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Bayesian parameter inference for cognitive

simulators

Abstract

This chapter addresses the issue of parameter inference of computational cog-
nitive models that simulate behaviour. Such cognitive simulators serve an im-
portant role in understanding and predicting human thought and behaviour by
implementing hypotheses about the human cognitive processes and modelling
these using stepwise simulations. In HCI, these models can be used for a range
of applications, such as in UI evaluation and optimisation. However, their use-
fulness is limited without rigorous parameter fitting procedures, which permit
efficient and informative parameter inference that can be used to assess confi-
dence in parameter estimates, and easily replicated across experiments. In the
usual case when the simulators are complex, common parameter fitting meth-
ods fail in this respect. In this chapter we discuss the feasibility of Bayesian
parameter inference for cognitive simulators, presenting practical solutions to
Bayesian parameter inference, and demonstrating its usefulness with two cog-
nitive models simulating interactive tasks. Furthermore, we discuss the impli-
cations of efficient, informative, and robust parameter inference for the future
of HCI.

9.1 Introduction

A long-standing objective of human-computer interaction (HCI) and artificial
intelligence (AI) research is to facilitate the use of interactive and intelligent
systems by developing a better understanding of the users of these systems.
This involves taking into account the users’ goals, beliefs, and abilities, in an
attempt to align the information ecologies supported by interactive systems
with the users’ preferences. In this chapter, we consider the hard problem of
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understanding the user by asking how it can be furthered by inferring param-
eters of computational cognitive models. These models act as simulators that
map latent user characteristics to observed behaviour. We use the term ‘simu-
lation’ to emphasise that these models make step-by-step predictions (in some
units of time) of the progress of an interactive task. The validity of these sim-
ulators and thus usefulness depends on informative and robust parameter in-
ference. The idea of these models, simply put, is that they implement a series
of hypotheses about the human cognitive processes, attempting to predict be-
haviour based on individual traits and experiences, task description, and inter-
active environment characteristics, which are all represented as parameters in
the model.

Given that the structure of a model is psychologically valid and its param-
eters are specified and interpreted correctly, it is possible to predict what the
user would do in different circumstances. This is called forward modelling,
wherein adjusting the parameters that shape the model’s task environment can
be used to ask “what if” questions, thus providing information to decision-
making, such as adaptation of user interfaces. For instance, a cognitive model
of layout learning can be used to predict visual search performance over differ-
ent user interfaces (UIs) and for users with different expertise level, permitting
an automated and individualised evaluation of various design choices [18, 19].
In this regard, such models can be used to better adapt technologies for the
psychology of users, because they improve our understanding of the latent fac-
tors behind users’ behaviours. Moreover, they are helpful in developing HCI
as a science, permitting theory development and testing by forcing researchers
to explicate their theoretical assumptions about users, and allowing simulating
the hypothesised user behaviour.

A major challenge for the development, generalisation, and utilisation of
cognitive models is that they often encompass a large number of parameters,
upon which their psychological validity stands. The existence of these param-
eters per se is not the problem, but the predictions that the models make are
useful only insofar it is possible to claim that the values of these parameters
are set plausibly – which is a hard problem. Parameter inference refers to iden-
tifying values that are theoretically plausible and lead to realistic predictions.
For many parameters of cognitive models used in HCI, parameter inference
is fairly straightforward, as the values in question are identified on the basis
of existing psychological research or derived from the specifics of the known
task environment. For instance, in the aforementioned layout learning model,
parameters governing the movement of eyes are psychologically established
and not suspect to significant variation between tasks or individual users. Sim-
ilarly, parameters dictating the task environment, such as the size and locations
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Figure 9.1 In forward modelling, the model M is run with fixed parameter
values ✓ to produce predictions D

p

. Conversely, in inverse modelling, obser-
vations D

o

are used to infer plausible values for ✓.

of visual layout elements, are not difficult to set as long as the specifics of
the UI are fully known to the modeller. However, there are two cases where
a parameter cannot be fixed a priori: (1) when the static parameter partially
encloses or “hides” dynamic cognitive mechanisms, therefore requiring recal-
ibration with new tasks; and (2) when variance in the parameter value can be
connected to individual differences in behaviour. In both instances, parameter
inference becomes an inverse modelling problem: given observed behaviour,
what are the plausible parameter values? The difference between forward and
inverse modelling is illustrated in Figure 9.1.

This chapter focuses on the use of Bayesian parameter estimation for infer-
ring parameters of cognitive simulators based on observed behavioural data.
The advantage of the Bayesian approach is in its ability to express prior in-
formation and uncertainty about parameter estimates using probability theory.
The outcome of parameter estimation is a posterior distribution that expresses
probabilities for different parameter values and combinations when the ob-
served behaviour is taken into account. Usually, the reason these simulators
are applied and their parameters inferred is to predict and understand user be-
haviour. This can be accomplished by generating a posterior distribution of
predicted behaviours using the inferred parameter distributions. In practice,
posterior estimation for parameters of cognitive simulator models is carried out
with likelihood-free inference (LFI). LFI methods provide a way to respond to
a critical problem with Bayesian inference of parameters of complex simula-
tors: because the models are not closed-form equations, but stepwise simula-
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tors involving stochasticity, fit to data under certain parameters can only be es-
tablished by running the simulator with said parameter values. While Bayesian
parameter inference and LFI methods have been received with some interest
in cognitive science [41, 40, 21, 9, 42], the ultimate goal of this chapter is to
facilitate a wider use of these techniques within the computational interaction
modelling community.

