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Pointwise inequalities for Sobolev functions
on generalized cuspidal domains

Zheng Zhu

In memory of Prof. Jan Malý

Abstract. Let Ω ⊂ Rn−1 be a bounded star-shaped domain and Ωψ be an outward cuspidal
domain with base domain Ω. We prove that for 1 < p ≤ ∞, W 1,p(Ωψ) = M1,p(Ωψ) if and only if
W 1,p(Ω) = M1,p(Ω).

Sobolevin funktioiden pisteittäisiä epäyhtälöitä yleistetyissä kärkialueissa

Tiivistelmä. Olkoon Ω ⊂ Rn−1 rajoitettu tähtimäinen alue ja Ωψ ulkoneva kärkialue, jonka
kanta-alue on Ω. Arvoilla 1 < p ≤ ∞ osoitamme, että W 1,p(Ωψ) = M1,p(Ωψ) jos ja vain jos
W 1,p(Ω) = M1,p(Ω).

1. Introduction

A Sobolev function u on Rn satisfies the pointwise inequality

|u(z1)− u(z2)| ≤ |z1 − z2|(CM(|∇u|)(z1) + CM(|∇u|)(z2))

at every Lebesgue points of u, where M(|∇u|) is the Hardy–Littlewood maximal
function of |∇u|, see [1, 2, 5, 10]. Motivated by this fact, Hajłasz defined the so-called
Hajłasz–Sobolev space M1,p(U) which consists of all u ∈ Lp(U) with a nonnegative
g ∈ Lp(U) such that for every z1, z2 ∈ U \ E with |E| = 0, we have

|u(z1)− u(z2)| ≤ |z1 − z2|(g(z1) + g(z2)),

where U ⊂ Rn is a domain. For all domains U and any p ∈ [1,∞], one always has
M1,p(U) ⊂ W 1,p(U). Furthermore, when p = 1, the inclusion is strict, see [5, 9].
SinceM1,p(U) = W 1,p(U) implies that every u ∈ W 1,p(U) supports a global Poincaré
inequality on a bounded domain U , see [5], it is a natural question to ask

For which domains U ⊂ Rn do we have M1,p(U) = W 1,p(U)?

In this note, we concentrate on a class of generalized outward cuspidal domains.
Let Ω ⊂ Rn−1 be a bounded star-shaped domain with a star-center xo ∈ Ω. Let
ψ : (0, 1]→ (0,∞) be a left continuous and non-decreasing function. We consider the
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748 Zheng Zhu

outward cuspidal domain of the form

Ωψ :=

{
(t, x) ∈ (0, 1)× Rn−1 :

x− xo
ψ(t)

+ xo ∈ Ω

}
∪
{

(t, x) ∈ [1, 2)× Rn−1 :
x− xo
ψ(1)

+ xo ∈ Ω

}
,

(1.1)

We require ψ is left-continuous just to ensure that Ωψ is open. The (n − 1)-
dimensional bounded star-shaped domain Ω is called the base domain of the outward
cuspidal domain Ωψ. The star-shapeness is necessary to guarantee that Ωψ is always
a domain for every left continuous and increasing function ψ. One can easily see that
Ωψ is also star-shaped.

In our main theorem, we will show that the classical Sobolev space coincides
with the Hajłasz–Sobolev space on an outward cuspidal domain Ωψ if and only if
these two function spaces coincide on the base domain Ω. This theorem implies
that even on a very irregular domain U ⊂ Rn, we can have M1,p(U) = W 1,p(U),
for example see Corollary 1.4 below. Hence, it is difficult, or maybe even impossible
to give a characterization to those domains where the classical Sobolev space and
Hajłasz-Sobolev spaces coincide.

Theorem 1.2. Let Ω ⊂ Rn−1 be a bounded star-shaped domain and ψ : (0, 1]→
(0,∞) be a left continuous and increasing function. Define the corresponding cuspidal
domain Ωψ as in (1.1). Then for 1 < p ≤ ∞, W 1,p(Ωψ) = M1,p(Ωψ) if and only if
W 1,p(Ω) = M1,p(Ω).

