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Abstract1

Sustainable environmental management often involves long-term time horizons,2

multiple conflicting objectives, and by nature, is affected by different sources of uncer-3

tainty. Many sources of uncertainty, such as climate change or government policies,4

cannot be addressed using probabilistic models, and, therefore, they can be seen to5

contain deep uncertainty. In this setting, the variety of possible future states is repre-6

sented as a set of scenarios lacking any information about the likelihood of occurring.7

Integrating deep uncertainty into multiobjective decision support increases complexity,8

calling for the elaboration of appropriate methods and tools. This paper proposes a9

novel interactive multi-scenario multiobjective approach to support decision-making10

and trade-off analysis in sustainable forest landscape planning under multiple sources11

of uncertainty. It includes new preference simulation models aimed at reducing the12

decision-maker’s cognitive load and supporting the preference elicitation process. The13

proposed approach is applied in a case study of long-term forest landscape planning14

with four sustainability objectives in twelve scenarios and a forestry expert as the15

decision-maker. The approach is demonstrated to be efficient in exploring trade-offs in16

different scenarios, helping the expert gain deep insights into the problem, understand17

the consequences of alternative strategies, and find the most preferred robust strategy.18

Keywords: Forest management; Climate change; Multiobjective optimization; Scenario19

planning; Partially known preferences20
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1 INTRODUCTION

1 Introduction21

We study problems of sustainable environmental management, in particular forest landscape22

planning, with a long-term time horizon and multiple conflicting objectives (such as timber23

revenue, carbon storage and biodiversity). Conflicts between objectives imply that a solution24

does not exist which would be optimal with respect to all objectives simultaneously. Instead,25

the solution must be sought among the set of so-called Pareto optimal solutions with various26

trade-offs between the objectives that brings the requirement of a domain expert (e.g., the27

manager or the decision-maker (DM)) to choose the final solution among various compro-28

mises. This set is unknown a priori, and each individual solution needs to be generated29

using mathematical methods. Therefore, the DM needs additional support to study these30

trade-offs and find the best balance between conflicting objectives. This typically is based on31

his/her preferences. Multiobjective optimization methods have been developed to provide32

this kind of support to DMs over the years in a wide range of real-life applications, including33

various aspects of forest planning. Some examples of decision support methods and case34

studies in forest planning can be found in Kangas et al. (2001), Eyvindson et al. (2018),35

Marques et al. (2021a), and Marques et al. (2021b) (see also references therein). Papers36

Mönkkönen et al. (2014), Kangas et al. (2015), and Triviño et al. (2017) develop various37

multiobjective models of forest landscape planning for analyzing trade-offs between different38

objectives. Some examples of mathematical methods for solving multiobjective problems of39

forest management can be found in Tóth and McDill (2009) and references.40

The DM may provide preferences before, after, or during the solution process. These41

three ways of providing preferences give raise to three types of multiobjective optimiza-42

tion methods: a priori, a posteriori, and interactive, respectively (Hwang and Masud, 1979;43

Buchanan, 1986; Miettinen, 1999). The effectiveness of a priori methods highly depends44

on the level of qualification and prior knowledge of the DM about the problem. Otherwise,45

the preferences provided before the solution process may be overly optimistic or pessimistic.46

In contrast, a posteriori methods aim at generating a large, diverse set representing Pareto47

optimal solutions. This is a barrier when applying to computationally complex problems48

and gets cognitively more and more challenging for the DM as the number of objectives49

grows. Interactive methods aim at, to some extent, avoiding the disadvantages mentioned50

above. They involve an iterative solutions process that allows the DM to gain insight into the51

problem, explore trade-offs between objectives, and learn about the feasibility of preferences.52

Interactive methods save computation resources and reduce cognitive load by focusing only53

on solutions that are interesting to the DM. Interactive methods have proved their poten-54

tial for multiobjective decision support in different environmental and forest management55
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1 INTRODUCTION

applications (e.g., Tecle et al., 1994; Hartikainen et al., 2015, 2016; Eyvindson et al., 2018;56

Saccani et al., 2020).57

Like many real-life problems, environmental management problems such as forest plan-58

ning face different sources of uncertainty due to the unknown future states of the world, e.g.,59

climate and environmental change, production demand, government policy changes, and nat-60

ural hazards. Due to the lack of models and/or insufficient data, such types of uncertainty61

cannot necessarily be framed in probabilistic terms or even described parametrically. This62

situation is often referred to as deep uncertainty, i.e., when researchers do not know or cannot63

agree upon some aspects of the systems and/or outcomes such as their probability distribu-64

tions, boundaries, or related preferences (Lempert et al., 2003; Walker et al., 2013). In such65

cases, however, the future states of the world can be represented as scenarios. More specifi-66

cally, one can enumerate plausible future states of the world and corresponding outcomes of67

planning but cannot define their occurrence probabilities or ranking with enough accuracy68

because of the complexity and the lack of evidence (Lempert et al., 2006; Shavazipour and69

Stewart, 2021).70

Deep uncertainties, in particular those related to climate change, significantly affect the71

performance of forest management strategies. Thus, taking them into account is vital for ro-72

bust and sustainable forest planning (Seidl et al., 2017; Augustynczik and Yousefpour, 2019).73

It is worth noting that the ecosystem management activities need to be started decades be-74

fore the realization of the uncertain factors (Spittlehouse and Stewart, 2003; Millar et al.,75

2007; Petr et al., 2019). This necessitates the integration of deep uncertainty aspects into76

the planning process, bringing significant challenges to environmental DMs. Scenario plan-77

ning has been widely applied in handling uncertainty in decision-making (see, e.g., Van der78

Heijden (1996)). It provides a framework for thinking, planning, and concrete discussions79

of uncertainty (Durbach and Stewart, 2012). Since planning outcomes may be sensitive to80

the consequences of uncertainty, one crucial aspect of decision-making under uncertainty81

is identifying decisions that perform relatively well in a broader range of scenarios (called82

robust decisions) (Lempert et al., 2006).83

The multiobjective nature of environmental planning problems combined with their84

dependence on deep uncertainty brings more complexity (and introduces an additional85

dimension) to the solution process, making the DM’s task cognitively more demanding86

(Shavazipour et al., 2021b). Recently, different approaches integrated multiobjective op-87

timization and scenario planning to cope with deep uncertainty and help the DM analyze88

trade-offs between objectives under various scenarios and find the most preferred robust89

solution (e.g., Watson and Kasprzyk (2017); Eker and Kwakkel (2018); Shavazipour and90

Stewart (2021); Shavazipour et al. (2021a)), forming a class of decision problems called91

4
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1 INTRODUCTION

multi-scenario multiobjective optimization. The issue of cognitive complexity needs to be92

addressed by creating easy-to-understand preference handling techniques and graphical vi-93

sualizations. Existing decision support tools in forest management rarely consider both94

multiple objectives and deep uncertainty aspects (Yousefpour and Hanewinkel, 2016; Radke95

et al., 2017, 2020; Hörl et al., 2020). This study is an effort to fill this vital gap in the96

literature.97

In this paper, we propose a novel interactive multi-scenario multiobjective optimization98

approach as a decision support tool for environmental planning problems under deep uncer-99

tainty and in particular, sustainable forest management. Our decision support tool includes100

advanced visualization techniques recently developed for multi-scenario multiobjective op-101

timization problems (Shavazipour et al., 2021b) to analyze trade-offs between objectives in102

various scenarios. To the best of our knowledge, this is the first study of interactive environ-103

mental decision support combining multiobjective trade-offs exploration with multi-scenario104

considerations, such as optimality/feasibility in any given scenario and robustness over the105

set of future scenarios.106

As mentioned earlier, interactive methods for solving multiobjective problems rely on107