In what follows, we first define and give examples of computational cogni-
tive models, as used as simulators in HCI to generate predictions of user be-
haviour. We then discuss the problem of parameter inference for these simula-
tors, and review the ways that it can be accomplished. Our focus is on Bayesian
parameter inference. We discuss common LFI approaches and demonstrate the
use of approximate Bayesian computation (ABC) as an instance of Bayesian
parameter inference applicable to cognitive simulators. As we will argue, this
approach is appealing for two reasons: (1) Because it permits formally incor-
porating prior knowledge to inform parameter estimation; and (2) Because it
provides an informative posterior, which can be used to assess the amount of
confidence in the parameter estimates. Both of these features increase our ca-
pacity to learn about parameters of cognitive models, especially when these pa-
rameters are individually determined and critical for predicting task behaviour,
and implement interventions for better facilitation of user adaptation.

9.2 Bayesian parameter inference for cognitive simulator
models

This section formalises Bayesian parameter inference and how it can be used to
infer the parameters of cognitive simulator models. We first outline the process
of parameter fitting for cognitive simulators (Section 9.2.1) and then discuss
how Bayesian parameter inference can be used efficiently and informatively in
this process (Section 9.2.2). This is achieved with the likelihood-free methods
discussed in Section 9.2.3.

9.2.1 Parameter Inference for Cognitive Simulator Models
In our formal investigation of parameter inference for cognitive simulators,
we define a model M with parameters ✓. Executing the model maps the input
parameters into data that consist of predictions made by the model. Because
cognitive models generally involve stochastic elements, the same parameter
values do not necessarily generate the same output upon subsequent executions
of the model. As a result, it is often necessary to run the model multiple times
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with the same parameter values, resulting in a more informative distribution of
predictions. The prediction data Dp from the model are therefore sampled from
the parametrised model M(✓), instead of representing a deterministic mapping
from it.

Compared to testing with human participants, the major benefit of compu-
tational cognitive models for HCI is that they are simulators, which can be
executed as many times as required. Varying the parameters of the models,
especially those pertaining to the task environment, such as the UI, allows
researchers and designers to investigate how various UI changes impact be-
haviour. We present some examples of how cognitive simulators have been
used in HCI in Table 9.1. Because these simulators implement hypotheses
about how the human cognition processes information and how this process
results in behaviour, simulation of human-like behaviour is often possible even
for scenarios or interventions for which no existing human data are available.
Furthermore, given that a parameter can be posited a role in determining in-
dividual behaviour, varying its value permits the prediction of behaviour from
various types of users.

However, these simulations are only good insofar the parameters that gov-
ern cognitive processes are set correctly. Where the value or distributions of
values of a parameter cannot be deduced from the task or reused from existing
research, they must be inferred from observed behaviour. Based on the short re-
view of parameter fitting procedures of cognitive models used in HCI, there is
currently no standard and easily replicated inference methodology in place. In
case of cognitive models, when parameters have been inferred from observed
data, this inference is often either not reported, or it is reported as having been
done by adjusting the parameter values by hand until model fit to human data
was deemed acceptable [21]. There are some exceptions to this in HCI, such
as [33] using genetic optimisation, and [15] a simplex method, but generally
the field lacks a standard for parameter inference. To our knowledge, there are
only few publications in HCI that report using Bayesian parameter estimation
[11, 20].

Observing human behaviour, either via psychological experimentation or
from observations made during real-life interaction, provides us with data Do,
which can be then used to infer ✓. This assumes that the data observed from
users and generated by simulating the model are similar in that they describe
the same behaviours. For instance, the data can be in terms of aggregate data,
such as mean task times or error counts, or more detailed observations, such
as logs of user inputs from completing a single task. The most common prac-
tice in HCI is to collect data from multiple users, and then create summary
statistics by aggregating first within and then across individuals, thus abstract-
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Table 9.1 A list of example computational cognitive models in HCI and how
their parameters have been set (F = Fit to observation data, L = based on

literature, U = Undefined, D = Default values)
Ref Target Applications Cognitive archi-

tecture / theory
Example parame-
ter

Inf.

[14] Visual search in
graphical user
interfaces (GUI)

GUI design, pre-
dictive tools for
testing designs

EPIC Recoding time for
text

L

[10] Web navigation via
hyperlinks

Web design SNIF-ACT Attentional weight F L
D

[26] Information search
via search engine

Search engines ACT-R Retrieval threshold D,U

[35] User multitasking In-vehicle user in-
terface design and
testing

ACT-R Steering style F

[2] Effects of interrup-
tions on user cogni-
tion

Interface design for
managing interrup-
tions

ACT-R Time to store a new
representation into
problem state

L

[33] Memory-based in-
teraction obstacles

Workload manage-
ment

CMM Degree of memory
decay

F

[3] Aviation surface
operations and
performance

Pilot performance
and error predic-
tion

ACT-R Noise in produc-
tion utility compu-
tation

U

[30] Decision-making
of air traffic con-
troller (ATC)

ATC system design
and training

ACT-R Activation noise D,U

[6] Human error Human reliability
analysis

SHERPA Scale and shape pa-
rameters of error
probability density
function

L

[39] Human communi-
cation

Human-robot com-
munication and in-
teraction

ACT-R/E Waiting time until
switching attention

L

[29] Impact and use of
mobile health ap-
plications

Mobile health ap-
plications

ACT-R ACT-R parameters D

[15] Safety incident re-
porting decisions

Mobile crowd-
sourcing applica-
tions

DDM Response bias F

[17] Multitasking in
driving

In-vehicle user in-
terface design and
testing

CR Action noise L

ing the relevant behavioural aspects of the interaction into few selected point
estimates.

