij(t) dN

0
ij(t)(5.3)

+
∑

k,j∈J :k 6=l

β1
kl(t) dN

1
kl(t)

for all t ∈ [0, T ] where the process (ν(t))t∈[0,T ] is a counting process. Moreover the pro-
cesses (αi(t))t∈[0,T ], (ai(t))t∈[0,T ], (β0

ij(t))t∈[0,T ] and (β1
kl(t))t∈[0,T ] in (5.3) are assumed

to be predictable and square-integrable, which means

E
[∫

(0,T ]

|AX̃(t−)(t)|
2 dν(t) +

∫ T

0

(
|αX̃(t−)(t)|

2 + ‖β0(t)‖2
Λ0 + ‖β1(t)‖2

Λ1

)
dt

]
<∞.

The newly introduced process (β1
kl(t)) describes the one-off premiums induced by the

contract modifications from state k to state l. In order to keep consistent with the
definitions we set

γ(i,k)(t) := αi(t) +
∑

j∈S:j 6=i

β0
ij(t)λ

0
ij(t) +

∑
l∈J :l 6=k

β1
kl(t)λ

1
kl(t)(5.4)

and then the equation for the prospective reserve (Y (t))t∈[0,T ] becomes

Y (t) = E
[∫

(t,T ]

e−
∫ s
t δ(u) du

(
γX̃(s−)(s) ds+ aX̃(t−)(s) dν(s)

)∣∣∣∣Ft] , t ∈ [0, T ],(5.5)

where the process (δ(t))t∈[0,T ] is bounded and adapted.

Corollary 5.1. Under the assumptions of this chapter there exist unique pre-
dictable processes (Z0

ij(t))t∈[0,T ] and (Z1
kl(t))t∈[0,T ] satisfying

E
[∫ T

0

(
‖Z0(s)‖2

Λ0 + ‖Z1(s)‖2
Λ1

)
ds

]
<∞(5.6)

such that the prospective reserve Y from (5.5) is a solution to the BSDE

{
dY (t) =

(
− δ(t)Y (t) + γX̃(t−)(t)

)
dt+ aX̃(t−)(t) dν(t) + Z0(t) dM0(t) + Z1(t) dM1(t),

Y (T ) = 0.

(5.7)

Proof. By repeating the proof of the Theorem 4.3 individually to the processes
(Z0

ij(t))t∈[0,T ] and (Z1
kl(t))t∈[0,T ] we can verify that for all t ∈ [0, T ] it almost surely

holds

I0
i (t−)Z0

ij(t) = I0
i (t−)

∑
k∈J

I1
k(t−)

(
E[Y (t)|Ft−, X̃(t) = (j, k)]− E[Y (t)|Ft−, X̃(t) = (i, k)]

)
,

I1
k(t−)Z1

kl(t) = I1
k(t−)

∑
i∈S

I0
i (t−)

(
E[Y (t)|Ft−, X̃(t) = (i, l)]− E[Y (t)|Ft−, X̃(t) = (i, k)]

)
.

By continuing to redo the proof of the Theorem 4.3 with the extended jump process
(X, J) we arrive at the BSDE in (5.7).

We shall now concern the inequation (5.6). This follows from the fact that the

processes ((
∫ t

0
Z0 dM0)(t))t∈[0,T ] and ((

∫ t
0
Z1 dM1)(t))t∈[0,T ] are square-integrable mar-

tingales which is equivalent in the light of the Corollary 3.16 with (5.6).
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�

5.3. Maintaining actuarial equivalence with modifications

Now we will consider preserving the actuarial equivalence in contract modifica-
tions. This can be understood like that the prospective reserve (Y (t))t∈[0,T ] satisfying
the (5.5) with a given modification at a time τ should not be impacted retrospec-
tively on the interval [0, τ). We proceed by proving first that the jump intensities
can be utilized to determine a unique probability measure. According to [4, 2.4] it
is a common practice in the actuary literature to first define the intensities and then
determine the corresponding probability measure.

