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Abstract
Purpose Training deep neural networks usually require a large number of human-annotated data. For organ segmentation
from volumetric medical images, human annotation is tedious and inefficient. To save human labour and to accelerate the
training process, the strategy of annotation by iterative deep learning recently becomes popular in the research community.
However, due to the lack of domain knowledge or efficient human-interaction tools, the current AID methods still suffer from
long training time and high annotation burden.
Methods We develop a contour-based annotation by iterative deep learning (AID) algorithm which uses boundary represen-
tation instead of voxel labels to incorporate high-level organ shape knowledge. We propose a contour segmentation network
with amulti-scale feature extraction backbone to improve the boundary detection accuracy.We also developed a contour-based
human-intervention method to facilitate easy adjustments of organ boundaries. By combining the contour-based segmentation
network and the contour-adjustment intervention method, our algorithm achieves fast few-shot learning and efficient human
proofreading.
Results For validation, two human operators independently annotated four abdominal organs in computed tomography (CT)
images using our method and two compared methods, i.e. a traditional contour-interpolation method and a state-of-the-art
(SOTA) convolutional network (CNN) method based on voxel label representation. Compared to these methods, our approach
considerably saved annotation time and reduced inter-rater variabilities. Our contour detection network also outperforms the
SOTA nnU-Net in producing anatomically plausible organ shape with only a small training set.
Conclusion Taking advantage of the boundary shape prior and the contour representation, our method is more efficient, more
accurate and less prone to inter-operator variability than the SOTA AID methods for organ segmentation from volumetric
medical images. The good shape learning ability and flexible boundary adjustment functionmake it suitable for fast annotation
of organ structures with regular shape.
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Introduction

Nowadays, deep learning (DL) demonstrated promising
performance for medical image analysis, and deep neural
networks became the mainstream method for organ segmen-
tation frommedical images. So far, the training of an effective
deep segmentation network still requires the annotation of
large datasets. It is well known that manual annotation of
volumetric medical images is extremely tedious and prone
to subjective variabilities. Although some recent efforts have
been made on few-shot or unsupervised learning, these
methods are still not generalizable enough for different imag-
ing modalities or target organs. Human supervision is still

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-022-02730-z&domain=pdf
http://orcid.org/0000-0002-1813-2162


International Journal of Computer Assisted Radiology and Surgery

indispensable for most cases of deep segmentation network
training. Therefore, efficient network training and human
annotation methodologies are needed to relieve the burden
of data annotation.

To tackle this problem, the strategy of annotation by
iterative deep learning (AID) [1] becomes popular in the
research community. In a typical AID workflow, a segmen-
tation network is preliminarily trained via a small number of
manually annotated data. Then, the preliminarily trained net-
work is used for automatically annotatingmore training data.
Since the preliminary trained network is not accurate enough,
human supervisors are involved to proofread the automatic
annotation results, and the human-corrected annotations are
added to the training set to retrain a more accurate network.
As this procedure is iteratively repeated, the network per-
formance is gradually improved, and thus less-and-less user
proofreading is needed.

The efficiency of anAIDworkflowmainly depends on two
factors, i.e. the learning speed of the network model and the
convenience of the proofreading method. On the one hand,
a network with good learning ability can quickly approach
satisfactory performance with a small number of training
data. On the other hand, a convenient human-intervention
method is essential for saving the interaction time and reduc-
ing the inter-operator variability. By far, many efforts have
been made to improve the network learning ability. Meth-
ods based on few-shot [2–4] or semi-supervised learning
[5–8] were proposed to train a segmentation network with
limited training data. To alleviate the high annotation cost,
weakly supervision approaches [9–11] were developed to
complement the pixel-level full supervision. As for human-
proofreading, there are already several publicly available
medical image processing software with manual annotation
main tools, such as ITK-SNAP [12], MITK [13], 3D Slicer
[14], TurgleSeg [15] and Seg3D [16]. Most of them pro-
vided interaction functions including pixel painting, contour
interpolation [13, 15, 17, 18], interactive level sets [19], sur-
face adjustment [20], super-pixel [21] and super-voxel [22]
modification. However, these tools were developed for gen-
eral segmentation purposes; none of them was dedicatedly
designed for efficient correction of neural network out-
puts.Recently, some specializedproofreadingmethods based
on convolutional neural networks (CNNs) were proposed
to involve human intervention into DL-based segmentation
pipelines, such as DeepIGeoS [23], IFSeg [24] and BIFSeg
[25]. These methods receive the user’s proofreading along
with the medical image as the network inputs. For 3D seg-
mentation networks, the speed of network inference cannot
reach real-time output, limiting their applicability for effi-
cient proofreading.

