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Abstract
In interactive multiobjective optimization methods, the preferences of a decision maker are 
incorporated in a solution process to find solutions of interest for problems with multi-
ple conflicting objectives. Since multiple solutions exist for these problems with various 
trade-offs, preferences are crucial to identify the best solution(s). However, it is not nec-
essarily clear to the decision maker how the preferences lead to particular solutions and, 
by introducing explanations to interactive multiobjective optimization methods, we pro-
mote a novel paradigm of explainable interactive multiobjective optimization. As a proof of 
concept, we introduce a new method, R-XIMO, which provides explanations to a decision 
maker for reference point based interactive methods. We utilize concepts of explainable 
artificial intelligence and SHAP (Shapley Additive exPlanations) values. R-XIMO allows 
the decision maker to learn about the trade-offs in the underlying problem and promotes 
confidence in the solutions found. In particular, R-XIMO supports the decision maker 
in expressing new preferences that help them improve a desired objective by suggest-
ing another objective to be impaired. This kind of support has been lacking. We validate 
R-XIMO numerically, with an illustrative example, and with a case study demonstrating 
how R-XIMO can support a real decision maker. Our results show that R-XIMO success-
fully generates sound explanations. Thus, incorporating explainability in interactive meth-
ods appears to be a very promising and exciting new research area.

Keywords Interactive methods · Multiple criteria optimization · Explainable artificial 
intelligence · Decision making · Reference point
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1 Introduction

Real-life optimization problems seldom consist of only a single objective to be opti-
mized. Instead, multiple conflicting objectives are to be considered simultaneously. 
These problems are known as multiobjective optimization problems and many solutions, 
known as Pareto optimal solutions, exist with various trade-offs between the objectives. 
The characteristics that define the best solution to be implemented in practice depend on 
the problem and subjective information. This information can be obtained from a human 
domain expert, known as a decision maker (DM). If the DM provides their preferences, 
we can find the DM’s best (i.e., most preferred) solution.

The type of preferences a DM can provide varies a lot (see, e.g., [1–3]). When the 
preferences are incorporated into the solution process also matters. The DM can provide 
preferences before the optimization, but they can be too optimistic or pessimistic. Alter-
natively, a representative set of Pareto optimal solutions can be generated for the DM to 
choose from, but this can be both computationally and cognitively demanding. In con-
trast to these, in interactive multiobjective optimization methods [4, 5], preferences are 
incorporated iteratively during the solution process [1]. Interactive methods are many 
and vary in various aspects, such as the type of preference information required from 
the DM and how preferences are incorporated in the optimization process [4, 6, 7].

Moreover, the course of an interactive solution process can be divided into a learning 
and a decision phase [5]. Roughly speaking, as the name suggests, in the learning phase, 
the DM learns about the trade-offs and the feasibility of one’s preferences to identify a 
region of interest and, in the decision phase, one converges to the most preferred solu-
tion in that region. Unfortunately, interactive methods typically offer little support to the 
DM during the learning phase making it hard for the DM to learn. This lack of support 
is an open issue in interactive multiobjective optimization [8, 9], which we will address 
in our work.

An example of preference information is a reference point consisting of desirable 
objective function values. We propose an approach to support the DM in applying inter-
active reference point based methods [10, 11], where explanations are provided to the 
DM about why an interactive method has mapped their preferences to certain solutions. 
Reference point based methods are classified, e.g., in [12], as ad hoc methods arguing 
that they do not support the DM in directing the solution process to provide preferences 
for the next iteration. Thus, these methods may seem like black-boxes to DMs. There-
fore, explanations can help the DM learn about the trade-offs between the objectives in 
the problem, for instance. The general concept of an iteration of a reference point based 
interactive methods is illustrated in Fig. 1. The DM provides a reference point per itera-
tion to get desirable values for objective functions. There are many ways a solution can 
be computed based on a reference point, e.g., by minimizing an appropriate scalarizing 
function that maps the reference point to the closest Pareto optimal solution. Thus, by 
modifying the reference point, different solutions can be found.

In addition, by utilizing the explanations, we can also support the DM by deriving 
suggestions from the explanations that provide information about how preferences can 
be modified to achieve some desired results, such as improving a certain objective func-
tion value in a solution of the next iteration. An example of the second iteration where 
we want to support the DM is illustrated in Fig. 1. There, the DM wishes to improve 
Objective 2 in the initial solution and wonders how the initial reference point should be 
modified to achieve this goal. Indeed, according to the advice given in [13], we consider 
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two central questions in interactive multiobjective optimization which can arise in the 
mind of the DM: 

1. Why  preferences have been mapped to the computed solution(s)?
2. How  can preferences be changed to affect the computed solution(s)?

We borrow ideas from the field of explainable artificial intelligence (XAI) [14]. We do 
not attempt to create a new interactive multiobjective optimization method. Instead, we 
present a method that is able to explain the behavior of reference point based methods and 
support the DM in learning about the multiobjective optimization problem and providing 
preference information. There are methods in the field of XAI that can be used to formu-
late explanations for the predictions made by black-box machine learning models. Most 
of these methods have the advantage of being model agnostic, which means that they can 
be applied to any kind of (machine learning) model [15]. We show in our work that these 
methods can be applied in interactive multiobjective optimization methods as well and 
used to successfully formulate explanations.

Our main contribution is developing the concept of explainable interactive multiobjec-
tive optimization (XIMO) by exploring reference point based interactive multiobjective 
optimization methods. The ideas introduced in this paper are applicable to other interactive 

Fig. 1  The general concept of reference point based interactive multiobjective optimization methods illus-
trated with a problem with two objectives to be minimized. The questions of why a reference point has been 
mapped to a specific solution and how the reference point could be changed to achieve a desired result are 
highlighted
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methods as well. XIMO is a very broad topic and our paper will, hopefully, lead to more 
follow-up research exploring the application of the concept of explainability in multiob-
jective optimization. Our proposed method, R-XIMO, derives explanations and supports 
a DM in providing a reference point to reflect desired changes in the objective functions. 
This method is also ideal to be incorporated as an agent in a multi-agent system supporting 
the DM in an interactive multiobjective solution process as discussed in [16].

Our paper is structured as follows. In Sect.  2, we introduce the background concepts 
required to understand the ideas discussed in the paper. Then, we introduce our proposed 
method R-XIMO in Sect. 3. In Sect. 4, we give an illustrative example on how R-XIMO 
can support a DM in practice, and we also present a case study with a real DM solving a 
multiobjective optimization problem in Finnish forest management. We validate R-XIMO 
further numerically and present the results in Sect. 5. We discuss the results of Sects. 4 and 
5, as well as future research perspectives of R-XIMO, and XIMO in general, in Sect. 6. 
Lastly, we conclude our work in Sect. 7.

2  Background

2.1  Concepts of multiobjective optimization

Multiobjective optimization [1] consist of multiple conflicting objective functions to be 
optimized simultaneously. Such problems can be mathematically formulated as follows:

where fi(�) , i = 1,… , k are objective functions (with k ≥ 2 ), and � = (x1, ..., xn)
T is a vec-

tor of n decision variables belonging to the feasible set S ⊂ ℝ
n . For every decision vector 

� , there is a corresponding objective vector �(�) . In the rest of this article, we refer only 
to minimization problems, but the conversion of a function to maximization is trivial (i.e., 
multiplying by -1).

Because of the conflict between the objective functions, not all of them can achieve 
their optimal values simultaneously. Given two feasible solutions �1, �2 ∈ S , �1 dominates 
�2 if and only if fi(�1) ≤ fi(�

2) for all i = 1,… k , and fj(�1) < fj(�
2) for at least one index 

j = 1,… , k . A solution �∗ ∈ S is Pareto optimal if and only if there is no solution � ∈ S 
that dominates it. The set of all Pareto optimal solutions is called a Pareto optimal set, 
and the corresponding objective vectors constitute a Pareto optimal front. A feasible solu-
tion �∗ ∈ S and the corresponding objective vector �(�∗) in the objective space are weakly 
Pareto optimal if there does not exist another feasible solution � ∈ S such that fi(�) < fi(�

∗) 
for all i = 1,… , k.

The ideal point �∗ and nadir point �nad represent the lower and upper bounds of the 
objective function values among Pareto optimal solutions, respectively. The ideal point is 
calculated by minimizing each objective function separately. The nadir point represents the 
worst objective function values in the Pareto optimal set. Obtaining its value is not straight-
forward, as it requires computing the Pareto optimal set. However, it can be approximated 
[1]. The components of a utopian point �∗∗ are derived by improving the components of the 
ideal point with a small positive �.

(1)
minimize �(�) =

(
f1(�),… , fk(�)

)

subject to � ∈ S,
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As mentioned, typically, solving a multiobjective optimization problem involves a DM 
who has deeper knowledge of the problem. The DM is responsible for finding the most pre-
ferred solution among the conflicting objectives.

There are different types of methods for solving multiobjective optimization problems, 
for example, scalarization based and population based (like evolutionary) methods [17]. 
Scalarizing functions convert a multiobjective optimization problem into a single objective 
one [1, 11]. They usually also incorporate the preference information of the DM. Prob-
lem (1) can be converted into a scalarized one as

where � is a set of parameters required by the scalarizing function s. Several scalarizing 
functions have been proposed in the literature [1, 11]. We are interested in scalarizing func-
tions [18] that consider a reference point z̄ provided by the DM. As mentioned, a refer-
ence point consists of desirable objective function values, also known as aspiration levels. 
As examples, we utilize scalarizing function from different methods (for more information 
about reference point based scalarizing functions, see [10, 11]).

The scalarizing function of the GUESS method [19] is the following

From the STOM method [20], we get

and from the reference point method (RPM) [18, 21] we get

Scalarizing functions (4) and (5) contain an augmentation term with a small, positive mul-
tiplier � . This term guarantees that the solution will not be weakly Pareto optimal, as can 
be the case for (3). Actually, the solutions of (4) and (5) are properly Pareto optimal (for 
further information, see [1]). For the three scalarizing functions, the denominator must not 
equal zero. In fact, it is positive when z∗

i
< z̄i < znad

i
 for all i = 1,… , k.