We require some theory on the Radon-Nikodym-derivative. With that in mind we
define a Doléans-Dade exponential within our assumptions. Following [3, VI T2] for
predictable non-negative processes (Zij(t))t∈[0,T ] we set

L(t) :=
∏
i 6=j

Lij(t)(5.8)

with

Lij(t) :=

{
e
∫ t
0 (1−Zij(s))λij(s) ds, t < T1,i,j

e
∫ t
0 (1−Zij(s))λij(s) ds

∏
n≥1 Zij(Tn,i,j)1Tn,i,j≤t, t ≥ T1,i,j.

(5.9)

According to [3, VI T2] the process (L(t))t ∈ [0, T ] is a non-negative supermartingale
which implies that it is integrable. Now we prove a formula for the Radon-Nikodym-
derivative.

Lemma 5.2 ([3, VI T3]). Assume a stochastic basis (Ω,F ,P, (Ft)t≥0), adapted
counting processes (Nij(t))t∈[0,T ] and the corresponding intensities (λij(t))t∈[0,T ]. Let
(Zij(t))t∈[0,T ] be non-negative predictable processes such that

E
∑

i 6=j
∫ t

0
Zij(s)λij(s) ds < ∞ for all t ∈ [0, T ]. Suppose also that E[L(1)] = 1 for

(L(t))t∈[0,T ] satisfying (5.8).

If we define a new probability measure P̃ with the Radon-Nikodym-derivative

dP̃
dP

= L(1),(5.10)

then each (Nij(t))t∈[0,T ] has the corresponding P̃-intensity

λ̃ij(t) = Zij(t)λij(t), for t ∈ [0, 1].(5.11)

Proof. The proof will be done like in [3, VI T3] by showing that the Definition

3.10 of the intensity holds for the probability measure P̃ and intensities (λij(t))t∈[0,T ].
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Let (C(t))t∈[0,T ] be a non-negative predictable process. We have because of the defi-
nition (5.10) of the Radon-Nikodym-derivative that

Ẽ
∫

[0,1]

C(s) dNij(s) :=

∫
Ω

∫
[0,1]

C(s) dNij(s) dP̃

=

∫
Ω

L(1)

∫
[0,1]

C(s) dNij(s) dP

= E
[
L(1)

∫
[0,1]

C(s) dNij(s)

]
(5.12)

and also similarly

Ẽ
∫ 1

0

C(s)λ̃ij(s) ds = E
[
L(1)

∫ 1

0

C(s)Zij(s)λij(s) ds

]
.

The integration by parts formula (Proposition 3.9) is now applicable to the last
part of the equation (5.12) yielding

E
[
L(1)

∫
[0,1]

C(s) dNij(s)

]
= E

∫
(0,1]

L(t)C(t) dNij(t) + E
∫

(0,1]

∫
[0,t−]

C(s) dNij(s) dL(t).

(5.13)

We shall inspect the last term more closely. Because the process C is predictable,
then the integral

(C ·Nij)(t) :=

∫
[0,t−]

C(s) dNij(s)

is adapted. It is also left-continuous due to the definition so therefore the Remark
2.18 proves that the stochastic integral ((C · Nij)(t))t∈[0,T ] is a predictable process.
Also the exponential martingale (L(t))t∈[0,T ] is a local martingale [3, VI T2] which
proves by the [12, IV 2 Theorem 29] that the integral∫

(0,1]

(C ·Nij)(t) dL(t)(5.14)

is a local martingale given that the process ((C ·Nij)(t))t∈[0,T ] is bounded. Moreover
the processes Nij, C and L are non-negative which yields by the martingale property
and the tower propoerty that

E
∫

(0,1∧Vn]

∫
[0,t−]

C(s) dNij(s) dL(t) = E
[
E
[∫

(0,1∧Vn]

∫
[0,t−]

C(s) dNij(s) dL(t)
∣∣∣F0

]]
= 0

for some localizing sequence (Vn)n. Now letting Vn → T we receive

E
[
L(1)

∫
[0,1]

C(s) dNij(s)