In this study, we further accelerate of AID workflow for
organ segmentation from volumetric medical images. Our
key idea is to use contour-based representation instead of

voxel-label representation to improve the network learning
ability and the user-interaction efficiency. By using contour
representations, shape prior of the target organ is incor-
porated into the learning process, achieving anatomically
plausible segmentation with only a few training images.
Our user-interaction method also takes advantage of the
contour-representation to facilitate real-time expert proof-
reading. As shown in Fig. 1, expert-proofreading of organ
contours can be achieved via simple mouse interaction (e.g.
dragging), while conventional voxel-label-based represen-
tation requires multiple manual editing tools such as pens,
brushes and erasers. Our method is dedicated to the segmen-
tation of human organswith strong shape characteristics. The
source code and the proposed AID model are integrated into
our open-source software AnatomySketch for the research
community to use (https://github.com/DlutMedimgGroup/
AnatomySketch-Software/tree/master/AID).

Materials andmethods

Our contour-basedAIDmethod is composed of an organ con-
tour prediction network and an organ boundary adjustment
module (as illustrated in Fig. 2). The learning loop starts
from only a few expert-labelled preliminary training images.
We convert the voxel labels into boundary contours to bet-
ter represent the organ shape. Although the number of the
preliminary training image is small (usually less than ten),
our network can learn strong organ shape knowledge from
the contour representation. The preliminarily learned shape
knowledge helps the network to yield anatomically plausi-
ble segmentation of more training images, and the human
expert quickly proofread the segmentation results using our
boundary adjustment method. Then, the proofreading results
are added to the training set and the network is retrained
to achieve better prediction accuracy. The key idea of our
method is to use contour representation instead of conven-
tional label representation to facilitate better shape learning
and faster expert proofreading. Details of the contour pre-
diction network and the boundary adjustment method are
described in the following sections.

The contour prediction network

As the centralmodule of theAIDworkflow, the segmentation
network should be able to learn accurate segmentation from a
small number of training images and a fewAID iterations. To
achieve this objective, we take advantage of the strong organ
shape prior embodied in the organ contour representation, as
inspired by the recently proposed contour-prediction models
[26–28] in the computer vision field. We develop a 2D con-
tour generation network that first generates an initial contour
surrounding the target organ and then deforms the contour
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Fig. 1 Comparison of contour representation and voxel-label-based
representations of organ segmentation results. Contour representation
facilitates direct incorporation of shape knowledge and convenient

expert-correction. In contrast, voxel-label-based representation requires
multiple editing tools for label correction

to fit the organ boundary. Figure 3 illustrates the architec-
ture of this network. An advantage of this model is that it
produces plausible organ shapes even when the contour fit-
ting accuracy is imperfect at the preliminary training stage.
This feature greatly eased the proofreading operation since
the user simply needs to adjust the local contour position
without modifying its topology.

For contour initialization, we used a network structure
similar to CenterNet [29] to generate the bounding boxes of
the target organs. However, the original CenterNet model
conducts eight times downsampling to generate the final
feature map. Although this strategy facilitates efficient com-
putation for natural images, it reduces the segmentation
accuracy for medical images. To tackle this problem, we
propose a new backbone network with multi-scale feature
upsampling and concatenation. The structure of the new
backbone is shown in Fig. 3, where the circles denote
convolution and the numbers in the circles represent the

downsampling scale. To preserve fine-scale boundary fea-
tures, the downsampled feature maps are upsampled and
concatenated with the same-scale feature maps before down-
sampling, resulting in more accurate representation of the
organ boundaries.

