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AN INVERSE PROBLEM FOR THE RELATIVISTIC BOLTZMANN

EQUATION

TRACEY BALEHOWSKY, ANTTI KUJANPÄÄ, MATTI LASSAS, AND TONY LIIMATAINEN

Abstract. We consider an inverse problem for the Boltzmann equation on a globally hyperbolic
Lorentzian spacetime (M, g) with an unknown metric g. We consider measurements done in
a neighbourhood V ⊂ M of a timelike path µ that connects a point x− to a point x+. The
measurements are modelled by a source-to-solution map, which maps a source supported in V
to the restriction of the solution to the Boltzmann equation to the set V . We show that the
source-to-solution map uniquely determines the Lorentzian spacetime, up to an isometry, in the
set I+(x−) ∩ I−(x+) ⊂ M . The set I+(x−) ∩ I−(x+) is the intersection of the future of the
point x− and the past of the point x+, and hence is the maximal set to where causal signals
sent from x− can propagate and return to the point x+. The proof of the result is based on
using the nonlinearity of the Boltzmann equation as a beneficial feature for solving the inverse
problem.
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1. Introduction

In this paper we study what information can be recovered from indirect measurements of a sys-
tem governed by the Boltzmann equation. The Boltzmann equation describes nonlinear particle
dynamics which arise in many areas of physics, such as atmospheric chemistry, cosmology and
condensed matter physics. For example, in cosmology, the Boltzmann equation describes how
radiation is scattered by matter such as dust, stars and plasma on an Einstein spacetime. In
condensed matter physics, the Boltzmann equation may describe the transportation of electrons
or electron-phonon excitations in a media, which can be a metal or a semiconductor. In such
situations, the geometry of the spacetime or resistivity of the media may be described by a
Lorentzian manifold. In particular, we investigate the inverse problem of recovering the corre-
sponding Lorentzian manifold of a system behaving according to the Boltzmann equation by
making measurements in a confined, possibly small, area in space and time.

In the kinetic theory we adopt, particles travel on a Lorentzian manifold (M, g) along trajectories
defined by either future-directed timelike geodesics (for positive mass particles) or future-directed
lightlike geodesics (in the case of zero mass particles). In the absence of collisions and external
forces, the kinematics of a particle density distribution u ∈ C∞(TM) is captured by the Vlasov
equation [41], [40] (or Liouville-Vlasov equation [9])

Xu(x, p) = 0 for (x, p) ∈ P+
M.

Here P+
M is the subset of TM of the future directed causal (i.e. not spacelike) vectors and

X : C∞(TM)→ C∞(TM) is the geodesic vector field. In terms of the Christoffel symbols Γαλµ,
the latter is given as

X =
∑
α,λ,µ

pα
∂

∂xα
− Γαλµp

λpµ
∂

∂pα
.

The behaviour of binary collisions is characterized by a collision operator

(1.1) Q[u, v](x, p) =

∫
Σx,p

[
u(x, p)v(x, q)− u(x, p′)v(x, q′)

]
A(x, p, q, p′, q′)dV (x, p; q, p′, q′),

where u, v ∈ C∞(P+
M). Here dV (x, p; q, p′, q′) is the induced volume form on the submani-

fold

Σx,p := {p} × {(q, p′, q′) ∈ (PxM)3 : p+ q = p′ + q′} ⊂ (TxM)4

and for each (x, p) ∈ P+
M the function

A(x, p, ·, ·, ·) ∈ C∞(Σx,p)

is called a collision kernel (or a shock cross-section).

We assume that (M, g) is a globally hyperbolic C∞ smooth Lorentzian manifold (see Section 2).
Global hyperbolicity allows us to impose an initial state for the particle density function u by
using a Cauchy surface C ⊂M . Given an initial state of no particles in the causal past C− of C,
and a particle source f , supported in the causal future C+ of C, the kinematics of a distribution
of particles u is given by the relativistic Boltzmann equation [9], [41], [40],

Xu(x, p)−Q[u, u](x, p) = f(x, p), (x, p) ∈ P+
M

u(x, p) = 0, (x, p) ∈ P+C−.
(1.2)
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Though we do not consider it in this paper, Boltzmann’s H-Theorem (which states that the
entropy flux is nonincreasing in time) can be shown to hold for the relativistic Boltzmann
kinematic model (1.2) when the collisions are reversible (A(x, p, q, p′, q′) = A(x, p′, q′, p, q)). We
refer the reader to the works of [9], [41], or [40] for more details on this matter.

We study an inverse problem where we make observations in an open neighbourhood V of a
timelike geodesic in M . We assume that V has compact closure without further notice. The
observations are captured by the source-to-solution map for light observations,

(1.3) ΦL+V : B → Cb(L
+V ), ΦL+V (f) := Φ(f)|L+V .

Here Φ is the source-to-solution map for the relativistic Boltzmann equation

(1.4) Φ : B → Cb(P
+
M), Φ(f) = u,

where u solves (1.2) with a source f . The set B is a neighbourhood of the origin in CK(P+C+) =

{f ∈ C(P+C+) : supp(f) ⊂ K} for a fixed compact set K ⊂ P+C+ and Cb(P
+
M) = {f ∈

C(P+
M) : f is bounded}. We also denote by L+V ⊂ TM the bundle of light-like future

directed vectors whose base points are in V . Loosely speaking, the operator ΦL+V corresponds to
measuring the photons received in V ⊂M from particle interactions governed by the Boltzmann
equation (1.2).

Known uniqueness and existence results to (1.2) depend inextricably on the properties of the
collision kernel A. For general collision kernels, existence of solutions to (1.2) is not known.
Complicating the analysis is the fact that it is not completely known what are the physical
restrictions on the form of the collision kernel [41, p. 155]. Further, in the case of Israel
molecules, where one has a reasonable description of what the collision kernel should be, the
collision operator can not be seen as a continuous map between weighted Lp spaces [41, Appendix
F]. It is not always clear what is the relationship between conditions on the collision operator
Q and the induced conditions on its collision kernel A.

To address the well-posedness of (1.2), we consider collision kernels of the following type. Here
we denote

Σ :=
⋃

(x,p)∈PM

Σx,p ⊂ TM4

and L+M and PM are the bundles of light-like and timelike vectors over M respectively.

Definition 1.1 (Admissible Kernels). We say that A : Σ ⊂ TM4 → R is an admissible collision
kernel with respect to a relatively compact open set W ⊂M if A satisfies

(1) A ∈ C∞(Σ).

(2) The set πsuppA is compact and contains W as a subset.

(3) A(x, p, q, p′, q′) > 0, for all (x, p, q, p′, q′) ∈ Σ ∩ (L+W × PW × PW × PW ).

(4) There is a constant C > 0 such that for all (x, p) ∈ P+
M ,

‖A(x, p, ·, ·, ·)‖L1(Σx,p) :=

∫
Σx,p

|A(x, p, q, p′, q′)|dV (x, p; q, p′, q′) ≤ C.

(5) For every (x, p) ∈ P+
M the function Fx,p(λ) := ‖A(x, λp, ·, ·, ·)‖L1(Σx,λp), λ ∈ R, is

continuously differentiable at λ = 0 and satisfies Fx,p(0) = 0.

If there is no reason to emphasize the set W we just use the term admissible collision kernel.
The most important case is when W is a time-like diamond as in the main theorem, see Figure 1.
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The reader may take this as an assumption, although many of the steps in our main proof can
be carried through for more general W .

We note that the condition (3) ensures that colliding particles traveling at less than the speed
of light scatters lightlike particles. The conditions (4) and (5) are imposed to have control of
collisions of relatively high and low momenta particles. These conditions are required in our
proof of the well-posedness of the Cauchy problem for the Boltzmann equation (1.2):

Theorem 1.2. Let (M, g) be a globally hyperbolic C∞-smooth Lorentzian manifold. Let also C
be a Cauchy surface of M and K ⊂ P+C+ be compact. Assume that A : Σ→ R is an admissible
collision kernel in the sense of Definition 1.1.

Then, there are open neighbourhoods B1 ⊂ CK(P+C+) and B2 ⊂ Cb(P
+
M) of the respective

origins such that if f ∈ B1, the relativistic Boltzmann problem (1.2) with source f has a unique
solution u ∈ B2. Further, there is a constant cA,K > 0 such that

‖u‖
C(P+

M)
≤ cA,K‖f‖C(P+

M)
.

The well-posedness of (1.2) has also been addressed in the following works. For exponentially
bounded data, and an L1-type bound on the cross-section of the collision kernel, it was shown
in [8] that a short-time unique solution to (1.2) exists in the setting of a 4-dimensional, globally
hyperbolic spacetime. Also for globally hyperbolic geometries, under conditions which require
the collision operator to be a continuous map between certain weighted Sobolev spaces, it was
proven in [3] that a unique short-time solution exists to (1.2) in arbitrary dimension. If the
geometry of (M, g) is close to Minkowski in a precise sense, the collision kernel satisfies certain
growth bounds and the initial data satisfied a particular form of exponential decay, then unique
global solutions exist to the Cauchy problem for the Boltzmann equation [18]. We refer to [9],
[41] and [40] for more information about the well-posedness of (1.2). Also, the recent paper [26],
related to our work, contains a well-posedness result in Euclidean spaces.

We are now ready to present our main theorem. In our theorem, measurements of solutions to
the Boltzmann equation are made on a neighborhood V of a timelike geodesic µ̂ in (M, g). We
prove that measurements made on V both determines a subset W of M and the restriction of
the metric to W (up to isometry). The subset W is naturally limited by the finite propagation
speed of light. The situation is illustrated in Figure 1 below.

(M, g)
<latexit sha1_base64="YSiidCNYBKRZDdk7S16ke2LvqJo=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdKuix6MWLUMF+QLuUbJq2sdlkSbJCWfofvHhQxKv/x5v/xmy7B219MPB4b4aZeUHEmTau++3kVlbX1jfym4Wt7Z3dveL+QVPLWBHaIJJL1Q6wppwJ2jDMcNqOFMVhwGkrGN+kfuuJKs2keDCTiPohHgo2YAQbKzXLd2fD00KvWHIr7gxomXgZKUGGeq/41e1LEodUGMKx1h3PjYyfYGUY4XRa6MaaRpiM8ZB2LBU4pNpPZtdO0YlV+mgglS1h0Ez9PZHgUOtJGNjOEJuRXvRS8T+vE5vBlZ8wEcWGCjJfNIg5MhKlr6M+U5QYPrEEE8XsrYiMsMLE2IDSELzFl5dJs1rxzivV+4tS7TqLIw9HcAxl8OASanALdWgAgUd4hld4c6Tz4rw7H/PWnJPNHMIfOJ8/yzCN9Q==</latexit>

V
<latexit sha1_base64="AHq+s/3jvJc4dNJdkMmF68+AsTc=">AAAB6nicbVBNS8NAEJ2tXzV+VT16WSyCp5JUQY9FLx4r2g9oQ9lsN+3SzSbsboQS+hO8eFDEq7/Im//GTZuDtj4YeLw3w8y8IBFcG9f9RqW19Y3NrfK2s7O7t39QOTxq6zhVlLVoLGLVDYhmgkvWMtwI1k0UI1EgWCeY3OZ+54kpzWP5aKYJ8yMykjzklBgrPbQdZ1CpujV3DrxKvIJUoUBzUPnqD2OaRkwaKojWPc9NjJ8RZTgVbOb0U80SQidkxHqWShIx7WfzU2f4zCpDHMbKljR4rv6eyEik9TQKbGdEzFgve7n4n9dLTXjtZ1wmqWGSLhaFqcAmxvnfeMgVo0ZMLSFUcXsrpmOiCDU2nTwEb/nlVdKu17yLWv3+stq4KeIowwmcwjl4cAUNuIMmtIDCCJ7hFd6QQC/oHX0sWkuomDmGP0CfPxzejQY=</latexit>

W
<latexit sha1_base64="8MiE63tnSrAkBKJ2p6bA965xGvA=">AAAB6nicdVDLSsNAFL3xWeOr6tLNYBFchSS1GndFNy4r2ge0oUymk3bo5MHMRCihn+DGhSJu/SJ3/o2TtoKKHrhwOOde7r0nSDmTyrY/jKXlldW19dKGubm1vbNb3ttvySQThDZJwhPRCbCknMW0qZjitJMKiqOA03Ywvir89j0VkiXxnZqk1I/wMGYhI1hp6bZtmv1yxbZs58y1PaSJ69U8V5ML16t6NeRY9gwVWKDRL7/3BgnJIhorwrGUXcdOlZ9joRjhdGr2MklTTMZ4SLuaxjii0s9np07RsVYGKEyErlihmfp9IseRlJMo0J0RViP52yvEv7xupkLPz1mcZorGZL4ozDhSCSr+RgMmKFF8ogkmgulbERlhgYnS6RQhfH2K/ict13KqlntzWqlfLuIowSEcwQk4cA51uIYGNIHAEB7gCZ4NbjwaL8brvHXJWMwcwA8Yb5+NGY1U</latexit>

µ̂

Figure 1. Illustration of the timelike geodesic µ̂, known set V , and the yet
unknown set W .

Before we continue, we introduce our notation. We consider source-to-solutions maps of the
Bolzmann equation (1.2) defined on sources, which are supported on different compact sets

K ⊂ P+
M . As follows from Theorem 1.2, for each such K the source-to-solution map B1 →
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B2 ⊂ Cb(P
+
M) of the Boltzmann equation is well defined, where B1 ⊂ CK(P+C+). In this case,

we denote B1,K = BK . In the next theorem we consider source-to-solution maps of Boltzmann
equations defined on

(1.5) B :=
⋃

{K:π(K)⊂Z}

B1,K ⊂ Cc(P
+C+),

where Z is a fixed compact subset of M .

Theorem 1.3. Let (M1, g1) and (M2, g2) be globally hyperbolic C∞-smooth Lorentzian manifolds
of dimension ≥ 3. Assume that V is a mutual open subset of M1 and M2 and that g1|V = g2|V .
Let µ : [−1, 1] → V be a smooth timelike curve. Let also −1 < s− < s+ < 1, and define
x± := µ(s±) and

Wj := I−j (x+) ∩ I+
j (x−), j = 1, 2.

Let Z ⊂ V ⊂M be a compact set such that µ[−1, 1] ⊂⊂ Z.

Suppose that A1 and A2 are admissible kernels in the sense of Definition 1.1. Assume that the
source-to-solution maps of the Boltzmann equation on (M1, g1) and (M2, g2) with kernels A1 and
A2 respectively agree,

Φ2, L+V = Φ1, L+V ,

on B. Here B is as in (1.5). Then there is an isometric C∞-smooth diffeomorphism F : W1 →
W2,

F ∗g2 = g1 on W1.

Note that alternative to V being a mutual open set of M1 and M2, we could instead assume
that there are open sets V1 ⊂ M1 and V2 ⊂ M2 and an isometry I : V1 → V2 so that the
corresponding source-to-solution maps Φj,L+Vj , j = 1, 2, satisfy Φ1,L+V1I∗ = I∗Φ2,L+V2 . In this
case there would be an isometry W1 → W2. We work with the assumption that V is a mutual
open set for simplicity.

Inverse problems have been studied for equations with various nonlinearity types. Many of the
earlier works rely on the fact that a solution to a related linear inverse problem exists. However,
it was shown in Kurylev-Lassas-Uhlmann [24] that the nonlinearity can be used as a beneficial
tool to solve inverse problems for nonlinear equations. They proved that local measurements
of the scalar wave equation with a quadratic nonlinearity on a Lorentzian manifold determines
topological, differentiable, and conformal structure of the Lorentzian manifold. Our proof of
Theorem 1.3, which we explain shortly in the next section, builds upon this work [24].

Recently, Lai, Uhlmann and Yang [26] studied an inverse problem for the Boltzmann equation
in the Euclidean setting. With an L1 bound and symmetry constraint on the collision kernel,
they show that one may reconstruct the collision kernel from boundary measurements. Linear
equations such as Vlasov, radiative transfer (also called linear Boltzmann), or generalized trans-
port equations model kinematics of particles which do not undergo collisions. We list a very
modest selection of the literature on inverse problems for these equations next. In Euclidean
space, Choulli and Stefanov [10] showed that one can recover the absorption and production
parameters of a radiative transfer equation from measurements of the particle scattering. They
also showed that an associated boundary operator, called the Albedo operator, determines the
absorption and production parameters for radiative transfer equations in [11] and [12]. Other
results for the recovery of the coefficients of a radiative transfer equation in Euclidean space from
the Albedo operator have been proven by Tamasan [44], Tamasan and Stefanov [42], Stefanov
and Uhlmann [43], Bellassoued and Boughanja [6], and Lai and Li [25]. Under certain curvature
constraints on the metric, an inverse problem for a radiative transfer equation was studied in
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the Riemannian setting by McDowall [35], [36]. A review of some of these and other inverse
problems for radiative transfer and linear transportation equations is given by Bal [2].

The mentioned work [24] invented a higher order linearization method for inverse problems
of nonlinear equations in the Lorentzian setting for the wave equation. Other works study-
ing inverse problems for nonlinear hyperbolic equations by using the higher order linearization
method include: Lassas, Oksanen, Stefanov and Uhlmann [30]; Lassas, Uhlmann and Wang
[32], [31]; and Wang and Zhou [45]; Lassas, Liimatainen, Potenciano-Machado and Tyni [29].
The higher order linearization method in inverse problems for nonlinear elliptic equations was
used recently in Lassas, Liimatainen, Lin and Salo [28] and Feizmohammadi and Oksanen [16],
and in the partial data case in Krupchyk and Uhlmann [23] and Lassas, Liimatainen, Lin and
Salo [27].

1.1. Theorem 1.3 proof summary. Now we will explain the key ideas in our proof of Theorem
1.3. To begin let µ̂ : [−1, 1] → M be a future directed, timelike geodesic and let V be an open
neighbourhood of the graph of µ̂ where we do measurements. For some −1 < s− < s+ < 1,
let x± = µ(s±), W = I−(x+) ∩ I+(x−) and w ∈ W . We adapt the method of higher order
linearization introduced in [24] for the nonlinear wave equation to our Boltzmann setting (1.2).
Using this approach, we use the nonlinearity to produce a point source at w for the linearized
Boltzmann equation.

The point source at w is generated formally as follows. Let C be a Cauchy surface in M and

f1, f2 ∈ Cc(P
+
V ) be two sources of particles. For sufficiently small parameters ε1 and ε2, let

uε1f1+ε2f2 be the solution to

Xuε1f1+ε2f2 −Q[uε1f1+ε2f2 , uε1f1+ε2f2 ] = ε1f1 + ε2f2 in P+
M

uε1,ε2(x, p) = 0 in P+C−
(1.6)

By computing the mixed derivative

Φ2L(f1, f2) :=
∂

∂ε1

∂

∂ε2

∣∣∣
ε1=ε2=0

uε1f1+ε2f2 ,

we show that Φ2L(f1, f2) solves the equation

X
(
Φ2L(f1, f2)

)
= Q[ΦL(f1),ΦL(f2)] +Q[ΦL(f2),ΦL(f1)](1.7)

on P+
M . Here the functions ΦL(fl), l = 1, 2, are solutions to the linearization of the Boltzmann

equation at u = 0, which solve

X
(
ΦL(fl)

)
= fl in P+

M.

ΦL(fl) = 0 in P+C−
(1.8)

The transport equation (1.8) is also called the Vlasov equation.

Next, we build particular functions f1 and f2 such that the right hand side of (1.7),

Q[ΦL(f1),ΦL(f2)] +Q[ΦL(f2),ΦL(f1)],

is a point source at w. To do this, we note that since w ∈ W , there exists lightlike geodesics
η and η̃, initialized in our measurement set V , which have their first intersection at w. We
choose timelike geodesics γ(x̂,p̂) and γ(ŷ,q̂) with initial data (x̂, p̂) and (ŷ, q̂) in the bundle P+V of
future-directed timelike vectors and which approximate the geodesics η and η̃. Then, in Lemma
4.6, we create dim(M) − 2 Jacobi fields on the geodesic γ(ŷ,q̂) such that the variation of γ̇(ŷ,q̂)

generated by the Jacobi fields is a submanifold Y2 ⊂ P+W ⊂ TM . In particular, since Y2

and Y1 := graph(γ(x̂,p̂)) ⊂ TM are geodesic flowouts, they can be considered as distributional
solutions to the linear transport equation (1.8). The Jacobi fields are also constructed so that
the projection of Y2 ⊂ TM to M near the intersection points of γ(x̂,p̂) and γ(ŷ,q̂) is a dim(M)− 1
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dimensional submanifold of M which intersects the other geodesic γ(x̂,p̂) transversally in M . This
transversality condition enables us to employ microlocal techniques to show in Theorem 4.3 and
Corollary 4.4 that Q[ΦL(f1),ΦL(f2)] +Q[ΦL(f2),ΦL(f1)] represents a point source.

To differentiate uε1f1+ε2f2 with respect to both ε1 and ε2, we also prove that the source to
solution map of the Boltzmann equation (1.2) is two times Frechét differentiable in Lemma 3.4.
To analyze the nonlinear term Q[ΦL(f1),ΦL(f2)] +Q[ΦL(f2),ΦL(f1)] when ΦL(f1) and ΦL(f2)
are distributions in D′(TM), namely the delta distributions of the submanifolds Y1 and Y2

of TM , we view them as conormal distributions in Ikl(N∗Yl) for some kl ∈ R and l = 1, 2.
This allows us to compute the terms Q[ΦL(f1),ΦL(f2)] and Q[ΦL(f2),ΦL(f1)] by using the
calculus of Fourier integral operators. Slight complications to this analysis are due the fact that
the distributions Q[ΦL(f1),ΦL(f2)] and Q[ΦL(f2),ΦL(f1)] have relations (in the sense of the
theory of Fourier integral operators) in the bundle of causal vectors, which is a manifold with
boundary.

We circumvent these complications by only measuring lightlike signals. This means that we
compose the source to solution map with a lightlike section P : Ve ⊂ V → L+V , where Ve open
subset of V . This reduces our analysis of the term Q[ΦL(f1),ΦL(f2)] in (1.7), Q[ΦL(f1),ΦL(f2)],
to an analysis of the term

−
∫

Σx,p

ΦL(f1)(x, p′)ΦL(f2)(x, q′)A(x, p, q, p′, q′)dVx,p(q, p
′, q′),

where x lies in the open subset Ve ⊂ M and p = P (x) ∈ L+V , since the other part of the
collision operator (1.1) in this case yields zero. We analyze similarly the second right hand side
term in (1.7).