Parameter inference for cognitive simulators can be used to determine user
or population-level characteristics based on the observed data. Traditionally,
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the aim is to estimate parameters ˆ✓ that maximise a model fit measure. For ex-
ample, maximum likelihood estimation is based on the idea that parameters ✓
are supported by the observed data Do in proportion to the likelihood P (Do|✓),
which is the probability that the model M with parameters ✓ generated the ob-
served data Do, P (Dp = Do|✓). Thus, even though the likelihood does not
provide direct information about how much a parameter value is supported,
this proportionality permits comparing different parameter values according
to their likelihood. The maximum likelihood estimate ˆ✓ is calculated as the
parameters ✓ that maximise P (Do|✓). However, when a complex simulation
model is used to describe the dependencies between the parameters and sim-
ulation outcomes, the observation probabilities P (Dp = D|✓) can be hard or
impossible to determine. This is due to the models being simulators, which
cannot be expressed analytically but must be executed in a stepwise fashion,
with each step processing information according to complex rules, with poten-
tially multiple sources of added noise. In this case, parameter estimates ˆ✓ must
be determined based on other model fit measures, such as prediction error or
discrepancy between summarised Do and Dp.

While parameter estimation is possible based on model fit measures also
when complex simulator models are studied, a problem with point estimates ˆ✓
is that since the set of observed data is limited in size, the parameters that best
match the available observations may not be the ones that best describe the user
or make the most accurate predictions about user behaviour in new situations.
In addition, a point estimate does not express the amount of confidence that
the estimate is correct, and therefore it does not let researchers and designers
to consider how strongly to trust predictions made from a model parametrised
in this way. These problems associated with point estimates can be avoided by
applying Bayesian parameter inference.

9.2.2 Bayesian Parameter Inference
Bayesian parameter inference is grounded on the fact that we generally can-
not know the exact parameter values that best describe the observed data and
user(s) behind it. However, it is possible to obtain information about the param-
eter values, and this information can be represented as a probability distribu-
tion over the possible parameter values. Possible information about parameters
✓ includes both what can be learned based on observations Do, as discussed
in the previous section, and our expectations about plausible parameter values
based on what we know about the simulator model. The idea is to express, prior
to making observations, what we know about the parameters as a distribution
P (✓), and then make observations to update this expectation. Given the prior
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probabilities P (✓) and observation likelihood P (Do|✓), posterior probabilities
are defined as

P (✓ | Do) =
P (Do | ✓)P (✓)

P (Do)
(9.1)

where P (Do) is the marginal likelihood P (Do) =

R
P (Do|✓)P (✓)d✓. The

posterior P (✓|Do) is a probability distribution over parameter values, and it
represents what we know about the unknown parameters when we take into ac-
count that these parameters produced the observations Do. Since observations
are expected to reduce uncertainty about the parameter values, the posterior
distribution is usually more concentrated than the prior. In case where the ob-
servations Do are not informative about the unknown parameters, the posterior
will remain close to the prior.

The prior distribution quantifies the modeller’s assumptions about plausi-
ble parameter values before any comparison between model predictions and
observed data are made. It can encode known psychological or physiological
constraints, information about known dependencies between parameter values,
such that one parameter value cannot exceed another, or information about the
most probable values. For example, if previous experiments provide informa-
tion about how a parameter value varies in a population, this can be used as
prior information about what value the parameter takes in a new individual.
That such prior information is taken into account in parameter inference is
especially important when we wish to make predictions based on a small ob-
servation set, because parameter values chosen based on the observations alone
could be nonsensical.

Posterior probabilities provide an intuitive way for the modeller to under-
stand which parameter values could describe the observed user. This means
that while the posterior can indicate the probable parameter values, it also
provides information about uncertainties and allows us to answer questions
like what is the probability that the unknown parameter value is below certain
threshold. Moreover, when we want to predict how the observed user behaves
in a new situation, the posterior can be used to calculate a posterior predictive
distribution. In practice, when predictions are generated with a cognitive sim-
ulator model, the posterior predictive distribution is sampled by drawing pa-
rameter values from the posterior and running the simulator parametrised with
these values. With enough samples drawn and simulations run, the predictions
from the simulation runs form the posterior predictive distribution. Generating
the predictive distribution based on a posterior sample rather than a point esti-
mate allows us to take into account the uncertainties in parameter values and
ensure that the predictive distribution variance is not underestimated. Figure
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Figure 9.2 (a) A simulator M with fixed parameters ✓ can be run multiple
times to produce a series of predictions D

p

, which are each summarised, re-
sulting in a distribution of summaries. (b) When a posterior of parameters ✓
has been created using Bayesian parameter inference, a posterior predictive
distribution can be generated by repeatedly sampling values of ✓ from the
posterior and summarising the resulting predictions D

p

. Note that posterior
predictive inference may be able to more plausibly estimate the occurrence
of tail cases of some model features. Concentrations of observable model
features in (b) illustrate that the simulator with fixed parameters can under-
estimate the amount of tail cases. (c) Observing a process in the world W

produces data D

o

that can then be summarised using summary statistics S.