After the generation of the bounding box, the midpoints
of the four box edges are connected to form a diamond-
shaped initial contour, with N vertices evenly sampled along
the contour. The CenterNet contains a deep layer aggression
(DLA)CNN[30] for featuremap calculation and a regression
part for bounding box generation. The outputs of the Cen-
terNet includes the centre coordinate, the height and width
of the bounding box and the class labels of detected objects.
When there are multiple targets in one slice, their contours
are initialized and detected simultaneously. We notice that
misclassification of organ types happens when the appear-
ance of one organ resembles that of another. For example, in
the slices that pass the lower liver, the liver may appear like
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Fig. 2 Workflow of our contour-based AID method

the spleen. This issue is easily tackled by correcting the class
label according to the bounding box position in the image.
We also set the upper, middle and lower parts of the liver as
three different classes. This helps to reduce intra-class diver-
sity and avoid misclassification.

The multi-scale feature extraction backbone produces
128-channel feature maps. For a contour vertex i with coor-
dinate xi � (xi , yi ), its feature is represented as fi �(
F(xi ), x ′

i , y
′
i

)
, where F(xi ) is a 128-dimensional feature

vector which is bilinearly interpolated from the CNN back-
bone feature map with the coordinate xi .

(
x ′
i , y

′
i

)
is a

translation-invariant vertex coordinate that describes the rel-
ative position of the vertex i in the whole contour.

(
x ′
i , y

′
i

)
is

calculated by subtracting (mini (xi ), mini (yi )) from (xi , yi ),
i.e.

(
x ′
i , y

′
i

) � (xi , yi ) − (mini (xi ), mini (yi )). The combi-
nation of

(
x ′
i , y

′
i

)
into the vertex feature implants the shape

memory of the training set into our DL model.
The contour deformation network is a one-dimensional

(1D) CNN that takes fi of all N vertices as the input. Since
the contour is a closed polygon, features of the N vertices
are treated as 1D periodic discrete signal and the circular

convolution [28] is used instead of the standard 1D convo-
lution, i.e. the convolution result of each vertex is calculated
using the features of its left and right neighbours. We use
a fixed length (l � 9) of the circular convolution kernel.
The circular convolution layer is combined with a batch nor-
malization layer and a rectified linear unit (ReLu) layer to
form a convolution block. The network contains a concate-
nation of eight such convolution blocks with residual links
between adjacent blocks. The outputs of all blocks are con-
catenated as the multi-resolution feature vector containing
the features of different scales. Finally, three 1 × 1 convolu-
tion layers are applied to regress the 2D deformation vectors
of the vertices, and the deformation vectors are added to
the vertexes coordinates to obtain the deformed vertex loca-
tions. The above feature interpolation and deformation vector
regression procedures are repeated k times to let the contour
vertices gradually converge to the organborders. In this study,
empirical values of N � 128 and k � 3 are used.

The contour deformation network is trained using the
same loss function as defined in [28] containing the posi-
tional losses of both the extreme points (Lext) and the contour
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Fig. 3 The architecture of the automated contour generation network. A
multi-scale feature extraction backbone is used to extract features from
the image. The feature map is fed into the CenterNet structure to obtain

the initial contour. The contour deformation is iterated to get the final
output

vertices (Lcont),

L � Lext + Lcont � 1
4

4∑

i�1
l1

(
xexti − pexti

)

+ 1
N

N∑

j�1
l1

(
xcontj − pcontj

) (1)

where xexti s are four contour vertices corresponding to four
extreme points of the initial diamond-shaped contour. xcontj s
are the N vertices of the contour. l1 denotes the smooth norm
defined in [31]. The ground truth contours of the training data
are generated from the expert-labelled organ regions. The
upper, lower, left and right extreme points of the ground truth
contour are obtained as pextj , and N /4–1 vertices are evenly
sampled along the contour between each pair of extreme
points so that N vertices (i.e. pcontj ) including the extreme
points are obtained.Lext guarantees the positional correspon-
dence of the extreme points of the deformed contour, Lcont

regularizes the edge distance.
In our application, a single contour deformation network

is used for multiple organs. Thanks to the inclusion of
translation-invariant coordinates in the vertex features, the
network memorizes the contour shape of different organs at

different slices. Circular convolutions at multiple resolution
scales help to capture the global contour shape and guarantee
the plausibility of the generated contour shape.

