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Abstract. The Learning with Errors (LWE) problem is the fundamental backbone
of modern lattice-based cryptography, allowing one to establish cryptography on the
hardness of well-studied computational problems. However, schemes based on LWE are
often impractical, so Ring LWE was introduced as a form of ‘structured’ LWE, trading
off a hard to quantify loss of security for an increase in efficiency by working over a
well-chosen ring. Another popular variant, Module LWE, generalizes this exchange by
implementing a module structure over a ring. In this work, we introduce a novel variant
of LWE over cyclic algebras (CLWE) to replicate the addition of the ring structure
taking LWE to Ring LWE by adding cyclic structure to Module LWE. We show that
the security reductions expected for an LWE problem hold, namely a reduction from
certain structured lattice problems to the hardness of the decision variant of the CLWE
problem (under the condition of constant rank d). As a contribution of theoretic interest,
we view CLWE as the first variant of Ring LWE which supports non-commutative
multiplication operations. This ring structure compares favorably with Module LWE,
and naturally allows a larger message space for error correction coding.

Keywords. Algebraic number theory, Lattices, Learning with errors, Non-commutative
algebra, Post-quantum cryptography.

1. Introduction

With the predicted advent of quantum computers compromising the bulk of existent
cryptographic constructions, lattice-based cryptography has emerged as a promising
foundation for long term security. In particular, the Learning with Errors (henceforth
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LWE) problem introduced in [42], as well as its variants over rings (RLWE) [27] and
modules (MLWE) [22], provides a natural intermediate step to base cryptographic hard-
ness on lattice short vector problems in a post-quantum setting. Indeed, second round
submissions to the NIST post-quantum standardization process such as NewHope [3]
and KYBER [5] rely on the hardness of LWE variants. Cryptography based on the clas-
sical LWE problem is typically somewhat impractical, in part due to large key sizes. To
solve this, the ring variant was introduced as a way to provide extra structure in LWE
to trade a potential loss of security for an increase in efficiency. MLWE generalizes
ring and classical LWE, providing a smoother transition between security and efficiency
than the binary option presented by ring or classical LWE. The flexibility of MLWE is
highly desirable in practice, as demonstrated by third-round NIST finalists KYBER and
SABER, both based on MLWE [1].

Conceptually, one may view all these problems as variations on a single problem.
The (search) LWE problem tasks a solver with recovering a secret vector s ∈ Z

n
q from

a collection of pairs (ai , b = 〈ai , s〉 + ei ), where 〈·, ·〉 denotes the inner product, each
ai ∈ Z

n
q is uniformly random and the ei ’s are small random errors. In practice, we view

this collection of equations in matrix–vector form:

As + e = b,

where all operations and entries are over Zq and the challenge is to recover s from A,b.

A popular ring variant replaces A, s, e with elements a, s, e from the ring Rq := Zq [x]
xn+1 ,

requiring the solver to obtain s from samples ai · s + ei . For power-of-two n this can be
expressed in matrix–vector form by considering the matrix rot(a), the negacyclic matrix
obtained from the coefficients of a. Explicitly, for a = a0 + a1x + ... + an−1xn−1 and
bold faced letters denoting coefficient vectors, a sample from the RLWE distribution
takes the form:

⎛
⎜⎜⎜⎝

a0 −an−1 . . . −a1
a1 a0 . . . −a2
...

...
. . .

...

an−1 an−2 . . . a0

⎞
⎟⎟⎟⎠ s + e = b

where once again operations and entries are over Zq . This is exactly a structured version
of the classical LWE problem, where the uniformly random matrix A has been replaced
by the negacyclic matrix rot(a). Of course, this should be no harder to solve, yet no
substantial progress has been made in using the structure of rot(a) to solve the problem
efficiently. We can extend this matrix–vector view to MLWE as well. An MLWE instance
takes place in a module M of dimension d over Rq , such that a solver has to recover
s ∈ M from a collection of pairs (ai , 〈ai , s〉+ei ) where ai is a uniformly random element
of M and each ei is a small random element of Rq . A collection of such pairs can be
viewed as As+ e = b, where the ambient space Zq has been replaced by Rq , e.g., with
d samples:
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⎛
⎜⎜⎜⎝

a1,1 a1,2 . . . a1,d

a2,1 a2,2 . . . a2,d
...