DM’s preferences. Different methods enable a DM to express preferences in different ways108

(Miettinen et al., 2016). We concentrate on the class of methods which utilize preference109

information provided as reference points. A reference point is a vector composed of so-110

called aspiration levels, which are desirable values of the objective functions. This type of111

preference information is in line with the concept of “satisficing” (Simon (1956); Wierzbicki112

(1982)), which is regarded as cognitively undemanding for the DM. Reference point-based113

methods have been widely used in practice, including environmental and forest management114

(e.g., Krcmar-Nozic et al. (1998); Eyvindson et al. (2018); Shavazipour et al. (2021a)).115

In multi-scenario multiobjective optimization problems, each objective in each scenario116

is represented by an individual objective function. Thus, the DM is expected to provide117

aspiration levels for all combinations of objectives and scenarios (Shavazipour et al., 2020;118

Shavazipour and Stewart, 2021). This can impose a high cognitive load on the DM, even119

for problems of moderate sizes. For example, for a problem with 3 to 5 objectives and 4 to120

7 scenarios, the required number of aspiration levels is from 12 to 35. It is far beyond the121

“magical number” 7± 2 proposed by Miller (1956) as the estimation of short-term memory122

capacity. Thus, setting all required aspiration levels can be difficult or beyond human capa-123

bilities. In practice, we cannot expect the preferences for all objectives in all scenarios to be124

available from the DM and, thus, in many cases, we have to deal with incomplete preferences.125

Therefore, our approach to interactive decision support allows expressing partial preference126

information and includes a tool to simulate missing preferences of the DM.127
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2 METHODOLOGY

To illustrate our novel approach, we consider a large-scale forest landscape management128

problem with tens of thousands of forest stands and a 50-year planning horizon. The prob-129

lem is formulated as a multi-scenario multiobjective mixed-integer optimization problem130

with four objective functions: (i) maximizing timber harvest revenue as net present value131

(NPV), (ii) maximizing carbon storage, (iii) maximizing deadwood, and (iv) maximizing a132

combined index of species habitat availability. The formulation includes 12 scenarios based133

on three different sources of deep uncertainty: (a) climate change, (b) forest thinning subsi-134

dies, and (c) compensations for forest landscape conservation, that construct a 48-objective135

optimization model to be solved. We solve this complex, large-scale problem utilizing the136

proposed interactive multi-scenario multiobjective approach guided by a forestry expert DM.137

We analyze trade-offs between objectives under various scenarios with the help of advanced138

visualizations.139

The rest of this paper is structured as follows. Section 2 contains a concise statement of140

multi-scenario multiobjective optimization problems and related definitions, followed by the141

proposed preference simulation method, the proposed interactive multi-scenario multiobjec-142

tive approach, and the visualizations utilized for trade-off analysis. The detailed description143

and problem formulation of the case study of forest landscape planning can be found in Sec-144

tion 3. In Section 4, we demonstrate our experiment of applying the proposed approach with145

a DM in the case study and the relevant trade-off analysis. Finally, after further discussions146

in Section 5, we conclude in Section 6.147

2 Methodology148

2.1 Multi-scenario multiobjective optimization149

A multi-scenario multiobjective optimization problem can be formulated as follows (Shavazipour

et al., 2021a):

minimize {f1t(x), . . . , fkt(x)}, t = 1, . . . , s,

subject to x ∈ S ⊆ Rn,
(1)

where s is the number of scenarios; k is the number of objective functions, and we assume that150

the number of objectives is the same in all scenarios; fit is the objective function defined151

in scenario t; x = (x1, . . . , xn)T is a feasible solution represented by a vector of decision152

variables, and S ⊆ Rn is the set of feasible solutions in the so called decision space Rn.153

Given a feasible solution x and scenario t ∈ {1, . . . , s}, we introduce the objective vector154

zt = (f1t(x), . . . , fkt(x))T as the image of a solution x under the conditions of scenario t in155

the objective space Rk. A feasible solution (decision vector) x ∈ S is called Pareto optimal156
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2 METHODOLOGY

if there does not exist another feasible solution with a smaller value of at least one objective157

function in one scenario and no greater values of any objective functions in any scenarios.158

We introduce a so-called ideal vector zideal with components zidealit , i = 1, . . . , k, t =

1, . . . , s and a nadir vector znadir with components znadirit , i = 1, . . . , k, t = 1, . . . , s com-

posed, respectively, of the best and the worst values of the individual objective functions

among the set of Pareto optimal solutions. Ideal values can be directly computed by solving

the corresponding single-objective single-scenario optimization problems separately for each

objective in each scenario. Nadir values are much more difficult to obtain, therefore they are

usually approximated (see, e.g., Miettinen (1999)). Without loss of generality, we assume

zidealit < znadirit , i = 1, . . . , k, t = 1, . . . , s,

since the equality between ideal and nadir values for some i and t would mean that the i-th159

objective function in scenario t is constant for all Pareto optimal solutions, and therefore it160

can be excluded from the consideration. For any scenario t, we also introduce ideal and nadir161

vectors in the objective space that are composed of the corresponding values in this scenario,162

respectively: zidealt =
(
zideal1t , zideal2t , . . . , zidealkt

)
and znadirt =

(
znadir1t , znadir2t , . . . , znadirkt

)
.163

One way of deriving solutions to multiobjective optimization problems is to use a so-

called scalarizing function to transform the multiobjective problem into a single-objective

problem incorporating the DM’s preferences (see, e.g., Miettinen (1999); Miettinen and

Mäkelä (2002); Ruiz et al. (2009)). An extended version of a so-called achievement scalar-

izing function (Wierzbicki, 1986) has been recently introduced to solve multi-scenario mul-

tiobjective optimization problems (Shavazipour et al., 2020, 2021a). In this paper, we use

the multi-scenario version of an achievement scalarizing function formulated by Shavazipour

et al. (2021a) as follows:

minimize max
i=1,...,k;t=1,...,s

[wit(fit(x)− zit)] + ε
k∑
i=1

s∑
t=1

wit(fit(x)− zit)

subject to x ∈ S,
(2)

where zit with zidealit ≤ zit ≤ znadirit , is an aspiration level representing a DM’s preferences164

in terms of a desirable value for the i-th objective function under the t-th scenario, and165

wit is the corresponding weight that can be used, e.g., for normalization purposes. The166

augmentation term ε
∑k

i=1

∑s
t=1wit(fit(x)−zit) guarantees that the solution to (2) is Pareto167

optimal, where ε is a small positive scalar (for details of the augmentation term, see, e.g.,168

Miettinen (1999)).169

A vector including aspiration levels for all objectives and all scenarios is called a reference170

point. By solving (2) with different reference points, the DM can obtain different Pareto171
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2 METHODOLOGY

optimal solutions, although sometimes the same Pareto optimal solution may be associated172

with multiple reference points. A simple interactive multiobjective optimization method173

based on this concept can be described as follows:174

Step 0. Initialization of the method. Present information about the ideal and nadir vectors to175

the DM.176

Step 1. Ask the DM to specify preference information as a reference point.177

Step 2. Derive a Pareto optimal solution by solving (2) and present it to the DM.178

Step 3. Ask the DM if this or one of the previously derived solutions is satisfactory as a final179

solution to the problem. If yes, stop; otherwise, go to Step 1.180

2.2 Simulation of incomplete preferences181

If we apply the simple interactive method presented in the previous subsection directly, the182