By [5],M1,p(U) can always be embedded into W 1,p(U), for arbitrary 1 ≤ p ≤
∞ and an arbitrary domain U ⊂ Rn. Hence, if one can show they coincide as
sets, the classical Open Mapping Theorem will imply that the corresponding norms
of a fixed element are comparable up to a uniform constant. In [12], Romanov
showed W 1,p(Ωψ) = M1,p(Ωψ) if Ω ⊂ Rn−1 is a unit ball, ψ(t) = ts with s > 1

and p > 1+(n−1)s
n

. The main result in [3] told us that the above restriction on p is
superfluous. To be more precise, the authors showed if Ω ⊂ Rn−1 is an unit ball,
M1,p(Ωψ) = W 1,p(Ωψ) for arbitrary 1 < p ≤ ∞ and an arbitrary left continuous
and increasing function ψ. Since the unit ball is a bounded star-shaped domain for
which W 1,p(Bn−1(0, 1)) = M1,p(Bn−1(0, 1)) for every 1 < p ≤ ∞, the result in [3] is
a special case of Theorem 1.2 here.

A domain U ⊂ Rn is called a W 1,p-extension domain for 1 ≤ p ≤ ∞, if for every
u ∈ W 1,p(U), there exists an extension function E(u) ∈ W 1,p(Rn) with E(u)

∣∣
Ω
≡ u
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and
‖E(u)‖W 1,p(Rn) ≤ C‖u‖W 1,p(U)

for a positive constant C independent of u. By the classical result due to Hajłasz
[5], if U ⊂ Rn is a W 1,p-extension domain for 1 < p ≤ ∞, then W 1,p(U) = M1,p(U).
Hence, we have the following corollary to Theorem 1.2.

Corollary 1.3. Let Ω ⊂ Rn−1 be a bounded star-shapedW 1,p-extension domain
for 1 < p ≤ ∞ and ψ : (0, 1] → (0,∞) be a left continuous and increasing function.
Then we haveW 1,p(Ωψ) = M1,p(Ωψ), where Ωψ is the corresponding outward cuspidal
domain defined in (1.1).

Our theorem enables a large class of new examples. In particular, the following
corollary shows how the cuspidal construction can be iterated to give examples which
have different cuspidal sigularities in every coordinate directions. We thank Sylvester
Eriksson-Bique for pointing out this application.

Corollary 1.4. Let I ⊂ R be an interval which contains 0 and {ψi : (0, 1] →
(0,∞)}ni=1 be a class of left continuous and increasing function. Set Ω1 := I and
define a sequence of outward cuspidal domains {Ωi ⊂ Ri}ni=2 inductively by setting

Ωi :=

{
(t, x) ∈ (0, 1)× Ri−1 :

x− xi−1
o

ψi(t)
+ xi−1

o ∈ Ωi−1

}
∪
{

(t, x) ∈ [1, 2)× Ri−1 :
x− xi−1

o

ψi(1)
+ xi−1

o ∈ Ωi−1

}
,

where xi−1
o ⊂ Ωi−1 is a star center. Then W 1,p(Ωn) = M1,p(Ωn) for every 1 < p ≤ ∞.

Proof. By induction, for every i ∈ {1, 2, · · · , n− 1}, Ωi is a star-shaped domain
with W 1,p(Ωi) = M1,p(Ωi). The conclusion follows now directly from Theorem 1.2.

�

2. Definitions and preliminaries

In what follows, U ⊂ Rn is always a domain and Ω ⊂ Rn is always a bounded
star-shaped domain. We denote C∞(U) to be the restriction of C∞(Rn) on U by
setting

C∞(U) := {u
∣∣
U

: u ∈ C∞(Rn)}.
For a measurable subset E ⊂ Rn, χE is the corresponding characteristic function
and |E| means the n-dimensional Hausdorff measure of E. Typically, c or C will be
constants that depend on various parameters and may vary even on the same line of
inequalities. The Euclidean distance between points x, y in the Euclidean space Rn

is denoted by |x− y|. The open n-dimensional ball of radius r centered at the point
x is denoted by Bn(x, r). For two points x, y ∈ Rn, [x, y] means the segment starting
from x to y.

Definition 2.1. A domain Ω ⊂ Rn is said to be star-shaped, if there exists a
point xo ∈ Ω such that for every x ∈ Ω, the segment [x, xo] between x and xo is
contained in Ω. The point xo is called the star center of Ω.

