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Abstract

We consider the recovery of a potential associated with a semi-linear wave equation on Rn+1, n ≥ 1. 
We show that an unknown potential a(x, t) of the wave equation �u + aum = 0 can be recovered in a 
Hölder stable way from the map u|∂�×[0,T ] �→ 〈ψ, ∂νu|∂�×[0,T ]〉L2(∂�×[0,T ]). This data is equivalent to 
the inner product of the Dirichlet-to-Neumann map with a measurement function ψ . We also prove similar 
stability result for the recovery of a when there is noise added to the boundary data. The method we use is 
constructive and it is based on the higher order linearization. As a consequence, we also get a uniqueness 
result. We also give a detailed presentation of the forward problem for the equation �u + aum = 0.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

0. Introduction

In this paper we study an inverse boundary value problem for a non-linear wave equation. The 
inverse problems we study are the uniqueness and stability of recovering an unknown potential 
a ∈ C∞(� ×R) of the non-linear wave equation
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⎧⎪⎨⎪⎩
�u(x, t) + a(x, t)u(x, t)m = 0 in � × [T1, T2],

u = f on ∂� × [T1, T2],
u
∣∣
t=T1

= 0, ∂tu
∣∣
t=T1

= 0 on �

(1)

from the Dirichlet-to-Neumann map (DN map) of the equation. Here m ≥ 2 is an integer, � is an 
open and bounded subset of Rn, T1 < T2, and � is the standard wave operator ∂2

t − � in Rn+1. 
We assume that the potential a = a(x, t) can depend on the time variable t .

Inverse problems for Equation (1) are natural counterparts to the widely studied inverse prob-
lems for the linear operator �u + au. We refer to [29] for inverse problems for linear wave 
equations. Equations of the type (1) arise for example in quantum mechanics in the context of 
the Klein-Gordon equation.

We will show that the boundary value problem for Equation (1) has a unique small solution 
u for sufficiently small boundary data f ∈ Hs+1(∂� × [T1, T2]), where s ∈ N and s + 1 > (n +
1)/2. Precisely this means that there is ε > 0 and δ > 0 such that whenever ‖f ‖Hs+1(∂�×[T1,T2]) ≤
ε, there is a unique solution uf to (1) with norm smaller than in δ in the energy space Es+1

Es+1 =
⋂

0≤k≤s+1

Ck([T1, T2]; Hs+1−k(�)).

Here Hs+1 is the standard Sobolev space. We will call uf the unique small solution. The DN 
map 	 is then defined by using the unique small solution by the usual assignment,

	 : Hs+1(∂� × [T1, T2]) → Hs(∂� × [T1, T2]), f �→ ∂νuf |∂�×[T1,T2].

Here ∂ν denotes the normal derivative on the boundary ∂� ×[T1, T2]. See Section 1 for details on 
well-posedness. We mention that the conditions imposed on s and n are necessary to use Sobolev 
embedding theorems.

Let us briefly mention some results on inverse problems for linear equations. In the case where 
the underlying equation is linear and elliptic, a standard example is from the pioneering work of 
Calderón [10], known nowadays as Calderón’s inverse problem. This problem was solved in the 
fundamental papers by Sylvester and Uhlmann [58], in the three and higher dimensional case, 
and Nachman [48] and Astala and Päivärinta [4], in the two dimensional case. For a gentle intro-
duction to Calderón’s problem and related topics, see for instance [22,31,59] and the references 
therein. Numerical techniques for the problem are discussed in [47,52]. For the linear hyper-
bolic equation, the results on uniqueness and their corresponding quantitative versions have been 
studied using Carleman estimates and the complex geometric optics, see [9,25,49].

Uniqueness results for inverse problem for the wave equation with vanishing initial data are 
obtained using the boundary control method, originated by Belishev and Kurylev [5,6], that 
combines the wave propagation and controllability results, see also [29]. The boundary con-
trol method allows also an effective numerical algorithm [15]. Recent geometrical results on 
determining Riemannian manifolds with partial data or with general operators are considered in 
[2,23,27,32,33,38,41,44]. The boundary control method has been applicable only in the cases 
where the coefficients of the equation are time-independent, or when the lower order terms are 
real analytic in the time variable [18].

Inverse problems for linear wave equations with lower order terms depending on the time 
variable have been considered in [19,54,56]. These methods apply propagation of singularities 
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along bicharacteristics to determine the integrals of the coefficients along rays. These results are 
closely related to the methods used in this paper with the significant difference that in these results 
one has to assume that the complete Dirichlet-to-Neumann operator or a scattering operator is 
known.

A recent observation by Kurylev, Lassas and Uhlmann [37] is that a non-linearity in the 
studied equation can be used as a beneficial tool in a corresponding inverse problem. By 
exploiting the non-linearity, some still unsolved inverse problems for linear hyperbolic equa-
tions have been solved for their non-linear counterparts. For the scalar wave equation with 
a quadratic non-linearity, they in [37] proved that local measurements determine the global 
topology, differentiable structure and the conformal class of the metric g on a globally hy-
perbolic 3 + 1-dimensional Lorentzian manifold. Following this observation, there has been a 
surge of interesting results for inverse problems for non-linear equations. The authors of [46]
studied inverse problems for general semi-linear wave equations on Lorentzian manifolds, and 
in [45] they studied the analogous problem for the Einstein-Maxwell equations. Recently, in-
verse problems for non-linear equations using the non-linearity as a tool, have been studied in 
[3,11–13,16,17,20,21,30,34–36,39,42,43,51,57,60,61]. The works mentioned above use the so-
called higher order linearization method, which we will explain later.

In this work we continue to use the non-linearity as a tool to prove a stability estimate for 
the described inverse problem for Equation (1). Our main result is a Hölder stability estimate 
for recovering an unknown potential a in the inverse problem for Equation (1). We also present 
a constructive way to approximate a in the presence of additive noise. We do not assume that 
the noise is a linear mapping. The main idea is to use the non-linearity to approximate “virtual 
sources” which are multiplied by the unknown potential.

We present our main results next. We denote the lateral boundary ∂� × [T1, T2] by


 = ∂� × [T1, T2]

or by 
T1,T2 if we wish to emphasize the corresponding time interval. Due to the finite propaga-
tion speed of solutions to the wave equation, there are natural limitations on the regions of Rn+1

where we can obtain information in the inverse problem. We consider recovering the potential 
a(x, t) in a compact set

W ⊂ � × [t1, t2], for t1 < t2. (2)

It is always possible to choose the time-interval [T1, T2] for the measurements large enough, so 
that the potential can be recovered in the set W . Let us denote

d := 2 inf
{
r > 0 | � ⊂ Br(x), for some x ∈Rn

}
, (3)

where Br(x) is the ball of radius r centered at x ∈ Rn. By Jung’s theorem, diam(�) ≤ d ≤
diam(�)

√
2n/(n + 1). We can then choose a small λ > 0 and

T2 ≥ t2 + d + λ, T1 ≤ t1 − d − λ. (4)

With T1 and T2 satisfying the above conditions, we may send waves to W from the lateral bound-
ary and measure signals from W at the lateral boundary. We emphasize that we do not assume 
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that the potential a is compactly supported in time. Especially, the potential a can be time-
independent.

Finally, since we are interested in stability of the inverse problem, we require a priori bound 
on the norm of the potential a. Given s ≥ 0 and L > 0, let us introduce the class of admissible 
potentials as follows

A(L, s) :=
{
a ∈ Cs+1(� × [0, T ]) | ‖a‖Cs+1 ≤ L

}
. (5)

We note that by a change of variables θ : [T1, T2] → [0, T ], given by θ(t) = t − T1, we can with-
out loss of generality consider the wave equation on the time-interval [0, T ] instead of [T1, T2]. 
From this point onwards, we assume that t1, t2 ∈ R satisfy

t2 > t1 ≥ d + λ

and that T > 0 is chosen so that T ≥ t2 + d + λ. Here d and λ are as in (3) and (4).
Our first result is the following

Theorem 1 (Uniqueness). Let � ⊂Rn be a bounded domain with a smooth boundary. Let L > 0, 
m ≥ 2 be an integer and s + 1 > (n + 1)/2. There is a measurement function ψ ∈ L2(
) such 
that the following is true: Assume that a ∈ A(L, s). Let uf be the solution to (1) for small enough 
f ∈ Hs+1(
).

Then the real-valued non-linear map

λψ : f �→ 〈ψ,∂νuf 〉L2(
)

determines a(x, t) uniquely in W .

The measurement function ψ ∈ L2(
) appearing in the statement of Theorem 1 is the restric-
tion of a solution of the following backwards wave equation to the lateral boundary:⎧⎪⎪⎪⎨⎪⎪⎪⎩

�v0 = 0, in Rn × [0, T ],
v0 ≡ 1, in � × [t1, t2],
v0
∣∣
t=T

= ∂tv0
∣∣
t=T

= 0, in �,

v0 ∈ C∞
c (
).

(6)

We will construct a suitable solution v0 ∈ C∞
c (Rn+1) to (6) explicitly in Appendix B. The mea-

surement function is defined as the restriction

ψ := v0|
 ∈ C∞
c (
) (7)

to the lateral boundary 
. The measurement function will be used in an integration by parts 
argument to cut off any contribution coming to the integral from the top � × {t = T } of the 
time-cylinder � × [0, T ]. We denote


̃ = 
0,T ∩ supp(v0).

Our main result is that reconstruction of a(x, t) from the non-linear map λψ is Hölder stable.
398



M. Lassas, T. Liimatainen, L. Potenciano-Machado et al. Journal of Differential Equations 337 (2022) 395–435
Theorem 2 (Stability estimate with one dimensional measurements). Let � ⊂Rn be a bounded 
domain with a smooth boundary. Let W ⊂ � ×[t1, t2] be the compact set defined in (2), where t1
and t2 are as in (4). Let L > 0, m ≥ 2 be an integer, r ∈R with r ≤ s ∈ N , s + 1 > (n + 1)/2 and 
L > 0. Assume that for j = 1, 2, the functions aj ∈ A(L, s) and ψ are as in (7). Additionally, 
only for the case n ≥ 2 assume that a1 = a2 on ∂� × [0, T ]. Let 	j : Hs+1(
) → Hr(
̃) be the 
Dirichlet-to-Neumann maps of the non-linear wave equation (1).

Let ε0 > 0, M > 0 and δ ∈ (0, M) be such that

|〈ψ,	1(f ) − 	2(f )〉L2(
̃)| ≤ δ (8)

for all f ∈ Hs+1(
) with ‖f ‖Hs+1(
) ≤ ε0. Then

‖a1|W − a2|W‖L∞(W) ≤ Cδσ(s), (9)

where

σ(s) =
{

m−1
(2m−1)(m(s+2)+1)

, n = 1,

m−1
2n(2m−1)(m(s+2)+1)

, n ≥ 2.
(10)

Theorem 1 follows from Theorem 2 by letting δ → 0. Note that in the theorem we assume 
that our boundary values may be supported on all of 
. However, we only assume that the 
measurements are made on a smaller subset 
̃ = 
 ∩ supp(v0) of 
.

In fact, we emphasize that to recover the potential a ∈ Cs+1(W) in a stable way it is sufficient 
to make one dimensional measurements

λψ : f �→ 〈ψ,	(f )〉L2(
̃) ∈ R

on 
̃. Here ψ can be considered as an instrument function that models the measurement instru-
ment that is used to do observations on the solution u. Note that ψ is a smooth function that is 
a constant on ∂� × [λ, T − λ]. This means that a(x, t) can be recovered from low resolution 
measurements if we can accurately control the source f .

Corollary 1. Let us adopt assumptions and notations of Theorem 2. Instead of condition (8), 
suppose that

‖	1(f ) − 	2(f )‖Hr(
̃) ≤ δ

for all f ∈ Hs+1(
) with ‖f ‖Hs+1(
) ≤ ε0. Then the stability estimate (9) is valid.