DM must specify aspiration levels for all objectives and scenarios. In order to reduce the183

cognitive load of expressing preferences in all scenarios, we allow the DM to set aspiration184

levels only for some scenarios, and then we fill in missing information by simulating the185

DM’s preferences. Assume that the DM has provided aspiration levels zit for all k objective186

functions, but only in q (q < s) scenarios (without loss of generality, we assume that these187

q scenarios are ordered as the first q scenarios—i.e., {1, 2, . . . , q, q + 1, . . . , s}), so, here,188

t = 1, . . . , q. The main idea of simulating the unknown preferences (the aspiration levels for189

the remaining s−q scenarios) is to analyze the relationships between the available preference190

information and the ideal and nadir vectors. These relationships are represented in terms of191

so-called distance-based ratios defined below.192

For each scenario t, t = 1, . . . , s, and objective i, i = 1, . . . , k, we define a distance-based193

ratio γti based on the distances between the aspiration level and the corresponding ideal and194

nadir values:195

γti =
zit − zidealit

znadirit − zidealit

. (3)

It is easy to see that 0 ≤ γti ≤ 1.196

For each scenario t, t = q + 1, . . . , s, and each objective function i, i = 1, . . . , k, we cal-

culate q candidates for aspiration levels based on the ratios obtained for the first q scenarios:

guit = zidealit + γui (znadirit − zidealit ), u = 1, . . . , q.

8
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2 METHODOLOGY

Thus, we obtain q candidate vectors in the objective space for the t-th scenario: gut =197

(gu1t, . . . , g
u
kt) , u = 1, . . . , q.198

Let us denote an estimation of the vector of aspiration levels in scenario t by z̃t =199

(z̃1t, . . . , z̃kt). In order to derive this estimation of a reference point, we limit the search area200

in the objective space to the convex hull of those q candidate vectors. Figure 1 shows an201

example of the estimation process in case of a bi-objective problem (k = 2). The convex hull202

of four candidate vectors is outlined by blue lines; the area between the ideal and the nadir203

vectors is outlined by red dashed lines.204

f1

f2

zidealt

znadirt

g1
t

g2
t

g3
t

g4
t·

•
�

Figure 1: An example of estimating aspiration levels based on four candidates and the convex

hull in a bi-objective problem including the idealistic (‘�’) and moderate (‘•’) simulated

reference points.

We consider two styles of setting preference by a DM, namely moderate and idealistic,205

and for each style, propose an optimization model to estimate the unknown preferences. If206

the DM’s style is closer to moderate, (s)he may avoid the extremes and cautiously choose a207

vector in the center of the convex hull (e.g., the vector minimizing the sum of distances to208

all q candidates). This vector (represented by ‘•’ in Figure 1) can be found by solving the209

following optimization problem:210

minimize
∑q

u=1

∑k
i=1 |z̃it − guit|

subject to z̃it ≥
∑q

u=1 λug
u
it, i = 1, . . . , k

∑q
u=1 λu = 1,

λu ≥ 0, u = 1, . . . , q.

(4)

where |.| returns the absolute value.211
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2 METHODOLOGY

To estimate all the unknown aspiration levels, problem (4) needs to be solved for each212

of (s − q) scenarios. Note that problem (4) is not computationally complex and can be213

solved very fast. Solving all (s − q) problems could be done in seconds even for a large214

number of scenarios. Also, problem (4) is always feasible and bounded (see Appendix B215

for a mathematical proof). So, by using this model, we are always able to find simulated216

preferences. If the objective functions in the original problem have different scales, model (4)217

should be normalized, e.g., by replacing the objective function by
∑q

u=1

∑k
i=1

|z̃it−guit|
znadir
it −zidealit

.218

If the DM’s style is closer to idealistic, e.g., (s)he has high expectations, the vector of219

aspiration levels can be estimated as the point of the convex hull which is closest to the ideal220

vector. In the case of l1 distance, it is equivalent to the candidate vector which is closest to221

the ideal vector:222

minimize
∑k

i=1 |z̃it − zidealit |

subject to u = 1, . . . , q.
(5)

The ‘�’ point in Figure 1 represents the idealistic choice. As above, the model should be223

normalized if there are objective functions with different scales.224

2.3 The proposed approach for multi-scenario multiobjective de-225

cision support226

We incorporate the method of simulating incomplete preferences with the interactive mul-227

tiobjective optimization method described in Subsection 2.1. The resulting approach for228

multi-scenario multiobjective decision support is presented in Figure 2, while the steps are229

described in Algorithm 1.230

Figure 2: The general flowchart of the proposed interactive approach for multi-scenario

multiobjective decision support.
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2 METHODOLOGY

Algorithm 1. The steps of multi-scenario multiobjective decision support approach

1. Initialization. Calculate and present to the DM the ideal and nadir values for all k × s combinations of

objectives and scenarios (as described in subsection 2.1).

2. Ask the DM to specify preferences in one of the following two ways:

(a) Provide aspiration levels for all k objectives in a freely chosen non-empty subset of scenarios;

(b) (From second iteration onward) Update aspiration levels, obtained from the previous iteration, for all

objectives under all scenarios. The update may include changing aspiration levels and/or removing

aspiration levels for a chosen subset of scenarios.

3. Estimate missing preference information if incomplete, as described in Subsection 2.2.

4. If the preference information has been estimated in the previous step and if the DM wishes to review it,

show it to the DM. If the DM is not satisfied with the estimation result, go to step 2.

5. Derive a Pareto optimal solution corresponding to the DM’s preferences by solving problem (2), and present

this solution to the DM.

6. If the DM is not ready to accept the presented solution as the final solution to the problem, go to step 2.

7. Stop. The Pareto optimal solution derived in Step 5 is the final solution to the problem.

2.4 Visual support for trade-off analysis231

A scenario-based empirical attainment function (SB-EAF) has been proposed by Shavazipour232

et al. (2021b) to support decision-making in multi-scenario multiobjective optimization prob-233

lems. This function is constructed in the objective space for analyzing a finite set of Pareto234

optimal solutions. The value of SB-EAF, at each point of the objective space, is the number235

(or the percentage) of scenarios that could attain these objective values by at least one so-236

lution. Here, by attaining, we mean that each objective function value of the solution under237

the given scenario is at least as small as the corresponding component of the point. SB-EAF238

is visualized on a plane for a selected pair of objective functions, limiting the attainability to239

this pair. Each region of the same attainment function value is filled with a different color.240

For each solution, the SB-EAF value is constructed from s objective vectors, each cor-241

responding to a different scenario (see Shavazipour et al. (2021b) for details). SB-EAFs are242

utilized to visually distinguish different regions of the objective space that may be attained243

by a given number (percentage) of scenarios (also called attainment surface) for each consid-244

ered solution. If we compute and visualize the combination of the SB-EAF values of multiple245

solutions (with corresponding decision vectors) in a single plot, the visualization is called an246

all-in-one SB-EAF. This visualization gives the DM an opportunity of comparing different247

attainment surfaces of multiple solutions at a glance. We refer the reader to Shavazipour248

et al. (2021b) for the details and various illustrative examples. We use the SB-EAF concept249

and relevant visualizations to analyze the results of our case study in Section 4.250
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3 CASE STUDY

3 Case study251

The forest landscape management problem considered here aims at selecting a management252

regime for each forest stand to optimize predicted long-term outcomes in terms of ecosystem253

services provided by the landscape. To be more specific, we consider a real four-objective254

forest management problem from Triviño et al. (2017) and extend it to a multi-scenario255

multiobjective optimization problem. Next, we briefly describe the problem and real-life256

data collected in Triviño et al. (2017). Then, we describe our modification and present the257

mathematical problem formulation.258

3.1 Study area and source data259

The study area considered in Triviño et al. (2017) is a forest landscape located in Central260