For a star-shaped domain, the choice of the star center may not be unique. For
example, for a convex domain, every point inside the domain is a star center. From
now on, whenever we mention a star-shaped domain Ω, it means we have already
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fixed a star center xo ∈ Ω. Let Ω ⊂ Rn be a bounded star-shaped domain. For every
0 < λ <∞, we define

λΩ :=

{
x ∈ Rn :

x− xo
λ

+ xo ∈ Ω

}
.

We write
Rn = R× Rn−1 :=

{
z := (t, x) ∈ R× Rn−1

}
.

Let Ω ⊂ Rn−1 be a bounded star-shaped domain. We consider a left continuous and
increasing function ψ : (0, 1]→ (0,∞), extend the definition of ψ to the interval (0, 2)
by setting

ψ(t) = ψ(1), for every t ∈ (1, 2)

and write

Ωψ =

{
(t, x) ∈ (0, 2)× Rn−1 :

x− xo
ψ(t)

+ xo ∈ Ω

}
.

The space of locally integrable functions is denoted by L1
loc(U). For every measur-

able set Q ⊂ U with 0 < |Q| <∞, and every non-negative measurable or integrable
function f on Q we define the integral average of f over Q byˆ

Q

f(w) dw :=
1

|Q|

ˆ
Q

f(w) dw.

Let us give the definitions of Sobolev space W 1,p(U) and Hajłasz-Sobolev space
M1,p(U).

Definition 2.2. We define the first order Sobolev space W 1,p(U), 1 ≤ p ≤ ∞,
as the set

{u ∈ Lp(U) : ∇u ∈ Lp(U ;Rn)} .

Here ∇u =
(
∂u
∂x1
, . . . , ∂u

∂xn

)
is the weak (or distributional) gradient of a locally inte-

grable function u.

We equip W 1,p(U) with the norm

‖u‖W 1,p(U) = ‖u‖Lp(U) + ‖∇u‖Lp(U)

for 1 ≤ p ≤ ∞, where ‖ · ‖Lp(U) denotes the usual Lp-norm for p ∈ [1,∞]. The
following lemma from [11, page 13] tells us that on a star-shaped domain, Sobolev
functions can be approximated by global smooth functions.

Lemma 2.3. Let Ω ⊂ Rn be a star-shaped domain. Then C∞(Ω) ∩W 1,p(Ω) is
dense in W 1,p(Ω) for 1 ≤ p ≤ ∞.

For u ∈ Lp(Ω), we denote by Dp(u) the class of functions 0 ≤ g ∈ Lp(Ω) for
which there exists E ⊂ U with |E| = 0, so that

|u(z1)− u(z2)| ≤ |z1 − z2| (g(z1) + g(z2)) , for z1, z2 ∈ U \ E.
Definition 2.4. We define the Hajłasz–Sobolev space M1,p(U), 1 ≤ p ≤ ∞, as

the set
{u ∈ Lp(U) : Dp(u) 6= ∅} .

We equip M1,p(U) with the norm

‖u‖M1,p(U) = ‖u‖Lp(U) + inf
g∈Dp(u)

‖g‖Lp(U),
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for 1 ≤ p ≤ ∞. For 1 < p ≤ ∞, we write W 1,p(U) =C M1,p(U) if we have
W 1,p(U) = M1,p(U) with

1

C
‖∇u‖Lp(U) ≤ inf

g∈Dp(u)
‖g‖Lp(U) ≤ C‖∇u‖Lp(U)

for a positive constant C > 1 independent of u ∈ W 1,p(U). The following lemma
tells us that the equivalence of the Sobolev space and the Hajłasz–Sobolev space on
bounded star-shaped domain is invariant under linear stretching.

Lemma 2.5. Let Ω ⊂ Rn be a bounded star-shaped domain with W 1,p(Ω) =C

M1,p(Ω) for some 1 < p ≤ ∞. Then for every 0 < λ < ∞, we have W 1,p(λΩ) =C

M1,p(λΩ) with a same constant C.

Proof. Without loss of generality, we may assume 0 ∈ Ω is a star center. Fix
0 < λ <∞. Let u ∈ W 1,p(λΩ) be arbitrary. We define a function uλ on Ω by setting

uλ(z) := u(λz)

for every z ∈ Ω. Then, by the change of variables formula, we have uλ ∈ W 1,p(Ω)
with
(2.6) ‖∇uλ‖Lp(Ω) = λ1−n

p ‖∇u‖Lp(λΩ).