There are stability estimates for the recovery of the potentials a and b of the corresponding 
linear drift wave equation �u +b∂tu +au = 0, see for example [26], where the authors obtained 
a local Hölder stability result for this problem when given measurements on a part �0 of the 
lateral boundary 
. In a related spirit, one might ask is it possible to recover a Riemannian 
metric g when given the Dirichlet to Neumann map for the equation (∂2

t − �g)u = 0. Some 
earlier results in this direction are based on Tataru’s unique continuation principle. In this case, 
stability estimates are of logarithmic type, see e.g. [8]. However, later these results have been 
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improved by using different techniques. In [55] it was shown that a simple Riemannian metric g
can be recovered in a Hölder stable way from the DN map.

We also consider the question of reconstruction of the unknown potential when there is possi-
bly noise E involved in the measurements. Assume that for all boundary data f we are given the 
noisy measurement 	(f ) + E(f ). As f �→ 	(f ) is a nonlinear operator, it is natural to assume 
that the noise term f �→ E(f ) can also be non-linear. We assume that the noise is a bounded, 
possibly non-linear, mapping Hs+1(
) → Hr(
), r ∈ R and r ≤ s. Allowing r ≤ s is natural 
since in general the noise can not be expected to be as smooth as the measurements collected by 
the Dirichlet-to-Neumann map.

We present our reconstruction and stability results with noise in R1+1. The general case of 
Rn+1, n ≥ 2 will be given in Proposition 4, see Section 3. The reason is that the statement for 
n ≥ 2 involves a Radon transformation. We write ε = 0 for the condition ε1 = · · · = εm = 0.

Theorem 3 (Reconstruction, n = 1). Let � ⊂ R be an interval. Let m ≥ 2 be an integer, r ∈ R
with r ≤ s ∈N , s +1 > (1 +1)/2 and L > 0. Assume that a ∈A(L, s) and let 	 : Hs+1(
T ) →
Hr(
̃) be the Dirichlet-to-Neumann map of the non-linear wave equation (1). Assume also that 
E : Hs+1(
) → Hr(
).

Let ε0 > 0, M > 0 and δ ∈ (0, M) be such that

‖E(f )‖Hr(
T ) ≤ δ,

for all f ∈ Hs+1(
) with ‖f ‖Hs+1(
) ≤ ε0.

Then there exist τ ≥ 1, ε1, . . . , εm > 0 and a finite family of functions {Hτ,(x0,t0)
j } ⊂

Hs+1(
T ) where j = 1, . . . , m; such that

sup
(x0,t0)∈�×[0,T ]

∣∣∣a(x0, t0)

+ 1

2π
Dm

ε1,...,εm

∣∣
ε=0

∫

̃

ψ (	 + E)(ε1H
τ,(x0,t0)
1 + · · · + εmHτ,(x0,t0)

m )dS

∣∣∣
≤ Cδσ(s)

(11)

for all (x0, t0) ∈ R1+1. Here σ(s) and C are as in Theorem 2 and the measurement function ψ is 
as in (7). The finite difference operator Dm

ε1,...,εm

∣∣
ε=0 is defined in (25).

In higher dimensions the situation is somewhat different. Using a similar approach as in 1 + 1
dimensions, we get an estimate similar to (11) for the Radon transform R(a) in place of a, see 
Proposition 4 in Section 3. The knowledge of R(a) allows us to get information of the unknown 
potential in a negative Sobolev index (by using the Fourier slice theorem, see Section 3.1). Then 
Theorem 2 for higher dimensions n ≥ 2 follows by combining this fact with a standard interpola-
tion argument. In fact, the term 1/(2n) in the exponent σ(s) in (10) comes from this interpolation 
step. We point out that the condition a1 = a2 on ∂� ×[0, T ] in Theorem 2 is a technical assump-
tion we need to operate with Radon transformation on � when dim(�) ≥ 2. With more careful 
analysis the assumption can likely be removed. The assumption is used only in Lemma 8. The 
definition of the Radon transform and its relevant properties can be found in Section 3.
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Let us explain how we prove Theorem 2. The proof is based on the higher order linearization 
method, which was used in many of the works mentioned earlier. We now explain this method. 
We will also use an integration by parts argument introduced in the study of partial data inverse 
problem for non-linear elliptic equations in [35,43]. Similar argument was also used recently 
in [24].

We first explain how we can recover the potential a from the DN map 	 of the equation (1). 
Let us consider the case m = 2. Let f1, f2 ∈ Hs+1(
), and let us denote by uε1f1+ε2f2 the 
solution to (1) with boundary data ε1f1 + ε2f2, where ε1, ε2 are sufficiently small parameters. 
By taking the mixed derivative of the equation (1) with respect to the parameters ε1 and ε2, and 
of the solution uε1f1+ε2f2 , we see that

w := ∂

∂ε1

∂

∂ε2

∣∣∣
ε1=ε2=0

uε1f1+ε2f2

solves

�w = −2av1v2 (12)

with zero initial and Dirichlet boundary data. Here the functions vj solve

⎧⎪⎨⎪⎩
�vj = 0, in � × [0, T ],
vj = fj , on ∂� × [0, T ],
vj

∣∣
t=0 = ∂vj

∣∣
t=0 = 0, in �,

for j = 1, 2. This way we have produced new linear equations from the non-linear equation (1). 
Studying these new equations in inverse problems for non-linear equations is known as the higher 
order linearization method.

If we assume that the DN map 	 is known, then the normal derivative of w is also known on 

 since

∂νw = ∂2
ε1ε2

|ε1=ε2=0	(ε1f1 + ε2f2).

We let v0 be an auxiliary function solving � v0 = 0 with v0|t=T = ∂tv0|t=T = 0 in �. The 
function v0 will compensate the fact we know ∂νw only on the lateral boundary 
. Then, by 
multiplying (12) by v0, and integrating by parts on � × [0, T ], we have the integral identity

∫



v0∂2
ε1ε2

|ε1=ε2=0	(ε1f1 + ε2f2)dS =
∫

�×[0,T ]
v0�wdxdt = −2

∫
�×[0,T ]

av0v1v2dxdt.

Thus the integral

∫
av0v1v2dxdt (13)
�×[0,T ]
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is known from the knowledge of the DN map 	. Since v1 and v2 were arbitrary solutions to 
� v = 0, we may choose suitable solutions v1 and v2 so that the products of the form v0v1v2

become dense in L1(� × [0, T ]). This recovers a.
Heuristically, in 1 +1 dimensions it would be sufficient to have v1 = δ((x −x0) − (t − t0)) and 

v2 = δ((x − x0) + (t − t0)) to recover a(x0, t0) for (x0, t0) ∈ R1+1. Here δ is the 1-dimensional 
delta function. In this case v1v2 is the delta function δ(x0,t0) of R1+1 with mass at (x0, t0). How-
ever, since our theorems regard relatively smooth data, we will instead use approximate delta 
functions. In higher dimensions, different choices of v1 and v2 reduce the integral (13) to a 
Radon transformation of a on Rn, which is stably invertible.

Instead of differentiating equation (1), to obtain stability we will take the mixed finite dif-
ference D2

ε1,ε2
of uε1f1+ε2f2 . See Appendix C for a definition of D2

ε1,ε2
and higher order finite 

differences. In this case, we have the following integral identity

∫
�×[0,T ]

av0v1v2dxdt =
∫



v0D2
ε1,ε2

∣∣∣
ε1=ε2=0

	(ε1f1 + ε2f2)dS

+ 1

ε1ε2

∫
�×[0,T ]

v0�R̃dxdt,

where R̃= OEs+2(〈ε1, ε2〉3) in an energy space norm, for details see (15) and (26)–(27). Here we 
denote by 〈ε1, ε2〉3 homogeneous polynomials of order 3 in ε1 and ε2. Stability result Theorem 2
will follow by optimizing in ε1 and ε2 and parameters related to the solutions v1 and v2. The 
proof of Theorem 3 follows from a similar argument.

The paper is organized as follows. In Section 1, we lay out the basic properties for semi-
linear hyperbolic equations that we use. This includes the well-posedness of the boundary value 
problem for the equation (1). We also calculate formulas for the second order finite differences 
of solutions to (1) in Section 1. In Section 2, we prove Theorems 2 and 3 in 1 + 1 dimensions, 
and in Section 3 we prove these theorems in higher dimensions. We have placed some proofs in 
the appendices.

1. Forward problem and definition of the DN map

In this section we study the existence of solutions to the boundary value problem of a non-
linear wave equation in Rn+1:

⎧⎪⎨⎪⎩
�u + aum = 0, in � × [0, T ],
u = f, on ∂� × [0, T ],
u
∣∣
t=0 = ∂tu

∣∣
t=0 = 0, in �.

Let � be an open subset of Rn with smooth boundary. Let s ∈ N and let us denote for the sake 
of brevity

Xs(�) := C([0, T ]; Hs(�)) ∩ Cs([0, T ]; L2(�)).
402
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If there is no danger of misunderstanding, we simply denote Xs(�) by Xs , or just by X if the 
index s is additionally known from the context. The norm of the Banach space Xs(�) is given 
by

‖f ‖Xs := sup
0<t<T

(
‖f ( · , t)‖Hs(�) + ‖∂s

t f ( · , t)‖L2(�)

)
.

To prove existence of small solutions for the non-linear wave equation, we consider the linear 
initial-boundary value problem⎧⎪⎨⎪⎩

�u = F, in � × [0, T ],
u = f, on ∂� × [0, T ],
u
∣∣
t=0 = ψ0, ∂tu

∣∣
t=0 = ψ1, in �

for the linear wave operator. The standard compatibility conditions of order s for this problem 
are given as

f |t=0 = ψ0|∂�, ∂tf |t=0 = ∂tu|∂�×{0} = ψ1|∂�,

∂2
t f |t=0 = ∂2

t u|∂�×{0} = �ψ0|∂� + F |∂�×{0},

and similarly for the higher order derivatives up to order s. These conditions guarantee that at the 
boundary ∂� the initial data (ψ0, ψ1) matches with the corresponding boundary condition f , see 
[29, Section 2.3.7]. Especially, if ∂k

t f |t=0 = 0 for all k = 0, . . . , s, and F ≡ 0 and ψ0 ≡ ψ1 ≡ 0, 
then the compatibility conditions of order s are true. We will use the following result from the 
book [29, Theorem 2.45], see also [40].

Proposition 1 (Existence and estimates for linear equation [29]). Let s ∈ N and 0 < T < ∞. 
Assume that F ∈ L1([0, T ] ; Hs(�)), ∂s

t F ∈ L1([0, T ] ; L2(�)), ψ0 ∈ Hs+1(�), ψ1 ∈ Hs(�)

and f ∈ Hs+1(
). If all the compatibility conditions up to the order s are satisfied, then the 
problem ⎧⎪⎨⎪⎩

�u = F, in � × [0, T ],
u = f, on ∂� × [0, T ],
u
∣∣
t=0 = ψ0, ∂tu

∣∣
t=0 = ψ1, in �

(14)

has a unique solution u satisfying

u ∈ Xs+1(�) and ∂νu|
 ∈ Hs(
).

Moreover, we have the following estimate for all t ∈ [0, T ]

‖u( · , t)‖Hs+1(�) + ‖∂s+1
t u( · , t)‖L2(�) + ‖∂νu‖Hs(
)

≤ cT

(‖F‖L1([0,T ];Hs(�)) + ‖∂s
t F‖L1([0,T ];L2(�))

+ ‖ψ ‖ s+1 + ‖ψ ‖ s + ‖f ‖ s+1

)
.
0 H (�) 1 H (�) H (
)
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Let us define the energy spaces Es (see e.g. [14, Definition 3.5 on page 596]) of functions in 
� × [0, T ] ⊂ Rn+1:

Es =
⋂

0≤k≤s

Ck([0, T ]; Hs−k(�)).

These spaces are equipped with the norm

‖u‖Es = sup
0<t<T

∑
0≤k≤s

‖∂k
t u( · , t)‖Hs−k(�). (15)

The reason why we are considering the spaces Es is that if s > (n + 1)/2, then Es is an algebra 
(see e.g. [14]) and we have the norm estimate

‖uv‖Es ≤ Cs‖u‖Es ‖v‖Es , for all u,v ∈ Es.