By the above construction, we construct a singularity at w ∈W ⊂M , which we may observe the
singularity by using the source to solution map for light observations ΦL+V . Similar to [24], from
our analysis we may recover the so-called earliest observation time functions from the knowledge
of ΦL+V . Time separation function at w compute the optimal travel time of light signal received
from w. The collection of all earliest observation time functions from w determines the earliest
light observation set that is the set of points y ∈ U that can be connected to w by lightlike
geodesics which have no interior cut points. This set is denoted by EU (w). Here U is an open
subset of V and we consider EU (w) as the map w ∈W 7→ EU (w). We refer to Section 5.3 or [24]
for explicit definitions.

We apply the above to construct and measure point sources on two different Lorentzian manifolds
(M1, g1) and (M2, g2) to prove:

Proposition 1.4. Let Φ1, L+V and Φ2, L+V be the source-to-solution maps for light observation
satisfying the conditions in Theorem 1.3. Assume that the conditions of Theorem 1.3 are satisfied
for the Lorentzian manifolds (M1, g1) and (M2, g2). Then Φ2, L+V = Φ1, L+V implies

{E1
U (w1) : w1 ∈W1} = {E2

U (w2) : w2 ∈W2}.

As shown in [24, Theorem 1.2], the sets EjU (w), j = 1, 2, determine the unknown regions Wj and
the conformal classes of the Lorentzian metrics gj on them. That is, there is a diffeomorphism
F : (W1, g1|W1) → (W2, g1|W2) such that F ∗g2 = cg1 on W1. After the reconstruction of the
conformal class of the metric (W, g|W ), we conclude the proof of Theorem 1.3 by showing that
the source-to-solution map in V uniquely determines the conformal factor c(x) in W . This
implies that the source-to-solution map in the set V determines uniquely the isometry type of
the Lorentzian manifold (W, g|W ).

Paper outline. Section 2 contains all the preliminary information. There we introduce our
notation (2.1) and recall Lagrangian distributions (2.2). We provide some expository material
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on the collisionless (Vlasov) and Boltzmann models of particle kinematics in Sections 3.1 and
3.2 respectively. In Section 4, we analyze the operator Qgain from a microlocal perspective.
Viewing particles as conormal distributions, we describe fully the wavefront set which arises
from particle collisions. Additionally, in Section 4.1 we construct a submanifold S2 ⊂ TM ,
whose geodesic flowout is Y2 ⊂ TM , such that the graph Y1 of a geodesic and Y2 satisfies the
properties discussed in Section 1.1. In Section 5, we provide the proof of Theorem 1.3, broken
down into several key steps:

(1) We show that from our source to solution map data, we can determine if our particle
sources interact in W .

• In section 5.1, given choices of future-directed timelike vectors (x̂, p̂) and (ŷ, q̂), as
in Section 1.1, we construct the sources f1 and f2 described in Section 1.1.

• In this section we additionally construct smooth C∞c approximations hε1 and hε2,
ε > 0, of the sources f1 and f2 respectively. This is done mainly for technical
reasons, since we only consider the source-to-solution operator of the Boltzmann
equation for smooth sources.

• In Section 5.2 we describe a particular future-directed lightlike vector field Pe :
Ve → L+Ve, Ve ⊂ V that admits as an integral curve a fixed optimal geodesic γ.
We compose it with the collision operator (1.1) and prove

singsupp(S) = γ ∩ Ve,

where S is known from our measurements, namely S = limε→0 Φ2L(hε1, h
ε
2) ◦ Pe.

(2) In section 5.4 we prove Proposition 1.4, which says that we may determine earliest light
observation sets from our measurements of S.

(3) From the work in Section 5.4 which connects source-to-solution map data to the earliest
light observation sets, we show we may determine the conformal class of the metric.

(4) Lastly, in the section 5.6 we finish the proof by showing that we can identify the conformal
factor of the metric.

Auxiliary lemmas, which include lemmas on the existence of solutions to the Cauchy problem
of the Boltzmann equation with small data and the linearization of the source-to-solution map,
among others, are contained in the Appendices.

Acknowledgments. The authors were supported by the Academy of Finland (Finnish Centre
of Excellence in Inverse Modelling and Imaging, grant numbers 312121 and 309963) and AtMath
Collaboration project.

2. Preliminaries

2.1. Notation. Throughout this paper, (M, g) will be an n-dimensional Lorentzian spacetime
with n ≥ 3. We additionally assume that (M, g) is globally hyperbolic. Globally hyperbolicity
(see e.g. [7]) implies that M = R×N , for some smooth n− 1 dimensional submanifold N ⊂M ,
and that the metric takes the form

g(x) = −g00(x)dx0 ⊗ dx0 + gN (x), x = (x0, x), x0 ∈ R, x ∈ N,
where g00 ∈ C∞(M) is a positive function and gN (x0, · ) is a smooth Riemannian metric onN , for
each x0 ∈ R. Global hyperbolicity implies that the manifold (M, g) has a global smooth timelike
vector field τ . This vector field defines the causal structure for (M, g). Further, a globally
hyperbolic manifold is both causally disprisoning and causally pseudoconvex (see for example
[5]). Causally disprisoning means that for each inextendible causal geodesic γ : (a, b) → M ,
−∞ ≤ a < b ≤ ∞, and any t0 ∈ (a, b), the closures in M of the sets γ(a, t0] and γ[t0, b) are
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not compact in M . The manifold M is pseudoconvex if for every compact set of M , there is a
geodesically convex compact set which properly contains it.

We use standard notation for the causal structure of (M, g). For x, y ∈ M we write x � y
(respectively x � y) if x 6= y and there is a future directed timelike geodesic from x to y
(respectively from y to x). We write x < y (respectively x > y) if x 6= y and there is a future
directed causal geodesic from x to y (respectively from y to x).

Given x ∈ M , let J+(x) := {y : x < y or x = y} ⊂ M and I+(x) := {y : x � y} ⊂ M denote
respectively the causal and chronological future of x. Similarly, let J−(x) and I−(x) denote the
causal and chronological past of x. The set of points in M which may be reached by lightlike
geodesics emanating from a point x ⊂M is

L±(x) := {y ∈ TM : y = expx(sp), p ∈ L±xM, s ∈ [0,∞)},

where L±xM ⊂ TM is the set of future (+) or past (−) directed lightlike vectors in TxM . If
U ⊂M , we also write

(2.9) J±(U) =
⋃
x∈U

J±(x), I±(U) =
⋃
x∈U

I±(x), L±(U) =
⋃
x∈U
L±(x).

We express the elements of TM as (x, p) where x ∈ M and p ∈ TxM . Since TM = TR × TN ,
each (x, p) ∈ TM can be written in the form

x = (x0, x̄), and p = (p0, p̄),

for x0 ∈ R, x̄ ∈ N , p0 ∈ Tx0R, and p̄ ∈ Tx̄N . Given a local coordinate frame ∂α : U ⊂M → TM ,
α = 1, . . . , n, we identify TU ≈ U × Rn. We use (x, pα) to denote this local expression.

For (x, p) ∈ TM , we denote by γ(x,p) the geodesic with initial position x and initial velocity
p. The velocity of γ(x,p) at s ∈ R is denoted by γ̇(x,p)(s) ∈ Tγ(x,p)(s)M , s ∈ R. To simplify the

notation we occasionally refer also to the curve s 7→ (γ(x,p)(s), γ̇(x,p)(s)) ∈ TM by γ̇(x,p)(s).

The appropriate phase spaces for our particles will be comprised of the following subbundles of
TM . Let U ⊂M be open and let m ≥ 0. The mass shell of mass m on U is

PmU := {(x, p) ∈ TM \ {0} :
√
−g(p, p) = m, π(x, p) = x ∈ U} ⊂ TM,

where π : TM →M is the canonical projection. The time-like bundle on U is

PU :=
⋃
m>0

PmU.

We denote the inclusion of the light-like bundle LU := P 0U to this union as

PU :=
⋃
m≥0

PmU

which is the bundle of causal vectors on U . Notice that PU excludes the zero section; that is,
a zero vector is not causal in our conventions. We also write for t ∈ R, x ∈ R×N

P rt U := (TtR× TN) ∩ P rU, P rxU := TxM ∩ P rU
PtU := (TtR× TN) ∩ PU, PxU := (TxM) ∩ PU,

and write similarly for PxU and PtU .

Each one of the bundles above consists of future-directed and past-directed components which
are distinguished by adding “+” or “−” to the superscript. For example, we denote the manifold
of future-directed causal vectors on an open set U ⊂M by

P+
U := {(x, p) ∈ TM \ {0} : x ∈ U, −g(p, p)|x ≥ 0, g(τ, p) < 0} ⊂ PU.
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Let S ⊂ PtM , t ∈ R be a submanifold of TM . The geodesic flowout of S in TM is the set

KS := {(x, p) ∈ TM : (x, p) = γ̇(y,q)(s), s ∈ (−T (y,−q), T (y, q)), (y, q) ∈ S} ⊂ PM.

Here the interval (−T (y,−q), T (y, q)) is inextendible, i.e. the maximal interval where the geo-
desic γ(y,q) is defined.

Remark 2.1. The geodesic flowout KS is a smooth manifold. To see this, note that KS is
the image of the map (s, (y, q)) 7→ ϕs(y, q), where ϕs(y, q) is the integral curve of the geodesic
vector field X at parameter time s starting from (y, q) ∈ S. Since X is transversal to PtM (see
the proof of Lemma 3.1) we have that this map is an immersion, see e.g. [33, Theorem 9.20].
Given that M is globally hyperbolic, there are no closed causal geodesics. From this it follows
that this map is also injective and thus an embedding. Consequently, its image KS is a smooth
submanifold of TM .

We denote GS := π(KS), which is the set

GS = {x ∈M : x = γ(y,q)(s), s ∈ (−T (y,−q), T (y, q)), (y, q) ∈ S} ⊂M.

Unlike KS , the set GS might not be a manifold since the geodesics describing this set might
have conjugate points.

If X is a smooth manifold and Y is a submanifold of X, the conormal bundle of Y is defined
as

N∗Y = {(x, ξ) ∈ T ∗X \ {0} : x ∈ Y, ξ ⊥ TxY }.
Here ⊥ is understood with respect to the canonical pairing of vectors and covectors.

2.2. Lagrangian distributions and Fourier integral operators. Here we define the classes
of distributions and operators we work with in this paper. We will follow the notation in
Duistermaat’s book [13]. See also the original sources [22, 14].

Let X be a smooth manifold of dimension n ∈ N and Λ ⊂ T ∗X \ {0} be a conic Lagrangian
manifold [13, Section 3.7]. We denote the space of symbols [13, Definition 2.1.2] of order µ ∈ R
(and type 1, 0) on the conic manifold X×Rk \{0} by Sµ(X×Rk \{0}). The Hörmander space of
Lagrangian distributions of order m ∈ R over Λ is denoted by Im(X; Λ), and consists of locally
finite sums u =

∑
j uj ∈ D′(X) of oscillatory integrals

uj(x) =

∫
Rkj

eiϕj(x,ξ)aj(x, ξ)dξ, x ∈ X.

Here aj ∈ Sm−kj/2+n/4(X × Rkj \ {0}). The phase function ϕj is defined on an open cone

Γj ⊂ X ×Rkj and satisfies the following two conditions: (a) it is nondegenerate, dϕj 6= 0 on Γj
and (b) the mapping

Γj → Λ, (x, ξ) 7→ (x, dxϕj(x, ξ))

defines a diffeomorphism between the set {(x, ξ) ∈ Γj : dξϕj(x, ξ) = 0} and some open cone in
Λ. When the base manifold X is clear, we abbreviate Im(Λ) = Im(X; Λ).

Below we let X,Y, Z be C∞-smooth manifolds. Let Λ be a conic Lagrangian manifold in T ∗(X×
Y ) \ {0}. The manifold corresponds to a canonical relation Λ′ defined by

Λ′ = {(x, y; ξx, ξy) ∈ T ∗(X × Y ) : (x, y; ξx,−ξy) ∈ Λ}.(2.10)

Equivalently, one may start with a canonical relation and obtain a Lagrangian manifold. In this
paper we chose to represent canonical relations as twisted manifolds Λ′ of Lagrangian manifolds.
Considering an element in Im(X × Y ; Λ) as a Schwartz kernel defines an operator

F : C∞c (Y )→ D′(X).
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The class of operators of this form are called Fourier integral operators of order m ∈ R associated
with the relation Λ′. We denote this class of operators by

Im(X,Y ; Λ′).

We may also identify the space Im(X; Λ), Λ ⊂ T ∗X, with Im(X, {0}; Λ× {(0, 0)}).

The wavefront set of F is denoted by WF ′(F ) and it is the set

WF ′(F ) = {(x, ξx, y, ξy) ∈ (T ∗X × T ∗Y ) \ {0} : (x, y, ξx,−ξy) ∈WF (G)},(2.11)

where WF (G) is the wavefront set of the distribution kernel G of F . We also define

WF ′X(F ) = {(x, ξx) ∈ (T ∗X) \ {0} : (x, y, ξx, 0) ∈WF (G)},(2.12)

WF ′Y (F ) = {(y, ξy) ∈ (T ∗Y ) \ {0} : (x, y, 0, ξy) ∈WF (G)}.(2.13)

Consider two Fourier integral operators u1 ∈ Im1(X,Y ; Λ′1) and u2 ∈ Im2(Y, Z; Λ′2) (i.e.
Schwartz kernels in Im1(X × Y ; Λ1) and Im2(Y × Z; Λ2), respectively) with respective orders
m1 and m2 and relations Λ′1 and Λ′2. Sufficient conditions for u1 and u2 to form a well defined
composition u1 ◦ u2 ∈ Im1+m2(X,Z; Λ′1 ◦ Λ′2) are described in theorems [13, Theorem 2.4.1,
Theorem 4.2.2] which provide the rules of basic microlocal operator calculus, often referred to
as transversal intersection calculus. The relation Λ′1 ◦ Λ′2 is defined as

Λ′1 ◦ Λ′2 := {(x, z ; ξx, ξz) ∈ T ∗(X × Z) :

(x, y ; ξx, ξy) ∈ Λ′1, (y, z ; ξy, ξz) ∈ Λ′2, for some (y ; ξy) ∈ T ∗Y }.(2.14)

Lastly, we remark that products of Lagrangian distributions are naturally defined as distributions
over an interesting pair of conic Lagrangian manifolds Λ0,Λ1 ∈ T ∗X \ {0}, which are described
next. We refer to [15, 21, 37, 19, 20] for a thorough presentation of such distributions.

To begin, a pair (Λ0,Λ1) of conic Lagrangian manifolds Λ0,Λ1 ∈ T ∗X \ {0}, is called an inter-
secting pair if their intersection is clean: Λ0 ∩ Λ1 is a smooth manifold and

T ∗λ (Λ0 ∩ Λ1) = T ∗λΛ0 ∩ T ∗λΛ1 for all λ ∈ Λ0 ∩ Λ1.

Let (Λ0,Λ1) be an intersecting pair of conic Lagrangians with codim(Λ0∩Λ1) = k, and µ, ν ∈ R.
For ` ∈ Z+, we denote by Sµ,ν(X × (R` \ {0}) × Rk) the space of symbol-valued symbols on
X × (R` \ {0})×Rk (see [15, 19]). We say that u ∈ D′(X) is a paired Lagrangian distribution of
order (µ, ν) associated to (Λ0,Λ1) if u can be expressed as a locally finite sum of the form

u = u0 + u1 + v,

where u0 ∈ Iµ+ν(Λ0), u1 ∈ Iν(Λ1), and

v(x) =

∫
R`

∫
Rk
eiϕ(x;θ;σ)a(x; θ;σ) dθdσ

for a(x; θ;σ) ∈ Sµ̃,ν̃(X×(R`\{0})×Rk), some ` ∈ Z+, µ = µ̃+ν̃+ `+k
2 −

n
4 , and ν = −ν̃−n

2 . Above,
the multiphase function ϕ(x; θ;σ) satisfies the following three conditions: for any λ0 ∈ Λ0 ∩Λ1,
(a) there is an open conic set Γ ⊂ X × (R` \ {0}) × Rk such that ϕ(x; θ, σ) ∈ C∞(Γ), (b)
ϕ(x; θ, 0) is a phase function parametrizing Λ0 in a conic neighbourhood of λ0, and (c) ϕ(x; 0, σ)
is a phase function parametrizing Λ1 in a conic neighbourhood of λ0. In particular,

u ∈ Iµ,ν(Λ0,Λ1) =⇒WF (u) ⊂ Λ0 ∪ Λ1.(2.15)

We denote the set of paired Lagrangian distributions of order (µ, ν), µ, ν ∈ R, associated to
(Λ0,Λ1) by Iµ,ν(Λ0,Λ1).
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3. Vlasov and Boltzmann Kinetic Models

3.1. The Vlasov model. We consider a system of particles on a Lorentzian manifold (M, g)
having positions x ∈M and momenta p ∈ PxM in a statistical fashion as a density distribution
u ∈ D′(PM). We assume that the support of u is contained in some compact and proper subset
K ⊂ PM . The Vlasov model describes the trajectories of a system of particles in a relativistic
setting where there are no external forces and where collisions between particles are negligible.
In this situation, the individual particles travel along geodesics determined by initial positions
and velocities. On the level of density distributions, the behaviour of the system of particles is
captured by the Vlasov equation

Xu = f,(3.16)

where f ∈ D′(PM) is a source of particles and X : TM → TTM on TM is the geodesic vector
field. Locally, this vector field has the expression

X = pα
∂

∂xα
− Γαλµ(x)pλpµ

∂

∂pα
.

Above the functions Γαλµ, λ, µ, α = 0, . . . , n = dim(M) − 1, are the Christoffel symbols of the
Lorentz metric g.

The geodesic vector field −iX : C∞(PM) → C∞(PM) may be viewed as Fourier Integral
Operator (FIO) with principal symbol

σX : T ∗TM → R, σX (x, pα ; ξxα, ξ
p
α) = pαξxα − Γαλµ(x)pλpµξpα.(3.17)

Writing 〈 · , · 〉 for the dual paring between TTM and T ∗TM , σX takes the form

σX (x, p ; ξ) = 〈ξ,X〉|(x,p) =
〈
ξ, ∂sγ̇(x,p)(s)

〉∣∣
s=0

.

Therefore, a function φ ∈ C∞(TM) satisfies σX (x, p, dφ|(x,p)) = 0 at each (x, p) ∈ TM if and
only if φ is constant along geodesic velocity curves s 7→ γ̇(x,p)(s). Thus the bicharacteristic strip

of −iX with initial data (x̃, p̃; ξ̃) ∈ σ−1
X (0) is the parametrized curve

s 7→ (x(s), p(s)) = γ̇(x̃,p̃)(s), ξ(s) = dφ|γ̇(x̃,p̃)(s),

where φ ∈ C∞(TM) is any smooth function which is constant along geodesic velocity curves

and satisfies dφ|(x̃,p̃) = ξ̃. We denote by ΛX the collection of pairs

(3.18) ((x, p ; ξ), (y, q ; η)) ∈ T ∗TM × T ∗TM

that lie on the same bicharacteristic strip of X .

Lemma 3.1. Let (M, g) be a globally hyperbolic C∞-smooth Lorentzian manifold and write it
in the standard form M = R×N of global time and space. Let t ∈ R. The geodesic vector field
−iX on PM is a strictly hyperbolic operator of multiplicity 1 with respect to the submanifold
PtM := (TtR× TN) ∩ PM .

We omit the proof of the lemma, which is a straightforward verification of the conditionsin [13,
Definition 5.1.1].

In this section, the space (M, g) is assumed to be globally hyperbolic C∞-smooth Lorentzian
manifold, but not necessarily geodesically complete. Given the initial data that u vanishes in
the past of a Cauchy surface and a source f , we will show that the Vlasov equation Xu = f
has a unique solution. There is a substantial amount of literature on this topic (see for example
[9], [1], [41], and [40]). For example, Lemma 3.1 together with standard results for hyperbolic
Cauchy problems (see e.g. [13, Theorem 5.1.6]) demonstrates uniqueness of solutions to the
Vlasov equation.
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Let us denote by γ(x,p) : (−T1, T2)→M the inextendible geodesic which satisfies

(3.19) γ(x,p)(0) = x and γ̇(x,p)(0) = p.

Since (M, g) is not necessarily geodesically complete, we might have that T1 < ∞ or T2 < ∞.
Existence of solutions to Xu = f , with initial data u = 0, in the case where f(x, p) is a smooth

function on P+
M with compact support in the base variable x ∈M , can be shown by checking

that

(3.20) u(x, p) :=

∫ 0

−∞
f(γ(x,p)(t), γ̇(x,p)(t))dt on (x, p) ∈ P+

M

is well-defined and satisfies Xu = f . Indeed, on a globally hyperbolic Lorentzian manifold for a
given compact set Kπ ⊂M and a causal geodesic γ, there are t1, t2 ∈ R such that for parameter
times t /∈ [t1, t2] we have γ(t) /∈ Kπ. Thus the integral above is actually over a finite interval.
Because f and the geodesic flow on (M, g) are smooth, the function u(x, p) is smooth. If (M, g)
is not geodesically complete, and if γ(x,p) : (−T1, T2) → M , we interpret the integral above to
be over (−T1, 0]. We interpret similarly for all similar integrals without further notice.

If C is a Cauchy surface of M , we write C± for the causal future (+) or the causal past (−) of
C:

C± = J±(C).

In particular, the notation P+C± refers to the subset of TM of future directed causal vectors

on the causal future (+) or past (−) of the Cauchy surface C, i.e. P+C± = P+
[J±(C)] (see (2.9)

for more details). If K ⊂ P+C+ is compact and k ≥ 0 is an integer, we define the Banach
space

CkK(P+C+) := {f ∈ Ck(P+C+) : supp(f) ⊂ K},
equipped with the norm of Ck.

For our purposes it is convenient to have explicit formulas for solutions to the Vlasov equation
and therefore we give a proof using the solution formula (B.109).

Theorem 3.2. Assume that (M, g) is a globally hyperbolic C∞-smooth Lorentzian manifold. Let

C be a Cauchy surface of (M, g), K ⊂ P+C+ be compact and k ≥ 0. Let also f ∈ CkK(P+
M).

Then, the problem

Xu(x, p) = f(x, p) on P+
M

u(x, p) = 0 on P+C−(3.21)

has a unique solution u in Ck(P+
M). We write u = X−1(f) and call X−1 : CkK(P+

M) →
Ck(P+

M) the solution operator to (3.21). In particular, if Z ⊂ P+
M is compact, there is a

constant ck,K,Z > 0 such that

‖u|Z‖Ck(Z) ≤ ck,K,Z‖f‖Ck(P+
M)
.(3.22)

If k = 0, the estimate above is independent of Z:

‖u‖
C(P+

M)
≤ cK‖f‖C(P+

M)
.