Since W 1,p(Ω) =C M
1,p(Ω), there exists a function guλ ∈ Dp(uλ) with

(2.7)
1

C
‖∇uλ‖Lp(Ω) ≤ ‖guλ‖Lp(Ω) ≤ C‖∇uλ‖Lp(Ω).

Then we define a function gu on λΩ by setting

gu(z) :=
1

λ
guλ

(z
λ

)
for every z ∈ λΩ. Then for almost every z1, z2 ∈ λΩ, we have

|u(z1)− u(z2)| =
∣∣∣uλ (z1

λ

)
− uλ

(z2

λ

)∣∣∣
≤ |z1 − z2|

(
1

λ
guλ

(z1

λ

)
+

1

λ
guλ

(z2

λ

))
≤ |z1 − z2|(gu(z1) + gu(z2)).

The change of variables formula implies

(2.8) ‖gu‖Lp(λΩ) = λ
n
p
−1‖guλ‖Lp(Ω).

Hence gu ∈ Dp(u). By combining inequalities (2.6), (2.7) and (2.8), we obtain the
desired inequality

1

C
‖∇u‖Lp(λΩ) ≤ ‖gu‖Lp(λΩ) ≤ C‖∇u‖Lp(λΩ). �

3. Maximal functions

We will define a maximal functionM τ [f ]. That will vary only the first component
t. For every x ∈ ψ(1)Ω ⊂ Rn−1 set

Sx := {t ∈ R : (t, x) ∈ Ωψ}.
Let f : Ωψ → R be measurable and let (t, x) ∈ Ωψ. We define the one-dimensional
maximal function in the direction of the first variable by setting

(3.1) M τ [f ](t, x) := sup
[a,b]3t

ˆ
[a,b]∩Sx

|f(s, x)| ds .
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The supremum is taken over all intervals [a, b] containing t.
The next lemmas tell us that M τ enjoys the usual Lp-boundedness property. See

[3, Lemma 3.1] for a proof.

Lemma 3.2. Let 1 < p <∞. Then for every f ∈ Lp(Ωψ), M τ [f ] is measurable
and we have

(3.3)
ˆ

Ωψ

|M τ [f ](z)|p dz ≤ C

ˆ
Ωψ

|f(z)|p dz,

where the constant C is independent of f .

4. Proof of Theorem 1.2

Let Ω ⊂ Rn−1 be a star-shaped bounded domain with W 1,p(Ω) = M1,p(Ω) for
some 1 < p < ∞. Then Ωψ ⊂ Rn is also a star-shaped domain. By Lemma 2.3,
C∞(Ωψ) ∩W 1,p(Ωψ) is dense in W 1,p(Ω).

Lemma 4.1. Let u ∈ C∞(Ωψ) ∩W 1,p(Ωψ) be arbitrary. Fix 0 < t < 2, define
the restriction of u to {t} × ψ(t)Ω by setting

(4.2) ut(x) = u(t, x) on every x ∈ ψ(1)Ω.

Then ut ∈ W 1,p(ψ(t)Ω) for every 0 < t < 2. And there exists a nonnegative function
gu ∈ Lp(Ωψ) such that for every t ∈ (0, 2) and every x, y ∈ ψ(t)Ω we have

|ut(x)− ut(y)| ≤ |x− y|(gu(t, x) + gu(t, y))

and ˆ
Ωψ

gpu(z) dz ≤ C

ˆ
Ωψ

|∇u(z)|p dz

with a constant C independent of u.

Proof. If ˆ
Ωψ

|∇u(z)|p dz = 0,

then u ≡ c on Ωψ for some constant c ∈ R. In this case, we simply define gu ≡ 0 on
Ωψ. Then we have

|u(z1)− u(z2)| ≤ |z1 − z2|(gu(z1) + gu(z2))

for every z1, z2 ∈ Ωψ and
‖gu‖Lp(Ωψ) = ‖∇u‖Lp(Ωψ).

Let us consider the case that

Tu :=

ˆ
Ωψ

|∇u(z)|p dz > 0.