As mentioned in the introduction, we consider reference point based methods, where in 
each iteration, the DM provides a reference point and the method generates one or some 
Pareto optimal solutions reflecting the preferences. Depending on the method, the scalar-
izing function used to generate the solution(s) varies (it can, e.g., be one of the three func-
tions above). The DM can iteratively compare the obtained solutions and provide new ref-
erence points until the most preferred solution is found.

2.2  Explainable artificial intelligence and SHAP values

The central goal of machine learning methods [22] is to approximate, or predict, new 
information based on past observations. State-of-the-art machine learning methods, 

(2)
minimize s(�(�);�)

subject to � ∈ S,

(3)GUESS(z̄;�, �nad) = min
�∈S

max
i=1,...,k

[
fi(�) − znad

i

znad
i

− z̄i

]
.

(4)STOM(z̄;�, �∗∗) = min
�∈S

max
i=1,...,k

[
fi(�) − z∗∗

i

z̄i − z∗∗
i

]
+ 𝜌

k∑
i=1

fi(�)

z̄i − z∗∗
i

,

(5)RPM(z̄;�, �∗∗, �nad) = min
�∈S

max
i=1,...,k

[
fi(�) − z̄i

znad
i

− z∗∗
i

]
+ 𝜌

k∑
i=1

fi(�)

znad
i

− z∗∗
i

.
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such as deep neural networks, have shown vast potential for various applications across 
many fields, see, e.g., [23–26]. It is typical for the most accurate machine learning mod-
els, which are often the most complex ones, to be also the most opaque [27], but not 
necessarily always [28]. These models are often employed in high-stakes domains, such 
as healthcare [29] and self-driving cars [30], where their opaque black-box nature can 
become problematic, see, e.g., [31, 32].

Because the true value of a prediction of a machine learning model is often unknown, 
the validity of the predictions cannot be checked by comparing it to the true value. 
Therefore, the viability of the prediction needs to be validated in some other way. An 
example is to provide some explanation justifying the prediction. Based on this explana-
tion, a human, or humans, can then decide whether the prediction is sound or not.

XAI [14] sheds light on black-box models to understand how they make predictions. 
Many different XAI methods exist [33]. Usually, they try to explain the predictions 
made by black-box models, which have already been trained, as is done by LIME [34], 
for instance. The explanations are therefore not a result of the model itself, but an exter-
nal tool. This kind of explanation is known as post-hoc. Another typical approach is to 
come up with new, inherently explainable, machine learning models, such as Bayesian 
rule lists [35]; or to simply tap into the explainability inherently found in interpretable 
models, such as decision trees [36]. Explanation models that do not depend on the type 
of machine learning model are known as model agnostic ones. Typically, these models 
can explain any machine learning model. For example, they are able to explain the pre-
diction of an individual input for some previously trained model. And as we will later 
see in our work, some model agnostic explanation models can also be utilized to explain 
black-boxes that are not machine learning models at all. For reviews on the recent 
advancements in XAI, see, e.g., [15, 37].

Typically, a machine learning model g is trained on input–output training set pairs 
consisting of vectors with M features (also known as attributes) � and output values y. 
Training consists of finding internal parameter values for g so that when g is evaluated 
with some new observation �∗ , which was not present in the training set, the output of g, 
g(�∗) = y∗ , would be as close as possible to the true output value, i.e., y∗ ≈ ytrue , which 
is often unknown. The output of the model g is also known as a prediction.

In our work, we focus on ad-hoc explanation methods unified by the SHAP frame-
work [38]. The reason for this is that the SHAP framework guarantees certain theoreti-
cally sound properties (local accuracy, missingness, consistency, and uniqueness; see 
[38] for an in-depth discussion on their implications). By utilizing the SHAP frame-
work, so-called SHAP values can be computed. SHAP values are based on Shapley val-
ues [39], which in turn are based on game theory [40].

Shapley values can be used to assign a value to the contribution of a single player to 
the payout in an n-player game. In other words, Shapley values can be used to character-
ize the contribution of a single entity (i.e., an attribute in an input to a machine learn-
ing model) when multiple entities collaborate to achieve a common goal (i.e., make a 
prediction). Thus, Shapley values can be used akin to sensitivity analysis to explore how 
a prediction made by a machine learning model changes when certain combinations of 
attributes are present or missing in the input, but with the added value of also having 
the four properties listed above. For instance, for some input � and prediction g(�) , a 
positive value for a Shapley value �i would indicate that the value of the attribute ai ∈ � 
has overall contributed positively (i.e., increasingly) to the output value g(�) , and vice 
versa for a negative value for �i , and when �i is zero, attribute i has not contributed to 
the output value. With this kind of information, it is possible to come up with plausible 
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explanations on how the machine learning method has made some particular prediction 
for a given input.

However, a typical machine learning model is not able to work with missing attributes; 
at least not without retraining the model, which in most cases can be very time-consuming. 
This makes Shapley values not directly applicable when generating explanations for some 
arbitrary machine learning model. That is why SHAP values are used, instead. In particu-
lar, kernel SHAP [38], which combines the idea behind Shapley values and LIME [34], is 
of particular interest because it is a model agnostic approach for computing SHAP values. 
Kernel SHAP requires so-called missing data, which is used to replace attributes in the 
input to a machine learning model to simulate missing attributes when explaining its pre-
dictions. In this way, the input to the machine learning model has always the same number 
of attributes, and the model does not have to be retrained when computing SHAP values. 
We use kernel SHAP to compute SHAP values in R-XIMO, proposed in Sect. 3, when it is 
validated in Sect. 5.

2.3  Explainability in multiobjective optimization

In what follows, we provide a brief literature review on explainable multiobjective optimi-
zation. The emphasis here is not on studies that use multiobjective optimization methods to 
generate explanations, but rather on studies that apply the existing explainable methods (or 
propose new ones) for multiobjective optimization.

A diversified recommendation framework based on a decomposition-based evolutionary 
algorithm was proposed in [9]. The authors modeled the recommender system as a multi-
objective optimization problem and applied MOEA/D [41] to generate explainable recom-
mendation lists for each user while maintaining a high recommendation accuracy.

A method explaining the reasoning behind the solution found for a multiobjective prob-
abilistic planning problem was proposed in [42]. Their method generates verbal explana-
tions about why it chose a specific solution among the other alternatives and also about the 
trade-off made between conflicting objectives in the final solution. Explaining trade-offs 
among various objectives was also studied in [43] via reinforcement learning by utilizing a 
correlation matrix that represents the relative importance between objectives.

There are some recent initiatives in the literature that incorporate explanations into inter-
active methods. For the sake of explainability, the interactive method called INFRINGER 
[44] utilized belief-rule-based systems to learn and model the DM’s preferences. Similarly, 
in [45], the authors modeled the DM’s preferences by using “if..., then...” decision rules, 
which were then used to explain the impact of the DM’s preferences on the obtained solu-
tions. They proposed a method called XIMEA-DRSA, which uses the decision rules as a 
preference model to guide the search in the solution process.

3  R‑XIMO

In this section, we introduce the method proposed in this paper, R-XIMO, to explain 
how reference point based interactive multiobjective optimization methods map prefer-
ence information into solutions. We start by describing the setting and general assump-
tions made in Sect. 3.1. In Sect. 3.2, we describe in detail how SHAP values are used 
to interpret a black-box that maps reference points to the Pareto optimal front. Finally, 
in Sect.  3.3, we discuss how the SHAP values are used to generate explanations and 
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suggestions for a DM to allow them to make meaningful trade-offs regarding the prefer-
ences they have expressed.

3.1  Setting and assumptions

In general, a DM has domain expertise about the multiobjective optimization problem, 
allowing them to understand the existence of conflicts among the objectives (i.e., gain-
ing in one objective in a Pareto optimal solution will result in a loss in at least one 
other objective). Assuming that a DM acts rationally (see, e.g., [46] for a discussion 
on rationality), they are only interested in Pareto optimal solutions. But a DM does not 
necessarily understand how the interactive method transforms the preference informa-
tion into solution candidates during the solution process. According to these character-
istics of DMs, we will assume that they perceive interactive multiobjective optimization 
methods as black-boxes.

Let us consider black-boxes mapping reference points z̄ to objective vectors � on the 
Pareto optimal front for a problem (1) with k objectives. We define such a black-box as

where the subterm Pareto means that the objective vectors and the reference points are 
mapped to solutions that lie on the Pareto optimal front.

In particular, we use black-boxes, which minimize reference point based scalarizing 
functions [1, 11]. As mentioned, as examples, we consider the scalarizing functions (3), 
(4) and (5), and the DM provides preferences as a reference point. We assume that the 
DM is informed of the values for the ideal and nadir points when providing reference 
points, as it was originally assumed in [21]. This will allow the DM to provide more 
realistic reference points. Depending on the type of black-box  (6) considered, it may 
also be necessary to assume that each aspiration level in the reference point is between 
the objective’s respective components in the ideal and nadir points. Lastly, we assume 
the DM to be interacting with an interactive method that acts like the black-box defined 
in (6) over the course of a few iterations until they find a most preferred solution.

3.2  Using SHAP values to explain reference point based black‑box models

The idea behind SHAP values discussed in Sect. 2.2 can also be applied to other types 
of black-boxes, not necessarily related to machine learning models. We apply the idea to 
an interactive multiobjective optimization method explaining its behavior to a DM. We 
limit the discussion to a simple case of an interactive method (6), where a DM is only 
required to provide a reference point over the course of a few iterations. Then, the input 
to the model is the reference point provided by the DM and the prediction is the result 
of solving problem (2) with some scalarizing function s.

We can use SHAP values to formulate explanations for models adherent with (6). 
Since the reference point provided by a DM and the output of (6) have k ≥ 2 dimen-
sions, the SHAP values computed are represented by a k × k square matrix Φ with ele-
ments �ij , i, j = 1,… , k:

(6)�(z̄) ∶ ℝ
k
→ ℝ

k
Pareto

,
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The average effect of a reference point on a solution is represented by  (7). How the ith 
component in the resulting objective vector has been affected by the jth component in the 
reference point, is represented by the value of the element �ij in (7). Thus, the SHAP val-
ues in (7) can be used to induce how, on average, the input z̄ has affected the output � . 
Expanding on the discussion given for the interpretation of Shapley values in Sect. 2.2, a 
positive value for �ij means that on average, the jth component in the reference point had 
an increasing effect on the value of objective i in the solution, and vice versa for negative 
values. A value of zero for �ij means that there was no effect between the two. When objec-
tives are minimized, an increasing effect means impairing, and a decreasing effect means 
improving.