We record the following consequence of Proposition 1, which we will use extensively. We 
have placed its proof in the Appendix A.

Corollary 2. Adopt the notation and assumptions of Proposition 1. Assume in addition that

∂k
t F ∈ L1([0, T ]; Hs−k(�)), k = 0,1, . . . , s.

Then the solution u to (14) satisfies

u ∈ Es+1(�) and ∂νu|
 ∈ Hs(
)

and

‖u‖Es+1 + ‖∂νu‖Hs(
) ≤ cs,T

( ∑
0≤k≤s

‖∂k
t F‖L1([0,T ];Hs−k(�))

+ ‖ψ0‖Hs+1(�) + ‖ψ1‖Hs(�) + ‖f ‖Hs+1(
)

)
.

(16)

The proofs of the following results are quite standard, we postpone them to the Appendix A
for the interested reader.

Lemma 1. Let s +1 > (n +1)/2 and L > 0. Suppose that a ∈ A(L, s). There is κ > 0 and ρ > 0
such that if f ∈ Hs+1(
) satisfies ‖f ‖Hs+1 ≤ κ and ∂k

t f |t=0 = 0, k = 0, . . . , s, on ∂�, there is 
a unique solution to ⎧⎪⎨⎪⎩

�u + aum = 0, in � × [0, T ],
u = f, on ∂� × [0, T ],
u
∣∣
t=0 = ∂tu

∣∣
t=0 = 0, in �

(17)

in the ball
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Bρ(0) := {u ∈ Es+1 | ‖u‖Es+1 < ρ} ⊂ Es+1.

Furthermore, the solution satisfies the estimate

‖u‖Es+1 ≤ C0‖f ‖Hs+1(
), (18)

where C0 > 0 is a constant depending only on L, s and T .

We are ready to consider an inverse problem for the non-linear hyperbolic equation⎧⎪⎨⎪⎩
�u + aum = 0, in � × [0, T ],
u = f, on ∂� × [0, T ],
u
∣∣
t=0 = ∂tu

∣∣
t=0 = 0, in �.

Our measurement data is the Dirichlet-to-Neumann map 	, which is a map from a small ball in 
Hs+1(
) into Hs(
) and is defined as follows.

Definition 1 (Dirichlet-to-Neumann map). Let � be an open subset of Rn and let s + 1 >
(n + 1)/2, s ∈ N . Let ρ > 0 be such that for all f with ‖f ‖Hs+1(
) < κ and ∂k

t f |t=0 = 0, 
k = 0, . . . , s, the problem (1) has a unique solution u ∈ Es+1 satisfying ‖u‖Es+1 < ρ. The 
Dirichlet-to-Neumann map 	 is the map {f ∈ Hs+1(
) : ‖f ‖Hs+1(
) < κ} → Hs(
) given as

	(f ) = ∂νu on 
, f ∈ Hs+1(
), ‖f ‖Hs+1(
) < κ,

where u is the unique solution to (1) with ‖u‖Es+1 < ρ.

We end this section by an expansion formula for a family of solutions depending on small 
parameters.

Proposition 2. Let s + 1 > (n + 1)/2 and L > 0. Suppose that a ∈ A(L, s). There is κ > 0 and 
ρ > 0 with the following property: If fj ∈ Hs+1(
) and εj > 0 satisfy ‖ε1f1 +· · · εmfm‖Hs+1 ≤
κ and ∂k

t fj |t=0 = 0 on ∂�, k = 0, . . . , s, j = 1, . . . , m, then there exists a unique solution u to⎧⎪⎨⎪⎩
�u + aum = 0, in � × [0, T ],
u = ε1f1 + ε2f2 + · · · + εmfm, on ∂� × [0, T ],
u
∣∣
t=0 = 0, ∂tu

∣∣
t=0 = 0, in �

(19)

in the ball

Bρ(0) := {u ∈ Es+1 | ‖u‖Es+1 < ρ} ⊂ Es+1.

The solution satisfies the estimate

‖u‖Es+1 ≤ C0‖ε1f1 + · · · + εmfm‖Hs+1(
), (20)
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where C0 > 0 is a constant depending only on s, T and L. Furthermore, u has the following 
expansion in ε1, . . . , εm in terms of the multinomial coefficients

u = ε1v1 + · · · + εmvm +
∑

k1,k2,...,km

(
m

k1, k2, · · · , km

)
ε
k1
1 · · · εkm

m w(k1,...,km) +R.

Here for j = 1, . . . , m the functions vj satisfy⎧⎪⎨⎪⎩
�vj = 0, in � × [0, T ],
vj = fj , on ∂� × [0, T ],
vj

∣∣
t=0 = 0, ∂t vj

∣∣
t=0 = 0, in �

(21)

and for kj ∈ {1, . . . , m} the functions wk1,...,km satisfy⎧⎪⎨⎪⎩
�wk1,...,km + av

k1
1 · · ·vkm

m = 0, in � × [0, T ],
wk1,...,km = 0, on ∂� × [0, T ],
wk1,...,km

∣∣
t=0 = 0, ∂twk1,...,km

∣∣
t=0 = 0, in �

(22)

and

‖R‖Es+2 ≤ c(s, T )‖a‖2
Es+1‖ε1f1 + · · · + εmfm‖2m−1

Hs+1(
)
,

‖�R‖Es+1 ≤ C(s,T )‖a‖2
Es+1‖ε1f1 + · · · + εmfm‖2m−1

Hs+1(
)
.

(23)

Proof. First, inequality (20) immediately follows from (18). Then we note that F = u − (ε1v1 +
ε2v2 + · · · + εmvm) satisfies⎧⎪⎨⎪⎩

�F = −aum, in � × [0, T ],
F = 0, on ∂� × [0, T ],
F
∣∣
t=0 = 0, ∂tF

∣∣
t=0 = 0, in �.

Hence, by (20) and by using the energy estimate from Corollary 2, one obtains

‖F‖Es+2 ≤ C(s,T )‖aum‖Es+1 ≤ C(s,T )‖a‖Es+1 ‖ε1f1 + · · · + εmfm‖m
Hs+1(
)

. (24)

Here we have used that Es+1 is an algebra and the estimate (20):

‖u‖Es+1 ≤ C‖ε1f1 + · · · + εmfm‖Hs+1(
).

One step further, taking into account (22), the function R given by

R := u − (ε1v1 + · · · + εmvm) −
∑

k1,k2,...,km

(
m

k1, k2, · · · , km

)
ε
k1
1 · · · εkm

m wk1,...,km

satisfies
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⎧⎪⎨⎪⎩
�R = −aum + a(ε1v1 + ε2v2 + · · · + εmvm)m, in � × [0, T ],
R= 0, on ∂� × [0, T ],
R
∣∣
t=0 = 0, ∂tR

∣∣
t=0 = 0, in �.

Using this identity together with the estimate (20) and (24), we obtain

‖�R‖Es+1 ≤ C(s,T )‖−aum + a(ε1v1 + · · · + εmvm)m‖Es+1

= C(s,T )‖a(u − (ε1v1 + · · · εmvm))Pm−1(u, ε1v1 + · · · + εmvm)‖Es+1

≤ C(s,T )‖a‖Es+1‖F‖Es+2‖Pm−1(u, ε1v1 + · · · + εmvm)‖Es+1

≤ C(s,T ,m)‖a‖2
Es+1 ‖ε1f1 + · · · + εmfm‖m

Hs+1(
)

×
(m−1∑

l=0

‖um−1−l (ε1v1 + · · · + εmvm)l‖Es+1

)
,

≤ C(s,T ,m)‖a‖2
Es+1 ‖ε1f1 + · · · + εmfm‖2m−1

Hs+1(
)
.

Here we wrote

um − vm = (u − v)Pm−1(u, v),

where Pm−1(a, b) =∑m−1
k=0 am−1−kbk . In the last inequality we used (20). Thus it follows from 

the energy estimate (16) that

‖R‖Es+2 ≤ c(s, T ,m)‖a‖2
Es+1‖ε1f1 + · · · + εmfm‖2m−1

Hs+1(
)
. �

We next derive the integral identity (28) below, which relates the unknown potential with the 
Dirichlet-to-Neumann map. To this end, note that the finite differences Dm

ε1,...,εm
of the solution 

u = uε1f1+···+εmfm of (19) satisfy

Dm
ε1,...,εm

∣∣
ε=0�u = −m!av1 · · ·vm + Dm

ε1,...,εm

∣∣
ε=0�R,

where we used (22) with k1 = · · · = km = 1. Here we write ε = 0 when ε1 = . . . = εm = 0. For 
more details, we refer the reader to Appendix C. The finite difference is defined as usual by

Dm
ε1,...,εm

∣∣
ε=0uε1f1+···+εmfm = 1

ε1 · · · εm

∑
σ∈{0,1}m

(−1)|σ |+muσ1ε1f1+...+σmεmfm. (25)

For example, when m = 2, we have

D2
ε1,ε2

∣∣
ε1=ε2=0u := 1

ε1ε2

(
uε1f1+ε2f2 − uε1f1 − uε2f2

)
.

Here we used the fact that the solution to (19) with ε1 = ε2 = 0 is identically zero.
Let v0 be an auxiliary function solving � v0 = 0 with v0|t=T = ∂tv0|t=T = 0 in �. By inte-

grating by parts and using (22), we obtain
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∫



v0Dm
ε1,...,εm

∣∣
ε=0	(ε1f1 + · · · + εmfm)dS

=
∫



v0Dm
ε1,...,εm

∣∣
ε=0∂νuε1f1+···+εmfm dS

= m!
∫

�×[0,T ]
v0�w1,1,...,1dxdt + 1

ε1 · · · εm

∫
�×[0,T ]

v0�R̃dxdt.

Here we denoted

R̃ := ε1ε2 . . . εmDm
ε1,...,εm

∣∣
ε=0R, (26)

and R̃ satisfies

‖R̃‖Es+2 ≤ c(s, T )‖a‖2
Es+1

∑
σ∈{0,1}m

‖σ1ε1f1 + · · · + σmεmfm‖2m−1
Hs+1(
)

,

‖� R̃‖Es+1 ≤ C(s,T )‖a‖2
Es+1

∑
σ∈{0,1}m

‖σ1ε1f1 + · · · + σmεmfm‖2m−1
Hs+1(
)

.
(27)

Above we used the notation σ = (σ1, . . . , σm). Summarizing, we have arrived to the following 
integral identity which connects the potential a with the DN-map 	.
Integral identity:

−m!
∫

�×[0,T ]
av0v1v2 · · ·vmdxdt =

∫



v0Dm
ε1,...,εm

∣∣
ε=0	(ε1f1 + · · · + εmfm)dS

− 1

ε1ε2 · · · εm

∫
�×[0,T ]

v0�R̃dxdt.

(28)

We will use this identity several times throughout the text. Recall that ε = 0 means ε1 = · · · =
εm = 0.

Remark 1. By taking εj → 0, the integral identity (28) implies∫
�×[0,T ]

av0v1v2 · · ·vmdxdt = − 1

m!
∫



ψ∂ε1∂ε2 . . . ∂εm

∣∣
ε=0	(ε1f1 + · · · + εmfm)dS,

where ψ = v0|
 is a measurement function and vj , j = 0, 1, 2, . . . , m, are the solutions of the lin-
earized equation � vj = 0. We note that similar identities are encountered in the study of inverse 
problems for elliptic equations, e.g. �U(x) + q(x)U(x)m = 0, U |∂� = f , with the solutions Vj

of the linearized equation �Vj(x) = 0, see [43]. As the constant function V0 = 1 satisfies the lin-
earized equation, one could use a similar approach to the one used in this paper to study the above 
non-linear elliptic equation with the one-dimensional boundary map f �→ 〈�, ∂νU |∂�〉L2(∂�)

and the measurement function � = 1. However, these considerations are outside the context of 
this paper.
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2. Proofs of the main results

2.1. Proof of Theorem 2 in 1 + 1 dimensions with m = 2

We prove Theorem 2 in R1+1 with m = 2 and m > 2 separately. In this section we consider 
only the case m = 2. The proof for the case m > 2 is very similar, but it uses some definitions we 
will introduce only in Section 3. We give a proof for the case m > 2 at the end of Section 3. The 
proof will be divided into three steps.