We have placed the proof of the theorem in Appendix B. The proof follows from the explicit
formula (B.109) for the solution. We call X−1 the solution operator to (3.21). The source-to-
solution map ΦL of the Vlasov equation (3.21) is defined as

ΦL : CkK(P+
M)→ Ck(P+

M), ΦL(f) = u,
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where u is the unique solution to (3.21) with the source f ∈ CkK(P+
M) and k ≥ 0. As we

will soon see, the Vlasov equation is the linearization of the Boltzmann equation with a source-
to-solution map Φ. We also consider the setting where we relax the condition that the source
f above is smooth and show that the solution operator to (3.21) (when considering separately
timelike and lightlike vectors) has a unique continuous extension to the class of distribution f ,
which satisfy WF (f) ∩ N∗(P+C) = ∅. For the precise statement and proof thereof, please see
Appendix B.

3.2. The Boltzmann model. The Boltzmann model of particle kinetics in (M, g) modifies the
Vlasov model to take into account collisions between particles. This modification is characterized
by the (relativistic) Boltzmann equation

Xu(x, p)−Q[u, u](x, p) = 0.

Here Q[ · , · ] is called the collision operator. It is explicitly given by

Q : C∞c (PM)× C∞c (PM)→ C∞(PM)(3.23)

Q[u1, u2](x, p) =

∫
Σx,p

[
u1(x, p)u2(x, q)− u1(x, p′)u2(x, q′)

]
A(x, p, q, p′, q′)dVx,p(q, p

′, q′),

where dVx,p(q, p
′, q′) for fixed (x, p) is a volume form defined on

Σx,p = {(p, q, p′, q′) ∈ (PxM)4 : p+ q = p′ + q′} ⊂ TxM4,(3.24)

which is induced by a volume form dV (x, p, q, p′, q′) on the manifold

Σ =
⋃

(x,p)∈P+

Σx,p.(3.25)

We call A = A(x, p, q, p′, q′) the collision kernel and assume that it is admissible in the sense of
Definition 1.1.

Heuristically, Q describes the average density of particles with position and momentum (x, p),
which are gained and lost from the collision of two particles u1, u2. The contribution to the
average density from the gained particles is

Qgain[u1, u2](x, p) := −
∫

Σx,p

u1(x, p′)u2(x, q′)A(x, p, q, p′, q′)dVx,p(q, p
′, q′),(3.26)

and the contribution from the lost particles is

Qloss[u1, u2](x, p) := u1(x, p)

∫
Σx,p

u2(x, q)A(x, p, q, p′, q′)dVx,p(q, p
′, q′).(3.27)

The existence and uniqueness to the initial value problem for the Boltzmann equation has been
studied in the literature under various assumptions on the geometry of the Lorentzian manifold,
properties of the collision kernel and assumptions on the data, see for example [8, 3, 18]. These
references consider the Boltzmann equation on L2-based function spaces.

We consider the following initial value problem for the Boltzmann equation on a globally hyper-
bolic manifold (M, g) with a source f

Xu−Q[u, u] = f, on P+
M

u = 0, on P+C−,

where X is the geodesic vector field on TM , C is a Cauchy surface of M and C± denotes the
causal future (+)/past (-) of C. We assume that (M, g) is globally hyperbolic and that the
collision kernel of Q is admissible in the sense of Definition 1.1. Our conditions on the collision
kernel allow us to consider the Boltzmann equation in the space of continuous functions. We

also assume that the sources f are supported in a fixed compact set K ⊂ P+
C+. Note that
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(since 0 /∈ P+
M) this especially means that f is supported outside a neighbourhood of the zero

section of TM . We work with the following function spaces, each equipped with the supremum
norm:

Cb(P
+C+) := {h ∈ C(P+C+) : h is bounded},

and
CK(P+C+) := {h ∈ C(P+C+) : supp(h) ⊂ K}.

Theorem 1.2. Let (M, g) be a globally hyperbolic C∞-smooth Lorentzian manifold. Let also C
be a Cauchy surface of M and K ⊂ P+C+ be compact. Assume that A : Σ→ R is an admissible
collision kernel in the sense of Definition 1.1.

There are open neighbourhoods B1 ⊂ CK(P+C+) and B2 ⊂ Cb(P
+
M) of the respective origins

such that if f ∈ B1, the Cauchy problem

Xu(x, p)−Q[u, u](x, p) = f(x, p) on P+
M

u(x, p) = 0 on P+C−(3.28)

has a unique solution u ∈ B2. There is a constant cA,K > 0 such that

‖u‖
C(P+

M)
≤ cA,K‖f‖C(P+

M)
.

We give a proof of Theorem 1.2 in Appendix B. As a direct consequence, we find:

Corollary 3.3. Assume as in Theorem 1.2 and adopt its notation. The source-to-solution map

Φ : B1 → B2, Φ(f) = u

is well-defined. Here u ∈ B2 ⊂ Cb(P
+
M) is the unique solution to the Boltzmann equation (3.28)

with the source f ∈ B1 ⊂ CK(P+
M).

The proof of Corollary 3.3 appears in Appendix B.

Given the existence of the source-to-solution map Φ associated to the Boltzmann equation, we
now formally calculate the first and second Frechét differentials of Φ, which will correspond to
the first and second linearizations of the Boltzmann equation. Let C be a Cauchy surface in M ,

and f1, f2 ∈ C∞c (P+C+), and consider the 2-parameter family of functions

(ε1, ε2) 7→ Φ(ε1f1 + ε2f2)

where ε1, ε2 are small enough so that ε1f1 + ε2f2 ∈ B1. Formally expanding in ε1 and ε2, we
obtain

Φ(ε1f1 + ε2f2) = ε1ΦL(f1) + ε2ΦL(f2) + ε1ε2Φ2L(f1, f2) + higher order terms,

where the higher order terms tend to zero as (ε1, ε2) → (0, 0) in Cb(P
+
M). Substituting this

expansion of Φ(ε1f1 + ε2f2) into the Boltzmann equation and differentiating in the parameters
ε1 and ε2 at ε1 = ε2 = 0 yields the equations

XΦL(fj) = fj , j = 1, 2,

and
XΦ2L(f1, f2) = Q[ΦL(f1),ΦL(f2)] +Q[ΦL(f2),ΦL(f1)].

We call these equations the first and second linearizations of the Boltzmann equation. No-
tice that the first and second linearizations are a Vlasov-type equation (3.21) with a source
term.

The next lemma makes the above formal calculation precise. We have placed the proof of the
lemma in Appendix B.
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Lemma 3.4. Assume as in Theorem 1.2 and adopt its notation. Let Φ : B1 → B2 ⊂ Cb(P
+
M),

B1 ⊂ CK(P+C+), be the source-to-solution map of the Boltzmann equation.

The map Φ is twice Frechét differentiable at the origin of CK(P+C+). If f, h ∈ B1, then:

(1) The first Frechét derivative Φ′ of the source-to-solution map Φ at the origin satisfies

Φ′(0; f) = ΦL(f),

where ΦL is the source-to-solution map of the Vlasov equation (3.21).

(2) The second Frechét derivative Φ′′ of the source-to-solution map Φ at the origin satisfies

Φ′′(0; f, h) = Φ2L(f, h),

where Φ2L(f, h) ∈ C(P+
M) is the unique solution to the equation

XΦ2L(f, h) = Q[ΦL(f),ΦL(h)] +Q[ΦL(h),ΦL(f)], on P+
M,(3.29)

Φ2L(f, h) = 0, on P+C−.

We remark that the terms Q[ΦL(f),ΦL(h)]+Q[ΦL(h),ΦL(f)] in (3.29) might not have compact

support in P+
M , and thus unique solvability of (3.29) does not follow directly from Theorem 3.2.

However, a unique solution to (3.29) is shown to exist in the proof of the above lemma.

In our main theorem, Theorem 1.3, the measurement data consists of solutions to the Boltzmann
equation restricted to our measurement set V . By Lemma 3.4 above, we obtain that the measure-
ment data also determines the solutions to the first and second linearization of the Boltzmann
equation restricted to V . We will see from (3.29) that the second linearization Φ2L captures
information about the (singular) behaviour of the collision term Q[ΦL(f1),ΦL(f2)]. In the next
section we will analyze the microlocal behaviour of Q[ΦL(f1),ΦL(f2)]. Then, in Section 5, we
use this analysis to recover information about when particles collide in the unknown region W .
From such particle interactions in W , we will parametrize points in the unknown set W by light
signals measured in V , which are obtained by restricting Φ2L to lightlike vectors.

4. Microlocal analysis of particle interactions

In this section we consider the gain term Qgain of the collision operator and prove that we can
extend Qgain to conormal distributions over a certain class of submanifolds in PM .

Definition 4.1. [Admissible intersection property] We say that submanifolds Y1 ⊂ PM and
Y2 ⊂ PM have an admissible intersection property at x0 ∈ π(Y1)∩ π(Y2) if there exists an open
neighbourhood Ux0 = U ⊂M of x0 and coordinates

(4.30) x = (x′, x′′) : U → Rn, x′ = (x1, . . . , xd), x′′ = (xd+1, . . . , xn)

centered at x0 such that

Y1 ∩ TU = {(x, p) ∈ TU : x′ = 0, p′ = 0, p′′ = (1, 0, . . . , 0)}
Y2 ∩ TU = {(x, p) ∈ TU : x′′ = 0, p′′ = 0, p′ = (1, 0, . . . , 0)}

(4.31)

in the associated canonical coordinates (x, p) = (x′, x′′, p′, p′′) of TU . Moreover, for X ⊂ M we
say that the pair Y1 and Y2 has the admissible intersection property in X if either the property
holds at every x0 ∈ π(Y1) ∩ π(Y2) ∩X or π(Y1) ∩ π(Y2) ∩X = ∅.

Given a neighbourhood U as above we define the following conic Lagrangian submanifolds:

Λ0 := N∗{(0, 0)} = T ∗x0R
n, Λ1 := N∗{x ∈ U : x′ = 0} and Λ2 := N∗{x ∈ U : x′′ = 0}.
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We remark that our statement of Definition 4.1 is motivated by the following case which arises
in our proof of Theorem 1.3. Let V ⊂M be as in Theorem 1.3. In the proof of the theorem we
will consider two delta-type distributions supported over a submanifold S1 ⊂ P+V of dimension
(n − 2) and a single point space S2 = {(x, p)} ⊂ P+V . The submanifold S1 is constructed in
Corollary 4.6 using Lemma 4.5 so that the geodesic flowouts Y1 := KS1 and Y2 := KS2 have
admissible intersection property in πsuppA and hence transverse intersection when projected
to the base manifold M in both settings (M, g) = (Mj , gj), j = 1, 2 simultaneously. This
intersection is a finite number of discrete points. Moreover, due to admissible intersection
property, the fibre component TxM ∩ Yj of Yj at each point x sufficiently near an intersection
point x0 ∈ πY1 ∩ πY2 ∩ (πsuppA) is a single vector (the vector (1, 0, . . . , 0) in coordinates) and
hence the map π : TM → M defines diffeomorphism from Yj to the projection GSj := πKSj in
that neighbourhood for both j = 1, 2. Globally the set GS1 (also GS2 if S2 is not required to be
a single point space) may fail to be manifold due to caustic effects.

Our goal is to extend the operator Qgain[ · , · ] : C∞c (PM)×C∞c (PM)→ C∞(PM) to conormal
distributions over submanifolds of PM , such as those described above. The analysis of such an
extension requires microlocal analysis on manifolds with boundary, since PM has a boundary
given by the collection of lightlike vectors. The analysis of distributions over manifolds with
boundary can be involved and technical. We are able to avoid difficulties related to manifolds
with boundary by introducing an auxiliary vector field and composing it with Qgain. This is
explained next.

Fix an open set U ⊂ M and a smooth vector field P : U → PU . Let u, v ∈ C∞c (PM), and let
x ∈ U . We define the operator QPgain : C∞c (PM)× C∞c (PM)→ C∞(U) as

(4.32) QPgain[u, v](x) = Qgain[u, v](P (x)).

We will see in this section that we are able to analyzeQPgain operator by using standard techniques

such as those in [13]. The analysis of QPgain presented in this section will be used to study the

singular structure of solutions ΦL+V f to (1.2) for given sources f which are constructed in
Section 5. We note now that in Section 5, we we will choose a specific P , which we will denote
by Pe.

We first record a couple of auxiliary lemmas. The first lemma considers the conormal bundle of
a submanifold of U × PU × PU . The points of U × PU × PU are denoted by (x, y, z, p, q) =
(x, (y, p), (z, q)).

Lemma 4.2. Let Y1 and Y2 and U be as in Definition 4.1 and adopt also the associated notation.
Define

ΛR = N∗
( ⋃
x∈U
{x} × PxU × PxU

)
.

The submanifold ΛR of T ∗(U × PU × PU) \ {0} equals the set

ΛR = {
(
x, y, z, p, q ; ξx, ξy, ξz, ξp, ξq

)
∈ T ∗(U × PU × PU) \ {0} :

ξx + ξy + ξz = 0, ξp = ξq = 0, x = y = z}.

We have

Λ′R = {
(
(x; ξx), (y, z, p, q ; ξy, ξz, ξp, ξq)

)
∈ T ∗U × T ∗(PU × PU) \ {0} :

ξx = ξy + ξz 6= 0, ξp = ξq = 0, x = y = z}.(4.33)

The spaces Λ′R× (N∗[Y1×Y2]) and T ∗U ×diagT ∗(PM ×PM) intersect transversally in T ∗U ×
T ∗(PM × PM)× T ∗(PM × PM).
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Please see Appendix A.1 for a proof.

For the next theorem let Y1, Y2 ⊂ PM be smooth manifolds which satisfy the properties in
Definition 4.1. Fix x0 ∈ π(Y1) ∩ π(Y2) ∩ X (below we choose X = πsuppA) and let Λj , j =
1, 2, be the Lagrangian manifolds specified in the definition. In canonical coordinates (x, ξ) =
(x′, x′′, ξ′, ξ′′) on T ∗U we obtain the expressions

Λ0 = {(x, ξ) : x′ = 0, x′′ = 0},(4.34)

Λ1 = {(x, ξ) : x′ = 0, ξ′′ = 0},(4.35)

Λ2 = {(x, ξ) : x′′ = 0, ξ′ = 0}.(4.36)

Thus, the elements of the manifolds Λ0,Λ1,Λ2 can be parametrized by the free coordinates
(ξ′, ξ′′), (x′′, ξ′), and (x′, ξ′′), respectively. In the canonical coordinates
(x, p; ξx, ξp) = (x′, x′′, p′, p′′; (ξx)′, (ξx)′′, (ξp)′, (ξp)′′) in T ∗TU we have that

N∗Y1 = {(x, p; ξx, ξp) : x′ = 0, p′ = 0, p′′ = (1, 0, . . . , 0), (ξx)′′ = 0},(4.37)

N∗Y2 = {(x, p; ξx, ξp) : x′′ = 0, p′′ = 0, p′ = (1, 0, . . . , 0), (ξx)′ = 0},(4.38)

so the manifolds N∗Y1 and N∗Y2 are locally parametrized by the coordinates (x′′, (ξx)′, ξp)
and (x′, (ξx)′′, ξp) respectively. The identity (4.40) in the next theorem is written in terms of
the coordinates (x′′, (ξx)′, ξp), (x′, (ξx)′′, ξp) and ((ξx)′, (ξx)′′) for the symbols σ(f1), σ(f2) and
σ(QPgain[f1, f2]) respectively.

We extend QPgain to conormal distributions as follows.

Theorem 4.3. Let (M, g) be a globally hyperbolic Lorentzian manifold. Let Y1, Y2 ⊂ PM ,
be smooth manifolds that have the admissible intersection property (Definition 4.1) at some
x0 ∈ πY1 ∩ πY2 and let Λl, l = 0, 1, 2, and U ⊂ M be as in Definition 4.1. Let P be a smooth
section of the bundle π : PU → U and Q be the collision operator with an admissible collision
kernel.

Then the operator QPgain : C∞c (PM) × C∞c (PM) → C∞(U) defined in (4.32) extends into a
continuous map

Im1
comp(PM ; N∗Y1)× Im2

comp(PM ; N∗Y2)→ D′(U), m1,m2 ∈ R.

For (f1, f2) ∈ Im1
comp(PM ; N∗Y1)× Im2

comp(PM ; N∗Y2) we have that

WF (QPgain[f1, f2]) ⊂ Λ0 ∪ Λ1 ∪ Λ2.

Moreover, microlocally away from both Λ1 and Λ2, we have that

(4.39) QPgain[f1, f2] ∈ Im1+m2+3n/4(U ; Λ0 \ (Λ1 ∪ Λ2))

together with the symbol

σ(QPgain[f1, f2])((ξx)′, (ξx)′′) = Cσ(f1)(0; (ξx)′, 0)σ(f2)(0; (ξx)′′, 0),(4.40)

where C is given in the canonical coordinates p = (p′, p′′) and q = (q′, q′′) by

C = cA(x0, p̂(x0), p+ q − p̂(x0), p, q)
∣∣
p=(1,0,...,0), q=(1,0,...,0)

,

and p̂(x0) ∈ Px0U is such that P (x0) = (x0, p̂(x0)). Here c is some non-zero constant and
the manifolds Λ0 \ (Λ1 ∪ Λ2), T ∗U ∩N∗Y1, and T ∗U ∩N∗Y2 are parametrised by the canonical
coordinates ((ξ)′, (ξx)′′), (x′′, (ξx)′, ξp) and (x′, (ξx)′′, ξp) respectively.
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Proof of Theorem 4.3. We write Im(PM ; Λ) = Im(Λ) for a Lagrangian manifold Λ ⊂ T ∗(PM)
and m ∈ R. To prove the claims of the proposition, we first represent QPgain[f1, f2] as a com-
position of a Fourier integral operator and a tensor product of f1 and f2. Then we appeal to
results for Fourier integral operators in [13] to conclude the proof. The majority of the proof
consists of demonstrating that the Fourier integral operators we use to decompose QPgain[f1, f2]

satisfy the conditions required by [13, Theorem 2.4.1] and [13, Corollary 1.3.8].

Let (x, p) = (x′, x′′, p′, p′′) be local coordinates in TU , where U is an open neighbourhood of x0,
as described in Definition 4.1. Let us define an integral operator

R : C∞c (PM × PM)→ D′(U)

by the formula

〈R[φ], ψ〉 =

∫
PU⊕PU

φ(x, p, x, q)ψ(x) dv(x, p, q)

where dv is the induced volume form on the direct sum bundle PU ⊕ PU := {
(
(x, p), (y, q)

)
∈

PU × PU : x = y} and where φ ∈ C∞c (PM × PM) and ψ ∈ C∞c (U). The induced volume
form dv is given by considering PU ⊕PU as a submanifold of PU ×PU equipped with product
Liouville volume form.

Let P be a smooth local section of the bundle π : PU → U . We represent P as P (x) = (x, p̂(x))
by using the coordinates x. Next, consider the operator

〈RA[φ], ψ〉 =

∫
PU⊕PU

A(x, p̂(x), p+ q − p̂(x), p, q)φ(x, p, x, q)ψ(x) dv(x, p, q)

Notice that

(4.41) RA[h1 ⊗ h2] = QPgain[h1, h2], h1, h2 ∈ C∞c (PM).

Here h1 ⊗ h2 is the tensor product of h1 and h2, i.e. (h1 ⊗ h2)((x, p), (y, q)) = h1(x, p)h2(y, q).
The distribution kernel associated to the operator R is

kR ∈ D′(U × PM × PM).

Since kR is a delta distribution over the submanifold⋃
x∈U
{x} × PxM × PxM ⊂ U × PM × PM,

it can be viewed as a conormal distribution

kR ∈ I−n/4(U × PM × PM ; ΛR),

ΛR := N∗
( ⋃
x∈U
{x} × PxM × PxM

)
.

Hence R is a Fourier integral operator of class I−n/4(U,PM × PM,Λ′R). Since the collision

kernel A is smooth, RA is also of class I−n/4(U,PM×PM,Λ′R). By Lemma 4.2, the Lagrangian
manifold ΛR is given by

ΛR = {
(
x, y, z, p, q ; ξx, ξy, ξz, ξp, ξq

)
∈ T ∗(U × PU × PU) \ {0} :

ξx + ξy + ξz = 0, ξp = ξq = 0, x = y = z}.

Further, we have that WF ′(RA) ⊂ Λ′R, where Λ′R equals by its definition (2.10) the set

Λ′R = {
(
(x; ξx), (y, z, p, q ; ξy, ξz, ξp, ξq)

)
∈ T ∗U × T ∗(PU × PU) \ {0} :

ξx = ξy + ξz 6= 0, ξp = ξq = 0, x = y = z}.(4.42)
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Now we show that QPgain[ · , · ] can be extended to the set of compactly supported conormal

distributions Im1
comp(N

∗Y1)× Im2
comp(N

∗Y2), for m1,m2 ∈ R. In fact, by [13, Corollary 1.3.8], it is
sufficient to demonstrate that

(4.43) WF ′PM×PM (RA) ∩WF (f1 ⊗ f2) = ∅.

for (f1, f2) ∈ Im1
comp(N

∗Y1) × Im2
comp(N

∗Y2). Since the wavefront set of fj ∈ Im(N∗Yj), j = 1, 2
is contained in N∗Yj , we have by [13, Proposition 1.3.5] that the wavefront set of the tensor
product f1 ⊗ f2 satisfies

WF (f1 ⊗ f2) ⊂ (N∗Y1 × {0}PM ) ∪ ({0}PM ×N∗Y2) ∪ (N∗Y1 ×N∗Y2),

where {0}PM ⊂ T ∗(PM) is the zero bundle over PM . By using the fact that WF (kR) ⊂ ΛR
and the equation (4.42), the set WF ′PM×PM (R) ⊂ T ∗(PU×PU)\{0}, defined in (2.13), satisfies

WF ′PM×PM (R) = {(y, z, p, q; ξy, ξz, ξp, ξq) ∈ T ∗(PM × PM) \ {0} :

there is x ∈ U such that
(
(x; 0), (y, z, p, q; ξy, ξz, ξp, ξq)

)
∈WF (kR)}

⊂ {(x, x, p, q; ξy,−ξy, 0, 0) ∈ T ∗(PM × PM) \ {0} : p, q ∈ PxU, ξy ∈ Rn \ {0}}.(4.44)

Since Y1 and Y2 satisfy Definition 4.1, pairs of elements in the fibers of N∗Y1 and N∗Y2 are
linearly independent. They are also non-zero by the definition of a normal bundle. Thus
an element of N∗Y1 × N∗Y2 cannot be of the form (x, x, p, q; ξy,−ξy, 0, 0). We deduce that
WF ′PM×PM (R) ∩ (N∗Y1 ×N∗Y2) = ∅. By a similar consideration, we see that the set in (4.44)
does not intersect (N∗Y1 × {0}PM ) ∪ ({0}PM × N∗Y2). In particular, we have (4.43). The set
WF ′U (R) ⊂ T ∗U \ {0}, defined in (2.12), satisfies

WF ′U (R) = {(x, ξx) ∈ T ∗U : there is

(y, p, z, q) ∈ PU × PU such that
(
(x; ξx), (y, z, p, q ; 0, 0, 0, 0)

)
∈WF (kR)}.

