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A B S T R A C T

Citizens, community groups and local institutions participate in voluntary biological monitoring of population
status and trends by providing species data e.g. for regulations and conservation. Sophisticated statistical
methods are required to unlock the potential of such data in the assessment of wildlife populations.

We develop a statistical modelling framework for identifying territories based on presence-only citizen
science data. The framework can be used to jointly estimate the number of active animal territories and their
locations in time. Our approach is based on a data generating model which consists of a dynamic submodel for
the appearance/removal of territories and an observation submodel that accounts for the varying observation
intensity and links the data to the territories. We first estimate the observation intensity using past presence-
only observations made by citizens, conditioning on previously known territories. We then infer the territories
using a state-of-the-art sequential Monte Carlo method, which extends earlier approaches by allowing for
spatial inhomogeneity in the observation process.

We verify our data generating model and inference method successfully in synthetic scenarios. We apply
our framework for estimating the locations and number of wolf territories in March 2020 in Finland using one
year of confirmed citizen-made wolf observations. The observation intensity is estimated using wolf observation
data collected in 2011–2019, conditioning on official territory estimates and data from GPS-collared wolves.

Our experiments with synthetic data suggest that the estimation of territories can be feasible with presence-
only data. Our location and territory count inferences for March 2020 based on past data are comparable to
the official wolf population assessment of March 2020 by the Natural Resources Institute Finland. The results
suggest that the framework can provide useful information for assessing populations of territorial animals.
Furthermore, our methods and findings, such as the developed data generating model and the estimation of
the spatio-temporal observation intensity can be relevant also beyond the strictly territorial setting.
1. Introduction

Volunteers contribute to many wildlife monitoring programs but
standardised monitoring schemes are available for only a small num-
ber of taxa in a few countries (Gregory et al., 2005; Isaac, 2014).
Citizens, community groups and local institutions participate in bio-
logical monitoring of population status and trends by providing species
data e.g. for regulations and conservation (Conrad and Hichley, 2011;
Lawrence, 2006). The involvement of citizens as data collectors has
demonstrated its ability to gather massive amounts of data at a spatio-
temporal scale unattainable by research teams and state authorities
active in biodiversity monitoring (Silvertown, 2009). For instance, in
many European countries, hunters are integrated as data-providers in

∗ Corresponding author.
E-mail address: santeri.j.karppinen@jyu.fi (S. Karppinen).

wildlife management structures that are intended to support sustainable
harvest (Bragina et al., 2015; Cretois et al., 2020; Linnell et al., 2015).

Statistical developments in data integration as well as more rigorous
protocols for data collection are needed to unlock further the potential
that volunteers’ data holds (Cretois et al., 2020; Isaac, 2014). The
statistical interpretation of citizen-collected data faces problems less
frequently encountered in traditional scientific research. For example,
the spatio-temporal sampling effort of citizens is usually not known
nor controllable. Sophisticated methods that model the data collection
process offer the greatest potential to estimate e.g. timely trends (Isaac,
2014).

In this paper, we propose a statistical modelling framework that can
be used to make inferences about animal populations with territorial
vailable online 29 August 2022
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behaviour, using observations reported voluntarily by citizens. More
specifically, our focus is on the following scenario:

• Citizens report presence-only observations of territorial animals.
Each observation consists of a GPS coordinate and an approximate
time stamp.

• We wish to estimate the number and locations of the animal
territories within some area and time interval using the data
collected by the citizens.

• Prior knowledge on the territorial behaviour of the species is
assumed to exist in the form of a typical territory size and on
the rate of appearance and disappearance of territories.

Because of the high spatio-temporal variability common in citizen
cience observation processes, modelling of the varying sampling effort,
hat is, the observation intensity, is a crucial first part of our framework.

e take this variation into account by modelling the intensity based
n past data. This yields intensity functions that capture the spatio-
emporal variation in the observations reported by citizens. These
unctions are then fed into a data generating model consisting of
wo submodels that model the appearance and removal of territories,
nd the generation of citizen science observations from the territories,
espectively. To estimate the number of territories and their locations,
e use the latest available citizen science data and perform Bayesian

nference for the data generating model.
The data generating model jointly approximates the evolution of the

umber of active territories and their locations in time, characterised by
sequence of posterior distributions conditioned on observation sets of

ncreasing size. In the engineering literature, similar models are called
tracking models’ (cf. Goodman et al., 1997). Indeed, the inference
lgorithm we develop is a Rao-Blackwellised particle filter similar to
hose developed for tracking (Särkkä et al., 2007; Vihola, 2007). We
urther elaborate these methods by employing a state-of-the-art optimal
esampling of Fearnhead and Clifford (2003), and further refine the
nference algorithm so that it can incorporate the spatial inhomogeneity
rising from our observation model.

Our data generating model is similar to dynamic occupancy models
Royle and Kéry, 2007) and open N-mixture models (Zhao et al., 2017)
n the sense that it has a latent process model for the appearance and
isappearance (‘‘occupancy’’) of animal territories, and a variable ob-
ervation intensity. However, unlike in the work of Zhao et al. (2017),
he principal objects of analysis in our model are animal territories
ather than individual animals. In addition, our model does not assume

fixed set of potentially occupied sites but operates in continuous
pace, where territories are delineated without a pre-defined grid.
inally, our model is formulated in continuous-time, which allows the
stimation of the state of the population at any time points within the
nterval of interest. For example, our model can be used to track the
tate of the population at daily or weekly time steps. In contrast, the
ethods of Royle and Kéry (2007) and Zhao et al. (2017) operate in
iscrete time, and are typically used for annual data with a considerably
maller number of time steps.

The motivation for the development of our modelling framework
as been to aid in the task of assessing the Finnish wolf (Canis lupus)

population, although the framework can be relevant for other territorial
species as well. Currently, the Finnish wolf population is assessed
annually in March by the Natural Resources Institute Finland (Luke).
In the assessments, wolf observations provided by citizens from the
beginning of August to the end of February are combined with non-
invasive genetic samples, tracks of GPS collared wolves and records
of known mortality (Kojola et al., 2018). The assessments are carried
out in two phases. In the first phase a panel of experts conducts a
systematic review of all the data and judges territory boundaries that
are potentially occupied by wolf packs or pairs in March. In the second
phase, a Bayesian state–space model is used to infer the number of
wolves living in each territory by combining wolf observations, DNA
-recaptures and known mortality (Heikkinen et al., 2020). In particular,
2

we envision that the developed framework can work as a useful tool in
the first phase, providing a statistical look at the citizen science data
and an aid in judging the territory boundaries.

We examine the performance of the developed particle filter with
a sequence of simulation experiments, where we start from simple
simulated conditions and work towards conditions that resemble more
closely our concluding experiment, which is a realistic situation that
could be faced in the assessment of the Finnish wolf population. Here,
we use previous estimates of territory locations and citizen-provided
observations to estimate the spatio-temporal variation of the condi-
tional probability of wolf observations given known existence of wolf
territories. Even though similar approaches have been used for species
abundance estimations (e.g. Renner et al., 2015; Ver Hoef et al., 2021;
Tang et al., 2021), the conditioning requirement provides a novel
challenge. Using the results of said intensity modelling, we apply our
data generating model to a real data set consisting of wolf observations
made by Finnish citizens between April 2019 and March 2020. We
estimate the number and locations of wolf territories and compare
the result to the official estimates by the Natural Resources Institute
Finland (Luke) which are based on the method discussed above.

The main contributions of this paper are as follows. First, we believe
that the developed framework is of interest in assessing populations of
territorial species using presence-only citizen science data. We focus
on the application to wolves, but our methods are readily adaptable
for other territorial species. Second, we believe that the observation
intensity estimation is of its own independent interest, because it
addresses the problem of estimating the conditional spatio-temporal
intensity of presence-only citizen science observations. Third, from a
methodological point of view, the developed data generating model and
particle filter might be relevant also in the context of ‘general purpose’
target tracking (e.g Vihola, 2007; Särkkä et al., 2007) applications
where a spatially varying observation process is needed.

2. Materials and methods

The general modelling framework proposed in this paper can be
summarised into four successive analysis steps numbered from one
to four. The flowchart in Fig. 1 depicts their dependencies and re-
lation with each other, highlighting the inputs, outputs and datasets
associated with each step. The following subsections will explain how
we apply the framework in the context of wolf territory estimation.
Section 2.1 discusses the Datasets A, B and C. Section 2.2 then describes
the data generating model, which motivates the intensity estimation
consisting of steps 1 and 2, which in turn are discussed in Sections 2.3
and 2.4, respectively. Section 2.5 describes step 3 of the analysis,
the statistical inference based on the data generating model, using a
particle filter we have developed for the problem. Finally, in Section 2.6
we conclude with a description of step 4 where we extract the number
and locations of the territories from the output of the particle filter.