Step 1. Let εj > 0, j = 1, 2, and fj ∈ Hs+1(
) be functions that satisfy ∂k
t fj |t=0 = 0, k =

0, . . . , s, on ∂�. Suppose also that ‖ε1f1 + ε2f2‖Hs+1(�×[0,T ]) ≤ κ for κ > 0 small enough, as 
in Lemma 1. Then, for l = 1, 2, and according to Proposition 2, we have that the problem⎧⎪⎨⎪⎩

�ul + al u
2
l = 0, in � × [0, T ],

ul = ε1f1 + ε2f2, on ∂� × [0, T ],
ul

∣∣
t=0 = 0, ∂tul

∣∣
t=0 = 0, in �

(29)

has a unique solution ul with an expansion of the form

ul = ε1vl,1 + ε2vl,2 + 2ε1ε2wl,(1,1) + ε2
1wl,(2,0) + ε2

2wl,(0,2) +Rl ,

where vl,j and wl,(k1,k2), l, k1, k2 = 1, 2, solve (21) and (22) with a replaced with al . Note that 
since the equation for vl,j is independent of al , we have by the uniqueness of solutions that

v1,j = v2,j =: vj , j = 1,2.

By (23), the correction term Rl satisfies

‖�Rl‖Es+1 ≤ C(s,T )‖al‖2
Es+1‖ε1f1 + ε2f2‖3

Hs+1(
)
, l = 1,2. (30)

We have that the mixed second difference D2
ε1,ε2

∣∣
ε1=ε2=0 of ul is

D2
ε1,ε2

∣∣
ε1=ε2=0ul = 2wl,(1,1) + 1

ε1ε2
Rl , l = 1,2.

Consequently

�D2
ε1,ε2

∣∣
ε1=ε2=0ul = −2alv1v2 + 1

ε1ε2
�R̃l , l = 1,2, (31)

where R̃l := ε1ε2D
2
ε1,ε2

∣∣
ε1=ε2=0Rl similarly as in (26).

As the first step we derive a useful integral identity which relates the DN maps 	1 and 	2
with the information of the unknown potentials a1 and a2 in � × [0, T ]. We recall that v0 is 
an auxiliary function given in (6). Combining (31) and the fact that v0 satisfies � v0 = 0 with 
v0|t=T = ∂tv0|t=T = 0 in �, we get
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∫



v0D2
ε1,ε2

∣∣
ε1=ε2=0 [(	1 − 	2)(ε1f1 + ε2f2)] dS

=
∫



v0D2
ε1,ε2

∣∣
ε1=ε2=0 [∂νu1 − ∂νu2] dS

=
∫

∂�×[0,T ]
v0∂ν

[
D2

ε1,ε2

∣∣
ε1=ε2=0(u1 − u2)

]
dS

=
∫

�×[0,T ]
v0

[
�(D2

ε1,ε2

∣∣
ε1=ε2=0(u1 − u2))

]
dxdt

+
∫

�×[0,T ]
(�v0)D

2
ε1,ε2

∣∣
ε1=ε2=0(u1 − u2)dxdt

= −2
∫

�×[0,T ]
v0(a1 − a2)v1v2dxdt + 1

ε1ε2

∫
�×[0,T ]

v0 �(R̃1 − R̃2)dxdt.

(32)

We remark that this identity is a consequence of manipulating identity (28) applied with a = aj

and u = uj , j = 1, 2. In what follows we denote by H̃−r(
) and H̃−(s+1)(� × [0, T ]) the dual 
spaces of Hr(
) and Hs+1(� × [0, T ]), respectively, endowed with the following norms

‖w‖H̃−r (
) := sup
v∈Hr(
),‖v‖Hr (
) ≤1

|〈v,w〉L2(
)|,

‖w‖H̃−(s+1)(�×[0,T ]) := sup
v∈Hs+1(�×[0,T ]),‖v‖

Hs+1(�×[0,T ]) ≤1
|〈v,w〉L2(�×[0,T ])|.

See for example [1] for more details. Below, the constant Z = 1, if it is assumed that

|〈v0,	1(f ) − 	2(f )〉L2(
̃)| ≤ δ,

or Z = ‖v0‖H̃−r (
), if it is assumed that

‖	1(f ) − 	2(f )‖Hr(
̃) ≤ δ.

These two different assumptions correspond to assumptions in Theorem 2 and Corollary 1, re-
spectively.

As an immediate consequence of the integral identity (32) we obtain

2
∣∣〈v0(a1 − a2), v1v2〉L2(�×[0,T ])

∣∣
≤
∣∣∣〈v0,D

2
ε1,ε2

(	1 − 	2) (ε1f1 + ε2f2)〉L2(
)

∣∣∣+ ε−1
1 ε−1

2

∣∣〈v0,�(R̃1 − R̃2)〉L2(�×[0,T ])
∣∣

≤ 4 ε−1
1 ε−1

2

∣∣〈v0, (	1 − 	2) (ε1f1 + ε2f2)〉L2(
)

∣∣
+ ε−1 ε−1 ∣∣〈v0,�(R̃1 − R̃2)〉L2(�×[0,T ])

∣∣ (33)
1 2
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≤ 4 δ ε−1
1 ε−1

2 Z + ε−1
1 ε−1

2 ‖�(R̃1 − R̃2)‖Es+1 ‖v0‖H̃−(s+1)(�×[0,T ])
≤ ε−1

1 ε−1
2 (Z + ‖v0‖H̃−(s+1)(�×[0,T ]))

×
(

4 δ + C(s,T )(‖a1‖2
Es+1 + ‖a2‖2

Es+1)(ε1‖f1‖Hs+1(
) + ε2‖f2‖Hs+1(
))
3
)

≤ C ε−1
1 ε−1

2

(
δ + (ε1‖f1‖Hs+1(
) + ε2‖f2‖Hs+1(
))

3
)

,

where we denoted

C = max
{

4,C(s, T )(‖a1‖2
Es+1 + ‖a2‖2

Es+1)
}

(Z + ‖v0‖H̃−(s+1)(�×[0,T ])).

Above we have also used (30) and that Es+1 ⊂ Hs+1(� ×[0, T ]) to bound the term � (R̃1 −R̃2)

in Es+1.

Step 2. The second step is to suitably choose the functions f1 and f2 so that they allow us to 
obtain information about a1 − a2 from the integral estimate (33). In this step, we shall need the 
following two technical results.

Lemma 2. Let α > 0, γ ≥ 0 and τ ≥ 1. Let χα ∈ C∞
c (R) be a cut-off function supported on 

[−α, α], |χα| ≤ 1. Consider the function H ∈ C∞
c (R) defined by

H(l) = χα(l)τ 1/2e− 1
2 τ l2, l ∈R.

Let (x0, t0) ∈ R2 and define

H
τ,(x0,t0)
1 (x, t) := H

(
(x − x0) − (t − t0)

)
,

H
τ,(x0,t0)
2 (x, t) := H

(
(x − x0) + (t − t0)

)
.

The following estimate holds

‖Hτ,(x0,t0)
1 ‖Hγ (
) + ‖Hτ,(x0,t0)

2 ‖Hγ (
) ≤ C τ
γ+1

2 .

The constant C is independent of (x0, t0) ∈ R2.

Proof. Let (x0, t0) ∈ R2 and β1, β2 ∈N . Let us write

F(x, t) = H
(
(x − x0) + (t − t0)

)
.

We have for all τ ≥ 1 that
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‖∂β1
x ∂

β2
t F‖2

L2(�×[0,T ]) = τ

∫
�

T∫
0

[
∂β1
x ∂

β2
t

(
χα(x − x0 + t − t0)e

− τ
2 (x−x0+t−t0)

2
)]2

dtdx

≤ Cττ 2(β1+β2)

∫
�

T∫
0

|χα(x − x0 + t − t0)|2 (x − x0 + t − t0)
2(β1+β2)e−τ(x−x0+t−t0)

2
dt dx

= Cττ 2(β1+β2)

∫
�

x−x0+T −t0∫
x−x0−t0

|χα(h)|2 h2(β1+β2)e−τh2
dhdx

≤ Cττ 2(β1+β2)

∫
�

∞∫
−∞

|χα(h)|2 h2(β1+β2)e−τh2
dhdx

≤ Cττ 2(β1+β2)τ−(β1+β2)−1/2
∫
�

dx = C�τ(β1+β2)+1/2.

Here in the second line we used the fact that the largest power of τ in the calculation happens 
when all the derivatives hit the exponential and none the cut-off function. Therefore, when τ ≥ 1, 
we may absorb the other terms implicit in the calculation to the constant C. We also made a 
change of variables

h = x − x0 + t − t0

in the integral in the variable t , while considering x is fixed. We also used∫
R

h2(β1+β2)e−τh2
dh ∼ τ−(β1+β2)−1/2.

Thus, we have

‖F‖2
Hβ1+β2 (�×[0,T ]) ≤ C�τ(β1+β2)+1/2.

By a standard interpolation argument between Sobolev spaces, see for instance [7, Theorem 
6.2.4/6.4.5], we then obtain for all γ ≥ 0 that

‖F‖2
Hγ (�×[0,T ]) ≤ Cτγ+1/2.

Finally, by using the trace theorem we have

‖F‖2
Hγ (
) ≤ C‖F‖2

Hγ+1/2(�×[0,T ]) ≤ Cτγ+1.

Similar argument yields the same estimate for Hτ,(t0,x0). This completes the proof. �
1
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The Lipschitz semi-norm of a Lipschitz function f by

‖f ‖Lip := inf{c ≥ 0 | |f (x) − f (y)| ≤ c|x − y|}.
We prove next a couple of lemmas.

Lemma 3. Let τ > 0. Let b ∈ Lip(R2) be compactly supported. The following estimate∣∣∣∣∣∣∣b(x0, t0) − τ

π

∫
R2

b(x, t)e−τ((x−x0)2+(t−t0)
2)dx dt

∣∣∣∣∣∣∣≤
√

π

2
‖b‖Lip τ−1/2

holds true for all (x0, t0) ∈ R2. In particular, the integral on the left converges uniformly to b
when τ → ∞.

Proof. Without loss of generality we prove the estimate when (x0, t0) = (0, 0), because it can 
be later applied to b(x + x0, t + t0) in place of b(x, t). Using polar coordinates, one can see 
that 

∫
R2 e−(x2+t2)dx dt = π and 

∫
R2 2 

√
x2 + t2 e−(x2+t2)dx dt = π3/2. Additionally, note that ∣∣b(0,0) − b(τ−1/2x, τ−1/2t)

∣∣≤ ‖b‖Lip τ−1/2 |(x, t)| for all (x, t) ∈R2. Thus we deduce∣∣∣∣∣∣∣b(0,0) − τ

π

∫
R2

b(x, t)e−τ(x2+t2)dx dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣b(0,0) − 1

π

∫
R2

b(τ−1/2x, τ−1/2t)e−(x2+t2)dx dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

π

∫
R2

(
b(0,0) − b(τ−1/2x, τ−1/2t)

)
e−(x2+t2)dx dt

∣∣∣∣∣∣∣
≤ τ−1/2

π
‖b‖Lip

∫
R2

|(x, t)|e−(x2+t2)dx dt =
√

π

2
‖b‖Lip τ−1/2. �

The next lemma generalizes Lemma 3. We need it to analyze for the case when (x0, t0) lies 
on 
. If we take x1 = x0 then the result in Lemma 4 is exactly the same as in Lemma 3.

Lemma 4. Let τ > 0, x0, x1, t0 ∈ R and assume x0 ≥ x1. Let b : [x1, ∞[×R → R be Lipschitz. 
Define for s ≤ 0

�(s) := 1√
π

∞∫
s

e−x2
dx

and note that �(s, τ) ∈ [1/2, 1]. The following estimate
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∣∣∣∣∣∣∣b(x0, t0) − τ

π�(
√

τ(x1 − x0))

∫
R2∩{x≥x1}

b(x, t)e−τ((x−x0)
2+(t−t0)

2)dx dt

∣∣∣∣∣∣∣≤
√

π ‖b‖Lip τ−1/2

holds true for all (x0, t0) ∈ R2 ∩ {x ≥ x1}. In particular, the integral on the left converges uni-
formly to b as τ → ∞.