9.2 summarises how distributions of summary statistics can be generated with
either fixed parameters or by sampling the posterior.

To summarise, posterior probabilities combine prior information with obser-
vation likelihoods and provide more information for the modeller than a point
estimate. A problem with the posterior is that it can be expensive or impos-
sible to compute. Even when the likelihoods P (Do|✓) and prior probabilities
P (✓) can be evaluated, P (Do) may not be computable in practice. Hence it
is common to work with unnormalised posterior values P (Do|✓)P (✓). The
unnormalised posterior does not associate parameter values with actual proba-
bilities, but can be used much like the likelihood function to compare posterior
support to parameter values and to determine maximum a posteriori estimates.
It can also be used to sample the posterior distribution, and a sample with N
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parameter values can be used to calculate descriptors like posterior distribution
mean. Also running the simulator with the sampled parameter values produces
a sample from the posterior predictive distribution.

Finally, a problem with many cognitive simulator models is that the likeli-
hood P (Do|✓) cannot be determined based on the model. In this case poste-
rior estimation has to be carried out with likelihood-free methods that deter-
mine approximate posterior probabilities based on prior information encoded
in P (✓) and repeated simulation experiments.

9.2.3 Likelihood-Free Inference
Likelihood-free inference provides means to estimate posterior probabilities
over parameter values when it is not possible to calculate the observation like-
lihood. This section introduces basic ideas in likelihood-free posterior estima-
tion based on approximate Bayesian computation (ABC) and its recent alter-
natives. ABC methods substitute likelihood evaluations with direct compar-
isons between observed and simulated data. These classic methods have been
reviewed in [41, 23, 37]. The other methods introduced in this section use sim-
ulations to learn a distribution model that can be used to compute approximate
posterior probabilities based on the observed data. These have been reviewed
and discussed in [5].

ABC can be carried out with a rejection sampler that constructs an approxi-
mate posterior sample as follows. First, candidate parameter values ✓ are sam-
pled from the prior distribution P (✓), and the simulator that predicts user be-
haviour based on parameters ✓ is executed with ✓ to generate simulated user
interactions Dp. The simulated data Dp are then compared to the observed data
Do, and the candidate parameter value is accepted in the approximate posterior
sample if difference �(Do, Dp) between the simulated and observed interac-
tions is below certain threshold ✏. The process can continue until N candidate
parameters have been accepted or until the simulation count exceeds a prede-
termined maximum.

The above method substitutes likelihood evaluations with direct compar-
isons between observed and simulated data. In practice the likelihood P (Dp =

Do|✓) is approximated as P (�(Do, Dp) < ✏|✓). This would be exact with
✏ = 0 and �(D,D0

) that is a distance metric such that �(D,D0
) = 0 when

D = D0 and �(D,D0
) > 0 otherwise. However since we work with stochas-

tic simulators, innumerable trials could be needed to produce even one simu-
lation outcome Dp that matches the observed data Do under these conditions.
Hence we must allow some approximation error, and the difference measure
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�(D,D0
) and tolerance threshold ✏ are needed to define the conditions under

which simulation data are considered acceptable match with the observed data.
The difference measure �(D,D0

) formalises what makes observations sim-
ilar. A common approach is to compress observations into informative features
called summary statistics and define �(D,D0

) as distance between the sum-
maries S(D) and S(D0

). Summarisation should reduce variation that is not in-
formative about the unknown parameters ✓ so that the distance between S(D)

and S(D0
) is close to zero when D and D0 are data simulated with the same

parameters. The summaries are often constructed based on domain information
about what features in the observed and simulated data could be sensitive to the
unknown parameter values, but it is also possible to derive and choose between
candidate statistics based on simulation experiments. For more information on
summary statistics selection, we recommend [31].

Problem with the rejection sampler is that the acceptance rate is expected
to be low: since posterior distributions tend to be more concentrated than the
priors, most candidate parameter values will not be accepted when these are
chosen based on their prior probabilities. The tolerance threshold can be used
to increase the acceptance rate, but this increases approximation error and
makes the posterior distribution wider and closer to the prior distribution. A
solution is found in iterative methods that take into account what has been
learned about the previous trials when choosing the next candidate parameters.
Iterative solutions include methods like ABC population Monte Carlo (ABC
PMC), which is discussed and evaluated with cognitive simulator models in
[41]. This method starts with the prior distribution and uses the samples that
produced the lowest �(Do, Dp) to determine the next proposal distribution.
Since a proposal distribution constructed in this manner is expected to become
more and more concentrated around the posterior as iterations proceed, fewer
simulations are run with parameters that have low posterior probabilities. The
same idea motivates advanced methods like BOLFI [13], which uses sequential
model-based optimisation to locate parameter values that minimise expected
�(Do, Dp). BOLFI has been used to estimate cognitive simulator model pa-
rameters in, for instance, [20, 11].