By using the fact that WF (kR) ⊂ ΛR and (4.42), we see that if
(
(x; ξx), (y, z, p, q ; 0, 0, 0, 0)

)
∈

WF (kR), then ξx = 0. Thus WF ′U (R) = ∅. By [13, Corollary 1.3.8] the composition RA ◦ (f1 ⊗
f2) is well defined and we obtain the desired continuous extension for QPgain[f1, f2] ∈ D′(U).

The second claim of the proposition follows directly from [13, Corollary 1.3.8] and the facts
WF ′U (RA) ⊂WF ′U (R) = ∅ and WF (RA) ⊂ Λ′R:

(4.45) WF (QPgain[f1, f2]) ⊂ Λ′R ◦
(

(N∗Y1 × {0}PM ) ∪ ({0}PM ×N∗Y2) ∪ (N∗Y1 ×N∗Y2)
)
.

By using the coordinate description (4.42), we show next that

(4.46) Λ′R ◦ (N∗Y1 × {0}PM ) = Λ1, Λ′R ◦ ({0}PM ×N∗Y2) = Λ2.

By definition (see (2.14)), we have that

Λ′R ◦ (N∗Y1 × {0}PM ) = {(x, ξx) ∈ T ∗U : such that
(
(x, ξx), (y, p; ξy, ξp), (z, q; ξz, ξq)

)
∈ Λ′R

where (y, p; ξy, ξp) ∈ N∗Y1 and ξz = ξq = 0}.(4.47)

By using (4.42), it follows that in the expression above, we must have that (x, ξx) is any element
of the form (y, ξy), where (y, p; ξy, 0) ∈ N∗Y1 for some p. Thus we have Λ′R ◦ (N∗Y1×{0}PM ) =
Λ1. We similarly have Λ′R ◦ ({0}PM ×N∗Y2) = Λ2. We have proven (4.46).

By using the coordinates (x, p) = (x′, x′′, p′, p′′) we may also write any (x, ξ) ∈ T ∗U as (x, ξ) =
(x′, x′′, ξ′, ξ′′). We have that

Λ1 = {(x; ξ) ∈ T ∗U : x′ = 0, ξ′′ = 0},
Λ2 = {(x; ξ) ∈ T ∗U : x′′ = 0, ξ′ = 0}.
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We calculate similarly as in (4.47)

Λ′R ◦ (N∗Y1 ×N∗Y2) = {(x, ξy + ξz) ∈ T ∗U : such that
(
(x, ξx), (x, p; ξy, 0), (x, q; ξz, 0)

)
∈ Λ′R

where (x, p; ξy, 0) ∈ N∗Y1 and (x, q; ξz, 0) ∈ N∗Y2}
= {(x′, x′′ ; ξ′, ξ′′) ∈ T ∗U \ {0} : x′ = x′′ = 0} = Λ0.(4.48)

Here we used again (4.42). By combining (4.45), (4.47) and (4.48), we have shown that

WF (QPgain[f1, f2]) ⊂ Λ0 ∪ Λ1 ∪ Λ2.

We are left to show the last claims of the theorem. Fix arbitrary conic neighbourhoods Γ1,Γ2

of Λ1 and Λ2, respectively. Let ε > 0 be small enough to satisfy

(4.49)
{

(x, ξ) ∈ TU : ‖x′‖ < ε, ‖ξ′′‖ < ε‖ξ′‖
}
⊂ Γ1

and {
(x, ξ) ∈ TU : ‖x′′‖ < ε, ‖ξ′‖ < ε‖ξ′′‖

}
⊂ Γ2.

By multiplying the amplitude in the oscillatory integral representation of f1 ⊗ f2 by

1 = φ+ (1− φ),

where φ ∈ C∞(T ∗(PM × PM) \ {0}) is positively homogeneous of degree 0 and equals 1 near
N∗[Y1 × PM ] = N∗Y1 × {0}PM and 0 near N∗[PM × Y2] = {0}PM ×N∗Y2, we write

f1 ⊗ f2 ≡ v1 + v2

where

v1 ∈ Im1+m2+n,−m2−n
comp

(
N∗Y1 × {0}PM , N∗[Y1 × Y2]

)
,(4.50)

v2 ∈ Im1+m2+n,−m1−n
comp

(
{0}PM ×N∗Y2, N

∗[Y1 × Y2]
)
,(4.51)

To prove (4.39) it is sufficient to show that for both j = 1, 2 there is a decomposition RA ◦ vj =
uj + rj , where uj is a Lagrangian distribution over Λ0 and WF (rj) ⊂ Γj . We only consider the
v1 component of f1 ⊗ f2 and write v = v1. The argument for the other component is similar.
Fix small δ1, δ2 ∈ (0, 1) with 2δ1

1−δ2 < ε, and let ψ ∈ C∞(T ∗(PM × PM) \ {0}) be positively
homogeneous of degree 0 such that it equals 1 on the conic neighbourhood

X1 :=
{

(x, p, y, q; ξx, ξp, ξy, ξq) ∈ T ∗(PU × PU) \ {0} : ‖(ξx)′′‖ < δ1

2
‖(ξx)′‖,

‖x′‖ < ε

2
, ‖(ξy)′′‖ < δ1

2
‖(ξx)′‖, ‖(ξy)′‖ < δ2

2
‖(ξx)′‖

}
of N∗Y1 × {0}PM and vanishes in the exterior of the larger neighbourhood

X2 :=
{

(x, p, y, q; ξx, ξp, ξy, ξq) ∈ T ∗(PU × PU) \ {0} : ‖(ξx)′′‖ < δ1‖(ξx)′‖,

‖x′‖ < ε, ‖(ξy)′′‖ < δ1‖(ξx)′‖, ‖(ξy)′‖ < δ2‖(ξx)′‖
}
.

By dividing the amplitude in the oscillatory integral according to 1 = ψ+ (1−ψ) we obtain the
decomposition v = v′ + v′′, where v′ ∈ Im1+m2+n

comp (N∗[Y1 × Y2]) and WF (v′′) ⊂ X2. Moreover,

σ(v′) = (1− ψ)σ(v) = σ(v) = cφ(σ(f1)⊗ σ(f2)) on (N∗[Y1 × Y2]) \X2.

Applying [13, Corollary 1.3.8] and WF (v′′) ⊂ X2 we deduce

WF (RA ◦ v′′) ⊂WF ′(RA) ◦WF (v′′) ∪WF ′U (RA) ⊂ (πsuppA) ∩ (Λ′R ◦WF (v′′))

⊂ (πsuppA) ∩ (Λ′R ◦X2)

By definition, an element (x, η) in (Λ′R ◦X2) satisfies ‖x′‖ < ε and

η = ξx + ξy, ‖(ξx)′′‖ < δ1‖(ξx)′‖, ‖(ξy)′′‖ < δ1‖(ξx)′‖, ‖(ξy)′‖ < δ2‖(ξx)′‖.
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By using the triangle inequality and the inequalities above one computes

‖η′′‖
‖η′‖

≤ ‖(ξ
x)′′‖+ ‖(ξy)′′‖

|‖(ξx)′‖ − ‖(ξy)′‖|
<

2δ1

1− δ2
< ε

which implies ‖η′′‖ < ε‖η′‖. Thus, by (4.49), we conclude

WF (RA ◦ v′′) ⊂ Γ1

To finish the proof we are left to show that the conditions of [13, Theorem 2.4.1] (cf. the global
formulation [13, Theorem 4.2.2]) for the composition of v′ and RA are satisfied. The symbol
identity (4.40) follows from [13, eq. (4.2.10)]. The condition [13, eq. (2.4.8)] is satisfied since
v′ is compactly supported. The conditions [13, eq. (2.4.9), (2.4.10)] follow from the definitions
(4.31) and (4.42). The last condition [13, eq. (2.4.11)] follows from Lemma 4.33. Since the
conditions of [13, Theorem 2.4.1] are met, we have that RA ◦ v′ is a well-defined oscillatory
integral of order m1 + m2 + 3n/4 with the canonical relation Λ′R ◦ (N∗(Y1 × Y2)) = Λ0. In
conclusion, for arbitrary conic neighbourhoods Γ1,Γ2 of Λ1 and Λ2 there is the decomposition

QPgain[f1, f2] = u+ r, u := RA ◦ (v′1 + v′2) ∈ Im1+m2+3n/4
comp (Λ0), r := RA ◦ (v′′1 + v′′2),

such that WF (r) ⊂ Γ1 ∪ Γ2 and the symbol identity (4.40) holds on Λ0 \ (Γ1 ∪ Γ2). �

Theorem 4.3 together with the microlocal properties of the geodesic vector field yields the
following corollary:

Corollary 4.4 (Extension to distributions solving Vlasov’s equation). Let (M, g) be a globally
hyperbolic Lorentzian manifold and let C be a Cauchy surface of (M, g). Let S1, S2 ⊂ P+C be
smooth manifolds such that the geodesic flowouts Y1 := KS1 and Y2 := KS2 have an admissible
intersection property (see Definition 4.1) in πsuppA. Let U be a small neighbourhood of some

x0 ∈ πY1 ∩ πY2 ∩ πsuppA as in the definition of admissible intersection, let P : U → P+
U be

a smooth section of P+
U and assume additionally that S1, S2 ⊂ PM \ PU . Additionally, for

fj ∈ I
lj
comp(PM ; N∗Sj), j = 1, 2, let u(fj) solve the Vlasov’s equation with source fj and which

vanish in C−.

Then, the operator QPgain[u( · ), u( · )], defined in (4.32), defines a continuous map

I l1comp(PM ; N∗S1))× I l2comp(PM ; N∗S2)→ D′(U).

Moreover, microlocally away from both Λ1 and Λ2, we have that

(4.52) QPgain[u(f1), u(f2)] ∈ I l1+l2+3n/4−1/2(U ; Λ0 \ (Λ1 ∪ Λ2))

together with the symbol

σ(QPgain[u(f1), u(f2)])(ξ′, ξ′′) = Cσ(u(f1))(0; ξ′, 0)σ(u(f2))(0; ξ′′, 0),(4.53)

where the constant C is given in the canonical coordinates p = (p′, p′′) and q = (q′, q′′) by

C = cA(x0, p̂(x0), p+ q − p̂(x0), p, q)
∣∣
p=(1,0,...,0), q=(1,0,...,0)

,

and p̂(x0) ∈ Px0U is such that P (x0) = (x0, p̂(x0)). Here c is some non-zero constant and
the manifolds Λ0 \ (Λ1 ∪ Λ2), T ∗U ∩N∗Y1, and T ∗U ∩N∗Y2 are parametrised by the canonical
coordinates (ξ′, ξ′′), (x′′; (ξx)′, ξp), and (x′; (ξx)′′, ξp), respectively.

Proof. For j = 1, 2, let fj ∈ I
lj
comp(N∗Sj ;PM). Choose a cut-off function χ ∈ C∞c (M) so that

χ = 1 on U ∩ supp(x 7→ A(x, · )) and χ = 0 on a neighbourhood of π(S1 ∪ S2) ⊂M \ U



AN INVERSE PROBLEM FOR THE RELATIVISTIC BOLTZMANN EQUATION 23

Figure 2. An admissible intersection of KS and a single geodesic path K(x,p).
The initial vector (x, p) and the manifold S are indicated in red and blue, re-
spectively. Near the intersection point GS behaves as a manifold transversal to
γ(x,p).

Now, for each j = 1, 2, by Lemma B.3, there exists a solution u(fj) to the Vlasov equation with
source fj and initial data 0. Moreover, as Yj = KSj , the sources fj are compactly supported

and time-like geodesics can not be trapped we get χu(fj) ∈ I
lj−1/4
comp (PM ; N∗Yj).

Substituting u = χu+ (1− χ)u into Qgain, we obtain that

QPgain[u(f1), u(f2)] ≡QPgain[χu(f1), χu(f2)].

Thus we have reduced to the setting of Proposition 4.3 and obtain the desired results.

�

4.1. Existence of transversal collisions. In this section, we construct a particular subman-
ifold S of TM . In the proof of our main theorem, Theorem 1.3, we will construct particle
sources in a common open set V of two manifolds M = Ml, l = 1, 2 such that they send
information into the unknown region Wl ⊂ Ml to create point singularities produced by using
the nonlinearity. We use the source-to-solution map to study the propagation of that singular-
ity. The idea is that for two time-like future pointing vectors with distinct base-points in V we
build a manifold S around one of the vectors such that the flowouts Y1 = Y1,Ml,gl := KS;Ml,gl
and Y2 = Y2,Ml,gl := K{(x,p)};Ml,gl of S and the other vector (x, p) will satisfy the admissible
intersection property (Definition 4.1) in πsuppAl ⊃ Wl in both Ml simultaneuously. Here Al
is an admissible collision kernel. The Corollary 4.5 below states that such a manifold S exists.
Consequently, Corollary 4.4 will be applicable in both manifolds for sources conormal to S1 = S
and S2 = {x, p}.
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Below P+C ⊂ TM stands for set of future directed time-like vectors with base points in given
Cauchy surface C.

Lemma 4.5. Let (Ml, gl), l = 1, 2 be two globally hyperbolic manifolds containing open sets
Vl ⊂ Ml and assume that there is a diffeomorphism Ψ : V1 → V2 such that g1|V1 = Ψ∗g2. For
l = 1, 2 consider (xl, pl) ∈ P+Vl with (x2, p2) = DΨ(x1, p1). Let {(zl,j , vl,j) : j ∈ Jl} (possibly
Jl = ∅) be a countable family of vectors in{

(z, v) ∈ P+Ml

∣∣ ∃t : z = γ(xl,pl)(t), v ∈ P
+
z Ml \ span{γ̇(xl,pl)(t)}

}
.

Let C be a space-like Cauchy surface through xl in one of the manifolds Ml, l = 1, 2 and copy its
restriction Cl := C ∩ Vl to the other by setting C2 = ΨC1. Then there exist (2n− 2)-dimensional
submanifolds Sl ⊂ P+Cl, l = 1, 2 such that (xl, pl) ∈ Sl, S2 = DΨS1 and the following two
conditions hold for every j ∈ Jl:

(i) The point zl,j has an open neighbourhood Ul,j ⊂ Ml such that the intersection Ul,j ∩ GSl,
where GSl := πKSl, is a (n− 1)-dimensional submanifold of Ml.

(ii) vl,j /∈ Tzl,jGSl.

Corollary 4.6. Let (Ml, gl), l = 1, 2 be globally hyperbolic manifolds with a mutual open set
V ⊂Ml, l = 1, 2 and assume that g1|V = g2|V . Consider (x, p), (y, q) ∈ P+V with distinct base
points x 6= y. Assume that the geodesics γl and γ̃l in Ml, defined by

(γ2(0), γ̇2(0)) = (γ1(0), γ̇1(0)) = (x, p),(4.54)

(γ̃2(0), ˙̃γ2(0)) = (γ̃1(0), ˙̃γ1(0)) = (y, q),(4.55)

are distinguishable as paths (on their maximal domains), that is, (x, p) and (y, q) are not tangent
to the same geodesic. Let C be a space-like Cauchy surface through x (resp. y) in one of
the manifolds Ml and let Xl ⊂ Ml be compact. (e.g. Xl = πsuppAl for admissible collision
kernels Al, l = 1, 2) Then, there is a (2n − 2)-dimensional submanifold S ⊂ P+(C ∩ V )
containing (x, p) (resp. (y, q)) such that the pair consisting of the flowouts KS = KS;Ml,gl and
K(y,q) = K{(y,q)};Ml,gl (resp. K(x,p) = K{(x,p)};Ml,gl) have admissible intersection property in Xl

for both l = 1, 2.

Proof of Lemma 4.5. Since Ml is globally hyperbolic, the space P+Ml can locally near the curve
(γxl,pl , γ̇xl,pl) be written as the product P+Cl×R by identifying (x, p, t) with (γ(x,p)(t), γ̇(x,p)(t)).

Denote by φl be the projection from the neighbourhood of (γxl,pl , γ̇xl,pl) to P+Cl that in terms of
the identification above equals the cartesian projection (x, p, t) 7→ (x, p). That is; φl takes each
(x, p) in the neighbourhood into the unique intersection of (γ(x,p), γ̇(x,p)) and P+Cl. Let φl(x, p) =

(zl,j , pl,j) ∈ P+Cl, that is, pl,j stand for the velocity γ̇xl,pl at zl,j . We define Lj,l ⊂ Tzl,jMl to be

the 2-plane spanned by pl,j and vl,j . Let π : P+M → M be the canonical projection. We see
that the linear space

El,j := D(zl,j ,pl,j)φl(D(zl,j ,pl,j)π)−1Ll,j ⊂ T(xl,pl)P
+Cl,

is (n + 1)-dimensional. There are only countable many of such manifolds so there is a small
submanifold S1 ⊂ P+C1 through (x1, p1) of dimension dimT(x1,p1)P+C1 − (n + 1) = n − 2 such

that each of the spaces E1,j , j ∈ J1 and DΨ−1E2,j , j ∈ J2 intersect Tx1,p1S1 transversally. By
considering the dimension of these linear spaces, we observe that the intersection occurs only at
the origin. This implies the analogous condition also for S2 := DΨS1. It is straightforward to
check that

ker(D(zl,j ,pl,j)π) ∩ T(zl,j ,pl,j)KSl = {0}
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which ensures that D(zl,j ,pl,j)π defines an isomorphism from T(zl,j ,pl,j)KSl to its image. This

implies that GSl = πKSl near (zl,j , pl,j) is a manifold of dimension dimKSl = dimSl + 1 = n− 1.
Let us deduce the condition vl,j /∈ Tzl,jGSl = ∅. By the construction above,

T(xl,pl)Sl ∩ El,j = {0}.
Hence,

(D(zl,j ,pl,j)φl)
−1(T(xl,pl)Sl ∩ El,j) ⊂ ker(D(zl,j ,pl,j)φl).

We check that
(D(zl,j ,pl,j)φl)

−1(T(xl,pl)Sl) = T(zl,j ,pl,j)KSl

and
(D(zl,j ,pl,j)φl)

−1El,j = (D(zl,j ,pl,j)π)−1Ll,j .

By substitution we conclude

(4.56) T(zl,j ,pl,j)KSl ∩ (D(zl,j ,pl,j)π)−1Ll,j ⊂ ker(D(zl,j ,pl,j)φl).

Applying D(zl,j ,pl,j)π gives

Tzl,jGSl ∩ Ll,j ⊂ D(zl,j ,pl,j)π(ker(D(zl,j ,pl,j)φl)) = Rpl,j
which implies vl,j /∈ Tzl,jGSl by the definition of Ll,j .

�

5. Proof of Theorem 1.3

In this section we prove our main result Theorem 1.3. As shown in Section 3.2, the second
Frechét derivative Φ′′ of the source-to-solution map Φ satisfies

Φ′′(0; f, h) = X−1Q[X−1(f),X−1(h)] + X−1Q[X−1(h),X−1(f)] on P+M,(5.57)

where f, h are any compactly supported smooth functions and X−1 is the solution operator of
the linearized problem (3.21). We use the microlocal properties of the collision operator Q we
proved in the previous section to determine the wavefront set of Φ′′(h1, h2) for sources h1 and
h2 with singularities.

5.1. Delta distribution of a submanifold. First, we construct the specific particle sources
which we will use in our proofs. Let (M, g) be a C∞ smooth globally hyperbolic manifold of
dimension n. Let C be a Cauchy surface of (M, g). We introduce a parametrization R×P+C →
P+M for P+M as:

(5.58) Ψ(s, (x, p)) = γ̇(x,p)(s), s ∈ R, (x, p) ∈ P+C.

Here P+C ⊂ TM is the set of future-directed time-like vectors with base points in C. We call
the parametrization (5.58) the flowout parametrization of P+M . We refer to [33, Theorem 9.20]
for properties of flowouts in general.

Let S be a submanifold (not necessarily closed) of P+C ⊂ P+M . The delta distribution
δS ∈ D′(P+M) of the submanifold S on P+M is defined as usual by

δS(f) =

∫
S
f(x, p) dS, for all f ∈ C∞c (P+M),

where dS is the volume form of the submanifold S of P+M . For our purposes it will be
convenient to consider the delta distribution on S, in the case where S is considered as a
submanifold P+C (instead of P+M). We distinguish this case and denote by δ̌S ∈ D′(P+C) the
distribution δ̌S(f̌) =

∫
S f̌(x, p) dS for all f̌ ∈ C∞c (P+C). The representation of δS in the flowout

parametrization (5.58) of P+M is then

δS = δ0 ⊗ δ̌S ,
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where δ0 ∈ D′(R) is the delta distribution on the real line with its support at the 0 ∈ R,
and δ̌S ∈ D′(P+C) is as above. We will write simply δS(s, (x, p)) = δ0(s)δ̌S(x, p), s ∈ R and
(x, p) ∈ P+C. We write similarly for other products of pairs of distributions supported in
mutually separate variables. 1

We would like to view δS as a conormal distribution of the class Im(P+M ;N∗S). However,
this is not strictly speaking possible due to the possible bonudary points of S. To deal with
the possible boundary points of the submanifold S, we are going to consider the product of a

cutoff function and δS as follows. Let (y, q) ∈ S and let (s′, s′′) ∈ Rdim(P+C)−dim(S) ×Rdim(S) be
coordinates on a neighborhood B ⊂ P+C of (y, q) such that S corresponds to the set {s′ = 0}
and S is parametrized by the s′′ variable. Let χR = χR(s′′) to be a cutoff function, which is
supported in a small ball of radius R and outside a neighborhood of the boundary of submanifold
S. We have that χRδS = χR(δ0⊗δ̌S) ∈ E ′(P+M) in the flowout parametrization is the oscillatory
integral

(5.59) (χRδS)(s, s′, s′′) = χR(s′′)a(s′′)

∫∫
eisξeis

′·ξ′dξdξ′.

Here a(s′′) corresponds the volume form of S and the integration is over ξ ∈ R and ξ′ ∈
Rdim(P+C)−dim(S).

By the above definition, χR(x, p)δS(x, p) is a conormal distribution in the class Imcomp(P+M ;N∗S),
where the order m is

(5.60) m = codim(S)/2− dim(P+M)/4,

see Section 2.2 for the definition of the order m. Here codim(S) = dim(P+M)− dim(S). In the
proof of Theorem 1.3, the submanifold S will be either of dimension 0 or n− 2, and thus m will
be either n/2 or 1 respectively. We remark that when S is of dimension 0 the cutoff function
in (5.59) can be omitted.