Denote the gradient with respect to the x-variable by ∇χ. By Lemma 2.5, for every
t ∈ (0, 2), there exists a nonnegative function gt ∈ Lp(ψ(t)Ω) with

(4.3) |u(x1)− u(x2)| ≤ |x1 − x2|(gt(x1) + gt(x2))

for almost every x1, x2 ∈ ψ(t)Ω and

(4.4) ‖gt‖Lp(ψ(t)Ω) ≤ C‖∇χut‖Lp(ψ(t)Ω)

for a constant C independent of t. Simply resetting gt to be ∞ on a measure zero
set, we can assume inequality (4.3) holds for every x1, x2 ∈ ψ(t)Ω. We define

ĝt(x) := 2gt(x) + (Tu)
1
p



Pointwise inequalities for Sobolev functions on generalized cuspidal domains 753

for every x ∈ ψ(t)Ω. Since u ∈ C∞(Ωψ) ∩W 1,p(Ωψ), u′ is uniformly continuous on
ψ(t)Ω, there exists a small enough 0 < δ < 1 such that for every x, y ∈ ψ(t)Ω with
0 < |x− y| < δ, we have

(4.5) |ut(x)− ut(y)| < |x− y|(gt(x) + (Tu)
1
p ) ≤ |x− y|(ĝt(x) + ĝt(y)).

Since ψ(s)Ω ⊂ ψ(t)Ω for every 0 < s < t, there exists a small enough 0 < ε1t < t such
that for every s ∈ (t− ε1t , t] and every x, y ∈ ψ(s)Ω with |x− y| < δ, we have

(4.6) |us(x)− us(y)| < |x− y|(ĝt(x) + ĝt(y)).

Due to u ∈ C∞(Ωψ) ∩W 1,p(Ωψ) again, there exists a small enough 0 < ε2t < t such
that for every s ∈ (t− ε2t , t] and every x, y ∈ ψ(s)Ω with |x− y| ≥ δ, we have

(4.7) |us(x)− us(y)| ≤ |x− y|(ĝt(x) + ĝt(y)).

Hence, we can find a sufficiently small 0 < εt ≤ min{ε1t , ε2t} such that for every
s ∈ (t− εt, t] and every x, y ∈ ψ(s)Ω, we have

(4.8) |us(x)− us(y)| ≤ |x− y|(ĝt(x) + ĝt(y)),

and for every s ∈ (t− εt, t], we have

(4.9) ‖gt‖Lp(ψ(s)Ω) ≤ C‖∇χus‖Lp(ψ(s)Ω)

with a constant C independent of s and t. By the simply geometry of the line segment
(0, 2], there exists an at most countable class {(ti − εti , ti]}i∈I⊂N such that

(0, 2] ⊂
⋃
i∈I

(ti − εti , ti]

and ∑
i∈I

χ(ti−εti ,ti](t) ≤ 2

for every t ∈ (0, 2]. Simply extend ĝt to Rn−1 by setting it to be 0 outside ψ(t)Ω and
define a function gu on Ωψ by setting

(4.10) gu(t, x) :=
∑
i∈I

ĝti(x)χ(ti−εti ,ti](t)

for every z = (t, x) ∈ Ωψ. By (4.8) and (4.10), for every t ∈ (0, 2] and every
x, y ∈ ψ(t)Ω, we have

(4.11) |ut(x)− ut(y)| ≤ |x− y|(gu(t, x)− gu(t, y)).

By the argument above, we obtain gu ∈ Lp(Ωψ) withˆ
Ωψ

gpu(z) dz ≤ C
∑
i∈I

ˆ ti

ti−εti

ˆ
ψ(t)Ω

ĝpti(x) dx dt

≤ C
∑
i∈I

ˆ ti

ti−εti

ˆ
ψ(t)Ω

(gpti(x) + Tu) dx dt

≤ C

ˆ 2

0

ˆ
ψ(t)Ω

|∇χut(x)|p dx dt+ CTu

≤ C

ˆ
Ωψ

|∇u(z)|p dz.

The third inequality above comes from the bounded overlaps of the intervals {(ti −
εti , ti]}i∈I⊂N. �
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First, we introduce some results which will be used in the proof of thatW 1,p(Ω) =
M1,p(Ω) implies W 1,p(Ωψ) = M1,p(Ωψ). By Hajłasz [5], there is a bounded in-
clusion ι : M1,p(Ωψ) ↪→ W 1,p(Ωψ). To show that ι is an isomorphism, it suffices
to show that its inverse ι−1 is both densely defined and bounded on W 1,p(Ωψ).
Since C∞(Ωψ) ∩W 1,p(Ωψ) is dense in W 1,p(Ωψ), it suffices to show that C∞(Ωψ) ∩
W 1,p(Ωψ) ⊂M1,p(Ωψ) and that for each u ∈ C∞(Ωψ) ∩W 1,p(Ωψ) we have

||u||M1,p(Ωψ) ≤ C||u||W 1,p(Ωψ),

for a positive constant independent of u. The proof of the next lemma is obtained
by following the proof of Lemma 4.1 in [3] and replacing instances Mχ[|∇u|] with gu
and repeat the argument.