Finland with 68 700 hectares. The landscape is divided into 29 666 forest stands. Up to261

7 possible management regimes can be independently applied to each stand. Each regime262

defines rules for conducting operations in the forest such as final harvest, thinning, planting263

or seeding trees, and site preparation. The recommended management regime, referred264

to as business as usual (BAU), aims at increasing revenue. Most of the other regimes are265

modifications of this BAU regime and, contradictory, aim to increase the forest’s conservation266

value. The considered regimes are briefly described below (for details, see Mönkkönen et al.267

(2014); Triviño et al. (2017)).268

• Business as usual (BAU) – the recommended management regime in Finland aimed269

at optimizing timber production, with an average rotation length of 80 years.270

• Green tree retention (GTR30) – BAU with the additional rule that 30 green trees per271

hectare are retained during final harvest.272

• Extended rotation for 10 years (EXT10) – BAU with final harvest postponed by ten273

years.274

• Extended rotation for 30 years (EXT30) – BAU with final harvest postponed by thirty275

years.276

• No thinning long rotation (NTLR) – BAU with no thinning operations (which results277

in slightly longer rotation length compared to BAU).278

• No thinning short rotation (NTSR) – a modification of BAU with no thinning, and279

final harvest criteria adjusted in order to obtain similar rotation length as in BAU.280

• Set aside (SA) – the conservation strategy where no management activities are carried281

out during the planning horizon.282
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3 CASE STUDY

Using forest inventory data and forest growth simulator MOTTI (Hynynen et al., 2005),283

values of essential parameters of forest growth were predicted for each stand under each man-284

agement regime for a 50-year planning period. For each stand and each regime, these 50-year285

time series of parameter values were aggregated into four different quantities representing286

different types of characteristics of good forest management:287

1. timber harvest revenues as the net present value discounted at 3% interest rate;288

2. carbon storage in living and dead wood as well as extracted and residual timber;289

3. volume of deadwood, which is an essential biodiversity indicator;290

4. habitat availability indicator combination of habitat availability indices for six verte-291

brate species representing various types of habitat – three-toed woodpecker (Picoides292

tridactylus), lesser-spotted woodpecker (Dendrocopos minor), flying squirrel (Pteromys293

Volans), capercaillie (Tetrao urogallus), long-tailed tit (Aegithalos caudatus), and hazel294

grouse (Bonasia Bonasa).295

Given a combination of management regimes selected across stands (one regime for each296

stand), the values of the above-mentioned characteristics for the whole forest landscape are297

calculated as sums of corresponding values for each stand. These values constitute four298

objective functions of our forest landscape management problem, where each objective is to299

be maximized.300

The problem data published in Triviño et al. (2017) includes four matrices playing the301

role of coefficients of the corresponding objective functions. In each matrix, rows are forest302

stands, columns are regimes, and each element is the value of the corresponding characteristic303

for this stand under this regime.304

3.2 Scenarios and data generation305

We consider three sources of deep uncertainty that are independent of each other: (1) climate306

change, (2) forest thinning subsidies, and (3) compensation for forest landscape conservation.307

For each source, we consider so-called “partial scenarios” that represent future possibilities308

related to this source. Each combination of the partial scenarios forms one scenario in terms309

of the problem formulation. We consider three, two, and two partial scenarios, respectively,310

for the above-mentioned uncertainty sources resulting with 3× 2× 2 = 12 scenarios in total.311

The partial scenarios are listed below.312

• Climate change: in addition to the stationary climate scenario (i.e., no climate change),313

we consider two climate change scenarios established by the Intergovernmental Panel314
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3 CASE STUDY

on Climate Change (IPCC) based on the amount of greenhouse gas emissions: B1 (low315

emissions) and A2 (high emissions) (see, e.g., Nakicenovic et al., 2000).316

• Forest thinning subsidies : a forest owner in Finland can apply for government subsidies317

related to young forest management. This results in two partial scenarios (subsidies318

are granted or not).319

• Landscape conservation compensations : a Finnish forest owner can also apply for vol-320

untary agreement programs providing compensation payments for nature conservation.321

This results in two partial scenarios (the application is accepted or not).322

The original problem data corresponds to the scenario composed of stationary climate323

and the negative decisions on both thinning subsidies and compensation for landscape con-324

servation. Generating the coefficient matrices for the rest of the scenarios was done by325

modifying the original matrices. First, all four matrices were modified to account for climate326

change, and then the elements of the timber revenue matrix were increased by adding values327

corresponding to thinning subsidies and/or compensation for landscape conservation. Thus,328

the climate change uncertainty influences all the coefficient matrices, while the other two329

uncertainties influence only the timber revenue matrix.330

There is no data concerning the effects of the above scenarios explicitly collected for the331

considered forest landscape. However, we did not aim at making a decision to be implemented332

in practice. Rather than that, we tried to create a problem that looks realistic for an expert333

on forest management planning. Therefore, we did all the modifications using relevant334

information published in the literature, and filling in information gaps based on realistic335

assumptions. The process of modifying the coefficient matrices is described in detail in336

Appendix A.337

3.3 Mathematical problem formulation338

The forest management problem is formulated as a special case of the multi-scenario mul-339

tiobjective optimization problem (1), where the objective functions and the set of feasible340

solutions are defined, respectively, as follows:341

minimize fit(x) = −
p∑

h=1

∑
j∈ρh

aithjxhj, i = 1, . . . , k, t = 1, . . . , s,

subject to
∑
j∈ρh

xhj = 1, h = 1, . . . , p,

xhj ∈ {0, 1} h = 1, . . . , p, j ∈ ρh,

(6)
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4 RESULTS

where, the number of objectives is k = 4, the number of scenarios is s = 12, and p = 29 666342

is the number of forest stands. For each stand h, ρh ⊆ {1, . . . , r} denotes the subset of343

management regimes that can be applied to this stand, where r = 7 denotes the number344

of management regimes. Each coefficient aithj represents the outcome of applying regime j345

to stand h in terms of the i-th objective under the t-th scenario. The components xhj of346

the feasible solution x are binary variables defined for all pairs (h, j), h = 1, . . . , p, j ∈ ρh.347

Thus, the dimension of the decision space is n =
p∑

h=1

|ρh|. This problem can be classified as a348

mixed-integer linear optimization problem, namely a multiobjective multiple choice knapsack349

problem.350

In terms of the above notation, the problem data is represented by matrices Ait, i =351

1, . . . , k, t = 1, . . . , s, with missing elements Ait =
(
aithj
)
, where the elements are defined for352

h ∈ {1, . . . , p}, j ∈ ρh. Matrices Ai1, i = 1, . . . , k, represent the original problem data and353

for the rest of scenarios t = 2, . . . , s, the matrices are generated as described in Subsection354

3.2.355

4 Results356

4.1 Interactive decision-making process357

We have implemented the decision support environment in a Jupyter Notebook and used a358

Microsoft Excel worksheet as an interface for exchanging information with the DM. In our ex-359

periment, the DM was an expert in forest management. To solve the mixed-integer optimiza-360

tion problem, we utilized Gurobi optimizer. The code and data are freely accessible at https:361

//github.com/industrial-optimization-group/Interactive-decision-support-and-362

trade-off-analysis-for-sustainable-forest-landscape-planning-under-.363

Following the proposed Algorithm 1, the solution process was started by calculating364

the ideal and nadir values for all objectives and scenarios and presenting them to the DM365

(step 1 in Algorithm 1 ). These values are shown in Table 1. The table also contains366

numbers assigned to scenarios for quick reference. The scenarios are grouped based on367

the climate change partial scenarios, since this source of uncertainty is the most influential368

on the objective function values.369

Iteration 1.370

First, the DM was asked to choose a few scenarios for which he was willing and able371

to provide aspiration levels (for all objective functions) and fill in the corresponding cells372

in the Microsoft Excel table (step 2a in Algorithm 1 ). The DM sought to compare trade-373

offs between the stationary climate scenario and the high-emission (A2) climate scenario by374

choosing the 1st and 4th scenario from the former group, and 9th and 11th scenario from the375
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4.1 Interactive decision-making process 16

Table 1: Ideal and nadir values for each objective in each scenario. M: million, K: thousand.