Contour-based boundary adjustment

The amount of human labour spent at the proofreading stage
not only depends on the accuracy of automated annotation but
also relies on the proofreading method. Since the automated
generated contour shape is guaranteed to be anatomically
plausible, direct boundary adjustment with surface dragging
can considerably save the proofreading time. We realize a
real-time surface editing tool (as shown in the supplementary
video) based on free-form deformation (FFD) [32] which is
rarely provided in the existing open-source tools.

The proofreading starts from the adjustment of automat-
ically generated 2D contours. As shown in Fig. 4, when the
user starts to drag a point on the contour, a k × k control
grid centred at the dragging point is generated. The spacing
between the grid nodes is set to 1/(k + 1) of the length of
the image viewer window. Therefore, the user can intuitively
zoom the images in the viewer window to adjust the image
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Fig. 4 FFD-based interactive
contour adjustment. a The user
applies a translation vector (red
arrow) to a point of the contour
(blue curve) via mouse or stylus
dragging. b Deformation vectors
(orange vectors) of the FFD
control grid (yellow grid) are
calculated from the user input,
and the deformation vectors of
the contour vertices (blue arrows)
are interpolated from the control
grid deformation vectors

area affected by the control grid. In this work, we use k � 10
works for all the test images.

The dragging event creates a deformation vector at the
dragging point (red arrow in Fig. 4a and b). Using this
deformation vector, the deformation vectors of all the grid
nodes (orange arrows in Fig. 4b) are calculated by solving
an inverse-interpolation problem [33].We only computed the
deformation vectors of the central (k−4)× (k−4) grid nodes
and force the deformation vectors at the peripheral nodes to
zero. Then, the deformation vectors of all the contour vertices
(blue arrows in Fig. 4b) are interpolated using the B-spline
polynomial function,

v �
m∑

i�0

(
m
i

)

(1 − u)m−i ui
(

n∑

j�0

(
n
j

)

(1 − v)n− jv jvi , j

)

(2)

where v is the interpolated deformation vector of a contour
vertex, (u, v) is the normalized local coordinate of v in the
control grid coordinate system, vi , j is the deformation vector
of grid node (i, j),m and n are the numbers of grid nodes used
for the interpolation. We use m � n � 3 in this study, i.e. the
local 4× 4 grid around the interpolated vertex is used for the
interpolation.

The FFD adjustment is applied to the automated generated
contours in a slice-by-slice manner. The user does not need
to proofread every slice since the contour of adjacent slices
are usually similar. The user may selectively adjust several
parallel slices andwe provide a contour interpolationmethod
to automatically generate the contours of the skipped slices.
The contours of the adjusted slices are converted into 2D level

set maps (signed distance functions, SDFs) and a second-
order polynomial interpolation is applied to interpolate the
level set maps of the skipped slices. Finally, the binary maps
of all the slices are obtained by thresholding the SDFs and
are stacked to create a binary label volume of the segmented
organ.

Usually, the label volume generated as above is accurate
enough for proofreading purposes. For organs with complex
shapes (e.g. the liver and spleen), additional adjustments are
sometimes needed in the slices orthogonal to the generated
contours. We convert the binary label volume into a trian-
gular surface mesh using the marching cube method [34]
and extend the 2D FFD adjustment method to 3D for the
adjustment of the surface mesh. The 3D version of the B-
spline polynomial function is a trivial extension of Eq. (2)
as described in [32]. The 3D FFD method facilitates easy
manipulation of the annotation result in 3D space.

Results

For validation, our method is compared with two approaches
widely adopted by the research community, i.e. manual
annotation assisted by inter-slice interpolation and the AID
method based on voxel-label representation.

The first method is mostly used for segmentation network
training and is implemented in theMITK software [13].With
thismethod, the user selectively annotated the organ contours
in a few parallel slices and then performed contour inter-
polation to obtain the contours in all slices. This method is
similar to the selective contour annotation step of our method
except that the contours are manually created. We compare
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our method with this method to evaluate the influence of
the contour-learning network on inter-operator consistency
and proofreading efficiency. For both methods, the number
of selected slices was determined by the human operator to
ensure accurate annotation.