2.1. Data

In this Section, we will discuss the Datasets A, B and C seen in the
framework of Fig. 1. In summary, the Datasets A and B contain past
data used in the construction of the data generating model, and Dataset
C contains the latest data to be processed by the particle filter. Each
datum in Datasets A and C is a spatio-temporal point, that is, it has the
form (𝑡, 𝑦), where 𝑡 is the time of observation, and 𝑦 is a two-dimensional
point on a domain we denote by 𝐷y. The difference between Datasets
A and C is that Dataset A is past data, and Dataset C corresponds
to the latest data we wish to infer the territories with. In contrast,
Dataset B is more heterogeneous and contains all additional data such
as covariates and expert knowledge required in the construction of the
data generating model.
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Fig. 1. A flowchart of the proposed general modelling framework. The rectangles depict the analysis steps 1–4. The elliptical shapes denote inputs and outputs of the analysis
steps. Input datasets are marked with the gray fill. The symbols 𝜆(𝜏)obs and 𝜆(𝑠)obs denote the intensity functions and 𝜃 stands for the other parameters of the data generating model.
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.1.1. Datasets A and C
We extract the spatio-temporal points in Datasets A and C from a

igital large carnivore observation database named ‘‘Tassu’’ (meaning
‘‘paw’’ in Finnish) (Kojola et al., 2018). The observations enter the

atabase through a network of approximately 2000 large carnivore
ontact persons (LCCPs), who are nominated by management asso-
iations and educated by the Finnish Wildlife Agency and Luke in
he biology, ecology and movement behaviour of wolves as well as
ootprint identification. There are, however, no formal exams used in
he nomination process.

The LCCPs have their own local trusted network of people who
eport their observations of wolves to the LCCP. These networks consist
ostly of hunters that are proficient in identifying wolves based on

ightings, tracks, prey kills and camera-trap documents. In addition, it
s in principle possible for any citizen to report their observations, since
he contact details of the LCCPs are publicly available and known in
ocal rural societies (Pellikka and Hiedanpää, 2017). However, the net-
orks of the LCCP are particularly relevant for wolf sightings in snow-

ree conditions because such observations usually cannot be verified
fterwards.

Wolf observations found to be valid by the LCCPs are saved into
he Tassu database. Each saved datum includes information about the
ime and location of the observation, the type of observation (such as
olf track, sighting, droppings, game camera photograph, prey kill site
r livestock predation) and the estimated count of wolves observed
imultaneously. The count estimate is based on the judgement of the
CCP based on the information available. Since the observations saved
o the database are subject to the confirmation of the LCCP (possibly
ays after the initial report), we consider the observation times to be
ccurate on a daily granularity. In total, Datasets A and C contain
ll observations from the Tassu database that reported two or more
olves between January 2011 and March 2020. Since the purpose of
ur framework is to infer the number and locations of wolf territories,
e only focus on observations that report more than one wolf, since

his indicates that the observed wolves form a wolf pack and very likely
xhibit territorial behaviour. In contrast, observations of single wolves
an originate from lone, vagrant wolves, that do not yet maintain a
erritory. Furthermore, for simplicity, we make no distinction for data
oints with different observation types; we regard each observation
imply as a spatio-temporal point. We return to this matter in the
iscussion.

We split the data such that Dataset C contains the observations
ade between April 1st 2019 and March 31st 2020, and Dataset A the

bservations before this. The locations in Dataset C are illustrated in
ig. 2 (top left). The domain of the locations, 𝐷y, is mainland Finland
outh of the reindeer husbandry region in the north. The wolf territories
3

n the reindeer husbandry region are few and short-term owing to m
ethal control that is justified by the prevention of damages to reindeer
usbandry.

We organise the Datasets A and C according to so-called ‘‘wolf
ears’’. A wolf year starts April 1st and ends in March 31st of the next
ear. Hence, Dataset C consists of the observations made during the
olf year 2019–2020. The organisation of the data to wolf years has

wo reasons. First, as described in the introduction, the annual Finnish
olf population assessments describe the state of the wolf population in
arch. Second, the data indicate that the highest observation intensity

s reached during the winter season and declines towards the spring.
ear-by-year changes in the observation activity are expected to occur
etween the winter seasons, rather than between calendar years. We
ill also use the term ‘‘wolf month’’ to refer to the months within a wolf
ear such that the first wolf month corresponds to April, the second to
ay, and so on.

.1.2. Dataset B
Dataset B contains two kinds of information. Most importantly,

ataset B contains information about past known wolf territories until
arch 2019, that is, before the wolf year associated with Dataset C. In

ddition, Dataset B also contains covariates.
Dataset B is primarily used in the intensity modelling described

n Section 2.3, but also for setting certain parameters in the data
enerating model. The details on how the data sources described below
re used in the intensity modelling are given in Section 2.3. The relation
f Dataset B to the parameters of the data generating model is discussed
n the results of Section 3.3.

The information about past wolf territories was constructed from
wo sources of data, independently of Datasets A and C. We call the
esulting territories ‘auxiliary territories’. The first source consists of
he space–time trajectories of 34 GPS-collared wolves that were tracked
etween 2011 and 2019. The transmitters in the collars stored the
olf’s position at one- or four-hour intervals, depending on the season.
he capture, handling and immobilisation protocols of these wolves are
escribed in Kojola et al. (2016).

We assumed that each collared wolf was part of a wolf territory.
he trajectories contain outlier recordings, such as test measurements
t a lab or ‘glitch’ jumps of hundreds of kilometres occurring due
o device malfunction or other reason. Some trajectories also cover
wo clearly separate territories. We therefore preprocessed the data as
ollows. First, the recorded GPS trajectories were divided into separate,
ontiguous trajectories at temporal jumps of more than two weeks
r spatial jumps of more than 100 km. Trajectories less than 24 h
ere rejected. Second, each contiguous trajectory was processed by
ssigning to each trajectory point a probability of being an outlier.
he probability was given by the velocity density 𝑣 ∼ 𝐸𝑥𝑝(28.8) with

edian at 20 km/h, multiplied by the function 𝑤(𝑑𝑐 = 𝑥) = 1(𝑥 <
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Fig. 2. Top left: The observed locations in Dataset C, that is, the locations of the Tassu observations (black points) that reported two or more wolves from April 2019 to March
2020. The blue overlay shows the domain of interest (the study area). Bottom left: Wolf territories found in the wolf population assessment of April 2019 by the Natural Resources
Institute Finland. The point within each territory represents the centroid of the territory polygon. Right: The study area highlighted on a map of Europe. The distance scales are
approximate due to coordinate transformations applied in drawing the maps.
(5𝜎)) + 1(𝑥 > (5𝜎)) exp[−0.5(𝑥−5𝜎)2∕400002], where 𝑑𝑐 denotes a point’s
distance from the trajectory’s centre of mass and 𝜎 is the 90%-truncated
standard deviation of the centre of mass-distances. Points with proba-
bility less than 50% were excluded from the trajectory. Finally, the first
and second steps were repeated to account for significant gaps after
the outlier detection second step. From each remaining trajectory, an
auxiliary territory was constructed as a polytope in 𝐷y × 𝑇𝐵 , where 𝑇𝐵
denotes the time span 2003-03-04–2019-03-31, by taking the Cartesian
product of the convex hull of the spatial locations and the time interval
of the trajectory. In total, 59 auxiliary territories were constructed from
the GPS trajectories, covering approximately 74,000 km2 and with time
spans that add up to approximately 36.5 years.

The second type of auxiliary territories were constructed based on
expert knowledge using the official population assessments of Luke
from 2017 onwards. The assessments include estimates of active wolf
pack territories as polygons in 𝐷y, during March of the corresponding
years. Fig. 2 (bottom left) shows the active pack territory location
estimates of experts in the assessment of March 2019. We assumed
that these territories were active also during January and February.
We then constructed polytopes in 𝐷y × 𝑇𝐵 as the Cartesian products
of the polygons and January-March-intervals of each year between
2017–2019. The resulting 203 expert judgement auxiliary territories
covered approximately 180,000 km2 with time spans that add up to
approximately 35.3 years.
4

The additional covariates in Dataset B consist of two datasets. The
first of these is the CORINE land cover data for 2018 (Finnish Envi-
ronment Institute SYKE, 2018). The dataset comes as a raster covering
Finland and contains an approximate land use class (e.g. river, small
road) for each of its 20 by 20 metre cells. The original 49 classes were
first reclassed down to 8: Residential areas, other build areas, roads,
cultivated fields, lakes and rivers, swamps and other wetlands, closed
forests, and open forests. For each of the 8 classes, we aggregated
their frequency in 1 km2 cells, and to slightly reduce the amount of
zeros, applied smoothing with a Gaussian blur with standard deviation
3 km. Each cell of the resulting 8-layer raster stack then contained
a vector giving the (smoothed) frequencies of each land use class in
(and near) the 1 km2 cell. Since the resulting vector for each cell 𝑘,
[Corine𝑘,1,… ,Corine𝑘,8], is (nearly) a simplex, we dropped the first
class, residential areas, and kept the remaining 7 as frequencies. A
log-ratio transformation, which is a popular approach in compositional
data analysis, might have been more suitable here but was not done
due to numerous zeros in all classes.

The CORINE road information capture larger streets and highways,
and to describe accessible forest areas we computed an additional forest
road frequency variable to Dataset B. This variable is derived from the
national road and street database Digiroad (Finnish Transport Infras-
tructure Agency, 2021). From the database we extracted the polyline
feature class ‘12’, roads and paths traversable by offroad vehicle. We
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binarised the polylines on to the 20 by 20 metre cells of the CORINE
land cover data, and then computed the frequencies of those cells on a
1 × 1 km raster. We denote the value of this variable in the 𝑘th 1 km2

ell by 𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑜𝑎𝑑𝑘.