]
= E

∫
(0,1]

L(t)C(t) dNij(t)(5.15)

in the equation (5.13). This result is analogous to the Meyer-Dellacherie’s Integration
Formula for martingales and increasing processes. [3, A2 2 T19]
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In a similar fashion we may apply the integration by parts formula a bit differently
to get

E
[
L(1)

∫ 1

0

C(s)Zij(s)λij(s) ds

]
= E

∫ 1

0

L(t−)C(t)Zij(s)λij(t) dt

+ E
∫ 1

0

∫
[0,t]

C(s)Zij(s)λij(s) ds dL(t),(5.16)

where E
∫ 1

0

∫
[0,t]

C(s)Zij(s)λij(s) ds dL(t) = 0 because the processes λij, C and Zij are

predictable and the Lebesgue measure dt is continuous. Therefore we are left with

E
[
L(1)

∫ 1

0

C(s)Zij(s)λij(s) ds

]
= E

∫ 1

0

L(t−)C(t)Zij(s)λij(t) dt.(5.17)

As a side note we have that Nij(0) = 0 P-a.s. which validates the equality

E
∫

(0,1]

L(t)C(t) dNij(t) = E
∫

[0,1]

L(t)C(t) dNij(t).(5.18)

Because the left-continuous adapted process (L(t−))t ∈ [0, T ] is non-negative by defi-
nition and predictable (Remark 2.18) we would have by the definition of the intensity
λij that

E
∫

[0,1]

L(t−)C(t)Zij(s) dNij(t) = E
∫ 1

0

L(t−)C(t)Zij(s)λij(t) dt.(5.19)

To prove the statement of the Lemma we are still required to show that

E
∫

[0,1]

L(t)C(t) dNij(t) = E
∫

[0,1]

L(t−)C(t)Zij(s) dNij(t),(5.20)

which will be performed next.
Because the processesNij are non-explosive (Proposition 3.11) it holds limn→∞ Tn =

T . Therefore there exists for each t ∈ [0, 1] only a finite index set I of stopping times
(Tn,i,j)n∈I such that Tn,i,j ≤ t for all n ∈ I. Fix a time t ∈ [0, 1] and denote the
maximums

TM,i,j := max{Tn,i,j : Tn,i,j ≤ t}.
Then in the definition of the process L we have

Lij(t) = e
∫ t
0 (1−Zij(s))λij(s) ds

M∏
n=1

Zij(Tn,i,j)1Tn,i,j≤t

= Zij(TM,i,j)1TM,i,j=te
∫ t−
0 (1−Zij(s))λij(s) ds

M−1∏
n=1

(
Zij(Tn)1Tn,i,j≤t

)
1Tn,i,j<t

= Zij(t)Lij(t−).

This implies L(t) = Zij(t)L(t−) which proves the last missing link (5.20). There-
fore

Ẽ
∫

[0,1]

C(s) dNij(s) = Ẽ
∫ 1

0

C(s)λ̃ij(s) ds(5.21)
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and the processes (λ̃ij(t))t∈[0,T ] are P̃-intensities on the interval [0, 1].
�

The next proposition is a special case of the Girsanov-Meyer Theorem [12, III
Theorem 39] with jump processes instead of semimartingales.

Proposition 5.3 ([4, Proposition 4.3]). Assume on a measurable space (Ω,F)
a bivariate jump process (X, J) := (X(t), J(t))t∈[0,T ] and let (Ft)t≥0 be its natural
filtration. Let (τm)m∈N denote the jump times of the process (J(t))t∈[0,T ]. Then for
every contract modification m ∈ N there exists a unique probability measure Pm such
that the process (X, J) has Pm-intensities (λ0

ij(t))t∈[0,T ] and (1{t≤τm}(t)λ
1
kl(t))t∈[0,T ]

respectively to the coordinate processes, for i, j ∈ S, i 6= j; k, l ∈ J : k 6= l. Moreover
it holds

(1) Pm = P on Fτm,
(2) Pm ∼ P on Fτm+1 and
(3) Pm � P on F∞.