Alternatives to the ABC methods that compare simulated and observed data
include methods that use simulated data to learn about statistical dependencies
between the parameters and simulation outcomes. In practice the dependen-
cies can be encoded in a distribution model that is fitted to the simulated data
and used to determine an approximate posterior model ˆP (✓|D) that can be
evaluated at D = Do. Methods based on this principle include the synthetic
likelihood and its extensions [43, 32] and methods that utilise kernel density
estimation or neural density estimation to model the simulated data distribu-
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tion. Density estimation has been evaluated with cognitive simulator models in
[40]. Related methods also include density-ratio estimation where the approx-
imate posterior estimation problem is converted into a classification problem
[8].

Density estimation and other approaches that use simulations to estimate an
approximate distribution model operate on the simulated data or summaries,
and do not require a difference measure or tolerance threshold to be deter-
mined. The methods require numerous simulations as training data, but se-
quential versions exist that utilise the observations Do to avoid excess sim-
ulations with parameters that have low posterior probabilities. These include
methods like sequential neural likelihood [28] and automatic posterior trans-
formation [12]. Moreover there are applications in HCI wherein the total com-
putation time or total simulation count matters less than the response time
between when the user interaction occurs and when the posterior estimate is
available for adaptation or other such purposes. These applications could find
it valuable that, when observations are not used in the training process, the
approximate posterior model can be learned based on simulations offline, and
online computations reduce to evaluation at D = Do.

Finally, a concern with the likelihood-free methods is whether posterior es-
timation can be carried out when the simulator model has many unknown pa-
rameters. The standard ABC methods discussed earlier in this section work
best with low-dimensional summary statistic which cannot capture informa-
tion about numerous parameters. This means that the summaries dimension in-
creases hand in hand with the parameter dimension, and the standard methods
are not applicable in problems with more than a few parameters. However the
density and density-ratio estimation methods can be less sensitive to problem
dimension, and the standard methods also have variants that decompose dif-
ference measure and posterior distribution in order to handle high-dimensional
problems. These methods are discussed in [25].

9.3 Using Bayesian parameter inference with cognitive
simulator models

In this section, we demonstrate the use of Bayesian likelihood-free inference
for fitting parameters of computational cognitive models that simulate user
behaviour in HCI tasks. Of the two examples provided, the first demonstrates
fitting of the model to aggregate data. The second example is then presented
to demonstrate how to infer parameter values for individual users. Posterior
estimation is carried out with ELFI [24] tools in both examples.
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9.3.1 Parameter estimation of a menu search model
We replicate an experiment presented in previous work [21] where a menu
search model was fitted to behavioural data both with methods that optimise
a traditional model fit measure and with the ABC method BOLFI [13]. The
likelihood-free inference experiments with BOLFI were used to estimate pos-
terior distributions over parameter values based on aggregate and individual
observations collected in earlier work [1]. The present demonstration focusses
on the population level posterior distribution that is estimated based on aggre-
gate data. Our aim is to fit the model parameters governing eye movement time
and memory recall.

The task model
The model studied in this experiment simulates the visual search of menus [4].
The model predicts eye movements in a task where users fixate on the ele-
ments of a drop-down menu to find a cued target. Importantly, it predicts how
eye movement patterns are a result of adapting to the UI design and cognitive
constraints. Therefore, as strategies emerge as adaptations to the UI design,
the model permits investigating how different menu designs impact behaviour.
The task and menu environment are described as a Markov decision process,
and the simulated user is represented as a computational agent. The agent’s
actions include fixating on any of the menu items, which causes a saccadic
eye movement towards that item, and its subsequent encoding. The task ends
upon encoding of the cued target. Additionally, the agent can decide to quit,
which is necessary for ending the task in cases where the target is absent. The
agent receives negative rewards for time spent on the menu search and a posi-
tive reward for finding the item or correctly ending the task, and reinforcement
learning is used to discover the optimal search policy.

The menu search model used in the present experiment is based on the ver-
sion proposed in [20]. Here the task completion times depend on the search
path that the model learns to optimise and two parameters that describe the
user: duration associated with each fixation and selection delay that occurs at
task completion. The model also takes into account that users sometimes re-
member the whole menu based on the first item, in which case the optimum
behaviour is to directly fixate the target item. This is modelled as menu recall
probability. Further model parameters control how shape and semantic rele-
vance can be observed with peripheral vision, and encode properties of the
searched menu. These were set to replicate the previous experiment [21].

Finally the parameters that control learning and data collection were set as
follows. The behavioural pattern that is expected to minimise the menu search
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Figure 9.3 Prior distributions over menu search model parameters.

time under given user and menu parameters was learned based on 500000 train-
ing episodes. The limited training episodes mean that the simulator may not
learn the exact same behaviour each time even when called with the same
parameters. This is one reason we see variation in the simulated task com-
pletion times. Another reason is that the simulated data is collected over 100
menu search tasks with random menus and target location. This means that
two datasets simulated with the same parameters do not describe task comple-
tion times in the exact same tasks. In this experiment, eight items were always
present in the menu, with most of the time (90%) the cued target being present,
and sometimes (10%) not.