.2. Data generating model

In this section, we discuss the data generating model we have
eveloped for citizen science observations of a territorial species. The
odel we have developed is more general than the instance of it that
e use for modelling the wolf data. Therefore, this section will also
ighlight certain modelling decisions we make in the present applica-
ion. Furthermore, the data generating model we describe here is ‘ideal’
n the sense that it must be approximated further to be tractable for our
nference method. We will discuss this in more detail in Section 2.5
hat is devoted to the filtering algorithm. For the interested reader, the
athematical details of the general data generating model are given in

ections 1.1 and 1.2 of the supplementary material.
The data generating model consists of two submodels, the birth

nd death process and the observation model, which we will discuss
n Sections 2.2.1 and 2.2.2, respectively. In summary, the birth and
eath process models how new territories emerge and disappear, and
he observation model describes how each existing territory produces
itizen science observations (spatio-temporal points as in Dataset C).

.2.1. Birth and death process
Our model assumes that the territories of interest exist and emerge

ithin a domain denoted by 𝐷𝜇 ⊂ R2, with 𝐷𝜇 ⊆ 𝐷y. The location
f the territory 𝑖 is represented by its centroid, 𝜇𝑖 ∈ 𝐷𝜇 , which is
ssumed to be constant in time. New territories emerge within 𝐷𝜇
ith the instantaneous birth intensity 𝜆b(𝑢)𝑁𝑢 + 𝜆b0 where 𝜆b(𝑢) is

the (known) birth intensity function and 𝑁𝑢 stands for the number of
existing territories at time 𝑢. The function 𝜆b(𝑢) can be interpreted as
birth intensity per each existing territory. The baseline birth intensity
parameter 𝜆b0, on the other hand, models additional birth intensity due
to external factors such as inflow from outside 𝐷𝜇 . For modelling of
the wolf data, we simplify 𝜆b(𝑢) to a constant, denoted by 𝜆b, and set
𝜆b0 = 0. As a new territory emerges, its centroid follows the uniform
distribution on 𝐷𝜇 .

Similarly, each existing territory disappears with the instantaneous
death intensity 𝜆d(𝑢), that is, the total instantaneous death intensity
induced by all territories equals 𝜆d(𝑢)𝑁𝑢. In case of the wolf data, we
fix 𝜆d(𝑢) to a constant that we denote by 𝜆d. Therefore, the lifetime of
a single territory follows an exponential distribution with mean 𝜆−1d .
Furthermore, in a similar fashion as was done in Vihola (2007), we
‘symmetrise’ the birth and death process by setting 𝜆b = 𝜆d = 𝜆bd,
where 𝜆bd then remains the only birth/death intensity parameter. This
minimises the bias in the birth and death process, and a priori leads to
a constant conditional expectation for the number of territories in time.

The initial distribution of the model is a joint distribution of the
number of territories and the locations of their centroids. The initial
locations of the territory centroids can either be distributed uniformly
on 𝐷𝜇 or subject to Gaussian error (truncated to 𝐷𝜇) around some
location estimate.

2.2.2. Observation model
The observation model, conditional on the territory locations and

lifetimes generated by the birth and death process, describes how each
territory with its centroid on 𝐷𝜇 produces citizen science observations.

The ‘baseline’, underlying model for an observation from a single
territory 𝑖 that exists at any given time point, is bivariate normal
𝑁(⋅;𝜇𝑖, 𝛴obs), where 𝛴obs describes the size and shape of the territories.
We assume that the territories are roughly circular in shape by setting
𝛴obs = 𝜎2obs𝐼 , where 𝐼 denotes the 2 × 2 identity matrix and 𝜎obs > 0 is
a standard deviation related to the territory size.
5

It is useful to interpret this territory model using the circular con-
tours of the distribution 𝑁(𝜇𝑖, 𝜎2obs𝐼). A circle of radius
√

𝜒2
𝛼,2𝜎obs (1)

centred at 𝜇𝑖 is assumed to enclose the instantaneous location of
the wolves belonging to the territory with probability 𝛼. Here, 𝜒2

𝛼,2
corresponds to the 100𝛼% quantile of the chi-squared distribution with
two degrees of freedom.

Because of the temporal and spatial variability inherent to citi-
zen science observation processes, the observation model modulates
the number of observations produced from the territories based on a
temporal intensity function 𝜆(𝜏)obs, defined on a time interval of interest
[0, 𝑇 ), and a spatial intensity function 𝜆(𝑠)obs defined on the domain of the
observed locations, 𝐷y. These intensity functions are assumed spatio-
temporally separable, since there is limited data for their estimation,
which is further discussed in Section 2.3. The values of these functions
are tied to the number of observations the territories produce in time
and space. For constant functions 𝜆(𝑠)obs(𝑦) = 𝑙𝑥 ∈ [0,∞) and 𝜆(𝜏)obs(𝑢) = 𝑙𝑡 ∈
[0,∞), our model assumes that the expected number of observations
that a single territory produces on 𝐷y in a unit of time is approximately
𝜆obs𝑙𝑥𝑙𝑡, where 𝜆obs is a scalar multiplier for the intensity functions. The
intensity functions 𝜆(𝜏)obs and 𝜆(𝑠)obs are assumed known (fixed), and we
discuss their estimation in Sections 2.3–2.4.

In addition to the observations originating from the territories, the
observation model also accommodates so called ‘clutter’ observations,
that are understood as ‘erroneous’ observations not originating from
actual territories. These observations are assumed to be distributed
uniformly on 𝐷y and their intensity is likewise modulated by 𝜆(𝜏)obs and
𝜆(𝑠)obs, but multiplied by a different scalar parameter, 𝜆c. The relative
values of the scalar multipliers 𝜆obs and 𝜆c can be used to model the
rate of the total number of observations believed to originate from the
territories.

Mathematically, conditional on the territory locations and lifetimes,
our observation model defines a three-dimensional inhomogeneous
Poisson process in time and space, whose intensity function is given
in Equation (5) of the supplementary material. The data generating
model parameters in Fig. 1 are given by 𝜃 = (𝜆obs, 𝜆bd, 𝜆c, 𝜎obs, 𝐷y , 𝐷𝜇)
and the intensity functions 𝜆(𝜏)obs and 𝜆(𝑠)obs.

2.3. Observation intensity modelling

The following two sections discuss how we estimate the intensity
functions 𝜆(𝜏)obs and 𝜆(𝑠)obs in the observation model of Section 2.2.2. This
section focuses on step 1 of the modelling framework in Fig. 1, detailing
the intensity model we fit to the past Datasets A and B discussed in
Section 2.1. The primary data for this step are the spatio-temporal
points in Dataset A discussed in Section 2.1.1. We assume that each
of these observations originated from an active wolf territory. In this
section, we denote by 𝜓 = {[𝑠𝑖; 𝑡𝑖]} the spatio-temporal point pattern
of the wolf observations in Dataset A with locations 𝑠𝑖 ∈ 𝐷y and dates
𝑡𝑖 ∈ 𝑇𝐴 =[2011-01-01, 2019-03-31].

We assume the arrival of Tassu reports 𝜓 can be approximated by an
inhomogeneous Poisson process (Illian et al., 2008). Note that reporting
depends on two consecutive events: An observer is at a territory, and
they make and report an observation. The data contains no information
if an observer was on a territory but did not observe wolf activity.
The observer and reporting intensities are therefore confounded. The
situation is notably different from presence–absence citizen science
data, such as for birding analysed with point processes by Tang et al.
(2021), as in addition to absences not being measured, the observers
cannot be assumed to have been actively looking for wolf activity in the
first place. Our situation is more akin to presence-only analysis (Renner
et al., 2015; Ver Hoef et al., 2021), with the nuance that instead of
estimating species abundances the goal is to estimate the connection
between a wolf territory’s presence and the emergence of the Tassu-

reports. To account for the conditioning on a wolf territory’s presence
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in this estimation, we constrain the Tassu-observations to the auxiliary
territories in Dataset B, detailed in Section 2.1.2.

Given the observations on the auxiliary territories, we estimate the
intensities by aggregating the observations and then using standard
Poisson regression in the generalised additive models (GAM) frame-
work. More specifically, we fit the model on observation units given
by spatio-temporal grid cells 𝐶𝑘 = {𝑉𝑘 × 𝑡𝑘} with temporal resolution
|𝑡𝑘| = 1 month and spatial resolution |𝑉𝑘| = 1 km × 1 km. From
this discretisation of 𝐷y × 𝑇𝐴 we only consider the subset of cells that
ntersect the auxiliary territories, which is ≈ 11.9 million cells, and then

count the Tassu reports in each such cell, denoted by 𝑛𝑘 = #(𝜓 ∩ 𝐶𝑘),
esulting in 4816 non-empty cells. The auxiliary territory (polytope)
hich a cell 𝐶𝑘 overlaps is denoted by 𝐴𝑘. For each cell 𝐶𝑘 we let 𝑢𝑘

and 𝑦𝑘 represent its centroid in time and space, respectively, and finally
define 𝜆(𝜏)𝑘 ∶= ∫𝑡𝑘 𝜆

(𝜏)
obs(𝑢)𝑑𝑢 and 𝜆(𝑠)𝑘 ∶= ∫𝑉𝑘 𝜆

(𝑠)
obs(𝑦)𝑑𝑦.