5.1.1. Approximate delta distributions. We will use C∞ smooth sources that approximate delta
distributions δS1 and δS2 (multiplied by cutoff functions), where S1 and S2 are submanifolds
of P+C. The dimension of S1 will be n − 2 and S2 will be a point. These approximations are
described next.

Let S be a submanifold of P+C ⊂ P+M and let δS and χR be as in Section 5.1 above. By using
standard (Friedrichs) mollification, see e.g. [17], we have that there is a sequence (hε), ε > 0, of
functions C∞c (P+M) such that

(5.61) hε → χRδS in D′(P+M),

as ε→ 0. Let uε = X−1hε ∈ C∞(P+M) be the solution to

Xuε = hε on P+M

uε = 0 on P+C−.
(5.62)

By the representation formula of solutions to (5.62) given in Theorem 3.2 we have that

(5.63) uε ≥ 0, supp(uε) ⊂ Ksupp(hε).

By considering only small enough ε > 0, the support of the solutions uε can be taken to be in
any neighborhood of KS chosen beforehand.

Let C̃ be another Cauchy surface of (M, g), which is in the past C− of C. Note that uε is then

also a solution to Xuε = hε with uε = 0 on P+C̃−. By Lemma B.3, uε is unique. We also

1lots of text, nothing happens
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have that WF (χRδS) ∩ N∗(P+C̃) ⊂ N∗S ∩ N∗(P+C̃) = ∅. By applying Lemma B.3 again, we
obtain

lim
ε→0

uε = u

in the space of distributions D′(P+M). Here u = X−1(χRδS) solves

Xu = χRδS on P+M

u = 0 on P+C̃.
(5.64)

Finally, if χ ∈ C∞c (P+M) is a cutoff such that supp (χ) ⊂⊂ P+M \ S, we have that χu ∈
Im−1/4(P+M ;N∗KS), with m given in (5.60).

5.2. Nonlinear interaction in the inverse problem. Throughout this Section 5.2 we assume
that (M, g) is a globally hyperbolic manifold of dimension n and that C is a Cauchy surface
of (M, g). We also assume that the submanifolds S1 ⊂ P+C and S2 = {(x0, p0)} ∈ P+C,
x0 /∈ S1, are such that the flowouts KS1 and KS2 satisfy the admissible intersection property
(Definition 4.1) in πsuppA, where A is an admissible collision kernel. As shown simultaneously
for two manifolds in Corollary 4.6, such a pair of submanifolds can be constructed around any
distinct base points on the Cauchy surface. Further, let µ̂ : [−1, 1] → M be C∞-smooth
timelike curve and V ⊂M be an open neighbourhood of µ̂.

The length of a piecewise smooth causal path α : [a, b]→M is defined as

(5.65) l(α) :=
m−1∑
j=0

∫ aj+1

aj

√
−g(α̇(s), α̇(s))ds,

where a0 < a1 < · · · < am−1 < am are chosen such that α is smooth on each interval (aj , aj+1) for
j = 0, . . . ,m− 1. The time separation function, see e.g. [38], is denoted by τ : M ×M → [0,∞)
and defined as

τ(x, y) :=

{
sup l(α), x < y

0, otherwise,

where the supremum is taken over all piecewise smooth lightlike and timelike curves α : [0, 1]→
M , which are smooth on each interval (bj , bj+1), and that satisfy α(0) = x and α(1) = y. If
τ(x, y) = 0 and there is a lightlike geodesic γ connecting points x, y ∈ M , we call γ optimal.
By [38, Proposition 14.19], we have that if (M, g) is globally hyperbolic and if x, y ∈M satisfy
τ(x, y) = 0, then an optimal lightlike geodesic γ always exists.

The main result of this Section 5.2 is the following:

Proposition 5.1. Let (M, g) be a globally hyperbolic manifold, A : TM4 → R an admissible
collision kernel with respect to a relatively compact subset W ⊂ M . Let C ⊂ M be a Cauchy
surface, S1 be a submanifold of P+C, and S2 = {(x0, p0)} ∈ P+C, x0 /∈ S1. Assume that
KS1 and KS2 have the admissible intersection property in πsuppA according to Definition 4.1.
Assume also that π(KS1) and π(KS2) intersect in πsuppA first time at z1 ∈ W . Let γ be an
optimal future-directed light-like geodesic in M such that γ(0) = z1 and e := γ(T ).

Additionally, let hε1, h
ε
2 ∈ C∞c (P+M) be the approximations of the distributions χRδS1 and δS2,

where S2 is a point, as described in Section 5.1.1.

Then, there is a section Pe : Ve → L+Ve on a neighborhood Ve of e such that the limit

S := lim
ε→0

(Φ′′(0;hε1, h
ε
2) ◦ Pe)

exists and

singsupp(S) = γ ∩ Ve
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In the context of the main theorem the proposition above can be used to detect rays of light
propagating from the unknown set W to the measurement neighbourhood V . In that setting
z1 ∈W whereas e ∈ V and Ve ⊂ V . The situation is pictured in Figure 3 below.

µ̂

•e

γ
•z1W

V

Figure 3. The setup of Proposition 5.1 can be used to detect singularities prop-
agating along rays of light in V .

Before proceeding with the proof of Proposition 5.1, we state the following supporting result
which follows from a simple dimension argument similar to the one used in Lemma 4.5. In other
words, there is so much freedom for variation that caustic effects can be avoided at finite number
of fixed points. The vector field Pe in Proposition 5.1 is constructed as a restriction of P in the
lemma below for convenient choice of the vectors (xj , pj).

Lemma 5.2. Let (xj , pj) ∈ L+(M), j = 1, . . . ,m, be a finite set of vectors. There is an
open (possibly disconnected) neighborhood Q of {x1, . . . , xm} in M and a smooth local section
P : Q → L+Q, P (x) = (x, p(x)), of the bundle π : L+M → M such that for x ∈ Q and s ∈ R
such that γ(x,p(x))(s) ∈ Q

P (xj) = (xj , pj)

γ̇(x,p(x))(s) = P (γ(x,p(x))(s)).
(5.66)

Following [38], we say a path α([t1, t2]) is a pre-geodesic if α(t) is a C1-smooth curve such that
α̇(t) 6= 0 on t ∈ [t1, t2], and there exists a reparametrization of α([t1, t2]) so that it becomes a
geodesic. Proposition 10.46 of [38] implies the existence of a shortcut path between points which
are not connected by lightlike pre-geodesics:

Lemma 5.3 (Shortcut Argument). Let (M, g) be globally hyperbolic and x, y, z ∈ M . Suppose
that x can be connected to y by a future-directed lightlike geodesic γx→y, and y can be connected
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to z by a future-directed lightlike geodesic γy→z. Additionally, assume that γx→y ∪ γy→z is not a
lightlike pre-geodesic. Then, there exists a timelike geodesic connecting x to z.

We now prove Proposition 5.1:

Proof of Proposition 5.1 . Let U be an open neighborhood of z1, small enough so that GS1 ∩ U
and GS2∩U are manifolds and that U∩(π(S1)∪π(S2)) = ∅. Let P : U → L+(U) be an arbitrary
smooth section on U . We remark that we will choose a specific P later in the proof.

Let hε1 and hε2 be the respective approximations of the distributions χRδS1 and δS2 as described
in (5.61)-(5.64) compactly supported in P+M . (We do not multiply δS2 with a cutoff function,
since S2 is just a point.) For j = 1, 2, let uεj be the solutions corresponding to hεj :

Xuεj = hεj on P+M

uεj = 0 on P+C−.
(5.67)

By Lemma 3.4 we have that the second linearization Φ′′ of the source to solution map Φ satisfies

Φ′′(0; hε1, h
ε
2) ◦ P =

(
X−1Q[uε1, u

ε
2]
)
◦ P +

(
X−1Q[uε2, u

ε
1]
)
◦ P,(5.68)

where X−1 is the solution operator to the Vlasov equation (3.21). We first study the limit ε→ 0
of

Q[uε1, u
ε
2] ◦ P +Q[uε2, u

ε
1] ◦ P.

Since hε1 and hε2 are supported on P+M and since P (x) is light-like, we find that

(5.69) Qloss[uε1, uε2] ◦ P (x) = Qloss[uε2, uε1] ◦ P (x) = 0.

Therefore, the light which scatters from the collisions arises only from the terms

QPgain[uε1, u
ε
2] = Qgain[uε1, u

ε
2] ◦ P and QPgain[uε2, u

ε
1] = Qgain[uε2, u

ε
1] ◦ P.

By the discussion in Section 5.1.1 we have that, away from S1 and S2, the element X−1(χRδS1)

lies in In/2−1/4(P+M ;N∗KS1) and X−1(δS2) lies in I1−1/4(P+M ;N∗KS2). Therefore, if Γ is any
conical neighborhood of Λ1 ∪Λ2, where Λ1 and Λ2 are as in Property 4.1, we have by Corollary
4.4 that

QPgain[X−1δS2 ,X−1(χRδS1)] +QPgain[X−1(χRδS1),X−1δS2 ]

∈ I l(Λ0 \ (Λ1 ∪ Λ2); U) +D′Γ(U) ⊂ D′(U),
(5.70)

where l = (n/2− 1/4) + (1− 1/4) + 3n/4− 1/2 = 5n/4 and U is a small neighbourhood around
z1. Here we use the standard notation to denote

D′Γ(U) = {u ∈ D′(U) : WF (u) ⊂ Γ}.

By continuity of X−1 (see Section 5.1.1) and Qgain (Corollary 4.4), the distribution (5.70) equals
the limit

(5.71) lim
ε→0

(
QPgain[uε1, u

ε
2] +QPgain[uε2, u

ε
1]
)
,

in D′(P+M). It also follows by definition of the collision operator and supp(uεj) ⊂ Ksupp(hεj)

that the support of (5.71) focuses close to the intersection point z1 as ε → 0. In particular,
we may consider it as a compactly supported distribution in U . Now let P be a restriction of
a section in Lemma 5.2 for k = 2, (x1, p1) = (z1, γ̇(0)) and (x2, p2) = (e, γ̇(T )) where γ is the
optimal geodesic connecting z1 to e. Then the terms in (5.68) satisfy

(X−1Qgain[uε1, u
ε
2]) ◦ P = P−1QPgain[uε1, u

ε
2],(5.72)

(X−1Qgain[uε2, u
ε
1]) ◦ P = P−1QPgain[uε2, u

ε
1],(5.73)
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where P−1 : C∞c (U)→ C∞(Ve), P
−1φ(x) :=

∫
φ(γx,p(x)(t))dt, i.e. the integration along integral

curves of the light-like field P . Here Ve is a small neighbourhood of e in the domain of the field.
The canonical relation of the Fourier integral operator P−1 is

C = {(x, ξ; y, η) ∈ T ∗Ve \ {0} × T ∗U \ {0} : x = γy,p(y)(t), ξ, η ⊥ γy,p(y)}

and the symbol is a non-vanishing constant. Since light-like geodesics intersect cleanly the time-
like flow-outs GS1 = πΛ1 and GS2 = πΛ2 and a single point πΛ0, it is straightforward to check
that the expressions above extend also to the limit ε→ 0 (See e.g. [13]). Hence,

(X−1Qgain[uε1, u
ε
2]) ◦ P −→ P−1QPgain[X−1(χRδS1),X−1δS2 ],(5.74)

and away from Λ1 and Λ2 we have the standard principal symbol formulas (cf. [13, (4.2.10)]

σ(P−1QPgain[X−1(χRδS1),X−1δS2 ]) =
∑

σ(P−1)σ(QPgain[X−1(χRδS1),X−1δS2 ])(5.75)

= c
∑

σ(QPgain[X−1(χRδS1),X−1δS2 ]),(5.76)

for composition of Fourier integral operators. Analogous identities hold for the other term.
Thus, following the standard composition calculus for Fourier integral operators, it suffices to
show that the symbol of QPgain[X−1(χRδS1),X−1δS2 ]+QPgain[X−1δS2 ,X−1(χRδS1)] is not of order
−∞ at any direction in Λ0 = T ∗z1M away from Λ1 and Λ2. This, however, follows from Theorem

4.3 together with the formulas σ(X−1δj) ' σ(δS2) ' 1 and σ(X−1χRδS1) ' χRσ(δj) ' χR for
principal symbols. �

Let S1 and S2 be as earlier. Then, GS1 = πKS1 and GS2 = πKS2 intersect in π(supp(A)) only
finitely many times and at discrete points. Given that the intersections exist, we can write
{z1, . . . , zk} = π(KS1) ∩ π(KS2) ∩ π(supp(A)).

Lemma 5.4. As above, denote the points in π(KS1) ∩ π(KS2) ∩ π(supp(A)) by z1, . . . , zk (if
exist) and arrange them so that z1 � z2 � · · · � zk. For every section P of the bundle L+V
we have

supp(SP ) ⊂
k⋃
l=1

L+(zl) ⊂ J+(z1),

or supp(SP ) = ∅ if π(KS1) ∩ π(KS2) ∩ π(supp(A)) = ∅. Here we denote

SP := lim
ε→0

(Φ′′(0;hε1, h
ε
2) ◦ P ).

In particular, if for some section P we have that supp(SP ) 6= ∅, then the first intersection point
z1 exists.

Proof. Let us adopt the notation of the proof of Proposition 5.1. One checks that

supp
(
QPgain[uε1, u

ε
2] +QPgain[uε2, u

ε
1]
)
⊂ Eε

and

Φ′′(0;hε1, h
ε
2) ◦ P =

∫ 0

−∞
QPgain[uε1, u

ε
2](γ(x,p(x))(s)) +QPgain[uε2, u

ε
1](γ(x,p(x))(s))ds,

where for ε > 0

Eε := G+
supp(hε1) ∩G

+
supp(hε2) ∩ π(supp(A)).

As Eε is a monotone sequence it has the limit which is
⋂
ε>0Eε = {z1, . . . , zk}. Thus, we obtain

supp(Φ′′(0;hε1, h
ε
2) ◦ P ) ⊂ L+Eε
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and hence

supp(SP ) := supp(lim
ε→0

(Φ′′(0;hε1, h
ε
2) ◦ P )) ⊂

⋂
ε>0

L+Eε = L+{zl, . . . , zk} =

k⋃
l=1

L+(zl)

It also follows from the definition of L+ and J+ that
⋃k
l=1 L+(zl) ⊂ J+(z1). �

In our inverse problem we will observe the supp(SP ) and use the last claim of Lemma 5.4 to
detect the collision of particles in a subset W ⊂M .

5.3. Separation time functions. Let (M, g) be a C∞-smooth, globally hyperbolic, Lorentzian
manifold. Also, let µ̂ : [−1, 1] → M be a given smooth, future-directed, timelike geodesic, and
V be an open neighbourhood of µ̂. In this subsection we will use g|V , µ̂ and V to introduce a
useful representation for certain points in M . Our representation scheme will associate a point
w ∈M to a subset EU (w) ⊂ U , where U ⊂ V is an open set. Loosely speaking, the subset EU (w)
will be comprised of points in U which lie on a optimal lightlike geodesic emanating from w.
This representation was first introduced by Kurylev, Lassas, and Uhlmann in [24]; we reproduce
a summary of it here for the reader’s convenience. We later will use this representation to
construct the desired isometry F : W1 →W2 described in Theorem 1.3.

To begin, as shown in [34, Section II], there exists a bounded, connected, open set A ⊂ Rn−1

and a neighbourhood U ⊂ V of µ̂ on which we may define coordinates

x ∈ U 7→ (s, a1, a2, . . . , an−1) ∈ [−1, 1]×A

These coordinates have the property that µ̂(s) = (s, 0, . . . , 0) and for fixed a = (a1, a2, . . . , an−1) ∈
A the map µa(s) = (s, a1, a2, . . . , an−1) is a C∞-smooth timelike curve. Further, writing µâ = µ̂
where â = (0, . . . , 0) ∈ A, we have

U =
⋃
a∈A

µa[−1, 1].

Let A be the closure of A in Rn−1. Below, we will assume that for all a ∈ A we have µ̂(s+)�
µa(1) and µa(−1)� µ̂(s−).

Given U and the family of curves µa, a ∈ A (which may be defined by replacing A above by a
smaller open subset if necessary), we will next define the notions of time separation functions
and observation time functions. where the supremum of the length function

Consider −1 < s− < s+ < 1 and set x± := µ̂(s±) ∈ V . As in [24, Definition 2.1], for each a ∈ A
and corresponding path µa, we define the observation time functions f±a : J−(x+)\I−(x−)→ R
by the formulas

f+
a (x) := inf({s ∈ (−1, 1) : τ(x, µa(s)) > 0} ∪ {1})

and

f−a (x) := sup({s ∈ (−1, 1) : τ(µa(s), x) > 0} ∪ {−1}).
Here τ is the time separation function defined in Section 5.2. We note that if x ∈M and a ∈ A
are such that at least one point in µa(−1, 1) can be reached from x by a future-directed timelike
curve we obtain τ(x, µa(f

+
a (x))) = 0, see [24]. In this case, there also exists a future-directed

optimal light-like geodesic that connects x to µa(f
+
a (x)) as discussed in Section 5.2.

The earliest time observation functions f+
a : J−(x+) \ I−(x−)→ R determine the set

(5.77) EU (w) = {µa(f+
a (w)) : a ∈ A} ⊂ U,

that is the earliest light observation set of w ∈ J−(x+) \ I−(x−).



32 BALEHOWSKY, KUJANPÄÄ, LASSAS, AND LIIMATAINEN

Finally, as shown in [24, Proposition 2.2.], we may construct the conformal type of the open,
relatively compact set W ⊂ J−(x+) \ I−(x−) when we are given the collection of all earliest
light observation sets associated to points w ∈W , that is,

EU (W ) = {EU (w) : w ∈W} ⊂ 2U .

5.4. Source-to-Solution map determines earliest light observation sets. In this section,
we prove that the source-to-solution map for light observations (see (1.3)) of the Boltzmann
equation on a subset V of a manifold determines the earliest light observation sets on a subset
of the manifold which properly contains V . We will define such a set below. After proving this,
the main result of this paper, Theorem 1.3, will follow by applying [24, Theorem 1.2], which
states that the earliest light observation sets determine the Lorentzian metric structure of the
manifold up to conformal class.

From this point onwards, we assume that (M1, g1) and (M2, g2) are two geodesically complete,
globally hyperbolic, C∞-smooth, Lorentzian manifolds, which contain a common open subset V
and

g1|V = g2|V .
We assume that µ̂ : [−1, 1]→ V is a given future-directed timelike geodesic. Let A ⊂ Rn−1, the
family of paths (µa)a∈A, and the subset U ⊂ V be as in the Section 5.3.

For −1 < s− < s+ < 1, we set x± := µ̂(s±) ∈ V and define

W1 := I−(x+) ∩ I+(x−) ⊂M1 defined with respect to (M1, g1),(5.78)

W2 := I−(x+) ∩ I+(x−) ⊂M2 defined with respect to (M2, g2).(5.79)

Additionally, for λ = 1, 2, let Aλ be an admissible collision kernel (see Definition 1.1) with respect
to the space (Mλ, gλ) and write Φλ,L+V for the source-to-solution map for light observations (see
Equation (1.3)) associated to the relativistic Boltzmann equation (1.2) with respect to gλ. The
notation Φλ denotes the full source to solution map for (1.2).

In the above setting we prove:

Proposition 1.4. Let Φ1,L+V and Φ2,L+V be the above source-to-solution maps for light obser-
vations. Then Φ1,L+V = Φ2,L+V implies

E1
U (W1) = E2

U (W2).

We prove Proposition 1.4 by showing that Φ1,L+V = Φ2,L+V implies the existence of a diffeo-
morphism

F : W1 →W2

which satisfies

E1
U (w1) = E2

U (F (w1)), w1 ∈W1.

To construct the map F : W1 →W2, consider the observation time functions on (Mj , gj), j = 1, 2
which we denote by f±a,j . For each

w1 ∈W1 ⊂M1,

we define ηw1 to be an optimal future-directed light-like geodesic in M1 such that

(5.80) ηw1(0) = µ̂(f−â,1(w1)) and ηw1(T ) = w1 for some T > 0.

By the definition ofW1 such ηw1 exists. In the following, w1 will be fixed and we abbreviate

η1 := ηw1 .
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Since U is open and dim(M1) = n > 2, we may choose another future-directed optimal light-like
geodesic η̃1 that is not tangential to η1 and satisfies

(5.81) η̃1(0) = µa(f
−
a,1(w1)) and η̃1(T̃ ) = w1 for some T̃ > 0, a ∈ A \ â.

Since both segments η1|[0,T ], η̃1|[0, T̃ ]
are optimal, the shortcut argument implies that η1(s), s > 0

and η̃1(s′), s′ > 0 intersect the first time at w1.

In the lemma below we approximate the light-like geodesics η1 and η̃1 by time-like geodesics

γ(x̂,p̂)(s) and γ(ŷ,q̂)(s), s > 0, (x̂, p̂) ∈ P+V, (ŷ, q̂) ∈ P+V

that intersect for the first time at w1 as geodesics in M1. One may always fix the geodesics such
that x̂ and ŷ belong to a same Cauchy surface and (x̂, p̂) is arbitrarily near the curve (η1, η̇1),
and (ŷ, q̂) is arbitrarily near the curve (η̃1, ˙̃η1). Notice the abuse of notation: γ(x̂,p̂), γ(ŷ,q̂) may
refer to a pair of geodesics either in (M1, g1) or (M2, g2). Due to global hyperbolicity we may
always redefine the initial vectors by sliding them along the geodesic flow so that x̂ and ŷ lie in
a Cauchy surface.

Let η2 and η̃2 be the geodesics in (M2, g2), which have the same initial data with η1 and η̃1

respectively:

(5.82) η̇2(0) = η̇1(0) ∈ Tη1(0)U and ˙̃η2(0) = ˙̃η1(0) ∈ Tη̃1(0)U .
(Recall that U ⊂ V is a mutual set of M1 and M2 so that this makes sense.)

We thus define
F : W1 →W2

as the map which assigns a given point w1 ∈ W1 to the first intersection of η2(s), s > 0 and
η̃2(s′), s′ > 0 denoted by w2 ∈M2. For the assignment w1 7→ w2 to be well-defined, we of course
need to show that the first intersection w2 exists and lies in W2. There are also many choices for
the geodesics η1 and η̃1 on (M1, g1), which are used to define η2 and η̃2 on (M2, g2). Therefore
we need also to show that w2 is independent of our choices of η1 and η̃1. These necessities are
proven in Lemma 5.5 below.

Lemma 5.5. Let (Mj , gj), U ⊂ V ⊂ Mj, Wj ⊂ Mj, Φj for j = 1, 2 be as described above.
Let w1 ∈ W1 and consider light-like future-directed geodesics η1(s), s > 0, η̃1(s′), s′ > 0 in
(M1, g1) with (5.80) and (5.81) intersecting the first time at w1. Let η2 and η̃2 be the associated
light-like geodesics in (M2, g2) with the initial conditions (η2(0), η̇2(0)) = (η1(0), η̇1(0)) and
(η̃2(0), ˙̃η2(0)) = (η̃1(0), ˙̃η1(0)). Then the condition Φ1,L+V = Φ2,L+V implies the following:

(1) There exists the first intersection w2 of η2(s), s > 0 and η̃2(s′), s′ > 0 in (M2, g2).
Moreover, w2 ∈W2.