We know that in multiobjective optimization, the objectives are conflicting. Therefore, 
we can say that when two objectives have an increasing effect on each other (i.e., both 
�ij and �ji are positive for some i,  j) the aspiration levels set by the DM in the reference 
point are not simultaneously achievable on the Pareto optimal front. This is because in the 
specific region of the front the reference point was mapped to, objectives i and j are con-
flicting. Note that in case i = j , the value of �ij is understood as the objective’s effect upon 
itself. It is important to mention that not all objectives need be always conflicting, and that 
the conflict can be between more than two objectives, but in our work, we only consider 
conflicts between pairs of objectives for the sake of simplicity. Therefore, the exact con-
flicting nature of two considered objectives depends on which region of the Pareto optimal 
front is observed.

Because of the properties mentioned in Sect.  2 for SHAP values, we know that the 
values are local and unique. Especially, the local nature of the SHAP values is important 
because it guarantees that the SHAP values computed describe the conflicts among objec-
tives in a local region of the Pareto optimal front. Moreover, a direct consequence of the 
uniqueness of the SHAP values warrants that the explanations derived from the SHAP val-
ues can be assumed to be unique (albeit the way the values are interpreted can lead to dif-
ferent explanations, but any reasoning based solely of the actual numerical values should 
lead to the same conclusions). This is why we have decided in our work to utilize SHAP 
values.

We use SHAP values (7) to deduce how a component in a given reference point affects 
the solution computed by a black-box (6). Particularly, we can gather information about the 
conflict between two objectives. We can then communicate this information to the DM giv-
ing them support in formulating new reference points. Thus, an explainable support system 
can be created to support the DM in achieving their goals in an interactive solution process 
utilizing SHAP values. How this kind of system can be realized, is discussed in the next 
subsection.

3.3  Utilizing explanations and suggestions to aid a decision maker

We choose to demonstrate the plausibility of utilizing SHAP values for explaining interac-
tive multiobjective optimization methods with a simple application as follows. Consider a 
DM has provided a reference point z̄ to a black-box (6) and has been presented with a 

(7)Φ =

⎛
⎜⎜⎜⎝

�11, �12, … , �1k

�21, �22, … , �2k

⋮ ⋮ ⋮ ⋮

�k1, �k2, … , �kk

⎞
⎟⎟⎟⎠
.
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solution � . Now the DM wishes to see an improvement in the value of the ith objective in � . 
We designate this objective as the target and define its index as itarget . We can then use the 
computed SHAP values to find the component in �̄ , which had the most impairing effect on 
the target in � (i.e., �itargetj

= max�ij,i=itarget
Φ ). We name this objective with the most impair-

ing effect as the rival with index jrival . Therefore, we can formulate explanations for the 
DM on how the solution � relates to the given reference point z̄ from the perspective of the 
target, and how the DM can change the reference point for the next iteration to achieve a 
better value in the target.

The general idea of our proposed method is depicted in Fig.  2. Since our method 
enhances reference point based interactive methods with explanations, we call it R-XIMO.

The details of the procedure to compute the rival and generate an explanation in 
R-XIMO are given in Algorithm 1. The input to Algorithm 1 are the black-box �  (6), a 
reference point z̄ , the solution � computed utilizing the black-box and the reference point, 
missing data Zmissing needed in computing SHAP values, and the index of the target objec-
tive itarget provided by the DM. The missing data is used by the routine shap_values in 
Algorithm 1 to calculate the SHAP values. The routine shap_values can be any routine 
able to compute SHAP values like in (7) (e.g., kernel SHAP). The output of Algorithm 1 is 
the index of the rival objective jrival and an explanation explanation on how the refer-
ence point z̄ given has affected the solution � computed.

When choosing the missing data Zmissing to be used in R-XIMO, it is important that such 
data is available in the vicinity of the reference point being explained to assure the local-
ity of the explanations. Therefore, missing data should be generated as evenly as possible 
in the domain space of (6), but since we assume a DM to provide reference points with 
component values bounded by the respective components of the ideal and nadir points, 
it is enough for the generated missing data to be bound in a similar way. However, when 

Fig. 2  Illustration on how R-XIMO interacts with the interactive method and the DM. R-XIMO is aware of 
both the reference point provided by the DM and the solution computed by the interactive method. After the 
DM selects a target, R-XIMO can provide a suggestion and explanation with information on the rival. In the 
figure, a single iteration of an interactive method combined with R-XIMO is depicted
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experimenting, we found that we could use a representation of the Pareto optimal front of 
the original multiobjective optimization problem as the missing data without any loss in 
performance of R-XIMO. This, we believe, is because the Pareto optimal front character-
izes the trade-offs among the objectives in the problem, which is what we are primarily 
interested in.

For computing the index of the rival jrival in Algorithm 1, the general idea is to find the 
element �itargetj

∈ Φ with the largest positive value. If this value exists and it is not the target 
itself, then the index j of the element found is defined as worst_effect. Otherwise 
worst_effect is set to be −1 indicating that it does not exist. Likewise, we can also find 
the element �itargetj

 with the smallest negative value and define its j index as best_effect. 
The routine why_objective_i in Algorithm 1 computes both of these values. In cases 
where worst_effect does not exist, we can find the element �itargetj

 with the largest nega-
tive value and set its j index as least_negative as is done in Algorithm 1. Lastly, if 
worst_effect = itarget , we can find the element �itargetj

 with the second largest value and 
define second_worst to be equal to j. The value of jrival returned by Algorithm  1 is 
therefore always either worst_effect, second_worst, or least_negative. An 
implementation of Algorithm 1 is discussed in Sect. 5.1.
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The nine possible explanations (indexed by � = 1,… , 9 ) returned by Algorithm 1 are 
listed in Table 1. From each of the explanations, a suggestion is derived to support the DM 
in achieving their goal of improving the value of the target in the solution. The explana-
tions tell the DM how the given reference point z̄ is related to the solution � , and how the 
components of z̄ have affected the value of the target in � . In supporting the DM, the sug-
gestion derived from the explanation is most relevant. However, the explanation can help 
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the DM gain additional insight related to the multiobjective optimization problem, and it 
can help the DM build confidence in the suggestion given as well. Therefore, in practice, 
the explanation should be shown to the DM only when they request to see it. The sugges-
tion should be always provided to the DM. Examples of utilizing R-XIMO are given in 
Sect. 4.

The first four explanations in Table 1 are relevant in cases where the components of the 
given reference point are either worse in regard to every objective value when compared 
to the solution ( � = 1, 2 ), or the components in the reference point are all better than in 
the solution ( � = 3, 4 ). Such reference points can be expected to arise when the DM is 
still in an early stage of the interactive solution process and is therefore still learning about 
the problem. In case of � = 2 , the suggestion still prompts the DM to improve the target 
component in the reference point despite the target having the most impairing effect on 
the target objective in the solution. This can feel counter intuitive, but it is done because 
worsening the rival component in the reference point can lead to a situation where some 
other objective than the target improves, if the target component is left unchanged. By still 
improving the target component in the reference point, we try to guarantee that the DM 
will see an improvement in the target objective in the solution.

The following two explanations in Table 1 arise when none of the components in the 
reference point had an improving effect on the target ( � = 5 ), or when none of the compo-
nents had an impairing effect on the target ( � = 6 ). In the first case, the DM may want to 
be careful when improving the value of the target in the next reference point since in the 
area of the Pareto optimal front the solution resides, the other objectives seem to be all in 
conflict with the target objective. In the second case, the DM may want to experiment with 
improving the value of the target objective in the next reference point since none of the 
other objectives had any impairing effects on the target.

The seventh explanation in Table  1 ( � = 7 ) is the explanation that one can expect to 
arise in most cases after the DM has gained some insight about the problem and its trade-
offs. In this case, some component in the reference point had an improving effect on the 
target objective in the solution and some other component had an impairing effect. In this 
case, neither best_effect nor worst_effect is the target objective.

The last two explanations in Table 1 ( � = 8, 9 ) arise when the condition of the first four 
explanations are not met and the most impairing or improving effect on the target objec-
tive’s value in the solution was due to the target objective’s component in the reference 
point. The eighth explanation (� = 8) is something the DM does not probably desire to see 
when they care about the target objective, and could therefore be a reason for the DM to 
mistrust the interactive method. On the other hand, the last explanation ( � = 9 ) is probably 
the one a DM would expect to see as they deem the target objective to be the most impor-
tant, when providing a reference point.

We can think of impairing a component of the reference point as a way to gain more 
room in terms of improving some other objective value in the solution. This is why the 
suggestion in Table 1 always prompts the DM to improve the target component in the ref-
erence point. In this way, we can assume that the room gained in impairing the rival is 
reflected in the improvement on the target. We can justify this on basis of the objectives 
being in conflict in multiobjective optimization problems.

Validating the explanations in Table 1 (i.e., how useful the explanation and suggestion 
is to a human DM) is impossible without either human participants or advanced artificial 
DMs. To our knowledge, no artificial DMs exist that could help validate the explanations. 
In Sect. 4.1 we provide an illustrative example how the explanations (and suggestions) gen-
erated by R-XIMO, can support a hypothetical DM. In Sect. 4.2, we demonstrate R-XIMO 
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in a case study with a real DM. We also validate the suggestions derived from the explana-
tions in Sect. 5 numerically—i.e., does improving the target and impairing the rival com-
puted by R-XIMO lead to an improvement in the value of the target in the solution? As we 
will see, the suggestions generated by R-XIMO can reveal to the DM the best component 
to be impaired in a reference point when a given target objective is to be improved. This 
alone can be very valuable information to a DM.

4  Example and case study

In this section, we show how R-XIMO can be applied in solving multiobjective optimi-
zation problems interactively. We demonstrate this both with an illustrative example in 
Sect. 4.1, and a case study involving a real DM in Sect. 4.2.