Then the counts in the grid cells are modelled with a Poisson
regression model of the following form

𝑛𝑘 ∼ Poisson

(

𝜆(𝜏)𝑘 𝜆
(𝑠)
𝑘

|𝐴𝑘|

)

log(𝜆(𝜏)𝑘 𝜆
(𝑠)
𝑘 ) = month(𝑢𝑘) + year(𝑢𝑘) +𝑋(𝑦𝑘)𝛽 + smooth(𝑦𝑘)

𝑋(𝑦𝑘) = [1expert(𝐴𝑘),Corine𝑘, forestroad𝑘]𝑇 .

(2)

The offset |𝐴𝑘| is the area of the territory that grid cell 𝐶𝑘 belongs to,
and accounts for an assumption of the instantaneous location of the
wolves following a uniform distribution within 𝐴𝑘, i.e. a pack on a
larger territory is harder to observe.

The ‘year’ and ‘month’ effect were included as factors to model
seasonal effects and year to year differences. We used ‘wolf years’
as discussed in Section 2.1.1 for the factors ‘year’ and ‘month’. We
did not include weather station information (e.g. snow depth), mainly
because their monthly aggregates are highly correlated with month-
effects but also in order to avoid spatio-temporal interaction terms to
reduce model complexity given we have only <1% non-zero units.

The spatial effects are modelled with covariates 𝑋 and a resid-
ual smooth term. The indicator 1expert(𝐴𝑘) was included to adjust
for potential discrepancies between the different types of auxiliary
territories (GPS tracks & expert estimates). The numerical covariates
Corine𝑘 = [Corine𝑘,2,… ,Corine𝑘,8] and forestroad𝑘 were described in
Section 2.1.2 and capture environmental variability.

The estimation was carried out using the statistical software R
and the GAM function mgcv::bam with a smooth term ‘smooth(𝑦𝑘)’
defined as a tensor product te-term in 𝑥 and 𝑦 coordinates of the
cell centroid 𝑦𝑘. The smoothness penalty choice was left to the default
which is generalised cross validation (Wood, 2017).

2.4. Computing intensity functions for the data generating model

Next, we discuss how we compute the intensity functions 𝜆(𝜏)obs and
𝜆(𝑠)obs based on the intensity model of Section 2.3 fit to the past Datasets
A and B. This section focuses on step 2 in the modelling framework of
Fig. 1. The aim is to obtain intensity functions for the data generating
model that anticipate the spatio-temporal intensity of the observations
in Dataset C. We model the intensity functions as piecewise constant
such that 𝜆(𝜏)obs takes on the value 𝑐𝑡𝑖 during wolf month 𝑖, 𝑖 = 1,… , 12,
and 𝜆(𝑠)obs takes on the value 𝑐𝑉𝑗 in each cell 𝑉𝑗 ∈ 𝐷y. In summary,
the 𝑐𝑡𝑖 ’s and 𝑐𝑉𝑗 ’s are computed by using quantities calculated from the
predictions of the intensity model (2) in Eq. (4) below.

The computation proceeds as follows. First, assume that the inten-
sity model (2) is fit using the Datasets A and B. Then, using the fitted
model, we predict the spatial effect 𝜆(𝑠)𝑘 , excluding the term 1expert(𝐴𝑘)
for all 1 km2 grid cells 𝑉𝑘 ∈ 𝐷y. This grid is then smoothed using
Gaussian blur, and we denote the value in the smoothed grid cell 𝑉𝑘
by �̃�(𝑠)𝑘 . More specifically, we use a ‘border preserving’ Gaussian blur
that only smooths cells that are within 𝐷𝑦 and normalises the blur
weights in the smoothing window such that only non-zero intensity
6

values contribute to the smoothed grid. We use 𝜎obs as the standard
deviation in the Gaussian blur and set the window size to the first
integer larger than 2𝜎obs (in kilometres). We report the 𝜎obs value used
in this step together with the results of Section 3. The smoothing of
the predicted grid is motivated by an assumption of smoothness that
our inference method places on the spatial intensity function. We will
discuss this (Assumption C) in more detail in Section 2.5.

After computing the predicted and smoothed spatial effect, we also
predict the temporal effect for the wolf year associated with Dataset C
by setting

�̃�(𝜏)𝑖 = exp (𝛽∗year + 𝛽month,i),

where �̃�(𝜏)𝑖 is the predicted temporal effect for wolf month 𝑖 = 1, 2,… , 12
during the wolf year of interest. Here, 𝛽∗year corresponds to a predicted
(wolf) year regression coefficient obtained by running a linear regres-
sion on the previous (wolf) years’ regression coefficients (available
from fitting model (2)). The coefficients 𝛽month,i, on the other hand,
correspond to the estimated (wolf) month coefficients from model
(2). The linear regression for the year coefficients was carried out to
take into account a slight increasing trend in the yearly regression
coefficients of model (2).

To compute the distinct values 𝑐𝑡𝑖 and 𝑐𝑉𝑗 that the piecewise con-
stant functions 𝜆(𝜏)obs and 𝜆(𝑠)obs take, we match the predicted intensities
such that
�̃�(𝜏)𝑖 �̃�

(𝑠)
𝑗

|𝐴𝑗 |
= ∫𝑡𝑖 ∫𝑉𝑗

𝜆(𝜏)obs(𝑢)𝜆
(𝑠)
obs(𝑦)∕|𝐴𝑗 |d𝑦d𝑢, (3)

here 𝐴𝑗 is defined as in Section 2.3.
Evaluating the integral (3) and taking the logarithm yields

og (�̃�(𝜏)𝑖 ) + log (�̃�(𝑠)𝑗 ) = log(|𝑡𝑖|) + log(|𝑉𝑗 |) + log(𝑐𝑡𝑖 ) + log(𝑐𝑉𝑗 ).

o obtain equality in this equation, 𝑐𝑡𝑖 and 𝑐𝑉𝑗 can be chosen such that

𝑐𝑡𝑖 = exp(log(|𝑡𝑖|
−1) + log (�̃�(𝜏)𝑖 ) −𝐾)

𝑉𝑗 = exp(log(|𝑉𝑗 |
−1) + log (�̃�(𝑠)𝑗 ) +𝐾),

(4)

where 𝐾 is a constant that needs to be chosen. Our choice for 𝐾 is

𝐾 = −max
𝑗

{log(|𝑉𝑗 |
−1) + log (�̃�(𝑠)𝑗 )},

which scales 𝜆(𝑠)obs ∈ (0, 1].
Finally, for the purposes of Sections 3.3 and 3.4 we note that when

𝜆(𝑠)obs is computed as discussed above, one of the territory centroids seen
in Fig. 2 is outside the domain of 𝜆(𝑠)obs. Therefore, in the case of the wolf
territory estimation, we additionally widen the domain of 𝜆(𝑠)obs by 27
kilometres at the boundaries by repeating the maximal intensity value
found in the neighbouring cells of the borders.

2.5. Filtering algorithm and its constraints

This section discusses step 3 of the framework in Fig. 1, the sta-
tistical inference of the territories given Dataset C, assuming the data
generating model of Section 2.2. This section gives an overview of the
inference, and the mathematical details are given in Section 1.6 of the
supplementary material. In summary, given Dataset C and the data
generating model of Section 2.2 with fixed parameters and intensity
functions, the inference procedure outputs a sequence of joint filtering
distributions of the territory centroid locations and their number at
chosen times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 that are also input to the procedure. The
filtering distribution at time 𝑡 is the distribution of the locations of the
territory centroids and their number, conditional on the observations
of Dataset C up to time 𝑡.

The inference method we use is somewhat involved and computa-
tionally intensive, and based on sequential Monte Carlo/particle filter-
ing (cf. Doucet et al., 2000). More specifically, the method is a Rao-
Blackwellised particle filter similar to the works of Särkkä et al. (2007),
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Vihola (2007), but employing a state-of-the-art optimal resampling
algorithm developed by Fearnhead and Clifford (2003).

A summary of the method’s operation can be given as follows.
Denote by �̃�1∶𝐾 = (�̃�1, �̃�2,… , �̃�𝐾 ) the 𝐾 temporally ordered observations
with observation times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐾 . Here, the input timepoints
1 < 𝑡2 < ⋯ < 𝑡𝑛 are among the 𝑡𝑖’s and each �̃�𝑖 is a spatial location

from Dataset C, or �̃�𝑖 = ∅ (see also discussion on Assumption A below).
he method works by processing the observations �̃�1∶𝐾 sequentially,
uch that the processing of �̃�𝑘 yields the filtering distribution at time
𝑡𝑘. During the algorithm, each filtering distribution is characterised by
a set of 𝑀 weighted particles. More specifically, at time index 𝑘 − 1,
each of the 𝑀 particles represents a hypothesis about the locations and
number of territory centroids on 𝐷𝜇 , conditional on the observations
�̃�1∶𝑘−1 seen so far (with �̃�1∶0 understood as the empty set).