...
. . .

...

ad,1 ad,2 . . . ad,d

⎞
⎟⎟⎟⎠ s + e = b

where all operations are over Rq and each ai, j is uniformly random. Of course, we could
extend this to have operations over Zq by applying the rot(·) operation coordinatewise,
to obtain a structured LWE instance in dimension nd.

An advantage of these structured matrices is that they allow for streamlined storage
and operations. For example, storing a uniformly random matrix A requires one to store
all n2 of its entries, but rot(a) requires a factor n less memory since one need only
store its first column. Equivalently, one RLWE sample generates n LWE samples while
reducing the storage space and key sizes. Multiplication can also be speeded up by using
the Chinese Remaindering Theorem (CRT) or other techniques.

This concept of improving efficiency by adding structure motivates this work; can we
perform an analog of the transformation taking an LWE matrix A to an RLWE matrix
rot(a) for the module M? We solve this by constructing a new variant of the LWE
problem over a certain non-commutative space known as a cyclic algebra. In recent
years, cyclic algebras have received significant attention in the field of coding theory
(see, e.g., [25,32,44]) due to the particular nature of the matrix lattices they induce, and
we view them as a suitable option for defining an LWE problem over a non-commutative
ring. Though some efforts have been made to construct non-commutative LWE problems,
for example [8,16], the majority of non-commutative cryptography has relied on group
theoretic constructions, whose underlying hard problems are often less robust than those
of lattice cryptography. Somewhat informally, for a cyclic algebra A and well-chosen
parameters there exists an automorphism θ of Rq and a γ ∈ Rq such that an LWE style
sample a · s + e over A can be written in matrix–vector form

⎛
⎜⎜⎜⎜⎜⎝

a0 γ θ(ad−1) γ θ2(ad−2) . . . γ θd−1(a1)

a1 θ(a0) γ θ2(ad−1) . . . γ θd−1(a2)

a2 θ(a1) θ2(a0) . . . γ θd−1(a3)
...

...
...

. . .
...

ad−1 θ(ad−2) θ2(ad−3) . . . θd−1(a0)

⎞
⎟⎟⎟⎟⎟⎠
s + e = b

where all entries and operations are now over Rq . Though more complex than the trans-
formation taking LWE to RLWE this fulfills our goal of providing a structured version
of MLWE, since we have replaced the uniformly random matrix A over Rq with a struc-
tured matrix which we denote φ(a) that requires a factor of d less storage. Of course, by
applying the rot(·) operation coordinatewise, one can extend this to a high-dimensional
version of the LWE problem, now with two sets of structure lying on top of each other.
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1.1. Contributions and Methodology

The main novel contribution of this work is a definition of Cyclic Algebra LWE (CLWE),
together with justifications for its construction and a polynomial time reduction from
short vector problems over matrix lattices induced by two-sided ideals in the maximal
order of a cyclic algebra to CLWE, establishing its security on the assumption that
such problems are hard. As in [27], the algorithm bases the security of CLWE on short
vector problems over two-sided ideal lattices in A; similarly to ideal lattices in K ,
these have some extra underlying structure that might make computational problems
easier. However, we leave the relative complexity of these problems an open area of
investigation.

CLWE represents a middle ground between RLWE and MLWE. Cyclic algebras are
equipped with a proper ring multiplication which preserves the dimension of the lattice.
Specifically, we consider the following advantages of our CLWE construction:

– Efficiency. CLWE can be seen a structured variant of MLWE. Assuming for sim-
plicity that the public key in LWE-based schemes is a sample (A,b), a public key
generated as A = rot(φ(a)) requires only as much storage as that of an equivalent
dimension RLWE public key.1 On the negative side, one should note that we do not
know currently how to construct CLWE instances of arbitrary dimension, which
might have an impact on concrete efficiency of the schemes.