(2) The first intersection point w2 is independent from the choice of the geodesics η1, η̃1

satisfying the required conditions above.

(3) For every pair (x̂, p̂) ∈ P+V and (ŷ, q̂) ∈ P+V with the geodesics γ(x̂,p̂)(s), s > 0, and
γ(ŷ,q̂)(s

′), s′ > 0 in (M1, g1) intersecting the first time at w1, the associated geodesics in
(M2, g2) intersect for the first time at w2.

Proof of Lemma 5.5. Let w1 ∈ W1 and let e ∈ L+(w1) be a first observation of w1 in U ⊂ V ⊂
M1. That is, e ∈ E1

U (w1). By the fact (5.77) there is a point a ∈ A and the corresponding path
µa such that

(5.83) e = µa(f
+
a,1(w1)) ∈ (M1, g1).

Let γ1 be the optimal geodesic in (M1, g1) as in Proposition 5.1 such that γ1(0) = w1 and
γ1(1) = e.
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w1

Figure 4. Given w1 ∈ W1 (in red) the light-like geodesics η1, η̃1 (in black) are
chosen such that they maximize distance between their initial points in U (in
gray) and w1. The timelike geodesics γ(x̂,p̂) and γ(x̂,p̂) (in blue) intersect first
time at w1 and approximate the light-like segments.

We approximate the light-like geodesics η1 and η̃1 by time-like geodesics from (x̂, p̂) ∈ P+V
and (ŷ, q̂) ∈ P+V as described earlier by requiring that for the geodesics in (M1, g1) their first
intersection for positive parameter values is at w1. Let S2 = {x̂, p̂} ⊂ Pm1V . By Corollary
4.6 there exists a submanifold S1 ⊂ P+V with (ŷ, q̂) ∈ S1 such that the geodesic flowouts
Yj,1 := KS1;Mj ⊂ P+Mj of S1 and Yj,2 := KS2;Mj ⊂ P+Mj of S2 in (Mj , gj) have an admissible
intersection property in the sense of Definition 4.1 for both j = 1, 2. Therefore, we are in the
setting for which the earlier results of this this section and Section 4 are valid. With this in
mind, let us write

(5.84) π(Y1,1) ∩ π(Y1,2) = {z1,1, z1,2, . . . , z1,k1} ⊂M1,

where the intersection points z1,l, l = 1, . . . , k1, of π(Y1,1) and π(Y1,2) are ordered causally as
z1,1 � z1,2 � · · · � z1,k1 . (The index 1 in z1,l refers to the manifold (M1, g1)) Notice that
z1,1 = w1. For ε > 0, let

hε1 ∈ C∞c (P+V ) and hε2 ∈ C∞c (P+V )

be the sequences of approximative delta functions of S1 and S2 described in (5.61).

By Proposition 5.1 there is a neighbourhood Ve ⊂ V of e and a section Pe : Ve → L+Ve such
that the distribution

S1 := lim
ε→0

(Φ′′1(0; hε1, h
ε
2) ◦ Pe) ∈ D′(Ve),

satisfies

singsupp(S1) = γ1 ∩ Ve.
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The index 2 in Y2,j , and in z2,l, L+
2 and J+

2 below, refers to corresponding quantities on the
manifold (M2, g2). The submanifolds of Y2,1 and Y2,2 have admissible intersection property by
their definition above.

The condition Φ1,L+V = Φ2,L+V implies

S1 := lim
ε→0

(Φ′′1(0; hε1, h
ε
2) ◦ Pe) = lim

ε→0
(Φ′′2(0; hε1, h

ε
2) ◦ Pe) =: S2.

Therefore, we have singsupp(S2) = γ1 ∩ Ve ⊂ V and

e ∈ supp(S1) ∩ supp(S2).

Consequently, the sets π(Y2,1) and π(Y2,2) intersect by Lemma 5.4. Let us denote

π(Y2,1) ∩ π(Y2,2) = {z2,1, z2,2, . . . , z2,k2} ⊂M2,

where the intersection points of π(Y2,1) and π(Y2,2) are ordered as z2,1 � z2,2 � · · · � z2,k2 . At
this point we do not know whether z2,1 is w2 or not. By applying Lemma 5.4 again, we conclude
for both j = 1, 2 that

(5.85) γ1 ∩ Ve ⊂
kj⋃
l=1

L+
2 (zj,l) ⊂ J+

j (zj,1) ⊂ (Mj , gj).

In particular,

(5.86) e ∈ J+
j (zj,1) ⊂ (Mj , gj).

Recall that V ⊂Mj for both j = 1, 2 and g1|V = g2|V . Let γ2 be the geodesic in (M2, g2), which
has the same initial condition as γ1 at e, that is, (γ2(1), γ̇2(1)) = (γ1(1), γ̇1(1)). It follows that
the geodesics γ1 and γ2 coincide in Ve ⊂ V . Thus,

(5.87) γl ∩ Ve ⊂
kj⋃
h=1

L+
2 (zj,h) ⊂ J+

j (zj,1) ⊂ (Mj , gj)

for every combination of l = 1, 2 and j = 1, 2.

Proof of (1): We prove that η2 and η̃2 intersect in W2 ⊂M2 the first time at geodesic parameter
times s > 0 and s′ > 0.

Fix e := µ̂(f+
â (w1)), that is, a = â in (5.83). We approximate the light-like geodesics η1 and η̃1

with sequences γ(x̂l,p̂l) and γ(ŷl,q̂l), l ∈ N of time-like geodesics γ(x̂,p̂) and γ(ŷ,q̂). In other words,
we choose the geodesics such that for every l ∈ N the first intersection z1,1 of γ(x̂l,p̂l) and γ(ŷl,q̂l)

as geodesics in M1 is w1 and the initial values (x̂l, p̂l) and (x̂l, p̂l) converge to some points in

(η1, η̇1)∩P+
V and (η̃1, ˙̃η1)∩P+

V , respectively. We may take x̂l and ŷl to lie in a fixed Cauchy
surface C in M2 and x̂l ∈ W2 by removing the first terms in the sequence, if necessary. One
applies the shortcut argument (Lemma 5.3) and convergence of x̂l to show that x̂l ∈ J+

2 (µ̂(s0))
for all indices l and some s0 ∈ (s−, s+). Moreover, γ(x̂l,p̂l)(s) ∈ J

+
2 (µ̂(s0)) in M2, for all s > 0,

by a similar argument. Consequently, we have for the first intersections z2,1 = z2,1(l) of γ(x̂l,p̂l)

and γ(ŷl,q̂l) in M2 the condition

z2,1 ∈ π(Y2,1) ∩ π(Y2,2) = {γ(x̂,p̂)(s) ∈ (M2, g2) : s ≥ 0} ∩ π(Y2,2) ⊂ J+
2 (µ̂(s0)) in (M2, g2),

where we omitted the index l. From (5.86) we obtain

z2,1(l) ∈ J+
2 (µ̂(s0)) ∩ J−2 (e) in (M2, g2),

where z2,1(l) is the first intersection of the geodesics γ(x̂l,p̂l) and γ(ŷl,q̂l) in (M2, g2). Thus, there
exist sequences (sl) and (s′l) of positive numbers such that

(5.88) z2,1(l) = γ(x̂l,p̂l)(sl) = γ(ŷl,q̂l)(s
′
l) ∈ J+

2 (µ̂(s0)) ∩ J−2 (e).
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Here sl > 0 and s′l > 0 are so that the geodesics γ(x̂l,p̂l), γ(ŷl,q̂l) intersect the first time at the
geodesic parameter times sl and s′l. To finish the prove of (1), we show that a subsequence of
z2,1(l) ∈M2 converges to the first intersection of η2 and η̃2.

Since (M2, g2) is globally hyperbolic, the set J+
2 (µ̂(s0)) ∩ J−2 (e) is compact. Thus, we may pass

to a subsequence so that

z2,1(l) converges in J+
2 (µ̂(s0)) ∩ J−2 (e) ⊂W2 as l→∞.

Applying the parametrisation P+C ×R→ P+
M2, (x, p, t) 7→ γx,p(t) near the curve η2 (resp. η̃2)

to (5.88) implies that sl and s′l must converge. Thus, as the time-like curves in M2 with initial
values (x̂l, p̂l) and (ŷl, q̂l) approximate η2 and η̃2, respectively, it follows that there must exist
the first intersection point of η2 and η̃2 in W2 at the limit of z2,1(l). This is the point w2.

Proof of (2) and (3): Recall that the first intersection w1 ∈W1 of the time-like approximations
γ(x̂,p̂) and γ(ŷ,q̂) is also the first intersection w1 of η1 and η̃1 in (M1, g1) by definition. We also
know that the first intersection exist for the associated time-like geodesics in (M2, g2). To prove
(2), let σ1 and σ̃1 be another pair of geodesics that satisfies the conditions of η1 and η̃1. The
first part of the proof above applies also for σ1 and σ̃1 and the first intersection is obtained as a
limit of first intersections for some pair of time-like geodesics γ(x̂′l,p̂

′
l)

and γ(ŷ′l,q̂
′
l)

that as geodesics

in M1 intersect first time in w1 for every l and approximate the light-like geodesics σ1 and σ̃1.
Thus it suffices to show that for two pairs (x̂, p̂), (ŷ, q̂) ∈ P+V and (x̂′, p̂′), (ŷ′, q̂′) ∈ P+V with
the associated pairs of geodesics in (M1, g1) intersecting the first time at w1 have the property
that both pairs γ(x̂,p̂), γ(ŷ,q̂) and γ(x̂′,p̂′), γ(ŷ′,q̂′) of geodesics in (M2, g2) intersect the first time
at a mutual point. Note that this point must be the limit z2,1(l) → w2 of the first intersection
points constructed in the proof of (1). In fact, the sequence is a constant sequence.

As earlier, let γ1 be a light-like optimal geodesic in M1 from w1 = γ1(0) to e = γ1(1) and define
the geodesic γ2 in M2 by the condition (γ2(1), γ̇2(1)) = (γ1(1), γ̇1(1)). Let us then consider three
pairs of initial vectors

{(x̂, p̂), (ŷ, q̂)}, {(x̂, p̂), (ŷ′, q̂′)}, and {(x̂′, p̂′), (ŷ′, q̂′)}.(5.89)

constructed from the pairs (x̂, p̂), (ŷ, q̂) ∈ P+V and (x̂′, p̂′), (ŷ′, q̂′) ∈ P+V above. To each of
these pairs of vectors, we may associate a pair of geodesics in (M1, g1) which have the vectors
as initial data. Each pair of geodesics has the property that they intersect for first time (for
positive geodesic parameter times) at w1 ∈ W1. On the other hand, to each pair of vectors in
(5.89), we may achieve a pair of geodesics in (M2, g2) that have the vectors as initial conditions
at s = 0. As shown earlier, each pair of geodesics has the property that they intersect in M2

and for the first time (for positive geodesic parameter times) it happens in W2. We label these

first intersection points in W2 by z(1), z(2) and z(3), respectively. These intersections points lie
in {γ2(s) : s < 1} according to Lemma 5.6 below. Before proving the lemma let us assume that

it holds and show that the intersection points z(1), z(2), z(3) ∈ M2 (z(1) = z2,1 in the proof of
(1)) are actually identical. The claim (2) then follows from this since the first intersections of
the approximative time-like geodesics accumulate arbitrarily near w2, as shown in the proof of
(1).

We argue by contradiction and suppose that z(1) 6= z(2). That is, we suppose the first intersection
of the pairs of geodesics

{γ(x̂,p̂), γ(ŷ,q̂)} and {γ(x̂,p̂), γ(ŷ′,q̂′)}.
in (M2, g2) are distinct. The proof for the case z(2) 6= z(3) is analogous. Applying Lemma 5.6

we deduce that γ(x̂,p̂)(s), s > 0 hits {γ2(s) : s < 1} twice, first at one of the points z(1), z(2)

and then after at the other. We may assume that τ(z(1), z(2)) > 0 in M2. For τ(z(2), z(1)) > 0
one simply swaps the roles of the points in the proof. The shortcut lemma (Lemma 5.3) implies

that there is a time-like future-directed segment connecting z(1) to e in M2. Thus, there is some
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point e′ in the curve µ̂ that satisfies τ(e′, e) > 0 and which can be reached from z(1) along a
future-directed lightlike geodesic segment. We can now apply Corollary 4.6 and Proposition 5.1
to get e′ ∈ singsupp(limε→0(Φ′′(0;hε1, h

ε
2) ◦ Pe′)) in both spaces from which by Lemma 5.4 one

obtains e′ ∈ J+(w1) in the space (M1, g1). Since τ(e′, e) > 0, we have e 6= µ̂(f+
â (w1)) which is a

contradiction. Thus, we have that

z(1) = z(2).

In a similar way one shows that z(2) = z(3).

�

We now prove the following auxiliary lemma:

Lemma 5.6. Let γ1 be an optimal future-directed lightlike geodesic in (M1, g1) between the
points w1 = γ1(0) ∈ W1 and e = µ̂(f+

â (w1)) = γ1(1). Let γ2 be the geodesic in (M2, g2) with
(γ2(1), γ̇2(1)) = (γ1(1), γ̇1(1)). Let (x, p), (y, q) be elements in P+V for both j = 1, 2 such that
in (M1, g1) the geodesics γ(x,p)(s) = γ(x,p);M1

(s), s > 0 and γ(y,q)(s
′) = γ(y,q);M1

(s′), s′ > 0
intersect the first time at w1 ∈ W1. Then, Φ1 = Φ2 implies that the first intersection point
z = z2,1 of γ(x,p)(s) = γ(x,p);M2

(s), s > 0 and γ(y,q)(s
′) = γ(y,q);M2

(s′), s′ > 0 in (M2, g2) belongs
to {γ2(s) : s < 1}.

Proof. Following the construction in page 34 one puts together Corollary 4.6, Proposition 5.1
to show that for certain sources hε1, h

ε
2 and a vector field Pe on neighbourhood Ue around e we

have
singsupp(lim

ε→0
(Φ′′(0;hε1, h

ε
2) ◦ Pe)) = γ2 ∩ Ue.

Moreover, Lemma 5.4 implies that γ2(1 − δ) belongs to the causal future of z for sufficiently
small δ > 0. Hence there is a causal geodesic ν connecting z to γ2(1− δ). If z1 /∈ {γ2(s) : s < 1}
we may combine ν with γ|[1−δ,1] and apply shortcut argument to show that z can be connected
to e with a timelike curve in (M2, g2). Thus, µ̂ contains a point e′ � e that can be reached
from z with an optimal lightlike geodesic γ̃2. We can then repeat the construction above with
some vector field Pe′ tangent to γ̃2 to derive that e′ ∈ J+

1 (w1). Thus γ1 does not define optimal
segment from w1 to e which is in conflict with the assumptions.

�

The determination of the earliest light observation sets from the knowledge of the source-to-
solution map data follows from Lemma 5.5:

Below, let f+
a,1 and f+

a,2 be the earliest observation time functions on M1 and M2, respectively.
Lemma 5.5 shows that there is a mapping

(5.90) F : W1 →W2, F (w1) := w2,

which maps the first intersection w1 of η1 and η̃1 to the first intersection w2 of η2 and η̃2. Here
ηj and η̃j , j = 1, 2, are defined as in (5.80)–(5.82).

Proposition 5.7. Let Φ1,L+V and Φ2,L+V be as earlier in Section 5 and assume that Φ1,L+V =
Φ2,L+V . Assume also that the conditions of Theorem 1.3 are satisfied for the Lorentzian mani-
folds (M1, g1) and (M2, g2). Then, the map (5.90)

F : W1 →W2

is a bijection and

f+
a,1(w1) = f+

a,2(F (w1)),(5.91)

for every w1 ∈W1 and a ∈ A.
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Proof. Let w1 ∈W1 and w2 = F (w1). We show that the earliest observation time functions f+
a,1

on M1 and f+
a,2 on M2 satisfy f+

a,1(w1) = f+
a,2(w2).

Let a ∈ A and f+
a,1 : W1 → R be an earliest observation time function on M1. Moreover, let

e = µa(f
+
a,1(w1)). (This means that e can be reached by a lightlike future-directed geodesic from

w1.) Let (x̂, p̂) and (ŷ, q̂) be timelike initial vectors as in the last condition of Lemma 5.5. In the
space (M1, g1) the first intersection of the associated geodesics is w1 whereas the first intersection
z2,1 in (M2, g2) is w2. As in the proof of Lemma 5.5 we deduce from Φ1,L+V = Φ2,L+V that

e ∈ J+
2 (z2,1) in (M2, g2) and hence w2 ∈ J−2 (e). Thus, the earliest light observation from w2 on

the path µa occurs either at e or at a point that is in the past of e. In particular,

(5.92) f+
a,2(w2) ≤ f+

a,1(w1).

To see that F has an inverse, note that we may change the roles of (M1, g1) and (M2, g2) in
Lemma 5.5 to have a mapping

W2 →W1,

which maps the first intersection of η2 and η̃2 to the first intersection of η1 and η̃1. Here ηj and
η̃j , j = 1, 2, are defined as in (5.80)–(5.82). This mapping is the inverse of F and F : W1 →W2

is a bijection.

By interchanging the roles of (M1, g1) and (M2, g2) and repeating the above construction we see
as in (5.92) that

f+
a,1(w1) ≤ f+

a,2(w2).

Thus, we have f+
a,1(w1) = f+

a,2(w2) = f+
a,2(F (w1)) for all w1 ∈ W1. Hence, F : W1 → W2 is a

bijection satisfying f+
a,1(w1) = f+

a,2(F (w1)) for all w1 ∈W1. �

This result implies Proposition 1.4:

Proof of Proposition 1.4. By definition (5.77) of the sets EjU (w), Proposition 5.7 proves that
E1
U (w1) = E2

U (w2) for all w1 ∈ W1 and w2 = F (w1). As F : W1 → W2 is a bijection, this proves
E1
U (W1) = E2

U (W2). �

5.5. Determination of the metric from the source-to-solution map. In this section we
prove that F is in fact an isometry,

F ∗g2 = g1.

This will prove our main theorem, Theorem 1.3.

To this end, we apply Proposition 5.7 to have the following implication of [24, Theorem 1.2]:

Theorem 5.8. Let Φ1 and Φ2 be as earlier in Section 5 and assume that Φ1,L+V = Φ2,L+V . As-
sume also that the conditions of Theorem 1.3 are satisfied for the Lorentzian manifolds (M1, g1)
and (M2, g2). Then, the map

F : W1 →W2

is a diffeomorphism and the metric F ∗g2 is conformal to g1 in W1.

Proof. The claim follows from the proof of [24, Theorem 1.2]. However, let us briefly explain
the main steps of the proof as we need the construction in the proof to determine the conformal
factor between F ∗g2 and g1 in the next section.
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On the manifold (Mj , gj), let Fj : Wj → C(A) be the map from the point q to the corresponding
earliest observation time function, that is, Fj(w) = f+

a,j(w), j = 1, 2. Then formula (5.91) and

[24, Lemma 2.4 (ii)] imply that

F1(w) = F2(F (w)), for every w ∈W1.(5.93)

In particular, the sets Fj(Wj) ⊂ C(A), j = 1, 2, satisfy F1(W1) = F2(W2), since F : W1 → W2

is a bijection by Proposition 5.7. Thus we can write F = (F2)−1 ◦ F1 : W1 → W2. By [24,
Proposition 2.2], this implies that F : W1 → W2 is a homeomorphism. Hence the sets Fj(Wj)
can be considered as topological submanifolds of the infinite dimensional vector space C(A). It
is shown in [24, Section 5.1.2] that using the knowledge of the set F1(W1), we can construct
for any point Q ∈ F1(W1) a neighborhood U ⊂ F1(W1) of Q and the values a1, a2, . . . , an ∈ A
such that the following holds: The point q = F−1

1 (Q) ∈W1 has a neighborhood F−1
1 (U) ⊂W1,

where the map fa1,...,an : x 7→ (f+
ak,1

(x))nk=1 defines smooth local coordinates on W1. Observe

that for P ∈ U , we have f+
ak,1
◦ F−1

1 (P ) = P (ak). Thus when Ea : C(A) → R, a ∈ A are the

evaluation functions Ea(P ) = P (a) and Ea1,...,an(P ) = (Eaj (P ))nj=1, the above constructed pairs

(U,Ea1,...,an) determine on F1(W1) an atlas of differentiable coordinates on F1(W1) which makes
F1 : W1 → F1(W1) a diffeomorphism. As noted above, such atlas can be constructed using only
the knowledge of the set F1(W1). Thus, as F1(W1) = F2(W2), the atlases constructed on these
sets coincide. This implies that the homeomorphism F = (F2)−1 ◦ F1 : W1 → W2 is actually a
diffeomorhpsim.

Let us next consider the conformal classes of the metric tensors g1 and g2. Let (x, η) ∈ L+U be

a future directed lightlike vector. Let us consider the lightlike geodesics γ j(x,η)(R−), j = 1, 2, on

(Mj , gj) that lie in the causal past of the point x, and let s1 > 0 be such that γ j(x,η)([−s1, 0]) ⊂ U .

By [24, Proposition 2.6 ] we have that a point wj ∈ Wj satisfies wj ∈ γ j(x,η)((−∞,−s1]) if and

only if γ j(x,η)((−s1, 0)) ⊂ EjU (wj). In other words, for a point wj ∈Wj the set EjU (wj) determines

whether wj ∈ γ j(x,η)((−∞,−s1]). By formula (5.91), this implies that F maps the lightlike

geodesic γ1((−∞,−s1]) ∩W1 on to γ2((−∞,−s1]) ∩W2,

(5.94) F
(
γ1((−∞,−s1]) ∩W1

)
⊂ γ2((−∞,−s1]) ∩W2

Let w1 ∈ W1 and ξ1 ∈ L+
w1
M1 be such that γ1

(w1,ξ1)(R+) ∩ U 6= ∅, so that there is t1 > 0 so

that γ1
(w1,ξ1)(t1) ∈ U . Let x = γ1

(w1,ξ1)(t1) and η = γ̇1
(w1,ξ1)(t1). Then (5.94) implies that there is

t0 ∈ (0, t1) such that

F
(
γ1

(w1,ξ1)((−t0, t0))
)
⊂ F

(
γ1

(x,η)((−∞,−t1 + t0)) ∩W1

)
⊂ γ(2)

x,η(R) ∩W2.(5.95)

Thus for any w1 ∈ W1 and ξ1 ∈ L+
w1
M1 such that γw1,ξ1(R+) ∩ U 6= ∅, formula (5.95) implies

that F restricted to a neighborhood of w1 maps the lightlike geodesic γ1
(w1,ξ1) to a segment of a

light-like geodesic of (M2, g2). Hence, F∗ξ1 ∈ Lw2M2, where w2 = w1. Thus for any w1 ∈ W1

there are infinitely many vectors ξ1 ∈ L+
w1
M1 such that γ1

(w1,ξ1)(R+) ∩ U 6= ∅, and for which

F∗w1 ∈ Lw2M2, we see that F maps L+
w1
M1 to Lw2M2. Thus the metric tensor g1 is conformal

to F ∗g2 at w1. As w1 ∈W1 is arbitrary, this implies that g1 and F ∗g2 are conformal �

To complete the proof of Theorem 1.3 it remains to show that the conformal factor is 1.