4.1  Illustrative example

In this subsection, we demonstrate with an example how R-XIMO supports a DM by pro-
viding explanations and suggestions (Table 1) in an interactive solution process. An analyst 
(one of the authors) acted as the DM to illustrate the support R-XIMO provides in solving 
a real-world multiobjective optimization problem. The problem considered was originally 
proposed in [47] and modified in [48]. A Python notebook with the described solution pro-
cess is available online.1

4.1.1  Problem description

The problem describes a (hypothetical) pollution of a river. There is a fishery company and 
a city in a valley along the river. The company is located near the head of the valley, and 
it causes industrial pollution on the river. The city is located downstream from the fishery 
and is the source of municipal waste pollution on the river. Water quality is measured in 
terms of dissolved oxygen level (DO), while industrial and municipal pollution is quanti-
fied in pounds of biochemical oxygen demanding material (BOD). There are some exist-
ing treatment facilities that reduce the BOD in the water, and their costs are paid by the 
company and the city. To deal with the water pollution, additional water treatment facilities 
should be built, which would incur higher costs, raising the city’s tax rate and decreasing 
the company’s return on investment.

The two decision variables, x1 and x2 , control the amount of BOD removed from water 
in two treatment plans located in the company and in the city, respectively. The original 
problem had four objectives; f1 maximizing DO in the city, f2 maximizing DO at the state 
line downstream from the city, f3 maximizing percent return on investment at the company, 
and f4 minimizing the additional tax rate in the city. We use the modified version of the 
problem [48], in which the fifth objective ( f5 ) is added to describe the functionality of the 
treatment facilities. Thus, the multiobjective optimization problem has five objectives and 
two decision variables (we consider it as a minimization problem by multiplying the first 
three objectives by -1), as follows:

1 https:// github. com/ gialm isi/ shap- exper iments/ blob/ d7ac3 97c8b 2e76b ea3a0 83b68 dae66 36abd 03ff4/ noteb 
ooks/ river_ pollu tion. ipynb

https://github.com/gialmisi/shap-experiments/blob/d7ac397c8b2e76bea3a083b68dae6636abd03ff4/notebooks/river_pollution.ipynb
https://github.com/gialmisi/shap-experiments/blob/d7ac397c8b2e76bea3a083b68dae6636abd03ff4/notebooks/river_pollution.ipynb
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4.1.2  Solution process

We can now describe the interactive solution process using R-XIMO with a DM. To sca-
larize  (8), we used STOM  (4) and an approximation of the Pareto optimal front of  (8) 
computed utilizing evolutionary methods (NSGA-III [49], MOEA/D [41], and RVEA 
[50]). The scalarized version of (8) was solved by finding the objective vector that mini-
mizes (2) in the Pareto optimal front. At the beginning of the solution process, the ideal 
(− 6.34,−3.44,− 7.5, 0, 0) and nadir (− 4.75,− 2.85,− 0.32, 9.70, 0.35) points were calcu-
lated based on the approximation of the Pareto optimal front and shown to the DM.

Iteration 1. First, the DM set the ideal point as the reference point to see 
how difficult it is to achieve these promising values. The obtained result was 
(− 5.75,− 2.91,− 6.91, 0.20, 0.13) . The DM desired to improve the water quality in the city 
( f1 ) and R-XIMO returned the following suggestion: “ Try improving the 1st component 
and impairing the 3rd component.”

Iteration 2. Since the reference point had been too optimistic, and the DM realized that 
to improve f1 , he needed to impair f3 (the return on investments). Therefore, he adjusted 
all aspiration levels accordingly but most impairments were made in the 3rd one, and he 
set the next reference point as (− 6.00,− 3.20,− 6.00, 0.10, 0.10) . As a consequence, the 
following solution was obtained: (−6.00,−2.92,−6.26, 0.21, 0.20) . He was happy with the 
return on investments ( f3 ), the addition to the tax ( f4 ), and the efficiency of the treatment 
facilities ( f5 ). However, the water quality after the city ( f2 ) was inadequate, so he wanted to 
improve that objective with the support of R-XIMO, which made the following suggestion: 
“ Try improving the 2nd component and impairing the 4th component. ”

Iteration 3. Based on the given suggestion, the DM realized the trade-off between 
f2 and f4 . He followed the suggestion and impaired the 4th aspiration level, set the ref-
erence point (−6.00,−3.20,−6.00, 1.00, 0.10) and obtained the corresponding solu-
tion (−5.90,−3.06,−6.60, 1.21, 0.16) . There was a good improvement on f2 , but the DM 
wished to improve it even further, if possible. R-XIMO provided the following suggestion 
in response to the DM’s request of improving the value of f2 : “ Try improving the 2nd com-
ponent and impairing the 5th component.”

Iteration 4. To improve f2 , the DM needed to impair the aspiration level for f5 and 
kept the same aspiration levels for the other objectives as in the previous reference point: 
(− 6.00,− 3.20,− 6.00, 1.00, 0.20) . As a consequence, the following solution was obtained: 
(−6.09,−3.09,−5.79, 1.44, 0.24) . As can be observed, the water quality in and after the 
city ( f1 and f2 ) improved, while the economic objectives ( f3 and f4 ) and facility efficiency 
( f5 ) deteriorated. The DM was not satisfied with the last three objectives, particularly the 

(8)

minimize f1(�) = − 4.07 − 2.27x1
minimize f2(�) = − 2.60 − 0.03x1 − 0.02x2

−
0.01

1.39−x2
1

−
0.30

1.39−x2
2

minimize f3(�) = − 8.21 +
0.71

1.09−x2
1

minimize f4(�) = − 0.96 +
0.96

1.09−x2
2

minimize f5(�) = max{|x1 − 0.65|, |x2 − 0.65|}

subject to 0.3 ≤ x1, x2 ≤ 1.0.
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last one. He wished to improve it, and the following suggestion was made to achieve his 
purpose: “ Try improving the 5th component and impairing the 3rd component.”

Iteration 5. Therefore, he reduced his economic expectations ( f3 ) and improved the 
efficiency ( f5 ) in his reference point: (−6.00,−3.20,−5.50, 1.00, 0.12) . The DM was 
almost happy with the returned solution (− 5.94,− 3.08,− 6.49, 1.38, 0.17) since he nearly 
obtained what he desired without sacrificing the third objective. However, he wanted to 
ensure that the addition to the tax rate ( f4 ) could be decreased without jeopardizing other 
objectives. To understand whether this is possible, the DM requested an explanation in 
addition to the suggestion for improving the tax rate. R-XIMO returned the following: 
“ None of the components in the reference point had an impairing effect on objective f4  
in the solution. The 1st component of the reference point had the least improving effect 
on objective f4  in the solution. Try improving the 4th component and impairing the 1st 
component.”

Iteration 6. The DM improved his aspiration level for the fourth objective based on 
the suggestion and kept the others the same as before: (−6.00,−3.20,−5.50, 0.80, 0.12) , 
because none of the components had an impairing effect on objective f4 based on the given 
explanation. The solution obtained was (− 5.95,− 3.06,− 6.45, 1.25, 0.18) . As can be seen, 
the return on investments ( f3 ) was relatively higher than his aspiration level for that objec-
tive, he obtained sufficient water quality for the city ( f1 ), and after the city ( f3 ), the addi-
tion to tax ( f4 ) was slightly improved from the previous solution, and the efficiency of the 
facilities was nearly identical. The DM was satisfied with this solution and decided to stop 
the solution process.

4.1.3  Observations

Clearly, the suggestions made by R-XIMO assisted the DM in recognizing the trade-offs 
among the objectives and efficiently providing his preference information to get more 
preferred solutions. Having the option to request an explanation was also beneficial to 
the DM; for example, in iteration 5, the DM benefited from the explanation provided by 
R-XIMO. At that point, the DM gained sufficient insight into the problem and was mostly 
aware of the existing conflicts among the objectives. He was almost satisfied but wanted 
to improve one specific objective further, if possible. That is why he requested an expla-
nation from R-XIMO whether he missed some other existing conflicts or not. Based on 
the given explanation, he understood that there were no other objectives impairing his tar-
get objective. Therefore, he followed the first part of the suggestion (improving the target 
objective) but not the second part, which suggested impairing some other objective having 
the least improving effect on the target objective (which he learned from the explanation). 
As experienced, the DM was not forced to follow the suggestions but benefited from the 
explanations.

4.2  Real case study

As a proof of concept, we consider a multiobjective optimization problem with a domain 
expert as the DM in a case study in Finnish forest management. We first briefly outline the 
problem and then describe the setting and solution process with the DM. We also report 
the DM’s opinions and feedback regarding R-XIMO and the support it provides.
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4.2.1  Problem description

Finnish forests are divided into managerial areas known as stands. In a forest management 
problem, for each stand, a particular management strategy is to be chosen to be employed 
over a certain time period. Some examples of available strategies are, for instance, that 
trees in a stand are cut down or thinned out, or the stand is left untouched. Depending 
on which strategy is employed for a stand, corresponding consequences will ensue. These 
consequences can be regarded as objectives, and by considering multiple consequences at 
the same time, the forest management problem can be modeled as a multiobjective optimi-
zation problem.

In our case, we have three objectives to be maximized simultaneously over the consid-
ered time period: income from sold timber (Income), carbon dioxide stored in the trees 
(Stored CO2 ), and the combined habitat suitability index indicating how habitable the for-
est is for fauna (CSHI). Solutions to the problem will be represented by objective vectors of 
the form (Income, Stored CO2 , CSHI). These objectives are in conflict; for instance, cutting 
down trees and selling the timber  for increased profit will release stored carbon dioxide 
and make the stand inhabitable for the fauna; or thinning out a stand can increase its com-
bined suitable habitat index, but it will also release stored carbon, and it can be financially 
unprofitable; or leaving the stand as it is will maximize the stored carbon dioxide and pro-
vide zero income.