– Security. Recent works on quantum attacks on related ideal lattice problems (e.g.,
[10,14,17,18] amongst others) require that the underlying group, in this case the unit
group ofOK , is commutative, see, e.g., [20], which is untrue for a non-commutative
algebra. We conjecture that the security level is higher than RLWE, but welcome
further cryptanalysis. We actively avoid known attacks on previous attempts to
create structured MLWE (see Sect. 3.2). We remark that solving ideal-SVP in
a number field is not known to impact the security of RLWE. Moreover, there
are currently no known algorithms solving RLWE faster than MLWE for similar
parameter sets (either theoretically or practically). It is even known from [2] that
for some specific choices of parameters, RLWE is asymptotically no easier than
MLWE.

– Decryption failure rates. The scalar multiplication of MLWE is dimension-lossy. In
other words, the message space of MLWE is restricted in Rq , whose dimension is
smaller than that of the module lattice. It leaves less room for error correction coding
in MLWE-based schemes (e.g., a KYBER instance for a key size of 256 within Rq of
dimension 256). In contrast, the dimension of the message space of CLWE is that of
the (non-commutative) ring, which is higher by a factor of d. Thus, it accommodates
better error correction coding (see Sect. 5.2), and low decryption failure rates are
desired under chosen ciphertext attacks (CCA). Even trivial repetition coding can
dramatically reduce decryption failure rates (e.g., NewHope)2

1In practice, a seed is often used to generate the matrix A, which, however, requires a pseudorandom
generator under the random oracle model. By contrast, CLWE does not require the random oracle model.
Moreover, certain applications do not permit the use of a seed, e.g., pseudorandom functions [7].

2 The same result could be obtained in MLWE by increasing the public key and ciphertext sizes by a factor
2: instead of considering an MLWE sample (A, b) with a vector b, one could consider a square matrix B,
whose columns correspond to independent LWE samples using the same matrix A.
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Our search-to-decision reduction only holds for one choice of modulus q (once the
algebra has been fixed) and structured modules of constant rank d. This issue needs to
be remedied in the future.

1.2. Related Work and Organization

This work is related to a number of different areas: lattice-based cryptography, informa-
tion theory and number theory.

In lattice-based cryptography, an alternative construction for structured module LWE,
called multivariate-RLWE, was presented in [35,36], where they tensor product two
(or more) number fields in order to provide a structured module matrix. However, an
efficient implementation of [35] was attacked in [12], together with a warning about
taking care when putting structure on a module. In short, [12] attacks certain instances
of multivariate-RLWE by providing a homomorphism to some underlying subfield K ,
dramatically reducing the dimension of the lattice problem to be attacked. Fortunately
for this work, a somewhat technical condition on the choice of γ known as the non-norm
condition precludes such a homomorphism existing to reduce the dimension of CLWE
(see Sect. 3.2). It is worth pointing out that that their problem has been addressed in
[36], and in fact this fix looks somewhat like our non-norm condition (e.g., unlike the
original version, full rank is maintained in [36]).

This paper is inspired by the abundant literature of space-time coding based on cyclic
division algebras (see the monographs [9,32] and references therein). On a high level, our
construction is reminiscent of multiblock space-time codes [21,23], with the caveat of
scaling up the number of blocks to make the codes practically undecodable. In the context
of space-time coding, our construction generalizes [21] and offers greater flexibility in the
code parameters (the number of blocks vs. the number of antennas). Multiblock space-
time codes have been used in [25] to achieve information-theoretic security over wiretap
channels, as opposed to computational security in a classic cryptographic setting of this
paper. There is a major difference between the roles of cyclic algebras in coding and
cryptography, though: the primary concern for coding is the non-vanishing determinant
(NVD), while the non-commutative ring structure becomes crucial for cryptography.
For efficient multiplication of elements in a cyclic algebra, we heavily rely on the CRT
technique of [33].