The observation �̃�𝑘 is processed such that first a set of possible
territory birth, territory death and observation association outcomes is
built, which consist of all one step ‘futures’ that could happen for any
existing hypothesis at time index 𝑘− 1, conditional on �̃�𝑘 and the time
passed since �̃�𝑘−1. This set of outcomes is then probabilistically pruned
using the optimal resampling algorithm of Fearnhead and Clifford
(2003), which yields a set of 𝑀 chosen outcomes and their normalised

eights. Finally, based on the chosen outcomes and the previous hy-
otheses, a new set of 𝑀 updated and weighted hypotheses (particles)
s constructed by adding and deleting territories and ‘associating’ �̃�𝑘

(if �̃�𝑘 ≠ ∅) to a territory using an approximate Kalman filter update.
The filtering distribution at time index 𝑘 is characterised by these 𝑀
particles. The process then repeats for the observation �̃�𝑘+1.

The ideal data generating model of Section 2.2 is time-discretised
and approximated before the filter can be used. The approximations
used can be justified by introducing a set of additional assumptions,
some of which are primarily computational, and some of which help
reduce the discrepancy between the approximate and the ideal model.
The following list highlights these assumptions, which we will refer to
as Assumptions A to D.

(A) The observed data can be processed sequentially, one at a time.
In other words, each datum has an associated time, and the
observation times are strictly increasing.

(B) Compared to the rate of observations arriving from the territo-
ries, birth and death events of territories are rare.

(C) The spatial intensity function 𝜆(𝑠)obs is ‘smooth’/‘slowly varying’
with respect to the territory size parameter 𝛴obs. This means that
for any centroid 𝜇 ∈ 𝐷𝜇 , 𝜆(𝑠)obs(𝜇) is a good approximation for
𝜆(𝑠)obs(𝑥) in the region where the distribution 𝑁(𝜇,𝛴obs) has most
of its probability mass.

(D) For most territories, the territory centroid 𝜇𝑖 is not close to the
boundary of 𝐷𝜇 , in the sense that a region of high probability of
𝑁(𝜇𝑖, 𝛴obs) is contained within 𝐷𝜇 .

We conclude this section with a brief discussion on these assumptions.
Assumption A is satisfied for many datasets that are collected in real
time. However, as mentioned in Section 2.1, the observation times
in Dataset C are pooled with a granularity of one day. In order to
make Assumption A hold, we introduce a preprocessing step before the
filtering that artificially disperses the daily pooled observations in time,
generating a ‘pseudotime’ for each observation within the day that it
occurred. This step introduces a bias, which is small, since the arrival
intensity of the observations still remains practically the same as with
the pooled data. The preprocessing of the data is related to the time
discretisation of the model, which we make fine enough so that during
filtering we may assume that practically at most one territory birth
or death may occur during each time-discretised interval, and that the
time-discretised model approximates the ideal model sufficiently well.
We ensure this by introducing ‘discretisation points’ to the dataset that
contain no spatial location (that is, �̃�𝑘 = ∅). For further discussion on
7

these matters, see Sections 1.3–1.4 in the supplementary material. w
Assumption B is necessary for the identification of the territories
based on the data. In the present application, Assumption B holds since
the births and deaths of wolf territories are relatively rare events on the
daily timescale at which the observations in Dataset C arrive.

Assumption C is necessary for approximating certain intractable
integrals that arise in the filtering algorithm and are related to the
spatial intensity function 𝜆(𝑠)obs. In Section 2.4 we described a smoothing
step for the predicted spatial grid, which was carried out in order to
satisfy Assumption C.

Finally, Assumption D arises since our method does not involve
explicit edge correction. The computations in the particle filter are
approximate for territories and observations close to the boundary of
the finite domain 𝐷𝜇 . This may entail some bias, which is small under
Assumption D. We investigate empirically the bias caused by the edge
effect in Section 3.2.

2.6. Extracting the number and locations of the territories from the output
of the particle filter

This section focuses on the final step of the framework of Fig. 1 and
describes how we extract the number and locations of the territories
from the filtering result. Our estimate for the number of territories at
time 𝑡 is the marginal filtering distribution of the number of territories
at time 𝑡, computed as follows. Denoting by 𝑛𝑖, 𝑖 = 1, 2,… , 𝑝 the
nique numbers of territories found among the 𝑀 particles at time 𝑡,
he marginal filtering distribution for the number of territories consists
f the tuples (𝑛1, 𝜋1), (𝑛2, 𝜋2),… , (𝑛𝑝, 𝜋𝑝), where 𝜋𝑖 is the sum of the
ormalised weights of the particles having exactly 𝑛𝑖 territories. In
ection 3.4, we will summarise these distributions by taking their mean,
ode and standard deviation, and by computing probability intervals
𝛼 , that is, intervals whose end points are given by the (100 − 𝛼)% and
% quantiles of the distribution, where 𝛼 is a given percentage point.

A common way to visualise the probabilistic location information
f an unknown number of objects is to plot the so-called probability
ypothesis density (Goodman et al., 1997) (PHD) of the filtering dis-
ribution, which in the present context corresponds to the expected
ntensity of territory centroids. More specifically, the PHD is defined
or the territory centroids at time 𝑡 by

HD(𝜇) =
𝑀
∑

𝑗=1
𝑤(𝑗)

∑

𝑖∈𝐼 (𝑗)𝑡

𝑓𝑗𝑖(𝜇).

ere, 𝑤(𝑗) is the 𝑗th normalised particle weight at time 𝑡, 𝐼 (𝑗)𝑡 enumer-
tes the territories in particle 𝑗 at time 𝑡, and 𝑓𝑗𝑖 is the 𝑖th density
n particle 𝑗 at time 𝑡. The densities 𝑓𝑗𝑖, 𝑖 ∈ 𝐼 (𝑗)𝑡 , each represent the
nowledge about a particular territory centroid location within one of
he particles (hypotheses). In the context of our model, these densities
re either normal densities 𝑁(𝜇;𝑚𝑗𝑖, 𝐶𝑗𝑖), with known means 𝑚𝑗𝑖 and
ovariances 𝐶𝑗𝑖 computed by our particle filter, or uniform densities
(𝜇;𝐷𝜇). The form of the density, uniform or normal, depends on
hether an observation has been ‘associated’ with a particular territory

entroid in the particle. For more details regarding this, see Section 1
f the supplementary material.

Our approach for visualising the territory locations differs slightly
rom ‘standard’ PHD, and is as follows. First, we compute the PHD,
ut with the 𝑓𝑗𝑖’s ‘at the observation level’, meaning that for terri-
ories associated at least once, 𝑓𝑗𝑖 corresponds to the normal density
(𝑦;𝑚𝑗𝑖, 𝐶𝑗𝑖 + 𝛴obs). For territories never associated, we take 𝑓𝑗𝑖(𝑦) =
(𝑦;𝐷𝜇). After computing the PHD in this manner, we furthermore

runcate the PHD values from above to the density value 𝑁(0; 0, 𝛴obs).
his value corresponds to the maximal contribution to the PHD value
rom a single territory which is known to exist and whose location has
een estimated with maximal precision. In Section 3.4 we will visualise
he estimated territory locations on the map using this computation.
he rationale for this procedure is clearer visualisation of the regions

here the filtering algorithm places the territories.
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In Section 3 we focus mostly on the estimation of the number of
territories, because it is relevant from the point of view of assessing the
reproductive capacity of a wolf population. The number of territories
is also easy to work with from a model validation perspective, since
it is straightforward to compare it numerically to ‘ground truths’ of
simulation experiments and to results of other estimation methods. In
contrast, the PHD is important for graphical validation, visualisation
and interpretation of the filtering result.

3. Results

We first discuss results regarding the observation intensity mod-
elling in Section 3.1. We then move on to the experiments with the
data generating model and the developed particle filter, starting with
a synthetic scenario in Section 3.2, and then moving on to a semisyn-
thetic scenario in Section 3.3 that resembles the situation with Dataset
C but is still based on simulated observations. We conclude with the
real data scenario based on Dataset C in Section 3.4.

3.1. Tassu observation arrival intensity estimation

Fig. 3 displays the estimated intensity functions 𝜆(𝜏)obs and 𝜆(𝑥)obs as well
as the predicted spatial effect of the intensity model (2). Based on the
figure, the temporal intensity function 𝜆(𝜏)obs is seen to capture the rise
in observation intensity in the winter time, and the spatial intensity
function 𝜆(𝑠)obs especially accounts for the high observation intensities in
western Finland.

The overdispersion of the Poisson regression modelling of the ob-
servation intensities (Eq. (2)) fit was 1.83. After accounting for the
overdispersion the yearly effects were not statistically significant (at
5% level), but monthly effects were clear: The fluctuations with respect
to the baseline month of April ranged from a 78% (95% confidence
interval [54, 91]) reduction in May to 371% ([206, 592]) increase in
November, with smooth transitions in between.

The CORINE landcover variable effects were mostly increasing.
When considering a 1% increase in the proportion of each cover class
in turn, the estimated increase in intensity was: Cultivated fields 19%
([9, 29]); Closed forests 18% ([8, 28]); Open forests 16% ([7, 27]);
Rivers and lakes 16% ([6, 26]); and Other wetlands 19% ([10, 30]).
Effect of larger roads was not significant, but a 1% increase in forest
roads increased the intensity by 5% ([1, 8]). The smooth component
was significant, with a clear reduction effect in the central region and
an increase in the west, south-west and south regions.