The second method follows the similar AID workflow
of our method. The main difference is that it uses the
conventional voxel-label prediction model for automated
segmentation. The prediction model is a Dense V-net [35],
and the loss function is the weighted sum of an L2 regular-
ization loss with label smoothed probabilistic Dice scores
for each organ. We choose this method for comparison to
prove the advantageof contour-based representationon shape
learning and human proofreading. For a fair comparison, we
used the same human-proofreading scheme (i.e. our contour
correction method) for both methods.

The comparison was made from the aspects of annotation
accuracy, network learning ability, inter-rater stability and
proofreading efficiency based on a multi-institute abdomi-
nal CT image dataset. The dataset includes 20 CT volumes
with pixel sizes between 0.72 and 1.37 mm and slice spacing
between 1.60 and 3.00 mm, consisting of four images from
the online 3D-irCadb database1 and 16 retrospective images
from four of our collaborated hospitals across the country.
The images were acquired with 28–298 mA tube current and
100–140 kV tube potential. All the images had correspond-
ing label images of the liver, spleen and kidneys annotated
by an experienced human expert as the ground truth.

Two well-trained human operators were invited to inde-
pendently use the threemethods to annotate the 20volumetric
images slice by slice. For each operator, the Dice scores and
the averaged symmetric surface distances (ASDs) were com-
puted using the organ labels of the experienced expert as the
ground truth. When comparing different methods, we aver-
aged the Dice scores and ASDs of the two operators for each
image and used the averaged value formethod-wise compari-
son.When evaluating inter-operator variabilities, we ignored
the labels of the experienced expert and computed themutual
Dice and ASD between the two operators to measure their
discrepancies.

For the validation of the two AID-type methods (i.e. our
method and the voxel-label-based AID), a fourfold cross-
validation strategy was used. The 20 CT volumes were
randomly divided into fourfolds. Each time onefold was used
as the test images and the other threefolds were used for net-
work training. From the threefolds of training data, onefold
was randomly selected to train a preliminary network which
was then used to automatically annotate the other twofolds
of training data. From each training volume image, all the 2D
slices were used for training the contour-based network. The

1 3D-irCadb database: https://www.ircad.fr/research/3d-ircadb-01/.

human operators proofread the annotations of the prelimi-
nary network and retrained the network using the threefolds
of training data. Our method was trained end-to-end for 300
epochs. The learning rate started from 1e−4 and decayed by
half at 80, 120, 150 and 170 epochs. The Dense V-net was
trained with a learning rate of 0.01 and a batch size of 6 for
200 epochs.

For visual inspection, Fig. 5a shows the automated anno-
tation results of the two AID-based methods in two rep-
resentative slices. For both methods, the retrained network
yielded more accurate results than the preliminary network.
It is encouraging to see that the results of our preliminary
network maintain plausible organ shape although the con-
tours do not perfectly fit the true organ boundary. In contrast,
the preliminarily trained voxel-label-based network produces
erroneous contour shapes due to insufficient training data.
Figure 5b displays the segmentation results in 2D slices of
different vertical levels, including the middle, transition and
periphery slices of the organs.

As a quantitative comparison of the annotation accuracy,
Fig. 6 shows the box plots of Dice and ASD of the three
methods. For the traditional method, Dice and ASD were
calculated for the contour interpolation results. For the two
AID-based methods, Dice and ASD were calculated for the
automatic annotation results of the retrained network. The
traditional contour interpolation achieved the highest median
Dice (> 0.88) and lowest median ASD (< 2.0 mm) for all
the organs. This is because the annotations of the traditional
method were almost generated manually. In contrast, the
annotations of the two AID-based methods were generated
by the network model; therefore, were less accurate than the
traditional method. Nevertheless, we can see that our method
obtained a comparable accuracy (median Dice > 0.85 and
median ASD < 2.5 mm) to the traditional methods with only
two iterations. The voxel-label-based AID method was the
least accurate. The boxes of this method were also the widest
among the three, implying imperfect robustness against dif-
ferent test images.

The learning ability comparison was made between our
method and the voxel-label-based AID method. Figure 7
shows the mean and standard deviation values of Dice and
ASD before and after the retraining. After the retraining,
accuracy improvements (i.e. higher mean Dice with smaller
standard deviations) are observed for both methods. Our
method was more accurate than the voxel-label-based AID
method either before or after the retraining. For the kidneys
and the spleen, our preliminarynetwork is evenmore accurate
than the retrained Dense V-net, thanks to the shape knowl-
edge learned from the very small preliminary training dataset.