Scenario No. Nadir/Ideal Revenues Habitat

availabil-

ity

Carbon

storage

Deadwood

volume

S
ta

ti
on

ar
y

cl
im

at
e

No compens. No Thin. Sub. 1
Nadir 31.77 M 10.81 K 2.83 M 66.93 K

Ideal 249.97 M 20.23 K 4.45 M 218.15 K

Compens. gained No Thin. Sub. 2
Nadir 127.09 M 10.81 K 2.83 M 66.93 K

Ideal 272.68 M 20.23 K 4.45 M 218.15 K

No compens. Thin. Sub. gained 3
Nadir 34.07 M 10.81 K 2.83 M 66.93 K

Ideal 283.05 M 20.23 K 4.45 M 218.15 K

Compens. gained Thin. Sub. gained 4
Nadir 127.74 M 10.81 K 2.83 M 66.93 K

Ideal 301.46 M 20.23 K 4.45 M 218.15 K

B
1

C
li

m
at

e
ch

an
ge

No compens. No Thin. Sub. 5
Nadir 33.87 M 10.69 K 3.01 M 78.03 K

Ideal 272.69 M 20.24 K 4.89 M 279.94 K

Compens. gained No Thin. Sub. 6
Nadir 130.53 M 10.69 K 3.01 M 78.03 K

Ideal 291.94 M 20.24 K 4.89 M 279.94 K

No compens. Thin. Sub. gained 7
Nadir 36.16 M 10.69 K 3.01 M 78.03 K

Ideal 297.26 M 20.24 K 4.89 M 279.94 K

Compens. gained Thin. Sub. gained 8
Nadir 131.18 M 10.69 K 3.01 M 78.03 K

Ideal 314.58 M 20.24 K 4.89 M 279.94 K

A
2

C
li

m
at

e
ch

an
ge

No compens. No Thin. Sub. 9
Nadir 35.96 M 10.59 K 3.17 M 89.19 K

Ideal 296.54 M 20.29 K 5.34 M 341.39 K

Compens. gained No Thin. Sub. 10
Nadir 133.96 M 10.59 K 3.17 M 89.19 K

Ideal 312.76 M 20.29 K 5.34 M 341.39 K

No compens. Thin. Sub. gained 11
Nadir 38.25 M 10.59 K 3.17 M 89.19 K

Ideal 314.38 M 20.29 K 5.34 M 341.39 K

Compens. gained Thin. Sub. gained 12
Nadir 134.60 M 10.59 K 3.17 M 89.19 K

Ideal 330.40 M 20.29 K 5.34 M 341.39 K
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4 RESULTS

latter group. The DM’s reasoning was to keep the timber revenue moderate while seeking376

more enhanced environmental benefits in the high-emission (A2) climate scenarios compared377

to the stationary climate scenarios. His preferences are highlighted in blue in the resulting378

matrix of aspiration levels shown in Table 2.379

To get missing preferences, we calculated simulated preferences based on the moderate380

style (problem (4)) according to the DM’s choice (step 3 in Algorithm 1 ). They can be seen381

in Table 2 in black. The DM wished to skip the step of reviewing the simulated preferences382

(step 4 in Algorithm 1 ). Therefore, we proceeded to the next step of deriving a Pareto383

optimal solution to the 48-objective problem (1) by minimizing the achievement scalarizing384

function (2). Then, the obtained solution (illustrated in a parallel coordinate plot in Figure385

3) was presented to the DM (step 5 in Algorithm 1 ).386

It turned out that the trade-offs between objectives in various climate change scenarios387

are more intensive than the DM expected. Comparing the objective function values in various388

scenarios exposed trade-offs between revenue, habitat availability, and carbon storage in the389

Stationary climate scenarios and the high-emission (A2) climate scenarios. Furthermore, it390

seemed that the DM was too optimistic about environmental objectives, in particular, for391

the deadwood and habitat availability objective functions whose values were significantly392

lower than what the DM desired. Learning about this fact, the DM decided to lower his393

expectations related to these two objectives in all scenarios (step 6 in Algorithm 1 ).394

Table 2: Aspiration levels in the first iteration. Actual aspiration levels (set by the DM) are

highlighted in blue, while the simulated ones are shown in black (M: million, K: thousand).

Scenario Revenues Habitat availability Carbon storage Deadwood volume

s1 170.00 M 15.00 K 3.70 M 140.00 K

s2 219.32 M 17.52 K 3.90 M 175.34 K

s3 191.80 M 17.52 K 3.90 M 175.34 K

s4 170.00 M 16.00 K 3.90 M 160.00 K

s5 185.16 M 17.50 K 4.25 M 222.79 K

s6 232.79 M 17.50 K 4.25 M 222.79 K

s7 201.57 M 17.50 K 4.25 M 222.79 K

s8 247.36 M 17.50 K 4.25 M 222.79 K

s9 180.00 M 17.00 K 4.20 M 250.00 K

s10 247.23 M 17.50 K 4.60 M 270.00 K

s11 180.00 M 17.50 K 4.40 M 270.00 K

s12 258.64 M 17.50 K 4.60 M 270.00 K
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4 RESULTS

Figure 3: Pareto optimal solution generated by the simulated reference point (moderate

style) in the first iteration. Each line represents the objective values in a scenario (s1-

s12)—different colors are used to distinguish the achievements in different scenarios. M:

million, K: thousand.

Iteration 2. As a result of learning about the problem in the first iteration, the DM set395

his desired habitat availability values at 10 000 in all the scenarios, reduced the aspiration396

level for deadwood, and kept the rest of aspiration levels as the previous iteration, which397

resulted in an updated matrix of aspiration levels shown in Table 3 (step 2b in Algorithm 1 ).398

We derived the Pareto optimal solution corresponding to the aspiration levels and showed it399

to the DM (step 5 in Algorithm 1 ). The solution is presented in Figure 4.400

This time, the solution had higher environmental values at the expense of a few million401

EUR lower revenues in various scenarios. For example, in the best-case revenue scenarios402

(when both compensations and thinning subsidies were included), the revenue decreased by403

approximately 3–5 million EUR, while in the worst-case revenue scenarios (neither extra404

compensations nor thinning subsidies were obtained), the decrease was in the range of 14–405

16 million EUR. However, according to the DM’s opinion, the environmental benefits were406

worth the revenue losses, and he was more satisfied with the obtained solution. Nonetheless,407

he was curious to check what would happen if he increased the aspiration levels for the third408

objective (carbon storage) by a few percent, and decided to continue the decision-making409

process for one more iteration (step 6 in Algorithm 1 ).410

Iteration 3. This time, in order to check the potential of increasing the carbon storage411

objective and analyze the trade-offs between this objective and the other ones in various412

scenarios, the DM increased the aspiration levels for carbon storage in all scenarios by 5%413

while keeping the other aspiration levels the same as in the previous iteration, shown n Table414

4, (step 2b in Algorithm 1 ). The obtained Pareto optimal solution (step 6 in Algorithm 1 )415
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4.1 Interactive decision-making process 19

Table 3: Aspiration levels in the second iteration. Actual aspiration levels (set by the

DM) are highlighted in blue, while the simulated ones are shown in black (M: million, K:

thousand).