The objective values for each stand in the considered forest (consisting of multiple 
stands) are aggregated, which means that the objectives represent the whole forest instead 
of single stands. Therefore, a solution to the multiobjective optimization problem consists 
of choosing a managerial strategy for each individual stand, and then summing each objec-
tive over all available stands, i.e., for the whole forest. We have computed a representative 
set of Pareto optimal solutions based on simulated data. For details on the problem and 
how the solutions have been generated, see Chapter 5 in [51] and [44]. The representation 
of the Pareto front used in the case study is available online.2

4.2.2  Setting

The forest management problem was solved utilizing a simple interactive method, where 
the DM provides a reference point in each iteration. R-XIMO was used to generate sugges-
tions and explanations. Based on the reference point, a new solution was then computed 
utilizing a scalarizing function (5). Prior to the experiment, the DM was already familiar 
with this kind of interactive multiobjective optimization process. Before the solution pro-
cess, the DM was informed about the support R-XIMO offers, namely, that after a solution 
is computed based on a provided reference point, he may express whether he would like 
to improve any of the objective function values computed based on the reference point. 
Before starting to solve the problem, the DM was asked whether he would like to see the 
explanations generated by R-XIMO in addition to the suggestions, to which he agreed.

Overall, the forest management problem was solved twice by the DM (with different 
strategies behind the preferences). All the information related to the solution processes 
shown to the DM was in textual or tabulated formats. No visualizations were used. After 

2 https:// github. com/ gialm isi/ shap- exper iments/ blob/ c3c66 df02f 1c5d7 ef994 a3d5d ce00b 17ede 4724c/ data/ 
forest. csv

https://github.com/gialmisi/shap-experiments/blob/c3c66df02f1c5d7ef994a3d5dce00b17ede4724c/data/forest.csv
https://github.com/gialmisi/shap-experiments/blob/c3c66df02f1c5d7ef994a3d5dce00b17ede4724c/data/forest.csv
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the two solution processes, the DM was asked some additional questions. In what follows, 
we describe the two solution processes, followed by the answers to the presented questions 
and some general observations. Two Python notebooks are available online with the con-
tents of the two optimization processes described next.3,4

4.2.3  First solution process

Iteration 1. First, the DM was shown the ideal and nadir points shown in Table 2. With 
the first reference point, the DM wished to achieve a solution with a moderate amount of 
income and a moderate CSHI, with “quite a bit” of stored carbon dioxide. This reference 
point is shown in Table 2.

Iteration 2. The solution with the objective function values shown in Table 2 was com-
puted based on the reference point given in the first iteration. The first thing the DM noted 
was how close the objective function values were to the reference point given. He then 
wished to improve either the stored carbon dioxide or the CSHI value by lowering the 
income. He decided that he would like to improve the CHSI value. Therefore, CHSI was 
chosen as the target in R-XIMO, which produced the following suggestion: Try improving 
the CSHI and impairing the Stored CO2 . In formulating a new reference point, the DM did 
not, however, wish to improve CHSI any further. The reference point given by the DM in 
the second iteration is shown in Table 2.

Iteration 3. After seeing the newly computed solution shown in Table 2, the DM won-
dered what should be changed to improve the income. R-XIMO provided the following 
suggestion: Try improving the Income and impairing the Stored CO2 . But the DM did not 
wish to impair the stored carbon dioxide anymore. Instead, he wanted to improve the stored 
carbon dioxide next, which was set as the target in R-XIMO. The provided suggestion by 

Table 2  The solutions and reference points of the first solution process

The Incomes shown are scaled down by a factor of 10e-7, the Stored CO2 by a factor of 10e-9, and the 
CSHI values by a factor of 10e-4. The ideal and nadir points of the representative set of Pareto optimal 
solutions considered are also shown

Ideal point Nadir point

Income Stored CO2 CSHI Income Stored CO2 CSHI

6.285 8.269 3.244 1.877 6.733 2.139

Current solution Reference point

Iteration Income Stored CO2 CSHI Income Stored CO2 CSHI

1 – – – 4.500 7.750 2.800
2 4.599 7.833 2.823 4.500 7.650 2.800
3 4.657 7.705 2.872 4.400 7.705 2.800
4 4.613 7.772 2.854 – – –

3 https:// github. com/ gialm isi/ shap- exper iments/ blob/ b446c 696ae 74c51 fa9e1 ee4a1 0aada 98b1b c7f81/ noteb 
ooks/ CaseS tudyS oluti onPro cess1. ipynb
4 https:// github. com/ gialm isi/ shap- exper iments/ blob/ b446c 696ae 74c51 fa9e1 ee4a1 0aada 98b1b c7f81/ noteb 
ooks/ CaseS tudyS oluti onPro cess2. ipynb

https://github.com/gialmisi/shap-experiments/blob/b446c696ae74c51fa9e1ee4a10aada98b1bc7f81/notebooks/CaseStudySolutionProcess1.ipynb
https://github.com/gialmisi/shap-experiments/blob/b446c696ae74c51fa9e1ee4a10aada98b1bc7f81/notebooks/CaseStudySolutionProcess1.ipynb
https://github.com/gialmisi/shap-experiments/blob/b446c696ae74c51fa9e1ee4a10aada98b1bc7f81/notebooks/CaseStudySolutionProcess2.ipynb
https://github.com/gialmisi/shap-experiments/blob/b446c696ae74c51fa9e1ee4a10aada98b1bc7f81/notebooks/CaseStudySolutionProcess2.ipynb
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R-XIMO was: Try improving the Stored CO2 and impairing the Income. The DM thought 
that the suggestion was what he expected and proceeded as suggested. The reference point 
given by the DM is shown in Table 2.

Iteration 4. The solution in Table 2 was shown to the DM. After seeing the solution, 
the DM thought it was a “good and reasonable solution”, was happy with it and stopped the 
solution process.

4.2.4  Second solution process

Iteration 1. After the DM completed the first solution process, he wished to solve the 
problem once more from a more ecological point of view. Thus, he preferred high values 
for the stored carbon dioxide and CSHI. The nadir and ideal points were naturally the same 
as earlier. He provided the first reference point shown in Table 3.

Iteration 2. The computed solution in Table  3 was shown to the DM. He was quite 
happy with it, but wished to still improve CSHI, which was set as the target. R-XIMO 
provided the following suggestion: Try improving the CSHI and impairing the Stored CO2 . 
The DM did as suggested and provided the reference point shown in Table 3.

Iteration 3. The first thing the DM noticed once he saw the computed solution shown in 
Table 3 was that the income also improved in addition to CSHI. The DM was happy with 
this solution and decided to stop the solution process.

4.2.5  Questions and answers

After the two solution processes, the DM was asked a few questions regarding R-XIMO 
and the support it provides. Below, we present the questions and the DM’s answers. The 
answers have been slightly paraphrased to improve comprehensibility.

How useful did you find the suggestions? “I really liked them. I liked how easy they 
were to understand. The fact that something was to be improved and something was to be 
impaired was nice. I liked that a lot. But I did not always understand why one [of the objec-
tives] was highlighted over another.”

How easy were the suggestions to understand? “Generally, quite easy. Could be still 
simpler.”

Did you pay any attention to the explanations? “No, they were too long. I did not 
want to read them.” (At this point, the DM went back to the explanations to read them out 
of curiosity.)

Did you find the explanations and suggestions supporting during the interactive 
solution process? “Yes, I think so. The suggestions sort of highlighted where I should put 
my attention. Normally, I would just randomly change things until I get to where I want to 
go. I think I got where I wanted to be with fewer iterations.”

Table 3  The solutions and 
reference points of the second 
solution process. See the caption 
of Table 2 for additional details

Current solution Reference point

Iteration Income Stored CO2 CSHI Income Stored CO2 CSHI

1 – – – 3.500 7.850 3.000
2 3.720 7.983 3.057 3.500 7.750 3.100
3 3.579 7.810 3.136 – – –
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Did you find the suggestions too repetitive or otherwise frustrating? “No, because I 
did not have to iterate very often. Normally, I would find it frustrating to go back and forth 
[between iterations], but this time it was not frustrating because the suggestions were high-
lighting where I should focus, which made finding a solution a little bit easier.”

Would you have preferred the suggestions or explanations, or both, to be visual-
ized? “I do not think so. If I had provided the reference points in a visual way, then yes.”

4.2.6  Observations

The suggestions generated by R-XIMO were well received by the DM. It was also 
observed that each suggestion, when followed, led to an improvement in the target objec-
tive expressed by the DM. Even though in the second iteration of the first solution process 
(Table 2) the DM did not improve the target component in the reference point, but instead 
only impaired the rival, the computed solution had a better value for the target objective 
when compared to the previous solution. It was also interesting to note that in the third iter-
ation in the first solution process, the first suggestion given by R-XIMO was not preferable 
in the opinion of the DM, which prompted him to change his preferences regarding how 
he would like to improve the solution. While the suggestions were well received by the 
DM, the explanations were practically ignored. The main reason for this was their length 
according to the DM. Nevertheless, the support R-XIMO provided to the DM decreased 
the number of iterations needed to reach a preferred solution, according to the DM. Saving 
the DM’s time is naturally desirable.

5  Validation and results

In this section, we discuss how we have numerically validated R-XIMO. We begin with a 
general description of the validation setting, assumptions made, and give an example of a 
possible implementation of R-XIMO in Sect. 5.1. Then, we describe the numerical valida-
tion process to study how well and how often the suggestions generated by R-XIMO lead 
to desirable outcomes in Sect. 5.2. After that, we discuss the results of the validations and 
the observations made in Sects. 5.3 and 5.4, respectively.

5.1  Setting and implementation

In the numerical validation, R-XIMO is utilized according to the following pattern: 

1. An initial reference point z̄0 is randomly generated.
2. An initial solution �0 is computed by utilizing z̄0 and the black-box � (6).
3. An objective itarget is selected. Details about selecting the target are given later.
4. According to Algorithm 1, objective jrival is computed and an explanation provided.
5. In the next iteration, a new reference point z̄1 is provided, where the component itarget 

is changed by a value � ; and the component jrival is impaired by the same value � . The 
value � is a constant scalar value relative to the range of the respective objective function 
(i.e., the difference of components of the ideal and nadir points).

6. A new solution �1 is then computed with z̄1 and �.
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Our goal is to compare �0 with �1 . The expected result is that objective itarget should have 
a better value in �1 when compared to �0 in cases where the component itarget is improved 
and the component jrival is impaired in z̄1 relative to z̄0 . The value � represents the change 
the DM makes in the components corresponding to the target and the rival in the reference 
point. We have limited the value � to affect just itarget and jrival since R-XIMO generates sug-
gestions only concerning these two.