To compare the inter-rater variability, the mutual Dice
and ASD between the two operators were calculated and
are plotted in Fig. 8. Our method demonstrates the highest
median Dice (> 0.93) among the three methods, meaning
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Fig. 5 Visual observation of organ segmentation results. a Representa-
tive results of two different slices, using the preliminary network and the
retrained network of ourmethod and the voxel-label-basedAIDmethod,
respectively. The contour lines with control points and coloured circles

in the figure represent the segmentation results of the different organs.
b The segmentation results of our method in the slices of different ver-
tical levels

the best inter-operator agreement for the annotated organ
regions. The inter-operator ASDs of our method was not the
lowest but almost approached the most accurate one (the tra-
ditional method). The traditional method is themost accurate
in terms of the contour distance (ASD) because its contours
were manually sketched by the human operators. Neverthe-
less, the boxes of our method are much narrower than the
other two methods, meaning that our method is superior in
inter-rater consistency since our contour-correction method
reduces the amount of subjective interaction.

To evaluate the annotation efficiency, the operators
recorded the interaction time required for proofreading the
automatic annotation results of the preliminary network.
The proofreading time per image per iteration was 16.19
± 2.58 min for our method and 29.79 ± 3.50 min for the
voxel-label-based AID method. Our method requires much

less interaction timebecause our preliminary network ismore
accurate and reasonable than Dense V-net. Figure 9 shows
the multi-iteration Dice increment curves with increasing
proofreading time. As the proofreading time increases, the
performance of the network continues to get better. For most
organs, the Dice score reaches 0.9 within 20 min.

To further validate the few-sample learning ability, we
compared our contour prediction network with the state-
of-the-art (SOTA) nnU-Net [36] based on three additional
datasets. The first dataset is the open-source Chest X-ray
Masks and Labels [37, 38], containing 704 chest X-ray
images with lung area annotations. The second dataset
includes 88 cardiac ultrasound images from a local hospi-
tal with myocardium annotations by experienced physicians.
The third dataset is the Lung Tumours dataset of the medical
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Fig. 6 Box plots of a Dice and b ASD of the three methods for different organs

segmentation decathlon [39] and contains 64 CT volumes
with tumour area annotations.

For the first two 2Ddatasets, we randomly selected a small
number of 2D training slices (21 and 66 images for the X-
ray and ultrasound datasets, respectively) and validated the
trained model on the rest of the datasets as testing images.
Due to the limited number of training data, both methods
produced minor segmentation errors in some test images, as
shown in Fig. 10. However, nnU-net tends to generate topo-
logical errors (pointed by red arrows) which needs tedious
manual correction. In contrast, our approach consistently
yields anatomically plausible shapes which are easy to cor-
rect with our contour dragging tool.

As a quantitative comparison, box plots of Dice scores of
both networks are shown in Fig. 11. We also added another

compared network which used the same architecture of ours
but replaced the multi-scale feature (MSF) extraction back-
bone with the conventional CenterNet backbone (named
‘ours w/o MSF’). For both datasets, our method achieved
a median Dice close to that of nnU-Net, with the guaran-
tee of correct topology. The boxes of our method were also
narrower than that of nnU-Net, implying better robustness
against different test images. Compared to ‘our network w/o
multi-scale feature’, our network also achieved more accu-
rate and more robust results, proving the advantage of the
multi-scale feature extraction backbone. Besides, the infer-
ence time of our method is much shorter than nnU-Net (both
using one NVIDIA RTX 3090 GPU). On the chest X-ray
dataset, the inference time per image was 26.32 ± 6.22 ms
for our method and 4698.51 ± 1124.65 ms for nnU-Net.
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Fig. 7 Comparison of a Dice and bASD before and after the retraining
step, between our method and the voxel-label-based AID method. For
each organ, the left and right ends of the oblique line show themean and

std. of the preliminary network and the retrained network, respectively.
For figure clarity, the standard deviation bars of different organs are
plotted in different directions

On the cardiac ultrasound dataset, the inference time per
image for our method and nnU-Net was 19.93 ± 1.26 ms
and 181.63 ± 11.62 ms, respectively. The reasons for the
significant time advantage of our network are attributed to
the simpler network structure and smaller parameter size,
as well as the avoidance of using sliding convolution ker-
nel and multiple mirror inference. Faster inference helps to
reduce device dependency and is more beneficial for real-
time applications such as cardiac ultrasound detection.