Remark 5.4. The measures µ and ν are equal (µ = ν) if µ(A) = ν(A) for all
A ∈ F . The measure µ is absolutely continuous with respect to the ν (µ � ν) if
ν(E) = 0 for all E ∈ F such that µ(E) = 0. [7, Definition 7.1.1] The measures are
equivalent (µ ∼ ν) if µ� ν and ν � µ. [12, III 8]

Proof. First fix m ∈ N. The assumption (5.2) states that for some P-null set
N ∈ Ω such that P(Ω \N) = 1 it holds

∫ T

0

( ∑
i,j∈S:i 6=j

I0
i (t−)λ0

ij(t) +
∑

k,l∈J :k 6=l

I1
i (t−)λ1

kl(t)

)
dt <∞, ω ∈ Ω \N.(5.22)

We may prove the assertions within the set Ω \ N without the loss of generality.
Therefore it is possible to redefine the intensities so that the inequation (5.22) holds
for all ω ∈ Ω. Then we have for all that

E
∑

k,l∈J :k 6=l

∫ t

0

1{t≤τm}(s)λ
1
kl(s) ds <∞.(5.23)

We shall now prove the existence of the probability measure Pm such that the
process (X, J) has the intensities (λ0

ij(t), (1{t≤τm}λ
1
kl)(t))t∈[0,T ] by applying the Lemma

5.2. Let us glance at the assumptions whether they hold in our case. We have the
counting processes (N1

kl(t))t ∈ [0, T ] and the intensities (λ1
kl(t))t ∈ [0, T ]. The process

((1{t≤τm})(t))t ∈ [0, T ] is non-negative and left-continuous. By the Remark 2.18 it is
then predictable. Finally we have the inequality (5.23).

Define the the stochastic exponential in the domain of this Proposition as

L(t) :=
∏

k,l∈J :k 6=l

Lkl(t)(5.24)
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where

Lkl(t) : =

e
∫ t
0 (1−1{s≤τm})λij(s) ds, t < τ1,k,l

e
∫ t
0 (1−1{s≤τm})λij(s) ds

∏
n∈N:τn,k,l≤t

1{τn,k,l≤τm}, t ≥ τ1,k,l
(5.25)

= e
∫ t
0 (1−1{s≤τm})λij(s) ds.(5.26)

Here we have that

EL(1) = E
[
e
∫ t
0 (1−1{1≤τm})λij(s) ds

]
= P({1 > τm})e

∫ t
0 λij(s) ds

= 1

We define the probability measure Pm as in the Lemma 5.2 such that

Pm(A) :=

∫
A

L(1) dP(5.27)

holds. Then the Lemma 5.2 states that the processes (N1
kl(t))t ∈ [0, T ] have the Pm-

intensities (1{t≤τm}(t)λ
1
kl(t))t∈[0,T ].

Moreover the new probability measure Pm satisfies the assertions (1), (2) and
(3). Therefore the processes (λ0

ij(t))t ∈ [0, T ] are also Pm-intensities of the counting

processes (N0
ij(t))t ∈ [0, T ].

�

5.3.1. Extended Cantelli Theorem.

Theorem 5.5 ([4, Theorem 4.4]). Assume that m ∈ N. Let (Ω,F ,P) and (Ω,F ,Pm)
be the probability spaces from the Proposition 5.3. Denote the solutions to the BSDE’s
given by the Corollary 5.1 with (Y, Z0, Z1) and (Y m, Z0,m, Z1,m) that correspond to
the probability measures P and Pm respectively. Then the following assertions are
equivalent:

(1) For all k ∈ J we have P× t-almost everywhere

1{τm<t≤τm+1}
∑

l∈J :l 6=k

(
β1
kl(t) + Z1

kl(t)
)
1{J(t−)=k}λ

1
kl(t) = 0.

.
(2) For all t ∈ [0, τm+1) it holds P-almost surely(

Y (t), Z0(t), Z1(t)
)

=
(
Y m(t), Z0,m(t), Z1,m(t)

)
.