The explained deviance was 12.6%. For diagnostics we first checked
the Pearson residuals aggregated at a month resolution, dropping the
spatial dimension (see Figure 4 in the supplementary material). The
cell counts showed slightly higher proportion of 0’s than the model
predictions, otherwise the overall quantiles were reasonably matched.
There were no obvious patterns in time, apart from a potential posi-
tive trend during 2015. The residual variability was the same during
2011–2016 with only GPS tracking auxiliary territories and during
2017–2019 when both auxiliary territory-types were available. Pearson
residuals exceeded +-2 during five months (2014-10, 2017-12, 2018-
01, 2018-09, 2019-02) with no clear pattern, with three over-estimates
(predicted v observed counts: 39 v 14, 257 v 175, 543 v 475), and two
under-estimates (6 v 21, 9 v 21).

We then studied the Pearson residuals in space without the time
dimension. To visually check troubling areas we aggregated the ob-
served and predicted counts to 10 × 10 km cells. Observed counts had
again slightly larger amount of 0’s, and also some higher-than-expected
values, the latter mostly from the 2017–2019 period. No obvious spatial
structure was visible in the Pearson residual map, with large residuals
dotted around the domain (see Figure 4 in the supplementary material).
We checked a version where the largest count in the temporal sum per
cell was omitted (before aggregation in space). The residual sizes were
greatly reduced (max.abs. from 12 to 3). This sensitivity suggests that
8

the observation counts are more concentrated in time and space than
what we can capture with the model. Additionally, spatially contigu-
ous regions of underestimation, particularly on the west coast, were
revealed, indicating insufficient information in the spatial components
of the model. A further check of before and after 2017 spatial sums
revealed a tight cluster of unexpectedly high observation counts in the
border region of eastern Kainuu.

3.2. Synthetic scenario and the edge effect

Our first territory estimation experiment is a purely synthetic, sim-
ple scenario. The purpose of the experiment is to ensure that the
estimation algorithm works correctly. We also investigate explicitly the
bias caused by the edge effect, as discussed in Section 2.5.

In this experiment we skip the intensity modelling discussed in
Sections 2.3–2.4 and focus on the filtering of simulated datasets. We
define the data generating model such that 𝐷𝜇 = [0, 100] × [0, 100],
𝜆(𝜏)obs(𝑢) = 1 and 𝜆(𝑠)obs(𝑦) = 1 for all 𝑢 ∈ [0, 50] and 𝑦 ∈ 𝐷y = R2. For
the remaining parameters we set 𝜆bd = 0.0015, 𝜆c = 0, 𝜆obs = 1. This
configuration corresponds to a simple scenario for our particle filter,
since there is no spatial inhomogeneity, and the largest approximation
in the filtering arises from the finite domain.

Under these settings, for all combinations of the number of particles
𝑀 ∈ {128, 256, 512, 1024, 2048} and 𝜎obs ∈ {1, 2, 5, 10, 15} we simulated
450 datasets as follows. First, we simulated the territory locations from
the ideal birth and death model, and then conditional on the territories,
simulated the observations from the ideal observation model, each
time preprocessing the observations with the method discussed in Sec-
tion 2.5. The initial distribution for the number of territories in the birth
and death process was Poisson(20) truncated to the interval [10, 30]. For
each sampled initial territory, we set the uniform distribution on 𝐷𝜇 as
the initial distribution for the centroid of the territory.

We filtered each simulated dataset assuming that the initial distri-
bution above was known, and computed the deviations �̂�𝑡 − 𝑁𝑡, for
𝑡 = 1,… , 50, where �̂�𝑡 is the estimated mean number of territories
at time 𝑡 from the particle filter, and where 𝑁𝑡 is the true number of
territories for the dataset. We investigated the bias E[�̂�𝑡 −𝑁𝑡], which
would be zero for an ideal Bayes estimator, by computing the empirical
mean of the 450 deviations per 𝑡, 𝑀 and 𝜎obs. Fig. 4 summarises the
results of this experiment. With a small territory size compared to the
size of the domain 𝐷𝜇 , we observe little or no bias in the estimation
of the number of territories, given that a sufficient 𝑀 is used in the
filtering algorithm. For greater values of the territory size, the bias is
more significant and appears to only slightly diminish with increasing
𝑀 . This is expected, since with higher territory sizes, Assumption D of
Section 2.5 is more likely to be violated, leading to observations outside
or near the boundary of 𝐷𝜇 .

3.3. Semisynthetic scenario and feasibility of territory estimation

Next, we consider a more realistic ‘semisynthetic’ scenario with
closer resemblance to the situation with Dataset C. In this scenario, the
idea was to fix the territory centroids to realistic locations, use plausible
parameter values and the intensity functions estimated as discussed in
Sections 2.3–2.4. We then simulated data to see how well the particle
filter can recover the true number of territories under a more realistic
setting.

More specifically, we assumed that 𝐷𝜇 corresponds to the domain
of the Tassu data (Fig. 2 top left), and the territory centroid locations
were fixed to the centroids (Fig. 2 bottom left) of the territories found
by Luke in the wolf population assessment of 2019. We further assumed
that each of these 47 territory centroids existed for a period of one year,
and that the territory count did not change.

We used the intensity functions in Figs. 3(c) and 3(b) as 𝜆(𝜏)obs and
𝜆(𝑠)obs in the data generating model. To set the value for the territory
size parameter 𝛴 = 𝜎2 𝐼 , we examined the shapes and sizes of the
obs obs
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Fig. 3. Outputs of the intensity modelling of Sections 2.3–2.4. Plots (b) and (c) show the estimated spatial intensity function 𝜆(𝑠)obs and temporal intensity function 𝜆(𝜏)obs, respectively.
Plot (a) shows the predicted spatial effect 𝜆(𝑠)𝑘 from the intensity model of Section 2.3 before applying the Gaussian blur as discussed in Section 2.4. The blur standard deviation
was set to 𝜎obs = 13376.67 m and the domain of 𝜆(𝑠)obs was additionally widened by 27 kilometres at the borders as discussed in Section 2.4.
territory (polygons) in Dataset B discussed in Section 2.1.2. As many of
these territories were noncircular in shape (see Fig. 2 (bottom left) for
some similar polygons) we estimated 𝜎obs as follows. First, we computed
the 95% quantile, 𝑑0.95, from the empirical distribution of the diameters
of the territory polygons in Dataset B. Then, we used Eq. (1) with
𝛼 = 0.95 to compute the 𝜎obs value that corresponds to a radius of
𝑑0.95∕2, yielding the value 𝜎obs = 13376.67 m. Here, the ‘diameter of
a polygon’ means the maximal length between any two points of the
polygon. This procedure guarantees that typical territories ‘fit’ inside
the 95% probability region of the territory model.

For the remaining filter parameters, we used the values 𝜆obs = 1.0,
𝜆c = 0.475 and 𝜆bd = 0.0015. The choice of the relative values of 𝜆obs and
𝜆c here corresponds to a situation where 1% of the total observation
intensity is assumed to arise from clutter observations, when the spatial
and temporal intensity functions are constant one, and there are 47
territories for a period of one year.

The choice of 𝜆bd corresponds to a mean territory lifetime of 1
0.0015 ≈

667 days, a little less than two years. This choice averages between
the fact that in reality some wolf territories are short-lived, but some
can exists for years. The chosen value also a priori predicts reasonable
changes in the territory count over a period of one year, while main-
taining a good agreement between the ideal and approximate birth and
death models (see Figure 1 in the supplementary material).
9

With these settings, we simulated a total of 240 datasets for each
particle count 𝑀 ∈ {27,… , 212}, and applied the particle filter to each,
estimating the mean number of territories at approximately weekly
intervals. Each time, the filter was initialised with the initial number
of territories following Poisson(47) truncated to [37, 57], with each
territory centroid initially following the uniform distribution on 𝐷𝜇 .
Fig. 5 shows the deviations computed by subtracting the true number of
territories from the estimated mean territory count trajectories for each
simulation and all particle counts. In addition, the average deviation
and the average absolute deviation are shown. On average, the particle
filter appears to recover the true number of territories quite accurately.
With increasing numbers of particles, a slight underestimation of the
true territory count is revealed. The average absolute deviation further
indicates that the discrepancy from the true territory count is typically
less than 3 given that a moderate amount of data has been processed.