Scenario Revenues Habitat availability Carbon storage Deadwood volume

s1 170.00 M 10.00 K 3.70 M 100.00 K

s2 219.32 M 10.00 K 3.90 M 100.00 K

s3 191.80 M 10.00 K 3.90 M 100.00 K

s4 170.00 M 10.00 K 3.90 M 100.00 K

s5 185.16 M 10.00 K 4.25 M 110.00 K

s6 232.79 M 10.00 K 4.25 M 110.00 K

s7 201.57 M 10.00 K 4.25 M 110.00 K

s8 247.36 M 10.00 K 4.25 M 110.00 K

s9 180.00 M 10.00 K 4.20 M 130.00 K

s10 247.23 M 10.00 K 4.60 M 130.00 K

s11 180.00 M 10.00 K 4.40 M 130.00 K

s12 258.64 M 10.00 K 4.60 M 130.00 K

Figure 4: Pareto optimal solution in the second and third (final) iterations. Each line

represents the objective values in a scenario (s1-s12)—different colors are used to distinguish

the achievements in different scenarios. M: million, K: thousand. M: million, K: thousand.
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4 RESULTS

coincided with the one from the previous iteration, suggesting that the previous solution was416

stable for such a slight change of preferences. Therefore, the DM concluded that the last417

Pareto optimal solution can be considered the final one, and the decision-making process418

was stopped (step 7 in Algorithm 1 ).419

Table 4: Aspiration levels in the third iteration

Scenario Revenues Habitat availability Carbon storage Deadwood volume

s1 170.00 M 10.00 K 3.89 M 100.00 K

s2 219.32 M 10.00 K 4.10 M 100.00 K

s3 191.80 M 10.00 K 4.10 M 100.00 K

s4 170.00 M 10.00 K 4.10 M 100.00 K

s5 185.16 M 10.00 K 4.47 M 110.00 K

s6 232.79 M 10.00 K 4.47 M 110.00 K

s7 201.57 M 10.00 K 4.47 M 110.00 K

s8 247.36 M 10.00 K 4.47 M 110.00 K

s9 180.00 M 10.00 K 4.41 M 130.00 K

s10 247.23 M 10.00 K 4.83 M 130.00 K

s11 180.00 M 10.00 K 4.62 M 130.00 K

s12 258.64 M 10.00 K 4.83 M 130.00 K

4.2 Trade-off analysis through visualizations420

To get more insight into the problem and provide better support for the DM in our com-421

plex problem, we use the visualization methods proposed by Shavazipour et al. (2021b) for422

decision support in scenario-based multiobjective optimization. Therefore, as proposed by423

Shavazipour et al. (2021b), we start with the all-in-one SB-EAF visualization. We refer to424

the Pareto optimal solutions obtained in the first and the second iteration as solutions 1 and425

2, respectively. We selected the first two objectives (timber revenue and habitat availability)426

for comparison because their conflict was the most important from the DM’s perspective.427

This visualization is presented in Figure 5. One can clearly see the trade-offs between the428

two objectives and the performance of the solutions in different scenarios.429

The dark purple area ( ) represents the worst attainment surface that guarantees the430

objective values achievable in all scenarios. This worst attainment surface for solution 1 is431

bounded by 228.118 million EUR revenue and 11.6 thousand habitat availability indicator432

value. For solution 2, the worst attainment surface shrinks to 214.128 million EUR in433

revenue but expands to 12.729 thousand in habitat availability, highlighting the trade-offs434
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4 RESULTS

between these two objectives. This means that solution 2 provides higher environmental435

values (+1.129 thousand in habitat availability) at the expense of about 14 million EUR lower436

revenues in the worst-case scenario compared to solution 1. In contrast, the yellow area ( )437

corresponds to the best possible attainment surface (that only can happen in one scenario—438

the best-case scenario). Other colors describe the attainment surfaces corresponding to some439

other ranges of a percentage of scenarios. For example, if the DM sets aspiration levels at 250440

million EUR for revenue and 12.5 thousand for habitat availability, he can simply compare441

how well these two solutions can reach his desired values by taking a glance at Figure 5.442

Comparing the solutions in this figure shows that the desired revenue can be obtained in at443

least 75% or 50% of scenarios if the DM chooses solution 1 or 2, respectively. However, it is444

not possible to reach the 12 thousand value for habitat availability by choosing solution 1,445

while reaching this value is guaranteed under the conditions of any scenario for solution 2.446

Figure 5: All-in-one SB-EAF visualization of two solutions for timber revenue and habitat

availability under 12 scenarios. Points connected by a line denote a solution evaluated on

different scenarios. Colored areas show regions of the objective space that can be attained

within a particular percentage of scenarios by a solution.

As mentioned in the introduction, the SB-EAF visualization discussed above is only447

suitable for comparing two objectives at a time. In Figure 6, we utilize the scenario-based448

heatmaps visualization (Shavazipour et al., 2021b) to compare the two Pareto optimal so-449

lutions with regard to all four objectives under all scenarios. Darker colors represent higher450

objective function values. It can be seen that solution 2 provides higher values for the last451

three objectives (i.e., carbon storage, deadwood, and habitat availability). Regarding the452

first objective (timber revenue), solution 1 gives higher values except for the 2nd and 6th453

scenario.454

The visual analysis confirms the result obtained by Triviño et al. (2017), stating the455

possibility of significant improvements of the multifunctionality of the forest landscape (in456

terms of the biodiversity objectives) at the expense of a slight revenue reduction. Moreover,457
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5 DISCUSSION

in the 2nd and 6th scenarios, solution 2 provides better values for all four objective functions458

than solution 1. In other words, if one of these two scenarios happens, the improvements of459

the multifunctionality of the forest landscape (in terms of the biodiversity objectives) can460

also bring more revenue than the revenue-focused solution (i.e., solution 1) in our problem.461

This valuable insight could not be gained without separate consideration of scenarios and462

studying trade-offs between them, as proposed in this study. However, generalizing this fact463

needs more in-depth investigations in various real cases.464

228.12 246 258.63 276.52 240.92 258.81 271.44 289.32 253.72 271.61 284.24 302.12

11.84 11.84 11.84 11.84 11.71 11.71 11.71 11.71 11.6 11.6 11.6 11.6

2.94 2.94 2.94 2.94 3.13 3.13 3.13 3.13 3.31 3.31 3.31 3.31

116.63 116.63 116.63 116.63 143.27 143.27 143.27 143.27 169.79 169.79 169.79 169.79

214.16 246.85 240.52 273.2 226.16 258.84 252.51 285.2 238.14 270.82 264.49 297.18

13 13 13 13 12.85 12.85 12.85 12.85 12.73 12.73 12.73 12.73

3.04 3.04 3.04 3.04 3.25 3.25 3.25 3.25 3.46 3.46 3.46 3.46

158.06 158.06 158.06 158.06 197.81 197.81 197.81 197.81 237.64 237.64 237.64 237.64

Solution 1 Solution 2

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

f4

f3

f2

f1

f4

f3

f2

f1

Figure 6: Comparing two Pareto optimal solutions in twelve scenarios via Heatmaps. Darker

values are better (all objectives are to be maximized). f1: Revenues (million EUR), f2:

Habitat availability (thousand), f3: Carbon storage (million MgC), f4: Deadwood volume

(thousand m3).