We present two approaches (subfields and compositum fields) to the construction of
novel cyclic division algebras, which enlarge the pool of algebras and may find other
applications. Specifically, our proof that the natural order of the family of cyclic division
algebras constructed in Theorem 2 (including those in [21]) is in fact maximal, is an
original contribution.

The rest of this paper is organized as follows. In Sect. 2 we provide necessary back-
ground material on lattices, number fields, and cyclic algebras. In Sect. 3 we provide
a definition and discussion of CLWE, together with novel constructions of cyclic divi-
sion algebras for the CLWE problem. In Sect. 4 we provide a reduction from structured
lattice problems to search CLWE, as well as a search-worst case decision reduction for
CLWE. In Sect. 5 we show a sample CLWE cryptosystem and provide an estimate of
its asymptotic operation complexity. Finally, the paper is concluded in Sect. 6 with a
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discussion of open problems. For a smooth flow of the main text, certain proofs, sideline
discussions and technical details are deferred to appendices.

2. Preliminaries

2.1. Lattices

A lattice is a discrete additive subgroup of a vector space V . If V has dimension n
a lattice L can be viewed as the set of all integer linear combinations of a set of lin-
early independent vectors B = {b1, . . . ,bk} for some k ≤ n, written L = L(B) =
{∑k

i=1 zibi : zi ∈ Z}. If k = n we call the lattice full-rank, and we will only consider
lattices of full-rank. We can extend this notion of lattices to matrix spaces by stacking
the columns of a matrix. We recall two standard lattice definitions.

Definition 1. Given a lattice L in a space V endowed with a metric ‖ · ‖, the minimum
distance of L is defined as λ1(L) = minv∈Λ/{0} ‖v‖. Similarly, λn(L) is the minimum
length of a set of n linearly independent vectors, where the length of a set of vectors
{x1, . . . , xn} is defined as maxi (‖xi‖).

Definition 2. Given a lattice L ⊂ V , where V is endowed with an inner product 〈·, ·〉,
the dual lattice L∗ is defined L∗ = {v ∈ V : 〈L, v〉 ⊂ Z}.

2.2. Gaussian Distributions

Definition 3. For a vector space V with norm ‖·‖ and an r > 0, we define the Gaussian
function ρr : V → (0, 1] by ρr (x) = exp(−π‖x‖/r2).

We can use this function to define the spherical Gaussian distribution Dr overV , which
outputs v with probability proportional to ρr (v). Similarly, we can sample an elliptical
Gaussian Dr in a basis b1, . . . ,bn of V , for r = (r1, . . . , rn) a vector of positive reals,
by sampling x1, . . . , xn independently from the one-dimensional Gaussian distributions
Dri and outputting

∑n
i=1 xibi .

When sampling a Gaussian over a lattice L, we will use the discrete form of the
Gaussian distribution. We define the distribution DΛ,r over Λ by outputting x with
probability ρr (x)

ρr (L)
for each x ∈ L. This version of the discrete Gaussian is centered at 0,

which in general need not be the case.
An important lattice quantity, known as the smoothing parameter, was introduced in

[31]. The motivation for the name is provided by Sect. 1 following the definition.

Definition 4. For a lattice L and ε > 0, the smoothing parameter ηε(L) is defined as
the smallest r > 0 satisfying ρ1/r (L∗/{0}) ≤ ε.

The following is a special case of [31], Lemma 4.1.
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Lemma 1. For a lattice L over R
n, ε > 0, r ≥ ηε(L), and x ∈ R

n, the statistical
distance between (Dr + x) mod L and the uniform distribution modulo L is bounded
above by ε/2. Equivalently, ρr (L + x) ∈ [ 1−ε

1+ε
, 1] · ρr (L).