Proof. Without loss of generality we may assume that x1 = t0 = 0 and x0 ≥ 0. To begin, recall 
the identities

∞∫
−∞

e−x2
dx = √

π and
∫
R2

√
x2 + t2 e−(x2+t2)dx dt = π3/2

2
.

We calculate

τ

π

∞∫
0

∞∫
−∞

b(x, t)e−τ [(x−x0)2+t2]dtdx = τ

π

∞∫
−x0

∞∫
−∞

b(x + x0, t)e
−τ [x2+t2]dtdx

= τ

π

∞∫
−x0

∞∫
−∞

(
b(x + x0, t) − b(x0,0)

)
e−τ [x2+t2]dtdx

+ τ

π
b(x0,0)

∞∫
−x0

∞∫
−∞

e−τ [x2+t2]dtdx.

(34)

Here we see that

τ

π
b(x0,0)

∞∫
−x0

∞∫
−∞

e−τ [x2+t2]dtdx = b(x0,0)
1√
π

∞∫
−x0

√
τ

e−x2
dx = �(−√

τx0)b(x0,0).

Thus, using (34) and the fact that b is Lipschitz, we can estimate∣∣∣∣∣∣�(−√
τx0)b(x0,0) − τ

π

∞∫
0

∞∫
−∞

b(x, t)e−τ [(x−x0)2+t2]dtdx

∣∣∣∣∣∣
≤ τ

π

∞∫
−x0

∞∫
−∞

∣∣b(x + x0, t) − b(x0,0)
∣∣e−τ [x2+t2]dtdx

≤ 1

π

∞∫
√

∞∫
−∞

∣∣b(τ− 1
2 x + x0, τ

− 1
2 t) − b(x0,0)

∣∣e−[x2+t2]dtdx
− τx0
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≤ τ− 1
2

π
‖b‖Lip

∫
R2

√
x2 + t2 e−[x2+t2]dtdx

≤
√

π

2
‖b‖Lipτ

− 1
2 .

Finally, dividing the above inequality by �(−√
τx0), and observing that � is monotone and 

satisfies �(0) = 1
2 and �(s) → 1 as s → −∞, we have the claim. �

Let (x0, t0) ∈ W , where W is as in (2). For j = 1, 2 consider Hj as in Lemma 2. Note that

�Hj = 0. (35)

We choose

vj = Hj and fj = Hj |
, j = 1,2,

where Hj = H
τ,(x0,t0)
j is as in Lemma 2 with γ = s + 1 and the cut-off function χα so that 

χα(0) = 1. We assume that α < λ/2, where λ > 0 as in (4). In this case fj vanishes near {t = 0}, 
and hence ∂k

t

∣∣
t=0fj = 0, k = 1, . . . , s, on ∂�. Similarly, we will have that the product H1H2 = 0

on 
, since H1H2 is supported in a ball of radius 
√

2α centered at (x0, t0). From here, we 
distinguish two cases.

Case 1. When x0 ∈ �. In this case, substituting the choices of vj into inequality (33), and using 
Lemma 3 with

b(x, t) := v0(a1 − a2)χα(x − x0 − (t − t0))χα(x − x0 + (t − t0)),

we get

|(v0(a1 − a2))(x0, t0)| ≤ 1

π

∣∣∣∣∣∣∣
∫

�×[0,T ]
v0(a1 − a2)H1H2 dx dt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣(v0(a1 − a2))(x0, t0) − 1

π

∫
�×[0,T ]

v0(a1 − a2)H1H2 dx dt

∣∣∣∣∣∣∣
≤ C�,T ,aj ,χα

(
2τ−1/2 + δ

2
ε−1

1 ε−1
2 + ε−1

1 ε−1
2 (ε1 + ε2)

3 τ
3
2 s+3

)
‖v0‖C1

≤ C�,T ,aj ,χαM

κ3

(
2τ−1/2 + κ3δ

2M
ε−1

1 ε−1
2 + ε−1

1 ε−1
2 (ε1 + ε2)

3 τ
3
2 s+3

)
‖v0‖C1 .

(36)

Case 2. When x0 ∈ ∂�. Let x1 ≥ x0. In this case, motivated by Lemma 4, instead of Hj , we 
normalize Hj by a constant as
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H̃j (x, t) :=
[
�(

√
τ(x1 − x0))

]−1/2
Hj(x, t), j = 1,2.

Since 1/2 ≤ �(s) ≤ 1 for all s ≤ 0, the estimates obtained in Lemma 2 still remain valid for H̃j

in place of Hj . Moreover, by (35), we also have

�H̃j = 0.

Thus, choosing

vj = H̃j and fj = H̃j |
, j = 1,2,

and substituting these choices into inequality (33), and using now Lemma 4 with

b(x, t) := v0(a1 − a2)χα(x − x0 − (t − t0))χα(x − x0 + (t − t0)),

we have

|(v0(a1 − a2))(x0, t0)| ≤ π−1�−1(
√

τ(x1 − x0))

∣∣∣∣∣∣∣
∫

�×[0,T ]
v0(a1 − a2)H1 H2 dx dt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣(v0(a1 − a2))(x0, t0) − π−1�−1(
√

τ(x1 − x0))

∫
�×[0,T ]

v0(a1 − a2)H1 H2 dx dt

∣∣∣∣∣∣∣
≤ C�,T ,aj ,χα

(
2τ−1/2 + δ

2
ε−1

1 ε−1
2 + ε−1

1 ε−1
2 (ε1 + ε2)

3 τ
3
2 s+3

)
‖v0‖C1

≤ C�,T ,aj ,χαM

κ3

(
2τ−1/2 + κ3δ

2M
ε−1

1 ε−1
2 + ε−1

1 ε−1
2 (ε1 + ε2)

3 τ
3
2 s+3

)
‖v0‖C1 .

(37)

In the last inequalities of (36) and (37), we scaled δ by a constant κ3/M , which we without loss 
of generality assume is < 1. This scaling is purely technical and will be clarified in Lemma 5.

Step 3. Our last step is optimizing τ , ε1 and ε2 in terms of δ to get the right hand side of (36)
as small as possible. The constants 2 and 1/2 in front of the terms with τ−1/2 and δε−1

1 ε−1
2 as a 

factor are used only to simplify the formulas. We begin by setting

ε1 = ε2 = ε.

Note that we have

ε‖fj‖Hs+1(
) ∼ ετ
s+2

2 , j = 1,2. (38)

To guarantee the unique solvability of the non-linear wave equations (29), we require the quanti-
ties on the right-hand side of (38) is bounded by κ as in Lemma 1. The following Lemma 5 shows 
how to optimally choose the parameters λ and ε of the inverse problem given a priori bounds κ
and δ of the forward problem, while keeping the size of the sources εjfj small in Hs+1(
).
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Lemma 5. For any given δ ∈ (0, M) and κ ∈ (0, 1) small enough we find ε(δ, κ) = ε and 
τ(δ, κ) = τ ≥ 1 such that

f (ε, τ ) := 2τ−1/2 + κ3δ

2M
ε−2 + 8ε τ

3
2 s+3 ≤ Cs,M,κ δ

1
6s+15

and we also have

ετ
s+2

2 ≤ κ.

The constant Cs,M,κ is independent of δ.

Proof. To simplify notation, let ̂s := 3s/2 + 3 and γ0 = κ3/M . A direct computation shows that

∂εf = −(γ0δ)ε
−3 + 8τ ŝ , ∂τ f = −τ−3/2 + 8εŝτ ŝ−1.

Making ∂εf = ∂τ f = 0, we obtain the critical points of f , namely

τ = (8̂s) − 6
4̂s+3 (

1

8
γ0δ)

− 2
4̂s+3 , ε = (8̂s)

2̂s
4̂s+3 (

1

8
γ0δ)

2̂s+1
4̂s+3 . (39)

With these choices of τ and ε, one can check that τ−1/2, (γ0δ)ε
−2 and ετ ŝ are all bounded by 

Cs ( 1
8 γ0δ)

1
4̂s+3 . Also, τ ≥ 1 for κ small enough.

Furthermore, since

ετ
ŝ
3 = (

1

8
γ0δ)

1/3,

we have that

ετ
s+2

2 ≤ κ

2
< κ

for any 0 < δ < M . This finishes the proof. �
Equation (39) in the proof of Lemma 5 also shows how to choose the parameters τ and ε

depending on δ and κ . We also see that ε‖fj‖Hs+1(
) ≤ κ .
Continuing from (36) by putting ε1 = ε2 = ε and then applying Lemma 5 we finally obtain

|(v0(a1 − a2))(x0, t0)|

≤ C�,T ,aj ,χαM

κ3

(
2τ−1/2 + κ3δ

2M
ε−1

1 ε−1
2 + ε−1

1 ε−1
2 (ε1 + ε2)

3 τ
3
2 s+3

)
‖v0‖C1

= C�,T ,aj ,χαM

κ3

(
2τ−1/2 + κ3δ

2M
ε−2 + 8ε τ

3
2 s+3

)
‖v0‖C1 ≤ Cδ

1
6s+15 .

(40)

Recall that v0 satisfies (6). In particular v0(x0, t0) = 1. This finishes the proof of Theorem 2. 
Moreover, by letting δ → 0 we obtain Theorem 1. �
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2.1.1. Proof of Theorem 3 in 1 + 1 dimensions with m = 2
We complete the proof of Theorem 3 in the case 1 + 1 dimensions with m = 2. The proof 

follows from similar arguments we used in the previous section. Let us consider any point 
(x0, t0) ∈ W , where W is as in (2), and let v0, H1 and H2 be as in (6) and Lemma 2 respectively. 
Let us also set vj = Hj , fj = Hj |
, j = 1, 2, as before. Then, as in the proof of Theorem 2 in 
1 + 1 dimensions with m = 2, we have∣∣∣∣∣∣2v0a(x0, t0) + 1

π
D2

ε1,ε2

∣∣
ε1=ε2=0

∫



v0(	 + E)(ε1f1 + ε2f2)dS

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣2v0a(x0, t0) − 2

π

∫
�×[0,T ]

v0av1v2dx dt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

�×[0,T ]
v0

1

ε1ε2
�R̃dx dt

∣∣∣∣∣∣∣+
∣∣∣∣∣∣D2

ε1,ε2

∣∣
ε1=ε2=0

∫



v0E(ε1f1 + ε2f2)dS

∣∣∣∣∣∣
=: I1 + I2 + I3.

By using Lemma 3 on the first term I1 we obtain

I1 ≤ C�,T ,aτ
−1/2.

The third term is estimated simply by

I3 ≤ C�,T ,a

δ

ε1ε2
‖v0‖H̃−r (
).

The remaining term I2 can be estimated by using (23) as

I2 ≤ C�,T ,a

ε1ε2
‖�R̃‖Es+1‖v0‖H̃−s−1(
)

≤ C�,T ,a

ε1ε2

(
ε1‖H1‖Hs+1(
) + ε2‖H2‖Hs+1(
)

)3 ‖v0‖H̃−(s+1)(
)

≤ C�,T ,a

ε1ε2
(ε1 + ε2)

3τ 3s/2+3‖v0‖H̃−(s+1)(
).

Combining everything and changing the constant if necessary, we have that

I1 + I2 + I3 ≤ C�,T ,a

(
2τ−1/2 + κ3δ

2M
ε−1

1 ε−1
2 + ε−1

1 ε−1
2 (ε1 + ε2)

3 τ
3
2 s+3

)
,

which is the same estimate as in equation (36). Choosing now ε1 = ε2 = ε and optimizing by 
using Lemma 5 we have the claimed estimate. This completes the proof of Theorem 3. �
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3. Proofs of the main results in dimensions n + 1, n ≥ 2, and m ≥ 2

Here we finish the proof of Theorem 2. To do that, we need to first discuss Radon transforma-
tion.