We further validated the 3D segmentation performance
of the networks with the lung tumour segmentation dataset
[39]. Compared to 2D segmentation networks, the 3D seg-
mentation network faces more severe challenges of larger
network parameter size and less training data. Because our
method is based on contour representation, it is more light-
weight than the voxel-based CNNs; thus, it suffers less from
the problem of large parameter vs. small training set. More-
over, our method is able to learn plausible contour shape
from small training set. Without the shape prior, nnU-Net
mayyield unsatisfactory segmentationwith insufficient train-
ing dataset. In addition, our method is also compared with

the nnU-Net with boundary loss [40] for segmenting small
objects. Different from our contour-based learning method,
this boundary loss approximates the differential boundary
variation using an integral approach, which avoids com-
pletely local differential computations involving contour
points and represents boundary change as a regional integral.
In this way, the boundary loss is easily combined with the
standard regional losses, such as Dice or cross-entropy. The
boundary loss improves the performance for highly unbal-
anced segmentation tasks in which the voxel number differs
by several orders of magnitude across classes. In the exper-
iment, a fourfold cross-validation strategy was used. The 64
volumetric test images were evenly divided into fourfolds.
Each time onefold (16 images) was used as the training
images, and the other threefolds (48 images) were used for
testing to simulate the small training data situation. The
nnU-Net with boundary loss is trained following the training
method in [40].

Figure 12 shows two representative results of the com-
parison experiment. With insufficient training data, nnU-Net
yielded unsmooth tumour boundary for example 1 and false
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Fig. 8 Inter-operator a Dice and b ASD box plots of the three methods for different organs

positive segmentation of the sporadic vessels for example
2. With the boundary loss, the boundary smoothness was
improved, but the false positives still exist. Our method gen-
erates smooth segmentation and avoids the false positives
of implausible tumour shape, thanks to the ability of shape
learning from limited training data.

To evaluate the efficiency of the contour-based boundary
adjustment, we compared it with two deep-learning-based
interactive segmentation mothed, i.e. MIDeepSeg [41] and
DeepGrow [24]. Both methods learn the way to react to user-
input seed points, while MIDeepSeg is trained with images
of multiple modalities and target objects for generic segmen-
tation tasks, and DeepGrow needs to be specifically trained

for the target modality and object. For MIDeepSeg, we used
the implementation provided by authors. For the DeepGrow
model, we used a model trained for abdominal CT images.2

We chose a difficult task of segmenting tumour-contaminated
liver. As shown in Fig. 13, although the two compared mod-
els were well trained for the interaction scenario, they need
many user inputs at the difficult regions (e.g. big tumour
region and fuzzy liver boundary) and finally did not converge
perfectly. This is mainly because that tumour appearance is
highly variable between patients, thus these methods per-
form unsatisfactorily for unseen tumours. In contrast, our
method only needs two simple drags because the contour

2 https://www.medseg.ai/.
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Fig. 9 Dice curves versus proofreading time for a the liver, b left kidney, c right kidney and d spleen

Fig. 10 Representative segmentation results of few-sample learning, comparing our network and nnU-Net based on two different datasets. The red
arrow shows the topology error
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Fig. 11 Dice of our network, nnU-Net and our network without the
multi-scale feature (MSF) extraction backbone

network learned strong shape prior of the liver. Of course,
our method is mainly developed for the objects with shape
priors, while the two compared methods are not restricted to
the segmentation of regular shape.

Discussions

As analysed in the Introduction section, the efficiency of an
AID workflow is directly affected by the learning ability of
the DL model. We focus on developing a DL model which
only needs a few training images and a few AID iterations
to achieve satisfactory annotation accuracy. Experimental
results show that our contour prediction network achieved
a mean Dice over 0.86 for the liver and kidneys using only

five preliminary training images. Such a level of accuracy is
even better than the retrained Dense V-net. After retraining
our network with 10 more images, the median Dice scores of
the liver and kidneys were above 0.92, and the median ASDs
of the kidneys and spleen drop below 1.5 mm. Thanks to the
good learning ability from limited training data, the human
operators only need to make very few corrections in the
proofreading step; therefore, our method requires much less
proofreading time than the voxel-label-based AID method.
A human operator using our method only took ~ 16 min for
each training image, i.e. ~ 4 min per organ.