Proof. In the Proposition 5.3 we presented the formula for the Pm-intensities of
the processes (N1

kl(t))t∈[0,T ]:

1{t≤τm+1}(t)λ
1
kl(t).(5.28)
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The expression implies that the intensity is zero on the set {t : t > τm+1}. Therefore

Pm({ω : τm+1(ω) <∞})

= Pm({ω : ∃t,
∑

k,l∈J :k 6=l

N1
kl(t, ω) = m+ 1})

= 1− Pm({ω : λ1
kl(t) = 0, ∀t > τm+1})

= 0(5.29)

as well.
We shall begin by proving the implication (1) =⇒ (2). Assume that

1{τm<t≤τm+1}
∑

l∈J :l 6=k

(
β1
kl(t) + Z1

kl(t)
)
1{J(t−)=k}λ

1
kl(t) = 0

holds Pm-almost surely for all k ∈ J . Then the Proposition 5.3 yields that the
measures Pm and P are equal on the Fτm . As a consequence the expected values E
and Ẽ are equal in the sense that for t ∈ [0, τm] in each of the equations

I0
i (t−)Z0

ij(t) = I0
i (t−)

∑
k∈J

I1
k(t−)

(
E[Y (t)|Ft−, X̃(t) = (j, k)]− E[Y (t)|Ft−, X̃(t) = (i, k)]

)
,

(5.30)

I1
k(t−)Z1

kl(t) = I1
k(t−)

∑
i∈S

I0
i (t−)

(
E[Y (t)|Ft−, X̃(t) = (i, l)]− E[Y (t)|Ft−, X̃(t) = (i, k)]

)(5.31)

Y (t) = E
[∫

(t,T ]

e−
∫ s
t δ(u) du

(
γX̃(s−)(s) ds+ aX̃(t−)(s) dν(s)

)∣∣∣∣Ft] , t ∈ [0, T ],

(5.32)

E
[∫ T

0

(
‖Z0(s)‖2

Λ0 + ‖Z1(s)‖2
Λ1

)
ds

]
<∞,

(5.33)

the expected value Ẽ can be replaced with the E. Moreover the Proposition 3.20 ex-
tends this result to the [0, τm+1). Both of the triplets (Y, Z0, Z1) and (Y m, Z0,m, Z1,m)
are therefore solutions to the same backward SDE on [0, τm+1).

Because of the observation (5.29) we have that

Pm(T < τm+1) = 1(5.34)

thus the solutions (Y, Z0, Z1) and (Y m, Z0,m, Z1,m) solve the same BSDE on [0, T ],
Pm-almost surely. Due to the Pm-a.s. uniqueness of the solution to the BSDE the
solutions must be Pm-indistinguishable on [0, T ], which means that

Pm
(
Y (t) = Y m(t), Z0(t) = Z0,m(t), Z1(t) = Z1,m(t), t ∈ [0, T ]

)
= 1.

Now we may recall the Proposition 5.3 to conclude that the measures Pm and P are
equivalent on the σ-algebra Fτm+1−. Therefore also

P
(
Y (t) = Y m(t), Z0(t) = Z0,m(t), Z1(t) = Z1,m(t), t ∈ [0, T ]

)
= 1(5.35)
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due to the case that some of the processes would not be indistinguishable is a Pm-null
set.

We shall proceed by validating the implication (2) =⇒ (1). Assume that the
solutions (Y, Z0, Z1) and (Y m, Z0,m, Z1,m) are P-indistinguishable on [0, τm+1). Then
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for the difference of the BSDE’s it holds P-a.s for all t ∈ [0, τm+1) that

0 =Y (t)− Y m(t)

=

∫ t

0

(
− δ(s)Y (s) + γX̃(s−)(s)

)
ds−

∫ t

0

(
− δ(s)Y m(s) + γm

X̃(s−)
(s)
)
ds

+

∫
(0,t]

aX̃(s−)(s) dν(s)−
∫

(0,t]

aX̃(s−)(s) dν(s)

+

∫
(0,t]