3.4. Application to the Tassu dataset

Next, we applied the developed particle filter with 16 384 particles
to Dataset C. As the initial distribution for the territory centroids, we
used the centroids seen in Fig. 2 (bottom left), with Gaussian noise with
covariance 𝛴obs added to each. This way, the prior knowledge from the
population assessment of March 2019 can be utilised in the filter.
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Fig. 4. The estimated bias based on 450 simulations for each 𝑀 , 𝜎obs and 𝑡 in the simulation experiment described in the text.
Fig. 5. The true number of territories subtracted from territory count estimates (on black) obtained by applying the particle filter to 240 datasets simulated conditional on the
intensity functions in Fig. 3 and territory locations fixed to the centroids of the territory polygons in Fig. 2 (bottom left) for a period of one year. The orange and light blue lines
represent the average deviation and the average absolute deviation between the true territory count and estimates, respectively.
We report results for four model variants, as follows. Models 1
and 2 correspond to the same model configuration we used in the
semisynthetic experiment, but with Model 1 having 𝜆c = 0. Models 3
and 4 correspond to models 1 and 2, respectively, but with another
set of intensity functions 𝜆(𝜏)obs and 𝜆(𝑠)obs, obtained by dropping the terms
Corine𝑘, forestroad𝑘 and smooth(𝑦𝑘) from the intensity model (2), and
then estimating 𝜆(𝜏) and 𝜆(𝑠) as before, as described in Section 2.4. The
10

obs obs
resulting spatial intensity function in models 3 and 4 is constant one in
𝐷𝑦. For a plot of 𝜆(𝑠)obs and 𝜆(𝜏)obs for models 3 and 4, see Figure 2 in the
supplementary material.

Fig. 6 displays the estimated territory locations, and Table 1 shows
summary statistics of the filtering distribution for the number of ter-
ritories based on models 1–4 at the end of March 2020, after the



Ecological Modelling 472 (2022) 110101S. Karppinen et al.
Fig. 6. The estimated territory locations (red) at the end of March 2020 and the territory polygons of the wolf territories in March 2020 (black) from the assessment by Luke.
Higher intensities of the red colour depict higher plausibility of a territory location. The intensity of the red colour is computed such that the opaque red colour corresponds to
the truncated PHD value discussed in Section 2.6. The individual maps show the results for models 1 through 4 from left to right.
Table 1
Mean, mode, standard deviation and probability intervals of the estimated distribution
for the number of wolf territories in March 2020. The estimate ‘Luke’ corresponds to
the estimate by the Natural Resources Institute Finland (Heikkinen et al., 2020). 𝐼𝛼
denotes the 𝛼% probability interval.

Estimate Mean Mode St. Dev. 𝐼90 𝐼95 𝐼99
Luke 46.49 47 1.93 [43, 50] [43, 50] [41, 51]
Model 1 49.44 49 1.55 [47, 52] [46, 52] [46, 53]
Model 2 44.38 44 1.14 [43, 46] [42, 47] [42, 48]
Model 3 55.47 55 1.60 [53, 58] [53, 59] [52, 60]
Model 4 55.37 53 2.12 [52, 59] [52, 59] [51, 60]

full Dataset C has been filtered. The computations underlying these
quantities were carried out as explained in Section 2.6.

The overlaid territory polygons in Fig. 6 correspond to the territories
found by Luke in the wolf territory assessment of spring 2020. The
plots show that each of the models 1–4 seem to find many of the
wolf territories found by Luke. However, it appears that models 1
and 3 with 𝜆c = 0 place multiple ‘extra’ territories to central and
southeast Finland, that are not found among the official territories.
These territories are most likely not real wolf territories, since only a
small number of observations have been reported from these areas; see
Fig. 2 (top left). The territories most likely arise since the observation
intensity is low (see Fig. 3(b)), and perhaps underestimated in these
regions, causing the filter to attempt to explain these observations with
additional territories. Based on the plots for model 2 and 4, setting
𝜆c = 0.475 seems to mitigate this issue a bit, as these observations are
no longer interpreted as real observations from wolf territories. We also
experimented with a higher value for 𝜆c, but this resulted in a territory
count distribution not well aligned with the count estimates by Luke
(see also discussion below). There is also no reason to believe that a
substantial proportion of the data would not originate from the wolf
territories.

Another observation from Fig. 6 is that models 3 and 4, with the
simplified intensity functions, seem to somewhat better capture the
cluster of territories in west and southwest Finland, in comparison to
models 1 and 2. This difference in the results occurs since the spatial
intensity function for models 1 and 2 assumes that in these regions, the
reporting intensity of the observations is higher than in other parts of
Finland. This in turn results in less territories being needed to explain
the observations arriving from these regions, under models 1 and 2.

Based on the territory count distributions summarised in Table 1,
the territory counts for models 1 and 2 are best aligned with the
estimate of Luke. In comparison, the territory count for models 3
and 4 is somewhat overestimated. Fig. 7 reports the sample standard
deviations of the obtained mean territory counts at approximately
weekly time points when we repeated the filtering of the Tassu data 195
times with the configuration of model 2 and different particle counts.
The observation is that the variability in the estimated mean territory
11
counts is seen to diminish with increasing numbers of particles, but still
remains noticeable even with 16 384 particles. We also experimented
with different 𝜆bd, 𝛴obs and intensity functions, but the phenomenon
persisted. In contrast, when a dataset is simulated from the model, the
results of this experiment are markedly different, as is seen from the
second pane in the figure. Similarly, there is also some variability in the
estimated territory locations. Figure 3 in the supplementary material
shows the estimated territory locations after 10 independent runs of
the filter to the Tassu data.

4. Discussion

We presented a statistical modelling framework for the analysis
of citizen science data from territorial animals. At the core of our
framework is the data generating model discussed in Section 2.2, that
consists of a birth and death model giving rise to the animal territories,
and an observation model that links the citizen science observations
to the territories. In the developed data generating model, the high
variability common to citizen science observation processes is modelled
through a temporal and a spatial intensity function, which are assumed
fixed and known. The Rao-Blackwellised particle filter described in
Section 2.5, estimates the sequence of filtering distributions for the
locations and number of territories that describe the knowledge of the
animal territories in time as more data is brought in.

We found that the fitted intensity model and the estimated intensity
functions were able to capture general trends in the arrival of the
citizen science observations as is seen from the estimated intensity
functions in Fig. 3. Clearly, the model captures the higher arrival
intensity of observations in the winter, which mainly occurs because of
snow that leaves wolf tracks visible for potentially long periods of time.
The estimated spatial intensity function, on the other hand, captures the
high intensity of observations in western Finland and the low intensity
of observations in middle Finland compared to other regions.

The intensity model did, however, struggle to explain some charac-
teristics adequately. For instance, sometimes the observations arrived
in unexpected bursts, or were highly localised in space, and these
features the model was not flexible enough to capture (cf. Figure 4
in the supplementary material). A potential remedy for this might be
the addition of random effects e.g. an additional noise component to
each spatial pixel, but it would be better to include interpretable rare-
event overdispersion components based on the social analysis of the
mechanisms for reporting the wolf observations. In fact, the outliers are
worth a closer look to gain such insight. The model also struggled with
an excess of 0-count cells due to how the conditioning on the auxiliary
territories in Dataset B was constructed.

Another improvement for the intensity model could be a zero-
inflation component with its own regression structure on, for example,
environmental covariates. However, an even better option would be to
forgo the aggregation and model the data as a spatio-temporal (marked)
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Fig. 7. Sample standard deviations over estimates of the mean territory count obtained by running the particle filter 195 times to Dataset C (Tassu dataset) and a single simulated
ataset, for varying numbers of particles 𝑀 .
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oint pattern (Sicacha-Parada et al., 2021; Tang et al., 2021). Modelled
his way, events such as an observation being exactly on a road, or
now cover of previous days would not be averaged out, yet coarser
esolutions for downstream analysis could still be easily computed.
ther possible improvements include using the type of observation

sightings, paw prints, game-cameras etc.) in the intensity model and
he improvement of the process of deriving the auxiliary wolf territories
rom the GPS trajectories. Finally, it might be beneficial to investigate
he possibility to relax the space–time separability assumption, which
ould allow for the incorporation of weather data such as snow cover
nd/or allow for individual time trends for western and eastern Finland,
or example. Such complex models could then be estimated from longer
eriod or more frequent observation series, if available.

Our synthetic experiment in Section 3.2 investigated the mean terri-
ory count estimates of our particle filter under a simple data generating
odel, and found that our method works as expected when Assumption
of Section 2.5 holds. With high territory sizes, this assumption is

iolated, and there is some bias in the estimation of the mean territory
ount. This edge effect arises due to the finiteness of the domain 𝐷𝜇 .
n particular, the violation of Assumption D reduces the accuracy of
he approximation (25) (in the supplementary material), which likely
auses the bias. In this experiment, territory parameters on a scale of
%–2% of the width of the rectangular region led to small bias. Noting
hat the distance between the western and eastern borders of Finland is
pproximately 500 kilometres, we therefore expect that the bias caused
y the edge effect should be small in the realistic experiments discussed
n Sections 3.3–3.4.

The semisynthetic experiment of Section 3.3 showed that under
ealistic conditions resembling the situation with the Tassu dataset,
he estimation of the territory count is possible. There was a slight
nderestimation of the true territory count with increasing numbers of
articles, which we think occurs because of the discrepancy between
he scenario and the ideal model, or the approximations used. This
xperiment was a proof of concept that showed that the territory
stimation can be feasible even with presence-only data, when the
odel is correct.