Parameter estimation
The parameters inferred based on observed behavioural data include focus du-
ration, selection delay, and menu recall probability. The focus duration and
selection delay parameters are associated with the same prior distributions that
were used in previous work [21]: focus duration has a normal distribution
prior with mean 300 ms and standard deviation 100 ms truncated to interval
[0, 500] ms and selection delay a normal distribution prior with mean 0.3 s and
standard deviation 0.3 s truncated to interval [0, 1] s. Menu recall probability
is associated with a beta distribution prior with parameters ↵ = � = 1.5. The
prior distributions are visualised in Figure 9.3.

The observation data for this example case come from a study where hu-
man participants conducted the menu search task [1]. The observations used
in posterior estimation include the task completion times and whether or not
the cued target was present in the menu in each trial. The observed and sim-
ulated data are compared based on the summaries and distance proposed in
[20]. Task completion times are compressed into mean and standard deviation
calculated across trials where the target was present and across trials where the
target was not present, and comparison between observed and simulated data
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is based on squared distance between the means and absolute distance between
the standard deviations.

Posterior estimation is carried out with the BOLFI method available in ELFI
[24]. BOLFI [13] uses a surrogate model to describe dependencies between
parameter values and �(Do, Dp). Gaussian process regression with a squared
exponential kernel is used in the present experiment, and the unknown simula-
tor parameters are each associated with a separate surrogate model parameter
to encode how sensitive �(Do, Dp) is to variation in that parameter. These
length scale parameters were also associated with Gamma prior distributions
with shape ↵ = 2 and rate � = 10/(b � a), where a and b denote the param-
eter minimum and maximum value considered in this experiment, to ensure
reasonable predictions when the model is fitted based on limited data. The
probabilities P (�(Do, Dp) < ✏) that are used as approximate likelihoods can
be calculated based on the surrogate model, which means that the surrogate
model can substitute the simulator when we sample the approximate posterior.
BOLFI initialises the surrogate model with simulations run with candidate pa-
rameters sampled from the prior distribution, but runs most simulations with
parameter values chosen based on the current model estimate. 50 parameter
combinations were sampled from the prior and 450 were selected based on the
lower confidence bound acquisition rule in the current experiment. Alternative
acquisition rules are discussed in [16].

Results and discussion
We sampled the approximate posterior determined based on the surrogate model
learned in BOLFI with ✏ = 9. The sample is used to estimate the approximate
posterior mean, which as a parameter estimate minimises the expected squared
error between the estimate and true parameter value. The estimated posterior
mean is located at parameter values focus duration 250 ms, selection delay
0.29 s, and menu recall probability 0.53.

The marginal distribution over individual parameter values in the posterior
sample is visualised in Figure 9.4. We observe that the comparison between
observed and simulated data has narrowed down the focus duration and se-
lection delay parameter distributions compared to the prior (Figure 9.3). This
means that some parameter values that were considered in the prior distribu-
tion have not been able to explain the observed data. The posterior distribution
over menu recall probability is close to the prior distribution, which indicates
that we were not able to extract much new information about this parameter
based on the observed data.

Figure 9.5 shows the marginal distributions calculated over parameter pairs.
Here we can see that the posterior captures a trade-off between the focus du-
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Figure 9.4 Marginal posterior distributions over individual menu search
model parameters.

Figure 9.5 Marginal posterior distributions over menu search model param-
eter pairs.

ration and selection delay parameters that both contribute to the observed task
times. This has been learned based on the observed data, since the prior distri-
butions did not encode correlation between parameters, and it means that while
we cannot be too certain about the exact parameter values, which is observed
as variance in the individual marginal distributions, we can narrow down the
most probable combinations for focus duration and selection delay.

9.3.2 Individual parameter estimation of a driving model
Our second example demonstrates estimation of person-specific parameters to
a cognitive simulator. In comparison to the previous example, where each sum-
mary statistics was computed as an aggregate over all participants, the goal of
individual parameter estimation is to capture the idiosyncracies of a single user.
A cognitive simulator, if correctly parametrised to an individual, can be used
to explore how the user would react to different interfaces or changes in the
task circumstances. However, especially when making decisions on individual
basis, it is important to be able to assess the confidence that can be placed on
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the model’s predictions. To that end, we demonstrate here how the posterior
produced by Bayesian parameter estimation can be used to investigate how
probable certain user behaviours are, as predicted by the model.

The task model
We utilise a model of driving that has been used in simulating how drivers
share visual attention between the driving and an in-car search task when mul-
titasking [17]. The model is based on a similar idea as the menu search model
in the previous example: in-car glancing behaviour is assumed to emerge as an
adaptation to task and cognitive constraints. For instance, as the speed of the
car increases, in-car glances become shorter because of the increased visual de-
mand of the driving task. Such an adaptive model can be used to predict how
circumstances of driving, the design of the in-car interface, and the abilities of
the user impact driving safety.

The original study did not make any attempts at fitting the parameters of
the model to human data; instead, they were set by observing the model’s be-
haviour and determining a parameter value that produced simulations that on
the face value looked realistic. However, the model includes multiple param-
eters that the authors discuss might vary between drivers and use cases. Here,
we focus on one, action related noise �. This parameter dictates how precise
the driver’s steering movements are, that is, how accurately the car is con-
trolled. Larger parameter values result in more swayed driving, as the driver
needs to take small corrective actions to control for the noisy steering. Simi-
larly to the original paper [17], we hypothesise here that the model’s driving
noise parameter can be varied in order to simulate variance in lateral stability
between individual drivers. However, contrary to the original study, we provide
empirical support to this evidence by applying Bayesian parameter inference.