Z0(s) dM0(s)−
∫

(0,t]

Z0,m(s) dM0,m(s)

+

∫
(0,t]

Z1(s) dM1(s)−
∫

(0,t]

Z1,m(s) dM1,m(s)

=

∫ t

0

(
− δ(s)

(
Y (s)− Y m(s)

)
+

∑
i,j∈S:i 6=j

I0
i (s−)β0

ij(s)λ
0
ij(s)

−
∑

k,l∈J :k 6=l

I1
k(s−)β1

kl(s)1{s≤τm}λ
1
kl(s)

)
ds

+

∫
(0,t]

Z0(s)
(
dN0(s)− λ0(s) ds

)
−
∫

(0,t]

Z0,m(s)
(
dN0(s)− 1{s≤τm}λ

0(s) ds
)

+

∫
(0,t]

Z1(s)
(
dN1(s)− λ1(s) ds

)
−
∫

(0,t]

Z1,m(s)
(
dN1(s)− 1{s≤τm}λ

1(s) ds
)

=

∫ t

0

(∑
i 6=j

I0
i (s−)β0

ij(s)λ
0
ij(s)−

∑
k 6=l

I1
k(s−)β1

kl(s)1{s≤τm}λ
1
kl(s)

)
ds

−
∫ t

0

Z0(s)λ0(s) ds+

∫ t

0

Z0,m(s)1{s≤τm}λ
0(s) ds

−
∫ t

0

Z1(s)λ1(s) ds+

∫ t

0

Z1,m(s)1{s≤τm}λ
1(s) ds

=

∫ t

0

(
1{s≤τm} − 1

)(∑
i 6=j

I0
i (s−)β0

ij(s)λ
0
ij(s) +

∑
k 6=l

I1
k(s−)β1

kl(s)λ
1
kl(s)

)
+
(
1{s≤τm} − 1

)
Z0(s)λ0(s) +

(
1{s≤τm} − 1

)
Z1(s)λ1(s) ds

=

∫ t

0

(∑
i 6=j

(
I0
i (s−)β0

ij(s)λ
0
ij(s) + I0

i (s−)Z0
ij(s)λ

0
ij(s)

)
+
∑
k 6=l

(
I1
k(s−)β1

kl(s)λ
1
kl(s) + I1

k(s−)Z1
kl(s)λ

1
kl(s)

))(
1{s≤τm} − 1

)
ds

=

∫ t

0

(∑
i 6=j

(
β0
ij(s) + Z0

ij(s)
)
I0
i (s−)λ0

ij(s)
)

+
∑
k 6=l

(
β1
kl(s) + Z1

kl(s)
)
I1
k(s−)λ1

kl(s)
))

×
(
1{s≤τm} − 1

)
ds.
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Here it holds that 1{t>τm} = 1− 1{t≤τm}. If we consider an additional condition that
t ≤ τm+1 then we have

0 =
∑
i 6=j

(
β0
ij(t) + Z0

ij(t)
)
I0
i (t−)λ0

ij(t)
)
1{τm+1≥t>τm} P-a.s.(5.36)

Therefore the previous equation with the lengthy calculation is equivalent to

0 =

∫ t

0

∑
k 6=l

(
β1
kl(t) + Z1

kl(t)
)
I1
k(t−)λ1

kl(t)
)
1{τm+1≥t>τm} dt P-a.s.(5.37)

The required statement (1) now follows from this revelation.
�

Remark 5.6. According to the [4, Theorem 4.4] the term β1
kl(t) + Z1

kl(t) can be
interpreted as the sum-at-risk when modifying the contract from state k to state l.
The processes (β1

kl(t))t ∈ [0, T ] describe the surrender payment once a modification
has been made, and the processes (Z1

ij(t))t ∈ [0, T ] are part of the solution to the
BSDE taking care of the adaptability of the prospective reserve Y . The newly proven
Theorem 5.5 is therefore indeed analogous to the Cantelli Theorem on the Markovian
setting and is a generalization to the non-Markovian frame.
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