While experimenting with different parameter values for the data
enerating model, we found that in general the model and especially
he count estimation is most sensitive to the values of the territory size
arameter 𝛴obs and the intensity functions, and least sensitive to the
hoice of the constant and equal birth rate 𝜆bd. This is expected, since
12

arge territory sizes increase the probability of an observation being b
ssociated with a territory that is far away, decreasing the relative
robability of a new territory emerging. In a similar vein, the intensity
unctions are directly tied to the amount of territories needed to explain
he number of observations arriving. With a fixed dataset, lowering the
bservation intensity results in more births, since a higher number of
erritories is then needed to explain the data.

The concluding analysis in Section 3.4 applied the developed data
enerating model and particle filter to analyse citizen science obser-
ations of wolves from April 2019 to March 2020. The results show
imilar patterns as the counts and locations reported by the Natural
esources Institute Finland (Luke) in the official assessment of March
020. However, the results do not reach the accuracy of expert judge-
ent. This cannot be expected, because the official assessment also

ncorporated additional information sources, such as DNA samples, GPS
ollared wolves and mortality records.

Based on Table 1, the inference of Model 2 incorporating the
stimated spatial intensity function and clutter observations resulted
n a slightly smaller estimated territory count and smaller variability
han the official estimate by Luke. In general, such differences can occur
ecause the estimates of Luke are based on a very different model and
ssumptions, and also take advantage of additional data. When using
he citizen science data only, it is also possible that the particle filter
ight not find territories which rarely produce observations, leading

nto underestimation of the territory count. Furthermore, the uncer-
ainty reported by the particle filter can be underestimated, because
he results are based on a single particle filter run. If Monte Carlo
ariability is taken into account, the uncertainty is inflated (see also
iscussion below).

We noticed that with models using a constant one spatial intensity,
he cluster of territories in the west and southwest Finland was captured
etter than with models that used the estimated intensity functions, as
as seen from Fig. 6. This might suggest that the observation intensities

n the more complex models are overestimated in these regions at
he time of the observations arriving. Indeed, based on the Pearson
esiduals in Figure 4 of the supplementary material, the intensity model
it could not capture all of the variation in these regions. Despite this, it
ppears that using the spatially varying intensity improves and is likely
requirement for the accurate estimation of the territory count. This is

upported by the territory count distribution in Table 1, which indicates
hat the territory count estimates of the more complex models were

etter aligned with the official territory count estimates of Luke.
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In general, we found that estimating the territory count and lo-
cations of the territories reliably is challenging by only using the
citizen science observations from the Tassu database. The challenges
faced may be partly explained by unsatisfactory observation intensity
modelling, but it appears that the inference algorithm is also strug-
gling with real data. Fig. 7 (and 3 in the supplementary material)
show repeated runs of the filter in our concluding analysis, indicating
some Monte Carlo variability. We believe that the main challenge for
the inference is the presence-only nature of the observations. These
observations are quite informative about the births of new territories
since a territory needs to exists so that an observation may occur. In
contrast, the observations are not very informative about the deaths
of the territories, because the information about a death of a territory
is indirect and only mediated by the absence of observations arriving
from a particular area. This difficulty with the data might explain
the Monte Carlo variability in our particle filter, and further suggests
that it could still benefit from further specialisation to the territory
estimation task. For instance, this specialisation could come in the form
of further heuristics that eliminate territories more efficiently, when no
observations have been associated for a long time.

All in all, we think that the results obtained suggest that the de-
veloped modelling framework might be useful as an additional tool
in the annual wolf population assessment, reducing the amount of
subjectivity in the estimation process by providing a preliminary sta-
tistical interpretation of the citizen-made observations. Integration of
the DNA samples, GPS collared wolves and other data with the results
of the particle filter would still remain a task for the panel of experts.
Our analysis with Datasets A, B and C of Section 2.1 showcased the
intended use of the modelling framework in the context of the wolf
population assessments. First, the intensity functions required by the
data generating model are estimated based on the latest historical
data. Then, the particle filter is initialised with the territory count and
location distribution available from the latest population assessment.
Finally, the yearly observations are analysed in a batch to obtain a
model-based view on the status of the wolf population at the time of
the next population assessment.

Filtering a year of data from April 2019 to March 2020 allowed both
the comparison to the official wolf population assessment of 2020 and
the use of prior information from the assessment of 2019. However, this
yearly batch estimation is not the only way in which the developed
data generating model and particle filter could be used. In fact, one
of the motivations for the development of the data generating model
and the particle filter was that the developed modelling framework
could also be used in an online fashion. This way, smaller batches of
new observations could be used to update the posterior distribution of
the territory locations and track the population in finer timescales. In
the context of the wolf territory estimation, the results from such an
online estimation could provide dynamic feedback for the volunteers
collecting the data, highlighting that their work is important. Such
feedback might also be used to direct the effort of the volunteers to
areas with the most uncertainty about the existence of territories.

We envision that our modelling scheme could also be a noteworthy
tool for refining the population assessment of other large carnivores.
For example, the female Eurasian lynx (Lynx lynx) are known to
how territorial behaviour with cubs. This could be exploited in the
stimation of lynx reproduction. It might also be possible to couple
he developed framework with other developments for assessing animal
opulations, such as the spatial capture–recapture (SCR) model which
stimates wolf density based on DNA samples (Bischof et al., 2020).
or example, the two approaches might be used sequentially. The SCR
odel could be used first to estimate the spatial wolf density based

n DNA samples, and then the density could provide another source
f prior information about potential territory locations for our data
enerating model. On the other hand, in case that the DNA samples
re collected by volunteers, the modelling of the sampling effort in the
13

CR model could be done by similar techniques as in this work.
Besides the context of territorial animals, our methods might be
elevant in target tracking where the modelling of the temporal and
patial variability of the observation process is required. The methods
ay also be regarded as a form of ‘dynamic clustering’. In different

pplications, the modular nature of the developed framework can be
xploited to carry out the intensity modelling in a way that fits the
pplication.

There are a number of ways how the developed data generating
odel and the inference algorithm could be improved in future works.
he core of the filtering computation consists of evaluating the pos-
erior probabilities for the birth, death and association variables (see
ection 1.6 of the supplementary material). The main approximations
ade in the computation arise from the intractable integrals related to

he spatial domains 𝐷𝜇 and 𝐷y and the spatial intensity function 𝜆(𝑠)obs.
We concentrated on the situation where 𝜆(𝑠)obs may be assumed to be
slowly varying by Assumption C, allowing for straightforward approxi-
mation of the intractable integrals in the probability computations and
the measurement update. Introducing a numerical integration scheme
could mitigate the bias from the approximations in the former. It might
also be possible to incorporate a ‘no-overlap’ condition to the model
that penalises large ‘overlaps’ of the territories.

The developed particle filtering approach assumes fixed parameter
values. Even with the limited and noisy citizen science data, it might
be possible to estimate some parameters of the data generating model,
such as the intensity scaling parameter 𝜆obs and/or parameters related
to the birth and death intensity functions 𝜆b and 𝜆d. This could result in
a better fit of the data and model, and might result in improved location
and count estimates. In theory, estimating the model parameters is
possible using for example the particle marginal Metropolis–Hastings
algorithm (Andrieu et al., 2010) similar to Kokkala and Särkkä (2015).
Using these methods would however require the derivation of an
unbiased estimate of the marginal likelihood of the observed data under
the employed optimal resampling scheme of Fearnhead and Clifford
(2003). For the current model and a moderate to large dataset, such
estimation procedures are also computationally intensive and would
likely require a tailored parallel implementation. The methods might
also be difficult to tune in practice.

The data generating model could, in principle, readily incorporate
moving territories as well, perhaps using an Ornstein–Uhlenbeck-type
movement model as in the work of Johnson et al. (2008). We did
not attempt this with the wolf territory estimation, because our main
interest was in immobile territories. In addition, we suspect that the
additional flexibility in the model allowing for movement would make
the inference task substantially more difficult or even infeasible. Fur-
thermore, we do not believe that in our dataset each territory is
observed frequently enough to make the inference with an additional
movement model practical.

The observation model could also be further refined. We did not
separate between the different observation types, but some observa-
tion types can be more reliable than others and may be subject to
different observation intensity (‘detectability’); consider for instance
tracks vs. sightings. We chose to simplify since we do not believe that
adequate intensity estimation is possible for the different observation
types separately with our dataset. In another context, however, it
would in principle be possible to modify the observation model to
also accommodate different observation types. The intensity function
of the observation model (see Equation (5) in the supplementary ma-
terial) could be augmented with ‘independent data streams’ for the
different observation types, each with their own spatio-temporal and
clutter intensities. This could lead to interesting observation models,
such as ones that designate higher clutter intensity for more uncertain
observations types such as sightings.

Another means of model improvement are more fine-grained birth–
death models. In ecological applications, for example, further informa-
tion such as mating seasons or typical lifespans of the species could

be encoded into the birth and death intensity functions 𝜆b and 𝜆d
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in the general model described in the supplementary material. How-
ever, these kinds of models would likely achieve their full potential
when coupled with parameter estimation discussed above. In our wolf
territory estimation, we did not investigate time-varying birth/death
intensity functions and opted for a model where a territory can emerge
at any time. Even though wolves only reproduce in the spring, new
wolf territories can form at any time of the year when vagrant wolves
pair up and establish new territories. Furthermore, the majority of the
citizen science wolf observations are made in the winter time, and it is
possible that the first observation from a territory formed in the spring
comes later, in the winter.
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