3.1. Radon transform

Let f be a function on Rn, which is integrable on each hyperplane in Rn. Each hyperplane 
can be expressed as the set of solutions x to the equation x · θ = η, where θ ∈ Sn−1 is the unit 
normal of the hyperplane, and η ∈R. The Radon transform of f is defined by

(RRRf )(θ, η) =
∫

x·θ=η

f (x)dx =
∫

y∈θ⊥

f (ηθ + y)dy

whenever the integral is finite. Here θ⊥ denotes the set of orthogonal vectors to θ . We remark that 
if a function is supported in a ball of radius M in Rn, then its Radon transformation is supported 
in its η variable in [−M, M].

There is a natural relation between f and its Radon transform on the Fourier side. This is 
usually called the Fourier slice theorem. This result holds for smooth and compactly supported 
functions, see for instance [50, Theorem 1.1], but also for a much larger class of functions:

Proposition 3 (Fourier slice theorem [53, Lemma 4.5]). Let f ∈ Lp(Rn) with 1 < p < n/(n −1). 
Then for almost all θ ∈ Sn−1 one has

Fη→σ

(
(RRRf )(θ, η)

)
(σ ) = (2π)

n−1
2 f̂ (σ θ), for a.e. σ ∈ R.

Here Fη→σ denotes the one dimensional Fourier transform with respect to η and the hat-notation 
f̂ is used to denote the n-dimensional Fourier transform. More precisely,

Fη→σ

(
(RRRf )(θ, η)

)
(σ ) =

∫
R

e−iησ (RRRf )(θ, η)dη, f̂ (ξ) =
∫
Rn

e−ix·ξ f (x)dx.

Using the Fourier slice theorem one can show that the Sobolev H−β norm of a function can 
be estimated by the L2 norm of its Radon transform, if the Sobolev index is β ≥ (n − 1)/2. 
The following lemma is a special case of [50, Theorem 5.1], but we give a proof for it for the 
convenience of the reader in Appendix B. When we apply the lemma, the function f there will 
be the difference of the potentials a1 and a2 extended by zero outside �.

Lemma 6. Let β ≥ (n − 1)/2. Let f ∈ L1(Rn) ∩ Lp(Rn), 1 < p < n/(n − 1); with suppf ⊂
BM(0) for some M > 0. Consider F ∈ L2(Sn−1 × [−M, M]) and assume that there exists a 
constant C0 > 0 such that

|(RRRf )(θ, η)| ≤ C0F(θ, η), a.e (θ, η) ∈ Sn−1 × [−M,M].

Then we have the following estimate
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‖f ‖H−β(Rn) ≤ (2π)1/2 C0 ‖F‖L2(Sn−1×[−M,M]).

Here C0 is independent of θ and η.

Lemma 7. Let α > 0, γ ≥ 0 and τ ≥ 1. Let χα ∈ C∞
c (R) be a cutoff function supported on 

[−α, α], |χα| ≤ 1. Consider H ∈ C∞
c (R) defined by

H(l) = χα(l)τ 1/2e− 1
2 τ l2 .

In addition, consider t0 ∈ R, η ∈R and θ ∈ Sn−1, and define

H
τ,(t0,θ,η)
1 (x, t) := H(x · θ − t − (η − t0)),

H
τ,(t0,θ,η)
2 (x, t) := H(−x · θ − t + (η + t0)).

The following estimate holds

‖Hτ,(t0,θ,η)
1 ‖Hγ (
) + ‖Hτ,(t0,θ,η)

2 ‖Hγ (
) ≤ Cτ
γ+1

2 ,

where the implicit constant is independent of t0, θ and η.

The proof of this lemma is similar to Lemma 2 and can be found in Appendix B.
Let � ⊂ Rn. We write R(G) for the partial Radon transformation of a function G = G(x, t) ∈

� ×R, in its spatial variable x:

R(G)(t, θ, η) =
∫

x·θ=η

G(x, t)dx, θ ∈ Sn−1, η ∈R.

Lemma 8. Let G ∈ Lipc(R
n+1). Let t0 ∈ R and τ > 0. There exists C > 0 (depending only on 

suppG) such that the following estimate∣∣∣∣∣∣R(G)(t0, θ, η) − τ

π

∫
R

∫
Rn

G(x, t)e−τ((x·θ−η)2+(t−t0)
2)dx dt

∣∣∣∣∣∣
≤

√
π

2
C ‖G‖Lip τ−1/2

holds. Here C is independent of θ ∈ Sn−1 and η ∈R.

Proof. Let θ ∈ Sn−1 and η ∈ R. We write any x ∈Rn as

x = s′ θ + y, s′ = x · θ and y ∈ θ⊥.

By making the change of variables x �→ (y, s′) with dx = dy ds′, we obtain
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∫
R

∫
Rn

G(x, t) e−τ((x·θ−η)2+(t−t0)
2)dx dt

=
∫
R

⎛⎜⎝∫
R

∫
y∈θ⊥

G(s′ θ + y, t)e−τ((s′−η)2+(t−t0)
2)dy ds′

⎞⎟⎠dt

=
∫
R

⎛⎜⎝∫
R

e−τ((s′−η)2+(t−t0)
2)

∫
y∈θ⊥

G(s′ θ + y, t)dy ds′

⎞⎟⎠dt

=
∫
R2

R(G)(t, θ, s′) e−τ((s′−η)2+(t−t0)
2)ds′ dt.

The result will follow by applying Lemma 3 if we can show that R(G)( · , θ, · ) is uniformly Lips-
chitz in R2 for all θ ∈ Sn−1. But this follows, since G is compactly supported and Lipschitz. �
3.2. Proof of Theorem 2 in n + 1 dimensions with m ≥ 2

The proof is quite similar to the one in 1 + 1 dimension with m = 2. The main difference 
between the proofs is that instead of having a pointwise estimate of the function v0(a1 − a2), 
see (36), we obtain estimates for the partial Radon transformation of this function when n ≥ 2. 
Here v0 satisfies �v0 = 0 as before, see (6).

We have the integral identity (28)

−m!
∫

�×[0,T ]
av0v1v2 · · ·vmdxdt =

∫



v0Dm
ε1,...,εm

∣∣
ε=0	(ε1f1 + · · · + εmfm)dS

− 1

ε1ε2 · · · εm

∫
�×[0,T ]

v0�R̃dxdt.

It follows that we have an estimate similar to (33)

m! ∣∣〈v0(a1 − a2), v1 · · · vm〉L2(�×[0,T ])
∣∣

≤ C ε−1
1 · · · ε−1

m

(
δ + (ε1‖f1‖Hs+1(
) + · · · + εm‖fm‖Hs+1(
))

2m−1
)

,
(41)

where

C = max
{

4,C(s, T )(‖a1‖2
Es+1 + ‖a2‖2

Es+1)
}

(1 + ‖v0‖H−r (
) + ‖v0‖H−(s+1)(�×[0,T ])).

We choose the boundary values as follows. Let (x0, t0) ∈ W ⊂ � × [t1, t2]. Here, t1, t2 ∈ R
are as in (2) and (4). Let θ ∈ Sn−1 be arbitrary. Let us denote x0 · θ = η ∈ R. By construction, 
hyperplanes of the form {x ∈ Rn | (x − x0) · θ = 0} intersect the point x0 and span Rn, so by 
varying θ ∈ Sn−1 and x0 ∈ W we are able to construct all hyperplanes intersecting W . For j =
1, 2, we choose
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vj = Hj and fj = Hj |
, j = 1,2,

where Hj = H
τ,(t0,θ,η)
j are as in Lemma 7 with γ = s + 1 and the cutoff function χα so that 

χα(0) = 1. Recall that

H
τ,(t0,θ,η)
j (x, t) = H((t − t0) + (−1)j (x − x0) · θ), j = 1,2.

By (3) and (4) we have for t ≤ 0

|(x − x0) · θ ± (t − t0)| ≥ |t − t0| − |x − x0| ≥ d + λ − d = λ

which means that if α > 0 is small enough, then fj vanishes near {t = 0}, and thus ∂k
t

∣∣
t=0fj = 0, 

k = 1, . . . , s, on ∂�. Moreover, for t ≥ T

|(x − x0) · θ ± (t − t0)| ≥ |t − t0| − |x − x0| ≥ t2 + d + λ − t2 − d = λ,

so in fact

supp(H
τ,(t0,θ,η)
j (x, · )) ⊂ (0, T ) (42)

for all x ∈ �.
For j = 3, . . . , m, we let τ0 > 0 and we choose

vj = τ
−1/2
0 H

τ0,(t0,θ,η)
1 and fj = τ

−1/2
0 H

τ0,(t0,θ,η)
1 |
.

Let us write

v = v0v3 · · ·vm.

Note that v(x, t0) = 1 if x · θ = η. Recall the definition of being an admissible potential in (5). 
Let us set

a = 1�×[0,T ](a1 − a2),

where 1�×[0,T ] stands for the characteristic function associated with the set � ×[0, T ]. It is clear 
that a is compactly supported in �×[0, T ]. Since a1 = a2 on ∂� ×[0, T ] and a1, a2 ∈ Cs+1(�×
[0, T ]), by assumptions, it follows that a is uniformly Lipschitz in Rn ×[0, T ]. Substituting these 
choices of vj into inequality (33), and using Lemma 8 with

G(x, t) = v(x, t0)a(x, t0)χα(x · θ − t − (η − t0))χα(−x · θ − t + (η + t0))

we get,
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|R(G)(t0, θ, η)| ≤ 1

π

∣∣∣∣∣∣∣
∫

�×[0,T ]
v(a1 − a2)H1 H2 dx dt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣R(G)(t0, θ, η) − 1

π

∫
�×[0,T ]

v(a1 − a2)H1 H2 dx dt

∣∣∣∣∣∣∣
≤ C

(
2τ−1/2 + ε−1

1 · · · ε−1
m

(
δ + (ε1 + · · · + εm)2m−1 (τ

s+2
2 )2m−1

))
‖v‖C1 .

(43)

Here, in applying Lemma 8, we used that G is globally Lipschitz because a is Lipschitz over 
Rn × [0, T ] and by (42) over Rn+1. Moreover the integral over the set � × [0, T ] was trivially 
extended to Rn+1. Thus, we were able to apply Lemma 8.

Since v(t0, θ, η) = 1, we have by the definition of the Radon transform that

R(G)(t0, θ, η) =
∫

x·θ=η

G(x, t0)dx

=
∫

x·θ=η

v(x, t0)a(x, t0)χα(0)χα(0)dx

=
∫

x·θ=η

a(x, t0)dx = R(a)(t0, θ, η).

By using this identity and (43) we obtain

|R(a)(t0, θ, η)|
≤ C̃

(
2τ−1/2 + ε−1

1 · · · ε−1
m

(
δ + (ε1 + · · · + εm)2m−1 (τ

s+2
2 )2m−1

))
‖v‖C1

=: C(εj , τ, δ).

(44)

Let us choose F ∈ L2(Sn−1 × [−M, M]), F ≡ 1, where supp(aj ) ⊂ BM(0) for j = 1, 2. Apply-
ing Lemma 6 with f ( · ) = a( · , t0) and β = (n − 1)/2, we obtain

‖a( · , t0)‖H−(n−1)/2(Rn) ≤ (2π)1/2 C(εj , τ, δ)Csupp(aj ).

The identical embedding operator E : Hs
0 (�) → Hs(Rn) is continuous for all s ≥ 0. Its dual 

operator is the restriction operator R : H−s(Rn) → H−s(�), Ru = u|�, which is also continu-
ous:

‖a( · , t0)‖H−(n−1)/2(�) ≤ CR ‖a( · , t0)‖H−(n−1)/2(Rn).

The above facts can be found, for instance, from [28]. By the a priori bound ‖aj‖Cs+1 ≤ L on the 
potentials, j = 1, 2, we know that

‖a( · , t0)‖Hs+1(�) ≤ 2L.
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Let l ∈ (0, 1). Using [28, Proposition 2.4, Corollary 2.10 and Proposition 2.11], we can interpo-
late the Sobolev spaces H−(n−1)/2(�) and Hs+1(�) up to Hγl (�), where

γl = −l(n − 1)/2 + (1 − l)(s + 1), l ∈ (0,1).