Parameter estimation
We describe our prior expectations about the action related noise parameter �
as a Gamma distribution P (�) = �(3, 0.5), illustrated in Fig 9.6. The intuition
behind this definition is that we assume the following: (1) every individual’s
action related noise is greater than 0, due to inherent noise in the human motor
system; (2) we expect that this noise is distributed fairly normally around its
mode value, but with a long right tail to accommodate for individuals with a
lot of action related noise, such as elderly drivers or those with motor impair-
ments; (3) we fix the mode of the distribution to be at 1.0, because tests with
the driving model indicate that, on the face value, the resulting predicted be-
haviour seems a reasonable approximation of normal driving. It is important to
note that none of these points, with the exception of the first one, are strongly
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Figure 9.6 The gamma distribution used as a prior in the case example.

grounded in existing research. Regardless, they provide information, even if
weak, to the parameter estimation procedure. Furthermore, this process makes
explicit our assumptions about the prior, permitting future revisions of it, based
on more evidence and reasoning.

The human data used in this example are taken from the original study1. The
experiment proper had 12 participants conducting in-car visual search while
driving the car. In addition, there was a practice session at the start of the
experiments, where the participants got comfortable with the controls of the
car simulator by driving a slightly curving road. The experiment had two speed
conditions, with the car’s speed fixed to either 60 km/h or 120 km/h, and so
the practice session had these two speeds as well. Here, we use the data from
the practice session only, and attempt to fit the driving model’s � parameter
to individual drivers based on observing a few minutes of driving with both
speeds used.

Both the driving simulator used in the behavioural study and the driving
model studied in this experiment generate detailed time series data of the car’s
lateral position on the road. The data are snapshots of the state of the driving
simulator or the model in intervals of 150 ms. Since the behaviour studied
in this example is driving stability of individual participants, we use standard
deviation of lateral road position to summarise the observations. It is simple
to compute from both simulated and observed data, and provides an intuitive
measure of the amount of instability in the driving. As the study with human
participants included two conditions of fixed speed, we compute the summary
statistic twice. The standard deviations of lateral offset calculated based on
individual observations ranged between 0.11–0.25 in the 60 km/h condition
and 0.16–0.40 in the 120 km/m condition. The standard deviations are shown
in Figure 9.7.

1 The data are available at
https://gitlab.com/jokinenj/multitasking-driving.
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Figure 9.7 Observed individual summary statistics.

Fitting parameters on individual basis can be computationally expensive in
case there are several individuals to model and the whole inference process is
repeated with each observation set. The present experiment uses the LFIRE
method [38] available as an ELFI extension PYLFIRE [22]. This is a density-
ratio estimation method that uses classification between simulated datasets to
learn the ratio between likelihood and marginal likelihood values. The method
calculates approximate posterior probabilities at predetermined parameter val-
ues. Here the values were selected at 0.1 interval between 0 and 3. Gaussian
process classifiers were trained as the likelihood-ratio model using 100 simula-
tions with each parameter value and 100 simulations with parameters sampled
from the prior distribution. The model was then used to calculate approximate
posterior probabilities based on all individual observations. This means that
while the model training took time, individual posteriors could be calculated
based on the model without extra simulation costs.

Results and discussion
The posterior distributions estimated based on individual observations are each
concentrated around mean values between 1.0–1.3. The mean values are recorded
in Table 9.2. We use each individual posterior distribution to sample N = 100

parameter values and run simulation experiments to determine the posterior
predictive distribution over driver behaviours. Selected sample distributions
over � and predicted offset in car position are shown in Figure 9.8. The pos-
teriors have clear centres that are at different parameter values. This indicates
that the parameter inference procedure was able to capture individual differ-
ences in driving behaviour via the action noise parameter �. We also see that
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Table 9.2 Estimated individual posterior mean values.
P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12

�̂ 1.2 1.0 1.2 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.2

Figure 9.8 Selected posterior and posterior predictive distributions.

some observations have been more informative about the unknown parameter
value than others, as there are differences in the posterior variance. Moreover,
individual differences between the participants’ action noise values are now
visible as differences in the predicted offset in car position.

The posterior and posterior predictive distributions permit the modeller to
consider the plausibility of different parameter values and thus to assess con-
fidence in predictions. For instance, if the interest is in deploying individually
tuned driving aids, such as a lane departure warning system, the model can
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be used to predict on an individual basis when to signal a warning such that
the driver has enough time to respond to it. In such an application, it is im-
portant that decisions are made based on all the available information and that
uncertainties are also taken into account.

9.4 Discussion

Computational cognitive models make it possible for HCI designers and re-
searchers to better understand users by providing psychologically realistic sim-
ulations of interactive behaviour. This chapter discussed the role of parameter
inference in using such simulators in HCI. Manipulating the parameters of a
model makes it flexible, permitting quick prototyping of different interactive
scenarios, and predicting behaviour of individuals with various abilities and
goals, but only insofar as the parameters are set correctly and informatively.
Especially important this is in cases where noisy and sparse observations of
user-generated data are used in inferring the values of the parameters. Bayesian
parameter inference is attractive in this regard as it allows the modeller to take
into account prior information, and provides a posterior distribution over pa-
rameter values.