The good learning ability of our method is attributed
to the use of contour-based shape representation instead
of the voxel-label representation. It should be mentioned
that boundary information has been used in recent segmen-
tation networks, such as the boundary loss for improving
small object segmentation [40]. Different from the loss-
based methods, our method represents boundaries with
contour points, facilitating strong shape memory and effi-
cient boundary proofreading. The combination of contour
point coordinates into the vertex feature vector implants the
memory of contour shape into the network, helping the net-
work to produce plausible contour shape even when the
training images are not abundant. The short proofreading
time of our method is attributed to the contour-based adjust-
mentmethod. Since the automatically generated contours are
already close to the true boundaries, the efforts required for
contour adjustment are much reduced. Moreover, our inter-
active proofreading method facilitates convenient contour
correction via simple mouse dragging, saving considerable
interaction time as compared to the conventional voxel-label
correction.

Fig. 12 3D lung tumour segmentation comparison between our method and nnU-Net with/without the boundary loss. The blue squares display the
zoomed area, and the red arrows point to the false positive segmentation
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Fig. 13 Representative proofreading process of aMIDeepSeg, bDeep-
Grow and c our method. In each subfigure, the user-interaction process
is denoted by sequential frames connected by the blue arrows indicat-
ing the sequence order. The blue contour lines indicate the segmentation

results. The yellow points in a and b are foreground seed points. The
yellow arrows in c indicate the user’s dragging operation

Another advantage of our method is low inter-operator
variability. As reflected from the mutual Dice and ASD
between the two human operators, our method demon-
strates good agreements between the two operators. This
is because the annotation was generated by the retrained
network rather than pure manual sketching. Because our
network already had reasonable accuracy after preliminary
training, the human operators need not perform too much
proofreading; thus, the subjective influence on proofreading
was reduced.

Wenoticed that both ourmethod and the voxel-label-based
AID method have different levels of annotation accuracy for
different organs. The spleen usually has lower Dice than the
other organs, and the liver tends to have higher ASD. This is
because both the liver and spleen have complex shapes and
fuzzy boundaries with the adjacent soft tissues. However, the
traditional contour interpolation method does not have such
obvious inter-organdifferences, because the humanoperators
have full control of the annotation accuracy. Therefore, we
remind the readers that although theAID-basedmethods save
the annotation time, they may have variable accuracy for
different organs.

The experimental results show that the voxel-label-based
AID method needs more training data than our method
to achieve satisfactory accuracy. However, voxel-label and
boundary contour are like two sides of the coin. Although
contour representation benefits the segmentation of regularly
shaped objects (e.g. human organs), voxel-label may bemore

suitable for segmenting objects with complex or irregular
shapes such as tumours. It should also be noted that the accu-
racy of our contour-based method may be constrained by the
shape variability of the training set, yielding unsatisfactory
segmentation of the organ shapes inexistent in the training
data (e.g. lesion-distorted organ shape). Nevertheless, thanks
to the FFD-based contour adjustment method, such inaccu-
rate segmentation can be conveniently corrected with minor
user interaction. For future work, we will make efforts on
combining the advantages of contour-based on voxel-label-
based method, as well as on improving the shape learning
generalizability based on limited training samples.

Conclusion

This paper introduces an iterative annotation and proofread-
ing workflow to reduce the annotation workload for organ
segmentation network training. By integrating a contour
generation network and a convenient contour adjustment
approach, organ annotation using our framework becomes
more efficient, more accurate and less prone to inter-operator
variability than using the voxel-label-based AIDmethod and
the traditional contour interpolation method. We have imple-
mented thismethod as an extensionmodel to our open-source
software AnatomySketch.3 Our future work will explore bet-
ter shape representation to improve the learning ability and

3 AnatomySketch: https://github.com/DlutMedimgGroup/
AnatomySketch-Software.
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generalizability for more complex objects such as tumours
and vessels.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-022-02730-z.
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