Particularly, for all l ∈ (0, 1/(2n)], we have γl > n/2. For l ∈ (0, 1/(2n)], after possibly redefin-
ing constants, we have

‖a( · , t0)‖L∞(�) ≤ cn,s,l‖a( · , t0)‖H−(n−1)l/2+(s+1)(1−l)(�)

≤ cn,s,l‖a( · , t0)‖l
H−(n−1)/2(�)

‖a( · , t0)‖1−l

H s+1(�)

≤ C̃
(

2τ−1/2 + ε−1
1 · · · ε−1

m

(
δ + (ε1 + · · · + εm)2m−1 (τ

s+2
2 )2m−1

))l ‖v‖l
C1 .

The above estimate is uniform in t0 ∈ R. Therefore, together with Sobolev embedding (Morrey 
embedding),

‖a( · , t0)‖L∞(�) ≤ cn,s,l‖a( · , t0)‖Hγl (�), l ∈ (0,1/(2n)],

we obtain

‖a1 − a2‖L∞(W)

≤ C̃

(
2τ−1/2 + ε−1

1 · · · ε−1
m

(κ2m−1δ

mM
+ (ε1 + · · · + εm)2m−1

m − 1
(τ

s+2
2 )2m−1

))l

‖v‖l
C1

for all l ∈ (0, 1/(2n)]. Here we made a similar scaling of δ as we did in deriving the inequality 
(36).

As before, we choose ε1 = . . . = εm = ε. Then the last step is to optimize in τ and ε as was 
done in Lemma 5. We recall, that the quantity

ε‖fj‖Hs+1(
) ∼ ετ
s+2

2

should be bounded by κ . The next lemma generalizes Lemma 5:

Lemma 9. For any given δ ∈ (0, M) and κ ∈ (0, 1) small enough we find ε(δ, κ) = ε and 
τ(δ, κ) = τ ≥ 1 such that

f (ε, τ ) := 2τ−1/2 + κ2m−1δ

mM
ε−m + m2m−1

m − 1
εm−1 τ

s+2
2 (2m−1) ≤ Cs,M,κ δ

m−1
(2m−1)(m(s+2)+1)

and we also have

ετ
s+2

2 ≤ κ.

The constant Cs,M,κ is independent of δ.
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We leave the proof of this Lemma to Appendix B. Finally, we choose the interpolation param-
eter l = 1/(2n). This finishes proof of Theorem 4. �
3.3. Proof of Theorems 2 and 3 in 1 + 1 dimensions with m > 2

We have not yet proven Theorems 2 and 3 in the case the dimension is 1 + 1 and m > 2. The 
proofs are almost identical to the case the dimension is dim(�) = 1 and m = 2. We first consider 
Theorem 2.

Using the integral identity (28) we arrive at (41), which reads:

m! ∣∣〈v0(a1 − a2), v1 · · · vm〉L2(�×[0,T ])
∣∣

≤ C ε−1
1 · · · ε−1

m

(
δ + (ε1‖f1‖Hs+1(
) + · · · + εm‖fm‖Hs+1(
))

2m−1
)

,
(45)

where εj > 0 are small parameters and vj solves (21) for j = 1, . . . , m:⎧⎪⎨⎪⎩
�vj = 0, in � × [0, T ],
vj = fj , on ∂� × [0, T ],
vj

∣∣
t=0 = 0, ∂t vj

∣∣
t=0 = 0, in �.

Let (x0, t0) ∈ W , where W is as in (2). For j = 1, 2, we choose

vj = Hj and fj = Hj |
, j = 1,2,

where Hj = H
τ,(x0,t0)
j is as in Lemma 2 with γ = s + 1 and the cut-off function χα so that 

χα(0) = 1. We assume that α > 0 is small enough, that is, α < λ, so that fj vanishes near 
{t = 0}, and hence ∂k

t

∣∣
t=0fj = 0, k = 1, . . . , s, on ∂�. For j = 3, . . . , m, we let τ0 > 0 and we 

choose

vj = τ
−1/2
0 H

τ,(t0,θ,s)
1 and fj = τ

−1/2
0 H

τ,(t0,θ,s)
1 |
.

Let us write

v = v0v3 · · ·vm.

Substituting this choice of vj into inequality (45), and using Lemma 3 with

b(x, t) := v aχα(x − x0 − (t − t0))χα(x − x0 + (t − t0)),

we deduce the following point-wise estimate by combining the steps to derive (40) and (44):

|(va)(t0, x0)|
≤ C

(
2τ−1/2 + ε−1

1 · · · ε−1
m

(
δ + (ε1 + · · · + εm)2m−1 (τ

s+2
2 )2m−1

))
‖v‖C1 .

The constant C > 0 is independent of (t0, x0) ∈ W . The proof is completed by choosing ε1 =
· · · = εm = ε and optimizing all the involved parameters as in Lemma 9.
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The proof Theorem 3 in 1 + 1 dimensions with m > 2 follows in a similar way by using the 
computations from this section and Section 2.1.1. We omit the details. �

As we already mentioned, in dimensions n + 1 with n ≥ 2 we initially recover the Radon 
transform of the unknown potential, see (44). For this reason, in Rn+1 with n ≥ 2, it is natural to 
formulate a reconstruction result in terms of the Radon transformation. This result is analogous 
to Theorem 3.

Proposition 4 (Stability with noise and reconstruction n ≥ 2). Let � ⊂Rn be a bounded domain 
with a smooth boundary. Let L > 0 and m ≥ 2 be an integer, r ∈ R and r ≤ s ∈ N and s + 1 >
(n + 1)/2. Assume that a ∈ A(L, s) and a = 0 on ∂� × [0, T ]. Let 	 : Hs+1(
T ) → Hr(
T )

be the Dirichlet-to-Neumann map of the non-linear wave equation (1). Assume also that E :
Hs+1(
T ) → Hr(
T ).

Let ε0 > 0, M > 0, 0 < T < ∞ and δ ∈ (0, M) be such that

‖E(f )‖Hr(
T ) ≤ δ,

for all f ∈ Hs+1(
T ) with ‖f ‖Hs+1(
T ) ≤ ε0.

There are τ ≥ 1, ε1, . . . , εm > 0 and a finite family of functions {Hτ,Q
j } ⊂ Hs+1(
T ) where 

j = 1, . . . , m, and Q ∈R × (Sn−1 ×R), such that

sup
Q∈R×(Sn−1×R)

∣∣∣R(a)(Q)

+ 1

m!π Dm
ε1···εm

∣∣
ε=0

∫

̃

ψ(	 + E)(ε1H
τ,Q
1 + · · · +εmHτ,Q

m )dS

∣∣∣
≤ Cδ2nσ(s).

The exponent σ = σ(s) and the constant C are as in Theorem 2. The measurement function ψ is 
as in (7).

We conclude this section by noting that we expect it to be possible to remove the auxiliary 
measurement function ψ from the proofs in odd dimensions n. The function v0 was essentially 
only used to accomplish the integration by parts argument, which led to the integral identity (28). 
Recall that the potentials a we consider are compactly supported. Therefore, if n is odd, the 
Huygens principle implies that the terms that depend on a in the expansion of a solution u with 
respect to the parameters ε1, . . . , εm, will exit � before time T . Thus using v0 is not necessary.
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Appendix A. Proofs related to the forward problem

We collect the proofs of the results for the forward problem of Section 1 here, since they are 
quite standard.

Proof of Corollary 2. By Proposition 1 we have that u ∈ Xs+1. Let l ∈ {1, . . . , n} and let us 
denote for simplicity ∂ = ∂xl . Then ũ = ∂u satisfies⎧⎪⎨⎪⎩

�ũ = ∂F, in � × [0, T ],
ũ = ∂f, on ∂� × [0, T ],
ũ
∣∣
t=0 = ∂ψ0, ∂t ũ

∣∣
t=0 = ∂ψ1, in �.

Here we have that ∂F ∈ L1([0, T ] ; Hs−1(�)), ∂ψ0 ∈ Hs(�), ∂ψ1 ∈ Hs−1(�) and ∂f ∈ Hs(
). 
We apply Proposition 1 for ũ and with s replaced by s − 1. For this, it will be needed 
that ∂s−1

t ∂F ∈ L1([0, T ], L2(�)), which is satisfied by the additional assumption ∂s−1
t F ∈

L1([0, T ] ; H 1(�)). Therefore, by Proposition 1, we have that

ũ ∈ Xs = C([0, T ]; Hs(�)) ∩ Cs([0, T ]; L2(�))

and

‖∂s
t ũ( · , t)‖L2(�) ≤ cT

(
‖∂F‖L1([0,T ];Hs−1(�)) + ‖∂s−1

t ∂F‖L1([0,T ];L2(�))

+ ‖∂ψ0‖Hs(�) + ‖∂ψ1‖Hs−1(�) + ‖∂f ‖Hs(
)

)
≤ cT

(‖F‖L1([0,T ];Hs(�)) + ‖∂s−1
t F‖L1([0,T ];H 1(�))

+ ‖ψ0‖Hs+1(�) + ‖ψ1‖Hs(�) + ‖f ‖Hs+1(
)

)
.

(46)

Since we also have u ∈ Xs+1, the above yields that

u ∈ Cs([0, T ]; H 1(�)).

Repeating the argument several times by taking derivatives ∂xl1
∂xl2

· · · ∂xlk
of u and the initial 

and boundary values for all k = 2, . . . , s, we obtain

u ∈ Cs+1−k([0, T ]; Hk(�)), k = 0, . . . , s + 1.

Summing up the corresponding estimates similar to (46), we have (16). �
Next we prove Lemma 1 which states that for sufficiently small initial and boundary data there 

exists a unique small solution to the non-linear wave equation
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⎧⎪⎨⎪⎩
�u + aum = 0, in � × [0, T ],
u = f, on ∂� × [0, T ],
u
∣∣
t=0 = ∂tu

∣∣
t=0 = 0, in �.

(47)

(This equation is the equation (17) in Lemma 1.)

Proof of Lemma 1. We prove the existence and uniqueness of small solutions to (47) by using 
the Banach fixed-point theorem. See for example [62] for the latter. For this purpose, we define a 
contraction mapping � : Bρ(0) → Bρ(0) as follows. Let first F ∈ Es+1. Then we certainly have

∂k
t F ∈ L1([0, T ]; Hs−k(�)), k = 0,1, . . . , s.

Assume also that ∂k
t F |t=0 = 0, k = 0, . . . , s. Let f ∈ Hs+1(
) be a function satisfying 

∂k
t f |t=0 = 0, k = 0, . . . , s. Now, Corollary 2 implies that the linear problem⎧⎪⎨⎪⎩

�u = F, in � × [0, T ],
u = f, on ∂� × [0, T ],
u
∣∣
t=0 = ∂tu

∣∣
t=0 = 0, on ∂�

(48)

has a unique solution u ∈ Es+1. Let

S : Es+1 ∩ {∂k
t F |t=0 = 0, k = 0, . . . , s} → Es+1 ∩ {∂k

t F |t=0 = 0, k = 0, . . . , s}

be the source-to-solution map which takes F to the corresponding solution u of (48) (with f
fixed) as F �→ u. We then define a new non-linear mapping � : Bρ(0) → Bρ(0) on a ball Bρ(0) ⊂
Es+1 ∩ {∂k

t F |t=0 = 0, k = 0, . . . , s} via the formula

�(u) = S(−aum), (49)

where ρ > 0 will be fixed later. The Banach space Es+1 is an algebra since s + 1 > (n + 1)/2. 
We also have ∂k

t (−aum)|t=0 = 0, k = 0, . . . , s. We conclude that the map � is well-defined.
Let us verify that � defined by (49) is a contraction from a small ball into itself after we have 

chosen κ and ρ small enough. The energy estimate (16) shows that for u ∈ Bρ(0) we have

‖�(u)‖Es+1 = ‖S(−aum)‖Es+1 ≤ cs,T

(‖f ‖Hs+1(
) + ‖aum‖Es

)
≤ Cs,T

(
κ + ‖a‖Cs ‖u‖m

Es

)≤ Cs,T

(
κ + ‖a‖Cs ρm

)
.