In the validation, we deal with two multiobjective optimization problems, the river pol-
lution problem [47] (river problem, also considered in Sect. 4) and the vehicle crash-wor-
thiness design problem [52] (car problem, described in more detail in the Appendix). Both 
problems have all objectives to be minimized. The river problem has five objectives and 
two decision variables, while the car problem has three objectives and five decision vari-
ables. In both problems, variables are subject to box constraints.

We consider three black-boxes  (6) defined with the scalarizing functions (3), (4), and 
(5). We are only interested in whether the solutions computed by the considered black-
boxes can be improved by utilizing the suggestions generated by R-XIMO or not. Thus, 
we are not comparing the performances of the scalarizing functions. We have chosen these 
scalarizing functions because they can generate different solutions [11]. Therefore, using 
them to validate R-XIMO shows how well it works for different black-boxes.

The version of R-XIMO utilized in the validations was implemented in Python utiliz-
ing the DESDEO software framework [53] for defining and solving multiobjective opti-
mization problems. The SHAP library [38] was used to compute SHAP values. The kernel 
SHAP method was selected because it can be applied to any kind of black-box models to 
generate SHAP values.

The source code of the R-XIMO implementation is available online on GitHub.5 Like-
wise, the numerical data generated during the validation is also available online.6

5.2  Validation

We generated approximations of the Pareto optimal fronts for both problems considered 
utilizing evolutionary multiobjective optimization methods (NSGA-III [49], MOEA/D 
[41], and RVEA [50]). Following the discussion in Sect. 3.3, we utilized the fronts as the 
missing data Zmissing (referred to in Algorithm 1) in the kernel SHAP method to compute 
the SHAP values for the considered black-boxes. The ideal and nadir points were calcu-
lated for both problems based on the approximations of their Pareto optimal fronts.

When calculating the SHAP values, the missing data was also used as an approximation 
to the original multiobjective optimization problem. This is because kernel SHAP requires 
evaluating the original black-box many times over the course of computing the SHAP val-
ues. However, the solutions �0 and �1 were computed using the original (analytical) formu-
lations of the underlying multiobjective optimization problems. This was done to get more 
accurate solutions. In other words, the approximation of the Pareto optimal fronts were 
used only when calculating SHAP values.

During the course of the validations, many experiments were conducted. One experi-
ment consisted of running R-XIMO 200 times (a single batch) for each objective. This 
amount of runs was empirically found to give statistically enough data, while taking a 

5 https:// github. com/ gialm isi/ shap- exper iments.
6 https:// nextc loud. jyu. fi/ index. php/s/ 2R4FB Dy7m5 33C2E.

https://github.com/gialmisi/shap-experiments
https://nextcloud.jyu.fi/index.php/s/2R4FBDy7m533C2E
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moderate amount of time to compute. In each batch, one of the objectives was always set 
as the target. For the river problem, this meant a total of 1000 iterations, and for the car 
crash problem, this meant a total of 600 iterations. The initial reference point z̄0 was gener-
ated randomly and resided in the objective space bounded by the ideal and nadir points for 
each problem. Between the experiments, the problem, the value � , and the scalarizing func-
tion, were varied. Four different � values were considered: 5%, 10%, 15%, and 20%. These 
values were relative to the distance between the ideal and nadir points of the considered 
problem and respective component being changed. Therefore, the � values were constant 
and depended only on the range of the objective being changed. We decided to choose four 
different � values to test how much the amount the components in the initial reference point 
are changed affects the change seen in the solution �1 when compared to �0 . The reason for 
choosing these four values for � is based on empirical testing; we found that increasing � to 
be greater than 20% of the range of the respective objective, started to yield wildly varying 
results. In the numerical validations conducted, we found the chosen four values to give the 
best insight on the effect the value of � has on the performance of R-XIMO, at least for two 
problems considered.

In the validation, we considered five possible ways a reference point may be changed in 
respect to the target and rival. These ways are characterized by the following strategies: A) 
the target is improved and the rival is impaired in the reference point z̄0 ; B) only the target 
is improved; C) the target is improved while some other component than the rival or the 
target is impaired; D) the target is not improved and the rival is impaired; and E) the target 
is not improved while some other component than the rival or the target is impaired. These 
strategies have been listed in Table 4.

Strategy A is equivalent to following the suggestion of R-XIMO fully. Strategy B repre-
sent the naive, or business-as-usual, course of action of only improving the target. Strate-
gies B-D represent scenarios where the suggestions of R-XIMO are followed only in part. 
These strategies are included to check how the suggestions provided by R-XIMO work if 
followed only partly, and especially to check if the provided suggestion really is the best 
course of action if the target is to be improved. Partly following the suggestions is also a 
realistic behavior that can be expected from a real DM. The last strategy, strategy E, repre-
sents the case of not following the suggestion at all. This strategy has been included purely 
for validation purposes. Comparing how the target objective’s value varies between solu-
tions �0 and �1 when employing different strategies, gives a good indication on the perfor-
mance of R-XIMO (strategy A) when compared to alternative courses of action (strategies 
B-E) in respect to the target and rival. Especially, the comparison of strategy A to strategy 
B gives a fair idea of the added value of R-XIMO to the DM, since strategy B represents 
the naive course of action a DM would take without the support provided by R-XIMO.

Table 4  The five strategies employed in the validation of R-XIMO

Strategy Description

A Do as suggested, improve the target and impair the rival in the reference point
B Business-as-usual, only improve the target in the reference point
C Improve the target and impair a random component, which is not the target or 

the rival, in the reference point
D Do not improve the target and impair the rival in the reference point
E Do not improve the target and impair a random component, which is not the 

rival or the target, in the reference point
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Each experiment with its variations was repeated for each strategy (Table  4). This 
resulted in 60 experiments performed for each problem. In each experiment, the refer-
ence points z̄0 and z̄1 , the solutions �0 and �1 , the index of the rival jrival and the index of 
the target itarget , and the type of the explanation and suggestion (Table 1) generated, were 
recorded.

5.3  Results

The main results of the numerical validation runs are shown in Tables  5 and 6. All the 
numerical values shown in the tables are percentages. In what follows, change refers to the 
relative change of the target objective in �0 when compared to �1 . Since all the objectives 
in the experiments are to be minimized, a negative change means an improvement in the 
target and a positive change indicates an impairement of the target.

The first three columns (Delta, SF, Strategy) in Tables 5 and 6 show the value � , the 
scalarizing function (SF) used, and the strategy employed (Table 4), respectively. For each 
experiment, the overall rates of success (target was improved in �1 compared to �0 ), neutral 
(target was the same in �1 and �0 ), and failures (target was impaired in �1 compared to �0 ) 
are recorded in the columns Success, Neutral, and Failure, respectively.

To indicate how much the target objective’s value was changed after the reference point 
was modified, in each experiment the median of the change was computed. To show the 
variation in the change, the mean absolute deviation (MAD) was used. These values are 
listed in the columns median and MAD, respectively. The median was used because the 
target’s change had some very small and large values in the experiments making the mean 
an inaccurate measure. These values can be seen in the tables in the columns min and max, 
respectively. The MAD was used instead of the standard deviation for the same reason the 
median was used. In other words, the median and the MAD were used because they are 
more resilient to outliers when compared to the mean and the standard deviation.

Utilizing the MAD and assuming the changes of the target in the experiments would 
follow a normal distribution, a standard deviation �MAD was computed for the changes 
observed in each experiment and recorded in the last column of Tables 5 and 6. Again, 
assuming a standard distribution, the median, and the computed standard deviation �MAD 
(centered on the median) were used to introduce a cut−off, where the values of change 
residing inside the 2�MAD confidence interval were used to compute a mean �95 recorded in 
the penultimate column in each table. The parentheses following the values listed on this 
column show, in percentages, how many samples were cut−off in each experiment when 
calculating �95 . The purposes of the last two columns are to give the reader quantities that 
are perhaps more familiar and easier to interpret than the median and MAD. The quantities 
�95 and �MAD are less accurate than the median and MAD, respectively. The �95 and �MAD 
should therefore be considered with some care.

5.4  Observations

Some observations of the results in Tables 5 and 6 are worth mentioning. The average rates 
for a success, neutral, and failure for each strategy across all the experiments are shown in 
the stacked bar graphs in Fig. 3 for the river and car problem. We can see that the average 
rates are very similar for strategies A, B, C and D for the river problem; and for strategies 
A, B and C for the car problem, while for strategy D the success rate seems a little lower, 
yet notably higher than strategy E. Strategy E seems to have the lowest success rate and 
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highest failure rate for both problems. Looking just at the success rates, it seems that the 
desired result of improving the target can be achieved by just improving the target compo-
nent in the reference point z̄0 ; it does not seem to matter which component is impaired, or 
if another component is impaired at all. If we do not improve the target and impair a com-
ponent, which is not the rival (strategy E), then the success rates seem to be the worst for 

Fig. 3  Average of the success, neutral, and failure rates observed for each strategy for the river (left) and car 
(right) problems. The error bars show the standard error for each rate

Fig. 4  The average of the median changes observed in the target for each strategy and � value for the river 
(left) and car (right) problems

Fig. 5  The average of the �95 means observed in the change of the target for each strategy and � value for 
the river and car problems
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both problems. Lastly, the rate for a neutral outcome is very low for the river problem and 
significantly higher for the car problem across all strategies.

The average median of the changes observed for each value � is grouped by strategy for 
both problems and shown as grouped bar charts in Fig. 4. It is evident that, on average, the 
greatest negative changes in the target objective can be achieved by employing strategy A 
in both problems. The changes observed for strategy E seem to average out at zero for both 
problems. While strategies B, C, and D seem to yield somewhat similar results for the river 
problem, for the car problem, strategy D is clearly inferior to strategies B and C, while 
strategy C seems to be better than strategy B. Looking at Fig. 5, we can see similar results 
to what we see in Fig. 4—the average values of the medians are very close to the respective 
values of the average means. With the cut-off introduced, the mean values are close to the 
medians.