5 Discussion465

In our experiment, the DM found the option of simulating the preferences reasonable and466

helpful in reducing the cognitive burden of setting preferences in all scenarios. Indeed,467

although the consideration of all generated scenarios is crucial in finding a robust solution,468

not all the scenarios may be highly interesting for the DM, or the DM may lack confidence469

regarding the importance of some scenarios at the beginning of the solution process. Indeed,470

as a human, the DM may have some expectations and imagination based on their experiences471
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5 DISCUSSION

and judgments. For example, the DM might (truly or mistakenly) foresee the likelihood of472

some scenarios as low (even though one cannot calculate the likelihood of the scenarios in473

deep uncertainty) or be less concerned about the effect of some sources of uncertainty on474

planning outcomes (e.g., not expecting significant loss or potential noteworthy gains). On475

the other hand, interesting scenarios can be interpreted as ones that the DM is expected476

to be realized more likely or to significantly affect planning outcomes in a good (best-case477

scenario) or harmful (worst-case scenario) way.478

Indeed, it is vital to identify vulnerability/fragility in a system (as critical scenarios) and479

investigate the consequences of candidate solution(s) on those scenarios. For instance, in our480

case study, the worst-case financial scenario is when neither compensations for landscape481

conservation nor thinning forest subsidies could be gained. Therefore, it might be neces-482

sary for the DM to track the revenue values in that scenario and ensure it does not lead483

to a financial crisis. Alternatively, assuring enough environmental benefits (e.g., based on484

some agreement) in high-emission (A2) climate scenarios might make these scenarios im-485

portant/interesting for a DM, so that their changes should be tracked more closely. These486

kinds of scenarios are sometimes called vulnerable scenarios (i.e., scenarios that cause poor487

performance in some objectives). If so many scenarios are generated for a problem, identi-488

fying vulnerable scenarios requires more systematic approaches, such as scenario discovery489

approaches (see, e.g., Bryant and Lempert (2010); Shavazipour et al. (2021a)). Considering490

such vulnerable scenarios and the performance of the solutions in terms of various objectives491

is essential in finding robust solutions. Besides, the DMs may have preferences/feelings on492

considering some particular scenarios and comparing the objective values and trade-offs with493

other scenarios (e.g., the current, average, the most probable, or the best-case scenarios).494

Furthermore, observing and comparing the ranges of different objective functions across495

the scenarios and analyzing their interdependencies and trade-offs helped the DM get a496

deeper insight into the problem and decision-making process. For Our DM, it was more497

convenient to update the aspiration levels when studying the trade-offs between objectives498

in various scenarios. Moreover, although the DM was quite satisfied with the solution, he499

wanted to compare the solutions and trade-offs under different scenarios in more detail. The500

visualization approaches proposed recently proved to be useful in trade-offs and scenario501

analysis and find the most preferred robust solution.502

We acknowledge the importance of generating the set of scenarios, but it is outside503

the scope of this paper. Generally, two approaches are most often used in the literature:504

1) using experts’ judgment, as was done in our case study, and 2) random generation of505

the scenarios (e.g., when only possible ranges of some uncertain parameters are known).506

However, in either case, generated scenarios should reflect the significant vulnerabilities of507
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6 CONCLUSIONS

the system/phenomena as well as the DM’s preferences (Giudici et al., 2020). Nevertheless,508

considering too many scenarios is inefficient. On the one hand, the problem may become509

computationally expensive, and on the other hand, the performances of solutions may be510

very similar in an ample portion of the scenario space. Utilizing the DM’s preferences in511

reducing the number of scenarios is in line with the philosophy of scenario planning (Ram512

et al., 2011; Shavazipour et al., 2020).513

The calculations were performed on a laptop computer with Intel CORE i7 CPU and 16514

GB RAM. All calculation times were short, and the preference simulations took only a few515

seconds. Solving the resulting mixed-integer problem (2) took 1−2 minutes each time. This516

is a surprising result taking into account that the problem has 31 continuous and 152 281517

integer variables. The most time-consuming part was creating the multiobjective optimiza-518

tion problem within the Gurobi solver (due to a large amount of data), which took 13− 14519

minutes. However, this had to be done only once before the solution process started, and did520

not cause any waiting time for the DM. Nonetheless, one should be aware of possible longer521

solution times in case of larger problems (e.g., when more scenarios, objectives, management522

regimes, and stands are involved).523

6 Conclusions524

In this study, we proposed a novel interactive approach to handle several important chal-525

lenges of real decision-making situations in forest management. The challenges are: dealing526

with multiple sources of deep uncertainty, dealing with incomplete preferences, and treating527

conflicts between various sustainability objectives such as timber revenue, carbon storage,528

and biodiversity (including habitat availability and deadwood indicators). In contrast to pre-529

vious approaches to decision support in forest management, the proposed approach supports530

the DM in investigating a large variety of characteristics of forest planning and studying531

conflicts between objectives in various future scenarios. In this way, the DM can get deeper532

insight through various possibilities reflecting the unknown future and avoid extreme losses.533

Moreover, the interactive nature of the preference elicitation and solution processes reduces534

the problem’s complexity and the cognitive load of the DM. It provides a more peaceful535

environment for the DM to learn about the attainability of one’s preferences as well as the536

limitations of the problem in different realization of future scenarios. This helps to find the537

most preferred solution to such a complex decision problem confidently.538

The benefit of investigating possible outcomes in different plausible future scenarios is539

that the DM can gain more profound and more realistic insights into the problem, the540

consequences of alternative management strategies in various plausible scenarios, and their541

overall robustness. It is vital for the DM to analyze the consequences of potential strategies542
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6 CONCLUSIONS

in the various realization of the future and not be fooled by a simple average or a most543

probable scenario (what is usually done in regular probabilistic methods), which may lead to544

failures in the case of a different realization of uncertainty. Indeed, the proposed approach545

helps the DM ensure that the chosen management strategy is robust enough and works546

relatively well in a wide range of scenarios.547

The proposed approach can also be applied in other decision-making problems for differ-548

ent objective functions and sources of uncertainty. For instance, in this study, for simplicity,549

we only considered three scenarios for climate change. As a future direction of research,550

it is interesting to consider more climate change scenarios (e.g., among 40 SRES (Special551

Report on Emissions Scenarios) emissions scenarios developed by IPCC (Nakicenovic et al.,552

2000)). It would also be beneficial to consider combinations with other sources of uncer-553

tainty to analyze how robust the current strategies are. Some work needs to be done for554

more advanced estimation of the objective function coefficients under different scenarios, for555

example, augmenting predictions with expert judgments.556

As discussed, the current study was the first attempt to address some challenges of557

extending interactive multiobjective optimization methods for considering multiple sources558

of deep uncertainty, providing better support for robust decision-making in environmental559

planning. The next step is extending the proposed approach to dynamic multi-stage decision-560

making problems, allowing for the consideration of adaptive decisions and contingency plans561

(Haasnoot et al., 2013) for each scenario. This way, we can better handle deep uncertainty562

by monitoring and adapting the plan in our continuously changing future, further improving563

the resistance of forests to climate change and other sources of deep uncertainty.564
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A MODIFICATION OF COEFFICIENT MATRICES FOR MULTIPLE
SCENARIOS

Appendix732

A Modification of coefficient matrices for multiple scenarios733

As described in subsection 3.2, each scenario is a combination of partial scenarios of three734

types. The rules of modification are introduced separately for each type of partial scenarios.735