So, if ρ and κ are chosen so that

0 < ρm−1 <
1

2Cs,T L
and 0 < κ ≤ ρ

2Cs,T

,

then we have that ‖�(u)‖X < ρ, giving � : Bρ(0) → Bρ(0).
To show that � is a contraction mapping, let u, v ∈ Bρ(0). Then the function S(−aum) −

S(−avm) solves
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⎧⎪⎨⎪⎩
�
(
S(−aum) − S(−avm)

)= −aum − avm, in � × [0, T ],
S(−aum) − S(−avm) = 0, on ∂� × [0, T ],(
S(−aum) − S(−avm)

)∣∣
t=0 = ∂t

(
S(−aum) − S(−avm)

)∣∣
t=0 = 0, in �.

Consequently, we have by using the energy estimate (16) again that

‖�(u) − �(v)‖Es+1 = ‖S(−aum) − S(−avm)‖Es+1 ≤ cs,T ‖aum − avm‖Es

≤ Cs,T ‖a‖Cs ‖u − v‖Es+1‖Pm−1(u, v)‖Es+1

≤ Cs,T m‖a‖Cs ρm−1‖u − v‖Es+1 .

Here we expanded

um − vm = (u − v)Pm−1(u, v),

where Pm−1(a, b) =∑m−1
k=0 am−1−kbk . Redefining ρ > 0 by

ρm−1 <
1

2mCs,T L

yields

‖�(u) − �(v)‖X ≤ C̃‖u − v‖X.

Here C̃ < 1/2. Thus � : Bρ(0) → Bρ(0) is a contraction as claimed.
To finish the proof, note that if the Banach fixed-point iteration is started at u0 = 0, we have 

an estimate for a fixed point u in terms of u1 := �(0) as follows:

‖u‖Es+1 ≤ 1

1 − C̃
‖u1‖Es+1 ≤ 2Cs,T ‖f ‖Hs+1(
).

Here we once again used the energy estimate for u1 together with the fact that �(0) corresponds 
to a solution of the linear problem with no source. The first inequality follows from a simple 
argument using geometric sum, see e.g. [62, Theorem 1.A]. �
Appendix B. Auxiliary results

B.1. Construction of the measurement function

Here we construct a measurement function ψ by finding a function v0 ∈ C∞(Rn+1) satisfying 
(6). Let us denote

α := (t2 − t1 + d)/2,

t0 := (t2 + t1)/2,

where t1, t2 and d were defined in (3) and (4). By definition of d there exists x0 ∈ Rn such that 
� ⊂ Bd/2(x0). Let us pick a smooth cut-off function χα(l) ∈ C∞(R) such that
0
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χα(l) =
{

1, when |l| ≤ α,

0, when |l| > α + ε,

where 0 < ε < λ and λ is as in (4). Let us define

v0(x, t) := χα((x − x0) · θ − (t − t0))

for some θ ∈ Sn−1 (and θ = ±1 when n = 1). Clearly v0 satisfies the wave equation �v0 = 0 in 
Rn ×R.

It is also straightforward to verify that v0(x, t) = 1 if (x, t) ∈ � × [t1, t2] and v0(x, t) = 0 in 
�, when t ∈ [T − r, T ] for all 0 < r < ε. In particular, v0 = ∂tv0 = 0 in �×]T − r, T ] for all 
r ≥ 0 small enough. We may now set ψ := v0|
.

B.2. Proofs of lemmata in higher dimensions with m ≥ 2

Proof of Lemma 6. The proof is a direct consequence of the Fourier slice theorem. Since f ∈
L1(Rn) ∩ Lp(Rn), 1 < p < n/n − 1, is compactly supported, we may apply the Lp-version of 
Proposition 3 of the Fourier slice theorem to f . We now compute the H−β norm of f by using 
polar coordinates on the Fourier side: ξ �→ (σ, θ) where ξ = σ θ with σ = |ξ | and θ = ξ/|ξ |, 
and so dξ = σn−1dσ dθ . By using Plancherel and Fourier slice theorems, combined with the 
condition β ≥ (n − 1)/2, we obtain

(2π)n−1‖f ‖2
H−β(Rn)

= (2π)n−1
∫
Rn

(1 + |ξ |2)−β |f̂ (ξ)|2dξ

= (2π)n−1
∫

Sn−1

∞∫
0

(1 + σ 2)−β |f̂ (σ θ)|2σn−1dσ dθ

=
∫

Sn−1

∞∫
0

(1 + σ 2)−β |Fη→σ

(
RRRf (θ, η)

)
(σ )|2σn−1dσ dθ

≤
∫

Sn−1

∞∫
0

(1 + σ 2)
n−1

2 −β |Fη→σ

(
RRRf (θ, η)

)
(σ )|2dσ dθ

≤
∫

Sn−1

∫
R

|Fη→σ

(
RRRf (θ, η)

)
(σ )|2dσ dθ

= (2π)n
∫

Sn−1

∫
R

|RRRf (θ, η)|2dη dθ

≤ (2π)n C2
0

∫
Sn−1

M∫
−M

|F(θ, η)|2dη dθ

= (2π)n C2 ‖F‖2
2 n−1 .
0 L (S ×[−M,M])
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Here in the second to last inequality we used that Radon transformation of f is supported in 
[−M, M] in its variable η, since supp(f ) ⊂ BM(0). �
Proof of Lemma 7. Let θ ∈ Sn−1 and c0 ∈ R. Let us write c0 = t0 − η and F(x, t) = H(x · θ −
t + c0). The proof is almost the same as that of Lemma 2. We however sketch a proof to help the 
reader to see why the constant C is independent of t0, θ and η.

Let β1 be a multi-index and β2 ∈ N . Then for all τ large enough we obtain

‖∂ |β1|
x ∂

β2
t F‖2

L2(�×[0,T ]) = τ

∫
�

T∫
0

[
∂ |β1|
x ∂

β2
t

(
χα(x · θ − t + c0) e− τ

2 (x·θ−t+c0)
2
)]2

dt dx

≤ Cττ 2(|β1|+β2)

∫
�

T∫
0

|χα(x · θ − t + c0)|2 (x · θ − t + c0)
2(|β1|+β2)e−τ(x·θ−t+c0)

2
dt dx

= Cττ 2(|β1|+β2)

∫
�

x·θ−T +c0∫
x·θ+c0

|χα(h)|2 h2(|β1|+β2)e−τh2
dhdx

≤ Cττ 2(|β1|+β2)

∫
�

∞∫
−∞

|χα(h)|2 h2(|β1|+β2)e−τh2
dhdx

≤ Cττ 2(|β1|+β2)τ−(|β1|+β2)−1/2
∫
�

dx = Cτ |β1|+β2+1/2,

where C is independent of c0 = t0 − η and θ . Here we made a change of variables

h = x · θ − t + c0

in the integral in the variable t , while considering x is fixed. We also absorbed terms of lower 
order powers of τ into the constant C (see proof of Lemma 2 for an explanation), and used ∫
R h2(|β1|+β2)e−τh2

dh ∼ τ−(|β1|+β2)−1/2.
By interpolation, see e.g. [7, Theorem 6.2.4/6.4.5], we obtain for all γ ≥ 0

‖F‖2
Hγ (�×[0,T ]) ≤ Cτγ+1/2.

By trace theorem, we obtain

‖F‖2
Hγ (
) ≤ C‖F‖2

Hγ+1/2(�×[0,T ]) ≤ Cτγ+1.

Similar argument yields the same estimate for Hτ,(t0,θ,η)
2 . This completes the proof. �

Proof of Lemma 9. To simplify notation, let ŝ := (2m − 1)(s + 2)/2 and γ0 = κ2m−1/M . A 
direct computation shows that
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∂εf = −(γ0δ)ε
−m−1 + m2m−1εm−2τ ŝ , ∂τ f = −τ−3/2 + m2m−1 ŝεm−1τ ŝ−1.

Making ∂εf = ∂τ f = 0, we obtain the critical points of f , namely

τ =
(

m2m−1 ŝ

m − 1

)− 2(2m − 1)

2m(̂s + 1) − 1
(m1−2mγ0δ)

− 2(m − 1)

2m(̂s + 1) − 1 ,

ε =
(

m2m−1 ŝ

m − 1

) 2̂s

2m(̂s + 1) − 1
(m1−2mγ0δ)

2̂s + 1

2m(̂s + 1) − 1 .

With these choices of τ and ε, one can check that τ−1/2, (γ0δ)ε
−m and εm−1τ ŝ are all bounded 

by Cs,m (γ0δ)
(m−1)/[(2m−1)(m(s+2)+1)]. It is also straightforward to verify that τ ≥ 1 for κ small 

enough.
Furthermore, since

ετ ŝ/(2m−1) = (m1−2mγ0δ)
1/(2m−1),

we have that

ετ
s+2

2 ≤ κ

m
< κ

for any 0 < δ < M . This finishes the proof. �
Appendix C. Higher order finite differences

Let us define the higher order finite difference operator by

Dm
ε1,...,εm

∣∣
ε=0uε1f1+···+εmfm = 1

ε1 · · · εm

∑
σ∈{0,1}m

(−1)|σ |+muσ1ε1f1+...+σmεmfm,

where the sum is over all combinations of {0, 1} of length m. Then for the solution u of (19) we 
have

�uε1f1+...+εmfm = −a
∑

k1,...,km

(
m

k1, . . . , km

)
εk1 · · · εkmvk1 · · ·vkm + �R

= −a(ε1v1 + . . . + εmvm)m + �R.

Applying the finite difference operator to this reduces to the following algebraic identity about 
numbers.

Lemma 10. Let x1, . . . , xm ∈R. Then

I (x1, . . . , xm) :=
∑

m

(−1)m+|σ |(σ1x1 + . . . + σmxm)m = m!x1 · · ·xm. (50)

σ∈{0,1}
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Proof. Let j ∈ {1, . . . , m} and split the summation in (50) with respect to

σ ′ = (σ1, . . . , σj−1,1, σj+1, . . . , σm),

σ ′′ = (σ1, . . . , σj−1,0, σj+1, . . . , σm).

Since |σ ′| = |σ ′′| + 1, we have∑
σ∈{0,1}m

(−1)m+|σ |(σ1x1 + . . . + σjxj + . . . + σmxm)m

= −
∑

σ∈{0,1}m−1

(−1)m+|σ |(σ1x1 + . . . + 1 · xj + . . . + σmxm)m,

+
∑

σ∈{0,1}m−1

(−1)m+|σ |(σ1x1 + . . . + 0 · xj + . . . + σmxm)m.

Then note that, if xj = 0, the above implies I (x1, . . . , xj−1, 0, xj+1, . . . , xm) = 0. Let us express 
I via the multinomial formula and write

I (x1, . . . , xm) = I1 + I c
1 ,

where I1 contains all terms of I (x1, . . . , xm) of the form xp1
1 · · ·xpm

m with p1 ≥ 1 and I c
1

contains the remaining terms of the form x0
1x

p2
2 · · ·xpm

m . Then, if x1 = 0, we deduce that 
0 = I (0, x2, . . . , xm) = I c

1 . Next, we split I c
1 = I2 + I c

2 , where I2 contains all terms of I1 that 
have x2 in them, similarly as before. Then 0 = I (x1, 0, x3, . . . , xm) = I c

2 . Repeating this process, 
we deduce that all terms of I (x1, . . . , xm) that miss one of xj , j = 1, . . . , m, must cancel. Hence 
I (x1, . . . , xm) = c(m)x1 · · ·xm for a constant c(m).

This term c(m)x1 · · ·xm only appears in the sum I when σ = (1, . . . , 1). From the multinomial 
formula we then see that the constant c(m) = m!. �

Using Lemma 10 we see that

Dm
ε1,...,εm

∣∣
ε=0�uε1f1+...+εmfm = −m!av1 · · ·vm + Dm

ε1,...,εm

∣∣
ε=0�R.
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