5.6. Determination of the conformal factor. Here we prove that also the conformal factor
of the metric is the same. This is the final step in the proof of Theorem 1.3.

Proposition 5.9. Let (M, g), (M̃, g̃) be globally hyperbolic C∞ manifolds with metrics g and g̃.

Let the subsets W ⊂ M and W̃ ⊂ M̃ be open. Let c ∈ C∞(W ) be a strictly positive function
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and assume there is a diffeomorphism F : W → W̃ such that (F ∗g̃)(x) = c(x)g(x), ∀x ∈ W .
Let γ(x,p) be the geodesic in (M, g) with initial condition γ̇(x,p)(0) = (x, p), where (x, p) ∈ TW .
Also let σ(x,p) be the geodesic in the manifold (W,F ∗g̃) with σ̇(x,p)(0) = (x, p). Assume that for
every x ∈ W there exist two linearly independent timelike vectors p1, p2 ∈ TxW , real numbers
ε1, ε2 > 0 and two smooth functions αj : (−εj , εj)→ R, j = 1, 2, such that

(5.96) γ(x,pj)(t) = σ(x,pj)(αj(t)), for every t ∈ (−εj , εj), j = 1, 2.

Then c is a constant function on W . In particular, if the metrics g and F ∗g̃ equal at some point
x ∈W , then they equal everywhere in W .

Proof. Let us write c(x) = eϕ(x) for some smooth function ϕ, and Γkij and Γ̃kij for the Christoffel
symbols of the metrics g and F ∗g̃ respectively. Denote the associated pair of covariant derivatives

by ∇ and ∇̃. The Christoffel symbols of the conformal metrics g and F ∗g̃ = cg are connected
to each other by

Γ̃kij = Γkij +
1

2

(
δkj ∂iϕ+ δki ∂jϕ− gijgkl∂lϕ

)
.

(See [38, Ch. 3, Proposition 13.]). Thus, for any smooth curve γ in W ,

∇̃γ̇ γ̇ =γ̈k∂k + Γ̃kij(γ)γ̇iγ̇j∂k

=γ̈k∂k +
(

Γkij(γ) +
1

2

(
δkj ∂iϕ|γ + δki ∂jϕ|γ − gij(γ)gkl(γ)∂lϕ|γ

))
γ̇iγ̇j∂k

=γ̈k∂k + Γkij(γ)γ̇iγ̇j∂k + ∂jϕ|γ γ̇j γ̇k∂k −
1

2
gij(γ)γ̇iγ̇jgkl(γ)∂lϕ|γ∂k

=∇γ̇ γ̇ + 〈dϕ, γ̇〉γ̇ − 1

2
g(γ̇, γ̇)∇ϕ.

(5.97)

Let x ∈ W and, for j = 1, 2, let pj ∈ TxW , εj > 0 and αj : (−εj , εj) → R be as in the claim of
this proposition. Let us relax the notation by omitting the indices j = 1, 2 from subscripts. By
differentiating (5.96) in the variable t we obtain

(5.98) γ̇(x,p)(t) = α′(t)σ̇(x,p)(α(t))

for t ∈ (−ε, ε). Since

σ(x,p)(α(0)) = γ(x,p)(0) = x = σ(x,p)(0)

and since the causal geodesics σ(x,p) does not have self-intersection by global hyperbolicity (recall

that F identifies σ(x,p) with a causal geodesic in the globally hyperbolic manifold M̃), we obtain
α(0) = 0. Substituting α(0) = 0 to (5.98) yields

p = γ̇(x,p)(0) = α′(0)σ̇(x,p)(α(0)) = α′(0)σ̇(x,p)(0) = α′(0)p,

that is, α′(0) = 1. Thus, α(t) = t+O(t2) near t = 0. In particular,

∇̃γ̇(x,p)
[
σ̇(x,p)(α(t))

]
|t=0 = ∇̃σ̇(x,p) σ̇(x,p)(t)|t=0 = 0.

Substituting this to (5.97) and using that γ(x,p) is a geodesic imply

0 =∇γ̇(x,p) γ̇(x,p)(t)|t=0 = ∇̃γ̇(x,p) [α
′(t)σ̇(x,p)(α(t))]|t=0 − 〈dϕ, γ̇(x,p)(0)〉γ̇(x,p)(0)

+
1

2
g(γ̇(x,p)(0), γ̇(x,p)(0))∇ϕ(γ(x,p)(0))

=α′′(0)σ̇(x,p)(0) + ∇̃γ̇(x,p) [σ̇(x,p)(α(t))]|t=0 − 〈dϕ(x), p〉p+
1

2
g(p, p)∇ϕ(x)

=
(
α′′(0)− 〈dϕ(x), p〉

)
p+

1

2
g(p, p)︸ ︷︷ ︸
6=0

∇ϕ(x).
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In particular, ∇ϕ(x) lies in the line spanned by p in the space TxW . Since this holds for every
x ∈W and for the corresponding two linearly independent p1, p2 ∈ TxW (recall that we omitted
the subscripts in the calculation above), we conclude that ∇ϕ(x) = 0 for every x ∈W . That is,
the function ϕ, and hence c = eϕ is a constant function on W . �

We finish the proof Theorem 1.3 by showing that the conformal factor is 1; that is, g1 = F ∗g2

on W1.

Theorem 5.10. Assume that the conditions of Theorem 1.3 are satisfied and Φ1,L+V = Φ2,L+V

for Lorentzian manifolds (Mj , gj), j = 1, 2. Equip the associated spaces Wj, j = 1, 2 with the
canonical metrics gj |Wj induced by the trivial inclusions Wj ↪→Mj. Then, the map

F : W1 →W2

is an isometry.

Proof. Let w1 ∈ W1 be arbitrary and choose two time-like vectors (x̂, p̂), (ŷ, q̂) based in U such
that the geodesics γ(x̂,p̂) and γ(ŷ,q̂) intersect first time at w1 in (M1, g1) as earlier. By Lemma
5.5 we may fix them such that the corresponding geodesics in (M2, g2) intersect first time at
F (w1) = w2. For (x, p) ∈ TW1 let us denote by σ(x,p) the geodesic in (W1, F

∗g2) that satisfies
σ̇(x,p)(0) = (x, p). While keeping (x, p) fixed, we can vary the initial direction (y, q) so that the
intersection point of the geodesics γ(y,q) and γ(x,p) varies along the geodesic γ(x,p) through an
open geodesic segment. Since the geodesics γ(x̂,p̂) and γ(ŷ,q̂) intersect in both geometries, this
variation of w2 = F (w1) corresponds to a path through w2 that is some reparametrisation of
the geodesic γ(x̂,p̂) in (W2, g2). Mapping this reparametrised geodesic segment to M1 using F−1

implies that there is a vector p1 ∈ Tw1W1 and a smooth reparametrisation α1(s) such that the
geodesic γ(w1,p1) in (M1, g1) satisfies γ(w1,p1)(s) = σ(w1,p1)(α1(s)) on some interval s ∈ (−ε1, ε1).
Further, by exchanging the roles of (x̂, p̂) and (ŷ, q̂) and then repeating the construction above
one obtains another linearly independent vector p2 ∈ Tw1W1 and a smooth reparametrisation
α2(s), s ∈ (−ε2, ε2) such that γ(w1,p2)(s) = σ(w1,p2)(α2(s)), for s ∈ (−ε2, ε2). By Theorem 5.8,
we have g1|W1 = cF ∗g2. Consequently by Proposition 5.9 we have that c > 0 is constant. Since
F ∗g2 = g1 on V we conclude that c = 1. Thus F is an isometry. �
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Appendix A. Auxiliary lemmas

A.1. Lemmas used in the proof of Proposition 4.3.

Lemma 4.2. Let Y1 and Y2 and U be as in Definition 4.1 and adopt also the associated notation.
Define

ΛR = N∗(
⋃
x∈U
{x} × PxU × PxU).

The submanifold ΛR of T ∗(U × PU × PU) \ {0} equals the set

ΛR = {
(
x, y, z, p, q ; ξx, ξy, ξz, ξp, ξq

)
∈ T ∗(U × PU × PU) \ {0} :

ξx + ξy + ξz = 0, ξp = ξq = 0, x = y = z}.

Then we have

Λ′R = {
(
(x; ξx), (y, z, p, q ; ξy, ξz, ξp, ξq)

)
∈ T ∗U × T ∗(PU × PU) \ {0} :

ξx = ξy + ξz 6= 0, ξp = ξq = 0, x = y = z}.(A.99)

The spaces Λ′R× (N∗[Y1×Y2]) and T ∗U × diagT ∗(PM ×PM) intersect transversally in T ∗U ×
T ∗(PM × PM)× T ∗(PM × PM).

Proof. First notice that the manifold T
(⋃

x∈U{x}×PxU ×PxU
)

can be written by using local

coordinates as

(A.100) V1 := {(x, y, z, p, q ; ẋ, ẏ, ż, ṗ, q̇) ∈ (U3 × R2n)× R5n : ẋ = ẏ = ż, x = y = z}.
Note the V1 is a space of dimension 6n. Let us consider the subspace of T ∗(U × PU × PU)

V2 := {(x, y, z, p, q ; ξx, ξy, ξz, ξp, ξq) : x = y = z, ξx + ξy + ξz = 0, ξp = ξq = 0}.

Note that a vector in V1 paired with a covector in V2 yields zero since

(ξx, ξy, ξz, ξp, ξq) · (ẋ, ẏ, ż, ṗ, q̇) = ẋ ξx + ẏ ξy + ż ξz = ẋ(ξx + ξy + ξz) = 0.

Thus we have that V2 ⊂ ΛR. Note that the fibers of V1 are of dimension 5n − 2n = 3n. Note
also that the fibers of V2 have dimension 5n−3n = 2n. We thus have V2 = ΛR, since dimensions
of a fiber of the conormal bundle of ∪x∈U{x}×PxU ×PxU is the same as the codimension of a
fiber of V1. In conclusion, the coordinate expressions for ΛR and Λ′R hold.

Next we prove the transversality claim. First, fix the notation

X = T ∗U × T ∗(PM × PM)× T ∗(PM × PM)

L1 = Λ′R × (N∗[Y1 × Y2])

L2 = T ∗U × diagT ∗(PM × PM).

We want to show that the linear spaces L1 and L2 intersect transversally in X; that is for all
λ ∈ L1 ∩ L2,

dim(TλL1 + TλL2) = dimTλX.(A.101)

Let λ ∈ L1 ∩ L2. Since Y1 and Y2 satisfy the intersection property, there exists coordinates
x = (x′, x′′) on U such that

Y1 ∩ TU = {(x, p) ∈ TU : x′ = 0, p′ = 0, p′′ = (1, 0, . . . , 0)},
Y2 ∩ TU = {(x, p) ∈ TU : x′′ = 0, p′′ = 0, p′ = (1, 0, . . . , 0)},

(A.102)

in the associated canonical coordinates (x, p) = (x′, x′′, p′, p′′) of TU . We next compute the
induced local expressions of L1, L2 and L1∩L2 with respect to the coordinate system in (A.102).
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Above, we showed that Λ′R has the local expression (A.99). Therefore if λ ∈ L1, λ has the local
coordinate form

(A.103) λ = ((x, ξx, y, p, ξy, 0, z, q, ξz, 0), α, β),

where (α, β) ∈ N∗[Y1 × Y2], (x, ξx) ∈ T ∗U , and (y, p, ξy, 0), (z, q, ξz, 0) ∈ T ∗(PU) are such that
y = z = x and ξy + ξz = ξx.

If (α, β) ∈ N∗[Y1 × Y2], then (α, β) is nonzero and must satisfy

α = (x′, 0, p′, 0, 0, (ξx)′′, 0, (ξp)′′)(A.104)

β = (0, y′′, 0, q′′, (ξy)′, 0, (ξq)′, 0),(A.105)

where one (but not both) of the components is allowed to be zero.

The local expression for λ ∈ L2 induced by (A.102) is

(A.106) λ = (x, ξx, y, p, z, q, ξy, ξp, ξz, ξq, y, p, z, q, ξy, ξp, ξz, ξq).

where x, y, z ∈ U .

Using (A.103), (A.104), and (A.106), we obtain that points λ ∈ L1 ∩ L2 are described by

λ = (0, ξx, γ, γ),(A.107)

where

ξx = ((ξx)′, (ξx)′′),

γ = (0, (p′, 0), (0, (ξx)′′), 0, 0, (0, p′′), (0, (ξx)′), 0),

p′ = (1, 0, . . . , 0),

p′′ = (1, 0, . . . , 0).

Indeed, if λ ∈ L1 ∩ L2, we must have (x′, x′′) = (y′, 0) = (0, z′′) which is only satisfied if
x = y = z = 0. From (A.103), we have ξp = 0 = ξq in (A.106). Since ξx = ξy + ξz in
(A.103), from (A.104) and (A.106) we find ((ξx)′, (ξx)′′) = ((ξz)′, (ξy)′′). From (A.102), (p′, p′′) =
(1, 0, . . . , 0, 1, 0, . . . , 0).

From the above coordinate expressions, we now compute the dimensions of L1, L2, and L1∩L2.
First note that

dim(X) = dim(T ∗U) + dim(T ∗(PM × PM)) + dim(T ∗(PM × PM)) = 18n

Similarly one computes dim(L2) = 10n. The expression (A.107) shows that dim(L1 ∩ L2) = n.

Therefore, for λ ∈ L1 ∩ L2,

dim(TλL1) + dim(TλL2)− dimTλ(L1 ∩ L2) = 9n+ 10n− n = 18n = dim(TλX).

This shows that L1 is transverse to L2 in X. �

Appendix B. Existence theorems for Vlasov and Boltzmann Cauchy problems

In this section, the space (M, g) is assumed to be globally hyperbolic C∞-smooth Lorentzian
manifold. By γ(x,p) : (−T1, T2)→M we denote the inextendible geodesic which satisfies

(B.108) γ(x,p)(0) = x and γ̇(x,p)(0) = p.

We do not assume that (M, g) is necessarily geodesically complete. Therefore, we might have
that T1 <∞ or T2 <∞. We will repeatedly use the fact that if f(x, p) is a smooth function on

P+
M whose support on the base variable x ∈M is compact, then the map

(B.109) (x, p) 7→
∫ 0

−∞
f(γ(x,p)(t), γ̇(x,p)(t))dt on (x, p) ∈ P+

M
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is well defined. This is because on a globally hyperbolic Lorentzian manifold any causal geodesic
γ exits a given compact set Kπ permanently after finite parameter times. That is, there are
parameter times t1, t2 such that γ({t < t1}), γ({t > t2}) ⊂ M \Kπ. Thus the integral above is
actually an integral of a smooth function over a finite interval. Further, since f and the geodesic
flow on (M, g) are smooth the map in (B.109) is smooth. If (M, g) is not geodesically complete
and if γ(x,p) : (−T1, T2)→ M , we interpret the integral above to be over (−T1, 0]. We interpret
similarly for all similar integrals in this section without further notice.

We record the following lemma.

Lemma B.1. Let (M, g) be a globally hyperbolic Lorentzian manifold, let X be a compact subset

of P+
M and let Kπ be a compact subset of M . Then the function ` : P+

M → R
`(x, p) = sup{s ≥ 0 : γ(x,p)(−s) ∈ Kπ}.

is upper semi-continuous and

(B.110) l0 = max
{
`(y, q) : (y, q) ∈ X} <∞.

In addition, if λ > 0 then `(x, λp) = λ−1`(x, p).

Proof. To see that l is upper semi-continuous, consider a geodesic touching the closed set Kπ

at a single point. Since the globally hyperbolic manifold (M, g) is disprisoning and causally
pseudoconvex, any of its causal geodesics exits the compact set Kπ permanently after finite
parameter times, see e.g. [5, Proposition 1] and [4, Lemma 11.19]. It follows that `(x, p) < ∞
for all (x, p) ∈ P+

M . The maximum in (B.110) exists since ` is upper semi-continuous and X
is compact. Since γ(x,λp)(s) = γ(x,p)(λs), for all λ ∈ R, we have that `(x, λp) = λ−1`(x, p), for
λ > 0. �

In the next theorem we consider sources which are compactly supported in P+
M . Note that

this especially means that f is supported outside a neighbourhood of the zero section of TM ,

since by our convention {0} /∈ P+
M . Recall that if C is a Cauchy surface of M , we use the

notation C± for the causal future (+) or the causal past (−) of C:
C± = J±(C).

In particular, the notation P+C± refers to the subset of TM of future directed causal vectors

on the causal future (+) or past (−) of the Cauchy surface C. That is, we abbreviate P+C± =

P+
[J±(C)].

If K ⊂ P+C+ is compact and k ≥ 0 is integer, we define

CkK(P+C+) := {f ∈ Ck(P+C+) : supp(f) ⊂ K}.
and

Cb(P
+C+) := {f ∈ C(P+C+) : f is bounded},

Notice that the spaces CkK(P+C+) and Cb(P
+C+) equipped with the norm of Ck and sup-norm

respectively are Banach spaces. We define the Ck norm of a function by fixing a partition of unity
and summing up the Ck norms of the local coordinate representations of the function.

Theorem 3.2. Assume that (M, g) is a globally hyperbolic C∞-smooth Lorentzian manifold. Let

C be a Cauchy surface of (M, g), K ⊂ P+C+ be compact and k ≥ 0. Let also f ∈ CkK(P+
M).

Then, the problem

Xu(x, p) = f(x, p) on P+
M

u(x, p) = 0 on P+C−(B.111)
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has a unique solution u in Ck(P+
M). In particular, if Z ⊂ P+

M is compact, there is a constant
ck,K,Z > 0 such that

‖u|Z‖Ck(Z) ≤ ck,K,Z ||f ||Ck(P+
M)
.(B.112)

If k = 0, the estimate above is independent of Z:

‖u‖
C(P+

M)
≤ cK ||f ||C(P+

M)
.

Proof. Let us denote by Kπ = π(K) the compact set containing π(supp (f)). Let (x, p) ∈ P+
M

and f ∈ Ckc (P+C+). Evaluating (B.111) at (γ(x,p)(s), γ̇(x,p)(s)) reads

(Xu)(γ(x,p)(s), γ̇(x,p)(s)) = f(γ(x,p)(s), γ̇(x,p)(s)).

Since X is the geodesic vector field we have for all s that

(Xu)(γ(x,p)(s), γ̇(x,p)(s)) =
d

ds
u(γ(x,p)(s), γ̇(x,p)(s)).

By integrating in s, we obtain

(B.113) u(x, p) =

∫ 0

−∞
f(γ(x,p)(s), γ̇(x,p)(s))ds.

Here we used that f(γ(x,p)(s), γ̇(x,p)(s)) vanishes for s < −`(x, p) by Lemma B.1, where

`(x, p) = sup{s ≥ 0 : γ(x,p)(−s) ∈ Kπ}.

We verify that u is a solution to (B.111). Note that if (y, q) =
(
γ(x,p)(s), γ̇(x,p)(s)

)
, then

γ(y,q)(z) = γ(x,p)(z + s) and γ̇(y,q)(z) = γ̇(x,p)(z + s).

It follows that

u(γ(x,p)(s), γ̇(x,p)(s)) =

∫ 0

−∞
f
(
γ(x,p)(z + s), γ̇(x,p)(z + s)

)
dz =

∫ s

−∞
f
(
γ(x,p)(z), γ̇(x,p)(z)

)
dz

and consequently

Xu(x, p) =
d

ds

∣∣∣
s=0

u(γ(x,p)(s), γ̇(x,p)(s)) = f
(
γ(x,p)(0), γ̇(x,p)(0)

)
= f(x, p).

If (x, p) ∈ P+C−, then u(x, p) = 0 by the integral formula (B.113) and the fact that f ∈
Ckc (P+C+). We have now shown that a solution u to (B.111) exists. The solution u is unique
since it was obtained by integrating the equation B.111.

Next we prove the estimate (3.22). We have by the representation formula (B.113) for the
solution u that

(B.114) sup
(x,p)∈P+

M

|u(x, p)| = sup
(x,p)∈P+

K

|u(x, p)|.

The equation (B.114) holds since π(supp (f)) is properly contained in Kπ. Let e be some
auxiliary smooth Riemannian metric on M and let SKπ ⊂ TM be the unit sphere bundle with
respect to e over Kπ. Let us also denote

X = SKπ ∩ P
+
Kπ

the bundle of future directed causal (with respect to g) vectors that have unit length in the
Riemannian metric e. Since X is a closed subset of the compact set SKπ, we have that X is
compact. By Lemma B.1 we have that

l0 = max
{
`(y, q) : (y, q) ∈ X}

exists.
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Let us continue to estimate |u(x, p)| for (x, p) ∈ P+
Kπ. If (x, p) ∈ P+

Kπ, then there is λ > 0
such that (x, λ−1p) ∈ X. Let us denote q = λ−1 p ∈ SKπ. We have that

u(x, p) =

∫ 0

−∞
f(γ(x,λq)(s), γ̇(x,λq)(s))ds =

∫ 0

−∞
f(γ(x,q)(λs), λγ̇(x,q)(λs))ds

=
1

λ

∫ 0

−∞
f(γ(x,q)(s), λγ̇(x,q)(s))ds =

1

λ

∫ 0

−l0
f(γ(x,q)(s), λγ̇(x,q)(s))ds.(B.115)

Here we used

γ(x,λp)(z) = γ(x,p)(λz) and
d

dz
γ(x,λp)(z) = λγ̇(x,p)(λz).

Let us define two positive real numbers

C = max
s∈[0,l0]

max
(x,q)∈X

|γ̇(x,q)(−s)|e <∞

R = inf{r > 0 : f |Be(0,r)⊂TxM = 0 for all x ∈ Kπ} > 0.

Here for x ∈ Kπ, the set Be(0, r) is the unit ball of radius r with respect to the Riemannian
metric e in the tangent space TxM . The constant R is positive since f has compact support in

P+
M by assumption. Let us define

λmin :=
R

C
> 0.