While the focus of this chapter is on parameter inference, parameters them-
selves are rarely the final interest of research. The practical purpose of cog-
nitive modelling in HCI is to make predictions based on parametrising these
models. How much a certain parameter varies within the user population is
therefore not as pertinent question for UI design as is the range of actual be-
haviours that can be predicted (and observed) based on the distribution of the
parameter in question. When these parameters are inferred, it makes sense to
provide the whole range of plausible predictions, given what is known about
the parameter prior to parameter estimate and after outcomes of simulations
with different parameter values are compared to observed data. Bayesian pa-
rameter inference facilitates this process by formalising how the posterior pa-
rameter distribution is inferred on the basis of a prior and evidence. The poste-
rior can then be sampled for parameter values, which are used to parametrise
the simulator to generate a range of predictions called the posterior predictive
distribution. For instance, in our example above about inferring the action re-
lated noise parameter of individual drivers, the value of the parameter was only
of secondary importance compared to predictions of that driver’s behaviour
(i.e., variability in lane offset). When such concrete predictions can be made
from individual users, it becomes feasible to run the simulator under various
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task circumstances and thus generate a range of possible future scenarios to
inform decision making.

Bayesian parameter inference is also powerful tool to analyse model flexi-
bility. The problem of overly flexible cognitive models is that if the free pa-
rameters of the model can be adjusted such that the model produces any kind
of behaviour, then the model’s fit to observation data is not a persuasive ar-
gument in support of the validity of the model [34]. Solutions to this include
determining the predictions of the model over the whole range of the parameter
space, accounting for the variability of the data, and showing that the model’s
predictions are restricted in some sense. Bayesian parameter inference allows
for all of these in a formalised manner. The posterior predictive distribution is
an intuitive way to investigate the whole range of a model’s predictions, and
because generated in light of prior assumptions about the parameter, such as
its plausible range, and the observed data, including their variability, the pos-
terior can be used to investigate and demonstrate model flexibility. Especially
in cases where the predictions generated by cognitive models are used to make
critical decisions, it is important to be able to assess our confidence in the
model’s predictions and its validity.

Likelihood-free inference provides the practical tools to estimate posterior
probabilities over simulator model parameters. The most accessible to new
practitioners is the basic ABC sampler. Here candidate parameters are sam-
pled from the prior distribution and parameters that produce simulated user
interactions similar to the observed interactions are accepted in the posterior.
This method is not complicated and works when the estimation problem is
low-dimensional and the individual simulations are not too expensive to com-
pute. The more advanced methods that use previous simulations to decide the
next candidate parameters can reduce the total simulation count a lot, but have
more parameters that need to be controlled. The same applies to methods that
learn a density or density-ratio model based on simulated data. These methods
are attractive because the same model can be reused when we want to estimate
posterior probabilities based on new observations, but again there is the need
to control more parameters and to evaluate model fit to ensure a reliable esti-
mation outcome. Overall the various likelihood-free methods make posterior
estimation feasible for diverse simulation models and applications, and pro-
vide also means to achieve related tasks like comparison between alternative
simulators [7].

The choice of summary statistics is critical for useful parameter inference.
In traditional experimental research, where participants conduct well-specified
tasks in controlled environments, the choice of dependent variables and their
summarisation is largely dependent on the nature of this environment. Often,
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an individual task is short, and is repeated multiple times by the same partic-
ipant for the purposes of obtaining reliable estimates of the variable of inter-
est under varying task conditions. Summary statistics, such as mean and stan-
dard deviation of the dependent variable, are then used to evaluate how the se-
lected experimental manipulations impact the dependent variables. While this
paradigm is useful for research under controlled settings, it is not necessary
applicable for real-life parameter inference, where observation data may be
noisy and sparse, and no clear task boundaries can be specified. In our example
of inferring individual action related noise during driving, we used a statistic
that describes variability of the car’s lateral position over the whole driving
episode. In choosing the correct summary statistics for parameter inference,
attention must also be paid to the fact that summarisation might hide some
important aspects of the interactive process being simulated. For instance, an
average number of errors during a particular interaction may hide whether the
errors are clustered around some critical moment or spread evenly throughout
the episode. Furthermore, the modeller must pay mind to the fact that infor-
mative parameter inference is only possible insofar variation in the parameters
inferred causes variation in the summarisation of the simulated predictions.

Many of the elements of parameter inference discussed here, such as effi-
ciency, analysis of model flexibility, and selection of summary statistics, are
of importance when discussing the future use of cognitive simulators to facil-
itate adaptation of interactive systems. While computational optimisation of
user interfaces is a promising area of research [27], the quality of such optimi-
sation is dependent on a careful specification of an objective function which
tells how acceptable a solution is. Predictions made by simulators can provide
flexible objective functions, but as we have argued, the quality of this is highly
dependent on how the parameters of the simulator model are set. Especially
important this becomes when optimising interfaces for individual users, with a
focus on certain user abilities or idiosyncracies [36]. The ability to pre-train an
approximate posterior model and then quickly conduct parameter inference, as
showcased in our second example, could offer breakthroughs in online, human-
in-the-loop optimisation and adaptation.
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