Looking at the average values of the MADs of the changes observed in the target shown 
in Fig. 6, we can observe the greatest variation for strategies A and C, for both problems. 
For the river problem, the variations for strategies B and E seem similar, while the varia-
tions for strategy D are a little bit higher than for B and E. For the car problem, the varia-
tions for strategies B, D, and E are more similar, with the variations in strategy B being still 
the highest. We can see a similar pattern for the average of the �MAD deviations shown in 

Fig. 6  The average of the median absolute deviation of changes in the target for each strategy and � value 
for the river and car problems

Fig. 7  The average of the �MAD deviations of changes in the target for each strategy and � value for the river 
and car problems
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Fig. 7. However, the values of the �MAD variations are noticeably larger than the medians 
across both problems.

In all Figs. 4, 5, 6, and 7, we can clearly see that the average changes and deviations of 
the changes increase systematically as the value of � increases. The average changes seem 
to be best for strategy A, but also the deviations seem to be greatest for strategy A. This 
means that while the best average improvement of the target can be observed by employing 
strategy A, it can also yield very varying results. The overall worst strategy seems to be 
strategy E, which results, on average, in no observed change in the target. The deviations 
for strategy E are also small, indicating that the average changes observed in the target are 
not just zero-centered but also very small. It is also evident that looking just at the success 
rates in Fig. 3 is not enough. For instance, just looking at the success rates for strategy A 
would indicate that it is no different from strategy B, while the average changes clearly 
indicate that a better result can be achieved by employing strategy A.

In summary, the results indicate that employing strategy A, that is, improving the target 
and impairing the rival, as suggested by R-XIMO, has the best chance of achieving the 
desirable result of improving the target and in the greatest amount. The choice of the rival 
objective seems to also matter, otherwise strategies A and C should be similar. Moreover, it 
also seems that strategy D (only impairing the rival and not improving the target) can yield 
improvements in the target objective. Overall, the improvement of the target component in 
the reference point seems to be a sound course of action to be always taken when the target 
objective is to be improved in the solution.

6  Discussion

In this section, we discuss the validity of R-XIMO. In Sect. 6.1, we consider the results of 
the illustrative example given in Sect. 4.1, and in Sect. 6.2 we consider the results of the 
case study with a real DM conducted in Sect. 4.2. Likewise, in Sect. 6.3, we discuss the 
results of the numerical validations of Sect. 5. Lastly, in Sect. 6.4, we outline the overall 
potential of R-XIMO, its future prospects and XIMO in general.

6.1  On the example

In Sect. 4.1, the usefulness of R-XIMO was demonstrated with the river problem and an 
analyst as the DM. R-XIMO generated explanations and suggestions at each iteration. The 
most important benefit for the DM was understanding the trade-offs among the conflicting 
objectives with the assistance of R-XIMO. The DM was able to learn about the conflicts 
between the objectives and the feasibility of their preferences, thanks to the explanations 
and suggestions. The DM noted that the assistance increased his confidence in the final 
solution because he gained enough insight into the problem throughout the solution pro-
cess. Moreover, this assistance made it easier for the DM to provide preference information.

When we pondered on the interactive solution process, we noticed that the DM was not 
aware of how strong the conflict degrees among the objectives were. This emphasizes the 
necessity of providing not just the trade-offs among the objectives, but also the degrees 
of conflict between them. Furthermore, we need to underline the importance of providing 
these explanations visually. We did not work on visualization perspectives of explanations 
because our aim was to demonstrate the benefits of explanations in interactive methods. 
However, this needs attention in the future.
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6.2  On the case study

We utilized R-XIMO in the case study in Sect. 4.2 with a real DM. While the suggestions 
clearly supported the DM in the solution processes, it was also evident that the explana-
tions were too convoluted for a real DM, which led the DM to completely ignore the expla-
nations. Based on the DM’s answers to the questions presented, the suggestions generated 
by R-XIMO were valuable and aided the DM in both gaining a sense of direction on what 
to change in the reference point to achieve a desirable result and by reducing the number of 
required iterations. The DM did, however, state that the suggestions could be still simpler.

It is obvious that if explanations are to be presented to the DM, further studies are 
needed to make this information palatable for real DMs. However, this does not mean the 
explanations generated by R-XIMO are completely useless since the suggestions, which 
were found to be very useful, are derived from the explanations. Moreover, as seen in the 
example given in Sect. 4.1, the explanations can be useful to an analyst. We think the most 
valuable lesson from the case study is the observation that future studies on how the sug-
gestions and explanations are presented to the DM are definitely needed. We believe the 
right direction to pursue is the exploration of new visualizations and graphical user inter-
faces that better support conveying the explanations and suggestions to human DMs in a 
graphical format.

6.3  On the numerical validations

From the success rates shown in Fig. 3, we notice that when the target component chosen 
by the DM is improved or the rival computed by R-XIMO is impaired in the reference point 
(strategies A-D in Table 4), the target is improved most of the time (around 70–80% of the 
time). When neither the target is improved nor the rival is impaired (strategy E in Table 4), 
the success rates are clearly the worst with a failure at around 50% of the time. Therefore, 
improving the target in the solution requires improving it in the reference point or impair-
ing the rival. A combination of these, improving the target and impairing the rival (strategy 
A in Table 4), seems to yield the best results when compared to the other strategies. Lastly, 
the higher rates of neutral outcomes observed for the car problem can stem from the more 
challenging shape of the Pareto optimal front of the problem, which may have been more 
challenging for the underlying optimization method used to minimize the scalarizing func-
tions considered. Thus, there may have been local minima that multiple different reference 
points were mapped to. However, the results of the numerical validations do not seem to 
have suffered from this in any major fashion.

The above has two important implications. First, improving the target in the reference 
point has a clear effect on the value of the target in the solution (strategies A-D). This is 
expected since the black-box considered in (6) finds a solution close to the given reference 
point. Secondly, because the success rates for strategy E are clearly worse than for strat-
egy D (not improving the target but impairing the rival) implies that the rival computed is 
indeed, on average, the best component to be impaired in the reference point. If this was 
not the case, then there should be no significant differences in the success rates between 
strategies D and E. Based on the success rates alone, we claim that the proposed method 
suggests a rival, which when impaired in the reference point, will yield better results for the 
target in the solution. This means that R-XIMO is able to capture (local) conflicts between 
the target and some other objective (the rival in our case).
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Success rates alone do not give strong evidence that improving the target and impairing 
the rival (strategy A) in the reference point would be significantly better than strategies 
B-D, but the results show that improving the target in the reference point is always a sound 
action if the value of the target is to be improved. As said, this is an expected result and 
gives us confidence in the numerical validations.

The results for the relative improvements of the target objective’s value in the solution 
(Figs. 4 and 5) indicate clearly that improving the target and impairing the rival in the ref-
erence point is the best strategy (strategy A). The results for strategies B, C, and D indicate 
that smaller improvements can be observed in the target’s value in the solution when either 
the target is improved or the rival is impaired in the reference point. Lastly, not improving 
the target and not impairing the rival in the reference point leads to almost no improvement 
in the target’s value in the solution (strategy E), and is therefore the worst course of action 
to be taken, which is expected.

The above observations are also confirmed when looking at Tables  5 and  6. We 
clearly notice from the median columns that the best improvements of the target’s value 
in the solution are achieved in almost all cases across both problems when strategy A is 
employed. The best success rates (in the column Success) are also found to belong to strat-
egy A in most cases, but not as often as the best improvement of the target.

Interestingly, strategies B (only improving the target) and C (improving the target and 
impairing something else than the rival) yield similar results for the river problem, while 
for the car problem, strategy C is somewhat better, when it comes to the relative improve-
ment of the target objective’s value in the solution (Figs. 4 and 5). One conclusion from 
this is that with more objectives, impairing some objective in addition to improving the 
target, is more important when compared to a problem with less objectives.

If we compare strategies A (improving the target and impairing the rival) and C 
(improving the target and impairing something else than the rival) in Figs.  4 and  5, we 
can see that the actual choice of the rival does also matter when the target component is 
improved. The results of strategy A in the river problem are clearly better than for strategy 
C, while for the car problem, the difference is less, but still notable. Again, this can be an 
indication that with less objectives, the actual choice of the rival is not as important when 
compared to a problem with more objectives.

Therefore, in the river problem, it is important to choose a rival, and choose it correctly 
for the best result, while in the car problem, the choice of the rival is not that critical and 
only improving the target (strategy B) can yield good results as well. This observation on 
the importance of choosing the rival correctly, with more objective functions present, is 
further confirmed by the results for strategy D (not improving the target and impairing the 
rival). With more objectives, in the river problem impairing only the rival will yield better 
results when compared to the same results for the car problem. It is also clear that impair-
ing at least some component in the reference point is always better than just improving 
the target, which is confirmed by the improvements for strategy C (improving the target 
and impairing something else than the rival) being always better than for strategy B (only 
improving the target), for both problems. Again, this kind of behavior is expected with 
trade-offs existing among the objectives.

From all of this, we conclude that the rival computed by R-XIMO is, on average, the 
best component to be impaired in the reference point when a DM wishes to improve the 
target in the solution. The correct choice of the rival seems to be more important in prob-
lems with more objective functions. For the best result, the target should be improved 
in the reference point as well. To make more general assumptions on how important the 
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choice of the rival is when the number of objective functions varies, further numerical 
studies are required.

The results for the deviations of the relative improvement of the target in the solution 
(Figs. 6 and 7) indicate that the best performing strategy (strategy A) is also the most vola-
tile because of the high values of deviation when compared to the other strategies. How-
ever, for strategy A, the average absolute values of the improvement of the target in the 
solution (in Figs. 4 and 5) are close to the deviations. This indicates that when the target 
fails to improve, its new value is probably closer to its original value in the previous solu-
tion. This is assuring because it means that if the explanations provided to the DM fail 
helping the DM reach the desired result, the magnitude of failure is small (i.e., the target 
has only a slightly worse value). Interestingly, improving the target and impairing a random 
component in the reference point (strategy C) is as volatile as strategy A. Strategy C is also 
the only other strategy, apart from A, where two components are changed in the reference 
point. This means that changing more components in the reference point yields more vary-
ing solutions, which is an expected behavior from the black-boxes considered (6). The vari-
ations of strategy D in the river problem are clearly greater than the variations of strategies 
B and E, while in the car problem, the variations of strategy B are greater than strategies 
D and E. It seems that the rival has a greater effect of the volatility of the results depend-
ing on the number of objectives at hand. Overall, when the average improvements and the 
average deviations are compared to each other, there are no conflicts with the success rates 
(Fig. 3).