The climate change scenarios result in multiplying of coefficients by certain ratios, while736

both types of monetary-related scenarios result in adding subsidy values to the coefficients737

of the timber revenue objective function. The combined modification is obtained by first738

applying the climate change modification and then the other two modifications. Below we739

describe the modification rules for each of these three scenario types.740

A.1 Modification for climate change scenarios741

Due to the complexity of forest ecosystems, the effects of climate change likely differ for

individual forest stands. In the absence of exact models, we simulate this complex nature by

introducing randomness in the modification rules. Namely, for each objective function and

management regime, we introduce two values: rmin < rmax, and multiply each coefficient by

the random number generated in the interval [rmin, rmax]:

rmin + g(rmax − rmin),

where g is the geometric mean of two independent, uniformly distributed random numbers742

between 0 and 1. The shape of the obtained distribution is similar to the normal distribution743

(Wilson and Martin, 2006). Thus, creating realistic modification rules is reduced to defining744

values rmin and rmax for all objective functions under the two additional climate change745

scenarios.746

In order to define the realistic values for the timber revenues and carbon storage objectives,747

we use the study of the effects of climate change on timber production and carbon storage748

published by Garcia-Gonzalo et al. (2017). The paper contains estimations of the two men-749

tioned indicators under the current climate and the climate change scenario HadCM2 for750

four different management regimes and four types of tree age distributions. We calculated751

the ratios of change of the indicators caused by climate change. For each selected man-752

agement regime, we defined rmin and rmax as the minimum and maximum ratios obtained,753

respectively, across the four distributions of tree age.754

For management regimes without thinning (SA, NTLR and NTSR), we used ratios cor-755

responding to the regime without thinning studied in the paper, which results in the val-756

ues rmin = 1.0699, rmax = 1.1350 for the timber revenues objective and rmin = 1.1304,757
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A MODIFICATION OF COEFFICIENT MATRICES FOR MULTIPLE
SCENARIOS

rmax = 1.1408 for the carbon storage objective. For the rest of our management regimes, we758

used the ratios calculated from the paper for the BAU management regime: rmin = 1.0851,759

rmax = 1.1701 for the timber revenues objective and rmin = 1.0500, rmax = 1.1053 for the760

carbon storage objective.761

Note that the above values are defined based on data for the climate change scenario762

HadCM2. As follows from the description of the scenarios, HadCM2 can be considered as an763

intermediate between B1 and A2. As a rule of thumb, we defined the values of rmin and rmax
764

for scenarios B1 and A2 by multiplying the corresponding values obtained based on scenario765

HadCM2 by 0.75 and 1.5, respectively.766

In order to define ratios for the deadwood objective, we used results published in Mazziotta767

et al. (2014). The deadwood volume in boreal forests was estimated separately for three wood768

species under two climate scenarios (current climate and A2) for BAU and SA management769

regimes. Same as above, for both management regimes, we calculated ratios of change of770

deadwood volume caused by the climate change, and defined rmin and rmax values as the771

minimum and maximum ratios, respectively, across tree species. As a result, we obtained772

rmin = 1.19, rmax = 1.51 for the BAU management regime and rmin = 1.33, rmax = 1.74 for773

the SA management regime. For the rest of the regimes, we used the same values as for BAU774

since they represent modifications of the latter. In order to obtain rmin and rmax values for775

B1 climate change scenarios, we divided the corresponding values for A2 scenarios by two776

as a rule of thumb.777

Unlike the other three objectives considered above, in the case of the habitat availability778

objective, we did not find any published data that could be directly used for defining values779

of rmin and rmax. There are papers that can provide some general hints about the effects780

of climate change on species habitat. For example, in the paper Mazziotta et al. (2016),781

the effects of three climate change scenarios (B1, A1B and A2) were studied for habitat782

suitability of species of beetles and fungi associated with boreal forests. The results are in783

a way contradictory: in terms of the habitat quality aggregated across species, more forest784

stands are predicted to improve than deteriorate. However, for individual species, more785

species would have deteriorated habitat suitability than improved. Another paper (Cadieux786

et al., 2020) describes the effects of two climate change scenarios (RCP 4.5 and RCP 8.5)787

on 72 bird species in Canadian boreal forests. The authors predict the average growth of788

habitat quality by 13% under RCP 8.5; however, the changes across species range from -789

47% to +262%. Finally, it is worth mentioning the report by the Finnish Ministry of the790

Environment and Statistics (Niinistö et al., 2017) that states: “Climate change is expected791

to increase the total number of species in the Finnish flora and fauna and will cause a792

turnover of species. Furthermore, considerable changes are likely to occur in the distribution793

32

Page 32 of 34Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

JY
V

A
SK

Y
L

A
N

 Y
L

IO
PI

ST
O

 o
n 

08
/1

0/
22

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



B PROOF OF MODEL’S FEASIBILITY

patterns of species and habitats.” Without a clear indication of the direction of change in794

habitat quality, we assume the possibility of changes in both directions and set rmin = 0.9,795

rmax = 1.1 in the case of B1 and rmin = 0.8, rmax = 1.2 in the case of A2 climate change796

scenarios independently on the management regime.797

A.2 Modification for monetary scenarios798

The amounts of subsidies for thinning as well as compensation for landscape conservation are799

calculated proportionally to the areas of individual forest stands. The publication Triviño800

et al. (2017) does not contain this information (only the total area of the landscape). Keeping801

in mind that our purpose is merely generating a problem that looks realistic to a forestry802

expert, we used estimations of forest stand areas based on the coefficient matrices. For each803

objective function and each management regime (represented by a column of a coefficient804

matrix), we calculated the shares of coefficients for all stands in the sum of coefficients,805

ignoring missing and negative coefficient values. Then for each stand, we calculated the806

average of shares across all objective functions and regimes. This average share multiplied807

by the total landscape area serves as the estimation of the stand area.808

According to the Finnish Forest Center1, forest owners can apply for subsidies covering809

forest thinning activities, up to 430 EUR/ha. In the scenario of obtaining the subsidies, we810

increase the coefficients of the timber revenue objective by 430 multiplied by stand area for811

all management regimes involving thinning (BAU, EXT10, EXT30, GTR30).812

Moreover, in Finland, there are programs providing compensation to forest owners for813

excluding forest areas from timber production or delaying the cutting process (Mäntymaa814

et al., 2018). As an example, we assume that there is 30 EUR compensation for delaying815

harvest per one year, per one ha of forest. Then in the scenario where the forest owner gets816

compensation, the coefficients of the timber revenues objective are increased as follows: 300817

EUR/ha for management regime EXT10 (delaying harvest by 10 years), 900 EUR/ha for818

EXT30 (delaying harvest by 30 years), and 1500 EUR/ha for SA (setting aside forest, taking819

into account 50 years planning horizon).820

B Proof of model’s feasibility821

Theorem B.1. Optimization problem (4) is always feasible and bounded.822

Clearly, z̃it = max1≤u≤q g
u
it (for all i) would be a feasible solution for model (4). Moreover,823

all the preferences might not be worse than the nadir point (znadirit ) nor be infinitely better824

than the ideal point (zidealit ) (which none of them has any infinite component); then, the825

maximum value for the objective functions is bounded below by
∑k

i=1 |znadirit − (zidealit ± ε)|826

1https://www.metsakeskus.fi/tuki-nuoren-metsan-hoitoon
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B PROOF OF MODEL’S FEASIBILITY

which is a finite number and ε (0 ≤ ε << ∞) is a difference between the DM preferences827

and the ideal point). �828
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