Lemma 4.12. Let Ω ⊂ Rn−1 be a bounded star-shaped domain with W 1,p(Ω) =
M1,p(Ω) for 1 < p < ∞ and ψ : (0, 1] → (0,∞) be a left continuous and increasing
function. Define an outward cuspidal domain Ωψ as in (1.1). Let z1 = (t1, x1), z2 :=
(t2, x2) ∈ Ωψ be two points with t1 < t2. Suppose that u ∈ W 1,p(Ωψ)∩C1(Ωψ). Then
we have

|u(z1)− u(z2)| ≤ C|z1 − z2|
(
M τ [|∇u|](z1) +M τ [gu](z1)

+M τ [|∇u|](z2) +M τ [gu](z2)
)
,

(4.13)

where gu comes from Lemma 4.1.

Let us prove the main result in this note.

Proof of Theorem 1.2. By [6, Theorem 7], if U is a bounded domain,W 1,∞(U) =
M1,∞(U) if and only if U is quasiconvex. Recall that a domain U is quasiconvex if
there exists a constant C ≥ 1 such that, for every pair of points x, y ∈ U , there is
a rectifiable curve γ ⊂ U joining x to y so that len(γ) ≤ C|x − y| for a constant C
independent of x, y. For every left continuous and increasing function ψ : (0, 1] →
(0,∞), Ωψ is quasiconvex if and only if Ω is quasiconvex. Hence, we haveW 1,∞(Ωψ) =
M1,∞(Ωψ) if and only if W 1,∞(Ω) = M1,∞(Ω).

Fix 1 < p < ∞. First, we show M1,p(Ω) = W 1,p(Ω) implies M1,p(Ωψ) =
W 1,p(Ωψ). By [5], we know thatM1,p(Ωψ) can be boundedly embedded intoW 1,p(Ωψ).
To show W 1,p(Ωψ) = M1,p(Ωψ) it suffices to show that the dense subspace C∞(Ωψ)∩
W 1,p(Ωψ) of W 1,p(Ωψ) is contained in M1,p(Ωψ) with M1,p-norm is controlled by
W 1,p-norm from above uniformly. Let u ∈ C∞(Ωψ) ∩W 1,p(Ωψ) be arbitrary. Set

(4.14) ĝ(t, x) = M τ [|∇u|](t, x) + gu(t, x) +M τ [gu](t, x).

Here gu is defined as in (4.10).
By (4.3) and Lemma 4.12, for every z1, z2 ∈ Ωψ, we get the estimate

|u(z1)− u(z2)| ≤ C|z1 − z2|(ĝ(z1) + ĝ(z2)) .

Define g := Cĝ ∈ Dp(u) for a suitable constant C > 1. The triangle inequality gives
ˆ

Ωψ

|g(z)|p dz ≤ C

(ˆ
Ωψ

M τ [|∇u|](z)p dz +

ˆ
Ωψ

gu(z)p dz +

ˆ
Ωψ

M τ [gu](z)p dz

)
.

The inequality (4.4) and the fact that |∇χu(z)| ≤ |∇u(z)| almost everywhere leads
to the estimate

(4.15)
ˆ

Ωψ

gu(z)p dz ≤ C

ˆ
Ωψ

|∇u(z)|pdz.
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Lemma 3.2 leads to the estimatesˆ
Ωψ

|M τ [|∇u|](z)|p dz ≤ C

ˆ
Ωψ

|∇u(z)|p dz

and ˆ
Ωψ

|M τ [gu](z)|p dz ≤ C

ˆ
Ωψ

gu(z)p dz ≤ C

ˆ
Ωψ

|∇u(z)|p dz,

which imply that g ∈ Dp(u) and that

‖u‖M1,p(Ωψ) ≤ C‖u‖W 1,p(Ωψ).