Then, if λ < λmin = R
C , we have for (x, q) ∈ X that∫ 0

−l0
f(γ(x,q)(s), λγ̇(x,q)(s))ds = 0,

since in this case |λγ̇(x,q)(s)| < R for all s ∈ [−l0, 0]. It follows that for all λ > 0 we have that

1

λ

∣∣∣∣∫ 0

−l0
f(γ(x,q)(s), λγ̇(x,q)(s))ds

∣∣∣∣ ≤ c

λmin
‖f‖

C(P+
M)
.

Finally, combining the above with (B.114) and (B.115) shows that

‖u‖
C(P+

M)
= sup

(x,p)∈P+
M

|u(x, p)| ≤ sup
λ>0

sup
(x,q)∈X

1

λ

∣∣∣∣∫ 0

−l0
f(γ(x,q)(s), λγ̇(x,q)(s))ds

∣∣∣∣
≤ c

λmin
‖f‖

C(P+
M)
.

Let Z ⊂ P+
M be a compact set. We next show that

‖u‖Ck(Z) ≤ ck,K,Z‖f‖Ck(P+
M)

for k ≥ 1.

We have proven that this estimate holds for k = 0. We prove the claim for k > 0. Let ∂ denote
any of the partial differentials ∂xa or ∂pa in canonical coordinates of the bundle TM . We apply
∂ to the formula (B.113) of the solution u to obtain

∂u(x, p) =

∫ 0

−∞

[
∂f

∂xα
(γ(x,p)(s), γ̇(x,p)(s))∂γ

α
(x,p)(s) +

∂f

∂pα
(γ(x,p)(s), γ̇(x,p)(s))∂γ̇

α
(x,p)(s)

]
ds.

Since ∂f
∂xα and ∂f

∂pα have the same properties as f , and the smooth coefficients ∂γα(x,p) and ∂γ̇α(x,p)

are uniformly bounded for (x, p) ∈ Z ⊂ P+
M , we may apply the proof above to show that

‖u‖C1(Z) ≤ c1,K,Z‖f‖C1(P+
M)
.

The proof for k ≥ 2 is similar. �
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By using the solution formula (B.113),

u(x, p) =

∫ 0

−∞
f(γ(x,p)(s), γ̇(x,p)(s))ds,

in the proof of Theorem 3.2, we have the following result for Cauchy problems for the equation
Xu = f restricted to P+M and L+M . We denote by L+C± the bundle of future-directed
lightlike vectors in the future C+ or past C− of a Cauchy surface C.

Corollary B.2. Assume as in Theorem 3.2 and adopt its notation. Then for the compact set

K ⊂ P+C+, the Cauchy problems

Xu(x, p) = f(x, p) on P+M

u(x, p) = 0 on P+C−,(B.116)

and

Xu(x, p) = f(x, p) on L+M

u(x, p) = 0 on L+C−,(B.117)

have continuous solution operators X−1 : CkK(P+M) → Ck(P+M) and X−1
L : CkK(L+M) →

Ck(L+M) respectively.

Note that we slightly abused notation by denoting by X−1 the solution operator to both
Cauchy problems (B.111) and (B.116). Here CkK(P+M) and CkK(L+M) are defined similarly as

CkK(P+
M). Since P+M and L+M are manifolds without boundary, we are able to use standard

results to extend the problems (B.116) and (B.117) for a class of distributional sources f .

Lemma B.3. Assume that (M, g) is a globally hyperbolic C∞-smooth Lorentzian manifold. Let
C be a Cauchy surface of (M, g)

(1) The solution operator X−1 to the Cauchy problem (B.116) on P+M has a unique contin-
uous extension to f ∈ {h ∈ D′(P+M) : WF (h) ∩ N∗(P+C) = ∅, h = 0 in P+C−}. If S is
a submanifold of P+C+, f ∈ I l(P+M ;N∗S), l ∈ R, then we have that u = X−1f satisfies

χu ∈ I l−1/4(P+M ;N∗KS) for any χ ∈ C∞c (P+M) with supp(χ) ⊂⊂ P+M \ S.

(2) The solution operator X−1
L to the Cauchy problem (B.117) on L+M has a unique con-

tinuous extension to {h ∈ D′(L+M) : WF (h) ∩ N∗(P+C) = ∅, h = 0 in L+C−}. If S is
a submanifold of L+C+, f ∈ I l(L+M ;N∗S), l ∈ R, then we have that u = X−1f satisfies

χu ∈ I l−1/4(L+M ;N∗KS) for any χ ∈ C∞c (L+M) with supp(χ) ⊂⊂ L+M \ S.

Proof. Let us first consider the solution operator X−1 to (B.116). We will refer to [13, Theorem
5.1.6]. To do that, we consider P+M as R×P+C by using the flowout parametrization R×P+C →
P+M given by

(s, (x, p)) 7→ γ̇(x,p)(s), s ∈ R, (x, p) ∈ P+C.
Also, by reviewing the proof of Lemma 3.1, we conclude that X is strictly hyperbolic with
respect to P+C. Then, by [13, Theorem 5.1.6], the problem (B.116) has a unique solution
for f ∈ {h ∈ D′(P+M) : WF (h) ∩ N∗(P+C) = ∅, h = 0 in P+C−}. By [13, Remarks after
Theorem 5.1.6] the solution operator X−1 to (B.116) extends continuously to {h ∈ D′(P+M) :
WF (h) ∩N∗(P+C) = ∅, h = 0 in P+C−}.

If S ⊂ P+C+ and f ∈ I l(P+M ;N∗S), then we have f ∈ {h ∈ D′(P+M) : WF (h)∩N∗(P+C) =
∅}, because

WF (f) ∩N∗(P+C) ⊂ N∗S ∩N∗(P+C) = ∅.
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By using the definitions of the sets C0 and R0, which appear in [13, Theorem 5.1.6], we obtain

C0 ◦R0 = {((x, p; ξ), (z, w; λ)) ∈ T ∗(P+M)× T ∗(P+M) \ {0} : (x, p; ξ) on the bicharacteristic

strip through λ ∈ T ∗(z,w)P
+M with (z, w) ∈ P+C and σX (z, w; λ) = 0}.

Here σX is the principal symbol of X , see (3.17). Let χ1 ∈ C∞c (P+M) be such that supp(χ1) ⊂⊂
P+M \ S. We choose χ2 ∈ C∞c (P+M) such that χ2 equals 1 on a neighborhood of S and
supp (χ2) ⊂ P+C+ and such that supp(χ1)∩supp(χ2) = ∅. Let us denote A = χ1I and B = χ2I,
where I is the identity operator. If we consider A and B as pseudodifferential operators of class
Ψ0

1,0(P+M), we have that (WF (A)×WF (B)) ∩ [diag(T ∗(P+M)) ∪ (C0 ◦R0)] = ∅. We write

χ1u = χ1X−1χ2f + χ1X−1(1− χ2)f = AX−1Bf,

where we used (1− χ2)f = 0 so that X−1(1− χ2)f = 0. By [13, Theorem 5.1.6], we have that

AX−1B ∈ I−1/4(P+M,P+M ; ΛX ).

The flowout of the conormal bundle over S under X is the conormal bundle of the geodesic
flowout of S. That is

ΛX ◦N∗S = N∗KS .

Finally, by applying [13, Theorem 2.4.1, Theorem 4.2.2], we have

(B.118) χ1v ∈ I l−1/4(P+M ;N∗KS).

Renaming χ1 as χ concludes the proof of (1). The proof of (2) is a similar application of [13,
Theorem 5.1.6] by using the flowout parametrization for L+M given by (s, (x, p)) 7→ γ̇(x,p)(s),

(x, p) ∈ L+C and s ∈ R. �

Next we prove that the Boltzmann equation has unique small solutions for small enough sources.
Before that, we give an estimate regarding the collision operator in the following lemma. Fol-
lowing our convention of this section, the integral in the statement of the lemma over a geodesic
parameter is interpreted to be over the largest interval of the form (−T, 0], T > 0, where the
geodesic exists.

Lemma B.4. Let (M, g) be a globally hyperbolic Lorentzian manifold and let Q be a collision
operator with an admissible collision kernel A : Σ → R in the sense of Definition 1.1. Then
there exists a constant CA > 0 such that∣∣∣∣∫ 0

−∞
Q[v, u](γ(x,p)(s), γ̇(x,p)(s))ds

∣∣∣∣ ≤ CA‖u‖C(P+
M)
‖v‖

C(P+
M)

for every (x, p) ∈ P+
M and u, v ∈ Cb(P

+
M).

Proof. Let us define a compact set Kπ := π(supp (A)). Let e be some auxiliary Riemannian
metric on M . Let us denote

X = SKπ ∩ P
+
Kπ

the bundle of future directed causal (with respect to g) vectors who have unit length in the
Riemannian metric e. Since X is a closed subset of the compact set SKπ, we have that X is
compact. By Lemma B.1, we have that there exists the maximum

l0 = max
{
`(y, q) : (y, q) ∈ X},

where `(x, p) = sup{s ≥ 0 : γ(x,p)(−s) ∈ Kπ}.

Let us define another compact set K as

K :=
{

(y, r) ∈ P+
M : (y, r) = (γ(x,q)(s), γ̇(x,q)(s)), s ∈ [−`(x, q), 0], (x, q) ∈ X

}
.
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To see that K is compact, note that it is the image of the compact set {(s, (x, q)) : s ∈
[−`(x, q), 0], (x, q) ∈ X} under the geodesic flow. The set {(s, (x, q)) : s ∈ [−`(x, q), 0], (x, q) ∈
X} is compact since it is bounded by Lemma B.1 and closed by the upper semi-continuity of `.
Since the collision kernel is admissible, the function

λ 7→ Fx,p(λ) = ‖A(x, λp, · , · , · )‖L1(Σx,λp),

is by assumption continuously differentiable in λ and attains its minimum value zero at λ = 0.

Thus, for any (x, p) ∈ P+
M , we have that

d

dλ

∣∣∣
λ=0

Fx,p(λ) = λ−1Fx,p(λ) −→ 0

as λ → 0. Since the continuous function (x, p) 7→ d
dλ

∣∣
λ=0

Fx,p(λ) on the compact set K is
uniformly continuous, there is a constant λ0 > 0 such that

(B.119) λ−1Fy,r(λ) ≤ 1

for 0 < λ < λ0 and for (y, r) in the compact set K.

Let (x, p) ∈ P+
M and write (x, p) = (x, λq). Recall from Lemma B.1 that λ`(x, p) = `(x, λ−1p) =

`(x, q). We have that

0 ≤
∫ 0

−∞
Q[u, v]

(
γ(x,p)(s), γ̇(x,p)(s)

)
ds

=

∫ 0

−`(x,p)
Q[u, v]

(
γ(x,λq)(s), γ̇(x,λq)(s)

)
ds

=

∫ 0

−`(x,p)
Q[u, v]

(
γ(x,q)(λs), λγ̇(x,q)(λs)

)
ds

=
1

λ

∫ 0

−λ`(x,p)
Q[u, v]

(
γ(x,q)(s

′), λγ̇(x,q)(s
′)
)
ds′

=
1

λ

∫ 0

−`(x,q)
Q[u, v]

(
γ(x,q)(s

′), λγ̇(x,q)(s
′)
)
ds′

≤ 2‖u‖
C(P+

M)
‖v‖

C(P+
M)

1

λ

∫ 0

−l0
‖A(γ(x,q)(s

′), λγ̇(x,q)(s
′), · , · , · )‖L1(Σx,p)ds

′

≤

{
2l0‖u‖C(P+

M)
‖v‖

C(P+
M)

if λ < λ0

2λ−1
0 l0‖u‖C(P+

M)
‖v‖

C(P+
M)

if λ ≥ λ0

(B.120)

Here, for λ ≥ λ0, we used the condition (4) of the assumptions in the definition of an admissible
kernel. For λ ≤ λ0 we used (B.119). We also did a change of the variable in the integration as
s′ = λs. This proves the claim. �

Theorem 1.2. Let (M, g) be a globally hyperbolic C∞-smooth Lorentzian manifold. Let also C
be a Cauchy surface of M and K ⊂ P+C+ be compact. Assume that A : Σ→ R is an admissible
collision kernel in the sense of Definition 1.1.

There are open neighbourhoods B1 ⊂ CK(P+C+) and B2 ⊂ Cb(P
+
M) of the respective origins

such that if f ∈ B1, the Cauchy problem

Xu(x, p)−Q[u, u](x, p) = f(x, p) on P+
M

u(x, p) = 0 on P+C−(B.121)

has a unique solution u ∈ B2. There is a constant cA,K > 0 such that

‖u‖
C(P+

M)
≤ cA,K‖f‖C(P+

M)
.
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Proof. We integrate the equation B.121 along the flow of X in TM and then use the implicit
function theorem in Banach spaces for the resulting equation. (Integrating the equation (B.121)
avoids some technicalities regarding Banach spaces, which there would be in the application of
the implicit function theorem without the integration.) We define the mapping

F : CK(P+C+)× Cb(P
+
M)→ Cb(P

+
M),

by
(B.122)

F (f, u)(x, p) = u(x, p)−
∫ 0

−∞
Q[u, u]

(
γ(x,p)(s), γ̇(x,p)(s)

)
ds−

∫ 0

−∞
f(γ(x,p)(s), γ̇(x,p)(s))ds.

Let us denote
Z = π[supp(A)] ∪ π[supp(f)],

where π is the canonical projection. We have by Lemma B.1 that the integrals in the definition
of F above are actually over [−`(x, p), 0] where `(x, p) = sup{s ≥ 0 : γ(x,p)(−s) ∈ Z}. In
combination with Lemma B.4, we have that F is well-defined.

We apply the implicit function theorem for Banach spaces (see e.g. [39, Theorem 9.6]) to F to

obtain a solution u if the source f ∈ CK(P+C+) is small enough. First note that F (0, 0) = 0.

Additionally, observe that for u, v ∈ Cb(P
+
M) we have

(B.123) Q[u+ v, u+ v] = Q[u, u] +Q[v, u] +Q[u, v] +Q[v, v]

since Q is linear in both of its arguments.

Next, we argue that F is continuously Frechét differentiable (in the sense of [39, Definition 9.2]).

Let u, v ∈ Cb(P
+
M) and f, h ∈ CK(P+C+). We have that

F (f + h, u+ v)− F (f, u)− L(f, u)(h, v) = −
∫ 0

−∞
Q[v, v]

(
γ(x,p)(s), γ̇(x,p)(s)

)
ds,

where

L(f, u)(h, v) := v(x, p)−
∫ 0

−∞
h(γ(x,p)(s), γ̇(x,p)(s))ds

−
∫ 0

−∞
Q[u, v]

(
γ(x,p)(s), γ̇(x,p)(s)

)
ds−

∫ 0

−∞
Q[v, u]

(
γ(x,p)(s), γ̇(x,p)(s)

)
ds.

It thus follows from Lemma B.4 that

‖F (f + h, u+ v)− F (f, u)− L(f, u)(h, v)‖2
Cb(P

+
M)
≤ CA‖v‖2

Cb(P
+
M)
.

We conclude that the Frechét derivative of F at (f, u) is given by DF (f, u)(h, v) = L(f, u)(h, v).
We have that DF (f, u) is continuous

DF (f, u) : CK(P+C+)× Cb(P
+
M)→ Cb(P

+
M),

by Lemma B.4. Finally, note that the Frechét differential in the second variable of F at (0, 0)

DF2(0, 0) : Cb(P
+
M)→ Cb(P

+
M),

given by DF2(0, 0) = DF (0, 0)(0, · ), is just the identity map.

By the implicit function theorem in Banach spaces there exist open neighbourhoods B1 ⊂
CK(P+C+) and B2 ⊂ Cb(P

+
M) of the respective origins and a continuously (Frechét) differ-

entiable map T : V → U such that for f ∈ B1, the function u = T (f) ∈ B2 is the unique
solution to F (f, u) = 0. Applying X to (B.122) shows that u solves (B.121). Further, since T is
continuously differentiable, there exists cA,K > 0 such that

‖u‖
Cb(P

+
M)
≤ cA,K‖f‖CK(P+

M)
.
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This concludes the proof. �

Next we show that the source-to-solution mapping of the Boltzmann equation can be used to
compute the source-to-solution mappings of the first and second linearizations of the Boltzmann
equation.

Lemma 3.4. Assume as in Theorem 1.2 and adopt its notation. Let Φ : B1 → B2 ⊂ Cb(P
+
M),

B1 ⊂ CK(P+C+), be the source-to-solution map of the Boltzmann equation.

The map Φ is twice Frechét differentiable at the origin of CK(P+C+). If f, h ∈ B1, then we
have:

(1) The first Frechét derivative Φ′ of the source-to-solution map Φ at the origin satisfies

Φ′(0; f) = ΦL(f),

where ΦL is the source-to-solution map of the Vlasov equation (3.21).

(2) The second Frechét derivative Φ′′ of the source-to-solution map Φ at the origin satisfies

Φ′′(0; f, h) = Φ2L(f, h),

where Φ2L(f, h) ∈ C(P+
M) is the unique solution to the equation

XΦ2L(f, h) = Q[ΦL(f),ΦL(h)] +Q[ΦL(h),ΦL(f)], on P+
M,

Φ2L(f, h) = 0, on P+C−.(B.124)

Proof of Lemma 3.4. Proof of (1). We adopt the notation of Theorem 1.2. Let f ∈ CK(P+C+)

and let f0 ∈ B1. Then by Theorem 1.2 there exists a neighbourhood B2 of the origin in Cb(P
+
M)

and ε0 > 0 such that for all ε0 > ε > 0 the problem

Xuε −Q[uε, uε] = εf on P+
M(B.125)

uε = 0 on P+C−,

has a unique solution uε ∈ B2 satisfying ‖uε‖Cb(P+
M)
≤ cA,K ε‖f‖CK(P+

M)
. Let us define

functions rε ∈ Cb(P
+
M), for ε < ε0, by

uε = εv0 + rε,

where v0 ∈ Cb(P
+
M) solves

X v0 = f on P+
M(B.126)

v0 = 0 on P+C−.

We show that rε = O(ε2) in Cb(P
+
M). To show this, we first calculate

X rε = X (uε − εv0) = Q[uε, uε] + εf − εX v0 = Q[uε, uε].

We integrate this equation along the flow of X to obtain

rε(x, p) =

∫ 0

−∞
Q[uε, uε]

(
γ(x,p)(s), γ̇(x,p)(s)

)
ds.

(As before, the integral is actually over a finite interval since uε vanishes in π−1(C−).) By
Lemma B.4, we have that the right hand side is at most

C1‖uε‖2
Cb(P

+
M))

.
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Since ‖uε‖Cb(P+
M)
≤ Cε‖f‖

CK(P+
M)

by Theorem 1.2, we have that rε = O(ε2) in Cb(P
+
M) as

claimed. Consequently, we have that

lim
ε→0

Φ(εf)− Φ(0)

ε
= lim

ε→0

uε − 0

ε
= lim

ε→0

εv0 + rε
ε

= v0 = ΦL(f),

where the limit is in Cb(P
+
M). This proves Part (1).

Proof of (2). Let f , uε and v0 be as before. We first prove that

uε = εv0 + ε2w +O(ε3)

in Cb(P
+
M), where w is the unique solution to

Xw = Q[v0, v0] on P+
M(B.127)

w = 0, on P+C−.

A unique solution to (B.127) exists by using the formula (B.113) and noting the π(supp(A)) is

compact. To show this, we define Rε ∈ Cb(P
+
M) by

(B.128) uε = εv0 − ε2w +Rε.

To show that Rε = O(ε3) in Cb(P
+
M) we apply X to the equation B.128 above. We have that

(B.129) XRε = X (uε−εv0−ε2w) = Q[uε, uε]+εf−εX v0−ε2Q[v0, v0] = Q[uε, uε]−ε2Q[v0, v0].

Since the collision operator Q is linear in both of its arguments, we have that

Q[uε, uε]− ε2Q[v0, v0] = Q[(uε − εv0), uε]−Q[εv0, (uε − εv0)].(B.130)

We integrate the equation (B.129) for Rε along the flow of X to obtain

Rε(x, p) ≤ C1‖uε − εv0‖Cb(P+
M)
‖uε‖Cb(P+

M)
+ C1‖εv0‖Cb(P+

M)
‖uε − εv0‖Cb(P+

M)
.

Here we used (B.130) and Lemma B.4. By using the estimate ‖uε−εv0‖C(P+
M)
≤ Cε2 from Part

(1) of this lemma, and by using that ‖uε‖Cb(P+
M)
≤ Cε‖f‖

CK(P+
M)

and that ‖v0‖Cb(P+
M)
≤

C2‖f‖CK(P+
M)

we obtain

‖Rε(x, p)‖Cb(P+
M)
≤ C3ε

3.

We have shown that

uε = εv0 − ε2w +O(ε3).

It follows that Φ is twice Frechét differentiable at the origin in Cb(P
+
M).

Let f, h ∈ CK(P+C+). To prove Part (2) of the claim, we use “polarization identity of differen-
tiation”, which says that any function F , which is twice differentiable at 0, satisfies

∂2

∂ε1ε2

∣∣∣
ε1=ε2=0

F (ε1f1 + ε2f2) =
1

4

∂2

∂ε2

∣∣∣
ε=0

[F (ε(f1 + f2))− F (ε(f1 − f2))].

For f ∈ B1 ⊂ CK(P+C+), we denote by uf the solution to the Boltzmann equation (B.125)
with source f . We also denote by vf the solution to the Vlasov equation (B.126) with source f ,
and we denote similarly for wf , where wf solves (B.127) where v0 is replaced by vf .

We need to show that

(B.131)
1

ε1ε2
[Φ(ε1f1 + ε2f2)− Φ(ε2f2)− Φ(ε1f1) + Φ(0)] −→ w,
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as ε1 → 0 and ε2 → 0, where w solves

Xw = Q[vf1 , vf2 ] +Q[vf2 , vf1 ], on P+
M(B.132)

w = 0, on P+C−.

By using the polarization identity (B.131) and the expansion of uε(f1±f2) for ε small, which we
have already proven, we obtain

lim
ε1, ε2→0

Φ(ε1f1 + ε2f2)− Φ(ε2f2)− Φ(ε1f1) + Φ(0)

ε1ε2
=

1

4

∂2

∂ε2

∣∣∣
ε=0

[uε(f1+f2) − uε(f1−f2)]

=
1

2
wf1+f2 −

1

2
wf1−f2 .

By denoting wf1−f2 − wf1+f2 = 2w and by using the linearity of Q in both of its argument, we
finally have have that

Xw =
1

2
Q[vf1+f2 , vf1+f2 ]− 1

2
Q[vf1−f2 , vf1−f2 ] = Q[vf1 , vf2 ] +Q[vf2 , vf1 ].

Renaming f1 and f2 as f and h respectively proves the claim. �
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