Comparing the case study to the numerical validations conducted in Sect. 5, the changes 
in the components of the reference point expressed by the DM varied between � values 
of 2.3% and 9.0% . If the actions taken by the DM are compared to the strategies A-E, the 
DM pursued actions described by strategy A most of the time, with pursuing an action 
described by strategy D once. Based on these observations alone, any specific conclusions 
are hard to make. But if it is generally true that � values around 15 − 20% lead to greater 
improvements in the target objective, then some way of communicating the amount the 
DM should change the target and rival components in the reference point is worth explor-
ing in the future. In conclusion, the numerical validations have shown that the suggestions 
generated by R-XIMO can help the DM reach the desired outcome of improving the target 
in the solution.

6.4  Potential of R‑XIMO and future prospects

Explainability clearly provides support to the DM, as discussed in Sects. 6.1 and 6.2, and 
R-XIMO is able to generate sound explanations (and therefore suggestions), as discussed 
in Sect. 6.3. R-XIMO supports the DM in learning about the multiobjective optimization 
problem and helps them in formulating new preferences in reference point based interac-
tive multiobjective optimization methods. These issues have been seldom addressed in past 
research, as mentioned in Sect. 1.

The importance of providing explanations to the DM in interactive multiobjective opti-
mization methods is emphasized when they are used to make real-life decisions affecting 
humans. Incidentally, in the member nations of the European Union, when decisions affect 
humans, individuals should have a right to an explanation on why, and on which basis, 
such decisions have been made [54]. Therefore, R-XIMO, and the concept of XIMO in 
general, has important societal implications.
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Making trade-offs in decision making is challenging, as discussed in [55]. R-XIMO sup-
ports the DM in this regard as well by suggesting trade-offs directly to the DM. Therefore, 
the cognitive load on the DM is lower in reference point based interactive multiobjective 
optimization methods with the support of R-XIMO. Moreover, not much research has been 
done on studying the local conflicts in multiobjective optimization as discussed in [56]. 
Because SHAP values are local, as discussed in Sect. 2.2, the interactions of the objectives 
represented by SHAP values reflect the local conflicts among them. Thus, R-XIMO can 
give insight to the DM about the trade-offs local to the current solution.

In our work, we did not utilize the SHAP values computed in R-XIMO to convey to the 
DM any information about the actual magnitude of the conflicts among the objectives in 
a multiobjective optimization problem. Moreover, no support was provided to the DM on 
how much the target and rival should be perturbed. We made the deliberate choice to only 
communicate simple and easy to understand ideas to the DM with the explanations gener-
ated by R-XIMO to not overburden the DM with additional information.

If we chose to numerically show the SHAP values to the DM, we run a risk of the DM 
starting to compare the SHAP values to each other, or to the objectives, instead of com-
paring the objectives. This would greatly reduce the actual support provided to the DM 
by R-XIMO. Therefore, it is important that information is communicated to the DM is an 
easily understood way, and in a way that minimizes the possibility for the DM to confuse 
different types of information. By keeping the suggestions and explanations textual, we at 
least have made a clear distinction between objectives (numerical information) and the sug-
gestions and explanations (textual information).

To further minimize the additional cognitive load on the DM imposed by R-XIMO, we 
decided to only show the suggestions derived from the explanations (Table 1) by default, 
and give the DM the option to see the more detailed explanation, if they so desire. The 
detailed explanations were formulated in a causal tone since it has been demonstrated 
previously that such explanations have high cognitive value to DMs [57]. Moreover, by 
separately providing a suggestion to the DM, we provide them with actionable insights 
(mentioned in [57]) on how they may reach their goal of improving a specific objective. 
However, the SHAP values can portray valuable information to the DM and can further 
help them in deciding how much the components of the reference points should change. 
This is something R-XIMO does not provide support for. We believe this information 
should be communicated to the DM graphically, but to find the actual best way of commu-
nication, further studies with human participants are required. The graphical communica-
tion of explanations in multiobjective optimization is also yet to be explored.

We argue that R-XIMO could help the DM in avoiding some cognitive biases as well, 
such as anchoring. Indeed, as argued in [58], a common reason for the anchoring effect in 
interactive methods is that DMs do not have time to spend in a long interactive process. 
R-XIMO can speed up an interactive process by eliminating some of the time required for 
a DM to think about trade-offs and possibly help the DM away from a previous solution 
aided by the suggestions. However, based solely on our work, we cannot make any defini-
tive claims regarding the cognitive support offered to DMs by R-XIMO.

R-XIMO can be readily scaled up to convey suggestions and explanations to the DM 
about the interaction between other components of the reference point and solution than the 
target and rival. For instance, the second order effects, i.e., the components in the reference 
point with the second greatest improving or impairing effect on the target in the solution. 
This information is already available in R-XIMO and remains only to be exploited. How-
ever, we believe that further research should be conducted on how to best convey explana-
tions to DMs in the context of multiobjective optimization before R-XIMO is scaled up. 
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This is also the reason why we decided to keep the suggestions and explanations simple 
and focused only on the most significant effects (i.e., the target and the rival).

As mentioned in the introduction, R-XIMO can be implemented as an agent to support a 
DM in various ways. A generic multiagent architecture for any type of interactive methods 
was proposed in [16], which allows more efficient and reliable interactive solution processes 
through the use of specialized agents. Moreover, the architecture enables a DM to select the 
most suited interactive methods based on their needs in different phases during the interac-
tive solution process. In the aforementioned architecture, a preference agent that interacts with 
a DM constructs their preference model by actively observing and learning the preferences. 
The preference agent notifies a DM whenever they provide uncertain or contradictory pref-
erences with the help of constructed preference model. R-XIMO does not currently keep a 
history of the DM’s preferences, but it clearly has the potential to be implemented as a prefer-
ence agent as part of the said architecture and can be extended to provide not only trade-offs 
among objectives, but also to explain uncertainties and/or contradictions in the provided pref-
erence information. This may enable a DM to provide more accurate and reliable preference 
information.

7  Conclusions

We proposed the R-XIMO method to be applied with reference point based interactive mul-
tiobjective optimization methods to explain to a DM why their preferences have lead to solu-
tions shown and how the reference point may be modified to achieve a more preferred solu-
tion. Our method can be used with any reference point based interactive method. We have 
incorporated multiobjective optimization with ideas from explainable artificial intelligence, 
and utilized SHAP values to generate the explanations. We have demonstrated the useful-
ness of R-XIMO in practice with an illustrative example and a case study, and we validated 
it numerically. We can safely say that R-XIMO has a high potential as a decision support tool 
clearly augmenting the insight offered by the existing reference point based interactive meth-
ods. Nevertheless, in its current state, our work should still be regarded as a proof-of-concept. 
Future studies are needed to explore what kind of explanations best serve the needs of DMs 
in finding preferred solutions in multiobjective optimization problems. In the case study, we 
considered the opinion of only one DM, which is clearly a limitation. To properly assess the 
usefulness of explanations to humans in multiobjective optimization, studies with more DMs 
are still required.

In the future, other tools and methods apart from SHAP values should be explored in 
XIMO, and implementing new interactive methods with inherent explainability should be 
considered as well considering also different types of preference information. Some promising 
methods to explore in this regard are, for instance, individual conditional expectations [59], 
belief rule-based systems [60] (as already preliminarily explored in [44]), and scoped rules 
[61], just to name a few.

By supporting the DM in providing reference points and learning about the underlying 
multiobjective optimization problem, we provide answers to open questions in interactive 
multiobjective optimization. In addition, we also advance the field of explainable interactive 
multiobjective optimization, or XIMO, to new horizons. Our work can be regarded as pio-
neering and the first of its kind for explaining scalarization-based interactive multiobjective 
optimization methods. Our work investigates and proposes ideas that have a strong potential to 
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inspire a plethora of various future works exploring the concept of explainability in multiob-
jective optimization.

Appendix

The crash-worthiness design of vehicles problem [52] is a real-world engineering problem 
in which the frontal structure of vehicles is designed for crash safety. The vehicle’s frontal 
structure absorbs the energy created by the crash, increasing passenger safety. Improving a 
vehicle’s energy absorption capacity often increase the overall vehicle mass. On the other 
hand, lightweight designs are required to minimize a vehicle’s mass and, as a result, its 
fuel consumption. Therefore, higher energy absorption and lightweight design conflict with 
each other, and we must find a compromise between the two to achieve a proper design.

As design variables in this problem, the thickness of five reinforced components sur-
rounding the frontal structure affecting crash safety is chosen. The mass of a vehicle ( f1 ), 
deceleration during the full-frontal crash ( f2 , which influences passenger injuries), and toe 
board intrusion in the offset-frontal crash ( f3 , which affects the vehicle’s structural integ-
rity) are all defined as objectives to be minimized. Mathematical formulation of the multi-
objective optimization problem is as follows:

where fi (i = 1, 2, 3) represents the relevant objectives and the decision variable xj 
(j = 1,… , 5) represents the thickness of five components of the frontal structure. Objec-
tives have the following formulations:

More details about the crash-worthiness design of vehicles problem can be found in the 
original study [52].
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minimize F(�) = (f1(�), f2(�), f3(�))

subject to 1 ≤ xj ≤ 3, where j = 1,… , 5

f1(�) = 1640.2823 + 2.3573285x1 + 2.3220035x2 + 4.5688768x3

+ 7.7213633x4 + 4.4559504x5

f2(�) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3 + 0.8364x4

− 0.3695x1x4 + 0.0861x1x5 + 0.3628x2x4

− 0.1106x2
1
− 0.3437x2

3
+ 0.1764x2

4

f3(�) = − 0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3 − 0.0073x1x2

+ 0.024x2x3 − 0.0118x2x4 − 0.0204x3x4 − 0.008x3x5

− 0.0241x2
2
+ 0.0109x2

4
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