That is, C∞(Ωψ)∩W 1,p(Ωψ) can be boundedly embedded into M1,p(Ωψ). Hence, we
proved that W 1,p(Ω) = M1,p(Ω) implies W 1,p(Ωψ) = M1,p(Ωψ).

Next, we prove W 1,p(Ωψ) = M1,p(Ωψ) implies W 1,p(Ω) = M1,p(Ω). Since Ω is
star-shaped, by a similar argument as above, it suffices to show the dense subspace
C∞(Ω) ∩ W 1,p(Ω) can be boundedly embedded into M1,p(Ω). Let u ∈ C∞(Ω) ∩
W 1,p(Ω) be arbitrary. If u ≡ c for some constant c ∈ R, then u ∈M1,p(Ω) with

‖u‖W 1,p(Ω) = ‖u‖M1,p(Ω).

Hence, we assume u is not a constant function. Now, suppose that

‖∇u‖Lp(Ω) > 0.

As before, we assume 0 ∈ Ω is a star center. We define a function ũ on ψ(1)Ω by
setting

ũ(x) = u

(
x

ψ(1)

)
for every x ∈ ψ(1)Ω.

The change of variables formula implies

(4.16) ‖ũ‖Lp(ψ(1)Ω) = ψ(1)
−n
p ‖u‖Lp(Ω) and ‖∇χũ‖Lp(ψ(1)Ω) = ψ(1)1−n

p ‖∇χu‖Lp(Ω).

Hence, ũ ∈ C1(ψ(1)Ω) ∩W 1,p(ψ(1)Ω). Simply by the geometry, we can write

Ωψ :=
⋃

x∈ψ(1)Ω

Sx.

We define a function û on Ωψ by setting

û(t, x) := ũ(x) for every (t, x) ∈ Ωψ.

Since ψ(t)Ω ⊂ ψ(1)Ω for every t ∈ (0, 2), we have û ∈ C1(Ωψ) with

‖û‖Lp(Ωψ) ≤ 2‖ũ‖Lp(ψ(1)Ω) and ‖∇û‖Lp(Ωψ) ≤ 2‖∇χũ‖Lp(ψ(1)Ω).

Hence, û ∈ C1(Ωψ) ∩W 1,p(Ωψ). Since W 1,p(Ωψ) = M1,p(Ωψ), there exists g ∈ Dp(û)
with

‖g‖Lp(Ωψ) ≤ C‖∇û‖Lp(Ωψ)

and
|û(z1)− û(z2)| ≤ |z1 − z2|(g(z1) + g(z2))

for almost every z1, z2 ∈ Ωψ. We assume last inequality holds at every z1, z2 ∈ Ωψ

by simply setting g = ∞ on a measure-zero set. Set gt to be the restriction of g to
{t} × ψ(t)Ω and define

A := inf
t∈(1,2)

‖gt‖Lp(ψ(t)Ω).

Since u is not a constant function, we have

0 < A ≤ C‖∇û‖Lp(Ωψ) ≤ C‖∇χũ‖Lp(ψ(1)Ω).
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There exists t̂ ∈ (1, 2) with

A ≤ ‖gt̂‖Lp(ψ(t̂)Ω) ≤ 2A.

Then for every x1, x2 ∈ ψ(1)Ω, we have

|ũ(x1)− ũ(x2)| = |û(t̂, x1)− û(t̂, x2)| ≤ |x1 − x2|(gt̂(x1) + gt̂(x2)).

Hence, we have gt̂ ∈ Dp(ũ) with

‖gt̂‖Lp(ψ(1)Ω) ≤ C‖∇χũ‖Lp(ψ(1)Ω).

Define a function g on Ω by setting

g(x) :=
1

ψ(1)
gt̂(ψ(1)x) for every x ∈ Ω.

Then, we have
|u(x1)− u(x2)| ≤ |x1 − x2|(g(x1) + g(x2))

for every x1, x2 ∈ Ω, and

(4.17) ‖g‖Lp(Ω) = ψ(1)
n
p
−1‖gt̂‖Lp(ψ(1)Ω).

Hence, we obtain g ∈ Dp(u) with

‖g‖Lp(Ω) ≤ C‖∇χu‖Lp(Ω)

for a constant C independent of u. Hence, we have C∞(Ω) ∩ W 1,p(Ω) ⊂ M1,p(Ω)
with

‖u‖M1,p(Ω) ≤ C‖u‖W 1,p(Ω)

as desired. �
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