We introduce well-known lemmas used to relate the smoothing parameter to standard
lattice properties. The first comes from [6], the second from [40].

Lemma 2. For a latticeLof dimension n and c ≥ 1, it holds that c
√
n/λ1(L∗) ≥ ηε(L)

for ε = exp(−c2n).

Lemma 3. For a lattice L and ε ∈ (0, 1), it holds that ηε(L) ≤
√

log(1/ε)/π

λ1(L∗) .

2.3. Algebraic Number Theory

Definition 5. A number field K is a finite degree extension of the rationals Q. Typically,
we define a number field by adjoining some algebraic element α ∈ C and set K = Q(α).
The degree of K refers to its degree as a field extension.

To define a cyclic algebra, we will need to take an additional extension of K . In particular,
we will need the extension to be Galois over K , defined as follows.

Definition 6. Let L/K be an extension of number fields of dimension d. The Galois
group of L over K is the group Aut(L/K ) of automorphisms of L that fix K . We say
that the extension is Galois if the subfield of L fixed by Aut(L/K ) is exactly K .

We define a cyclic Galois extension L/K to be a Galois extension such that the Galois
group of L over K is the cyclic group generated by some element θ of degree d := [L :
K ]. Finally, we require the ring of integers of a number field.

Definition 7. Given a number field K , its ring of integers OK is the ring consisting of
those elements of K whose minimal polynomial over Q lie in Z[x].

It is easy to check that if L/K is an extension of number fields then OL ∩ K = OK .

2.3.1. The Canonical Embedding

Let K = Q(α) be a number field of degree n. It is a well-known fact that there are exactly
n distinct ring embeddings σi : K → C. These embeddings correspond to the n distinct
injective ring homomorphisms mapping α to the roots of its minimum polynomial f .
We split these embeddings and say that there are r1 real embeddings (whose image lie
in R) and r2 conjugate pairs of complex embeddings (the complex embeddings come
in pairs since complex roots of f occur in conjugate pairs), such that r1 + 2r2 = n.
The standard convention is to order the embeddings such that the r1 real embeddings
come first and the complex embeddings are arranged such that σr1+ j = σr1+r2+ j for
1 ≤ j ≤ r2.
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Definition 8. Let K = Q(α) be a number field of degree n = r1 + 2r2. The canonical
embedding σ is the ring homomorphism σ : K → R

r1 × C
2r2 defined by

σ(x) = (σ1(x), . . . , σn(x)).

Formally, σ maps into the space

H = {(x1, . . . , xn) ∈ R
r1 × C

2r2 | xr1+r2+ j = xr1+ j ∀1 ≤ j ≤ r2} ⊂ C
n,

which is isomorphic to R
n as an inner product space.

We can equip H with the orthonormal basis {hi }, where hi = ei for 1 ≤ i ≤ r1

and h j = 1√
2
(e j + e j+r2),h j+r2 =

√−1√
2

(e j − e j+r2) for r1 < j ≤ r1 + r2, and

use the well-defined p norm induced by viewing H as a subset of C
n . Observe that

multiplication in K maps to coordinatewise multiplication in H . The 2 norm on H
allows us to efficiently sample a Gaussian distribution Dr over K by sampling such a
Gaussian coordinatewise over H , although technically this distribution is over the field
tensor product KR = K ⊗Q R ∼= H . Furthermore, it satisfies the property that for any
x ∈ KR we have the equality of distributions x ·Dr and Dr′ , where r ′

i = ri ·|σi (x)|. When
we have an extension of number fields L/K , we will denote their respective canonical
embeddings σL and σK as maps into HL and HK to avoid confusion.

2.3.2. Relative Embeddings

In the case of an extension L of a number field K it is sometimes more convenient to
apply a different order on its embeddings induced by extending embeddings of K to
those of L . Given a tower L/K/Q where K has degree n and L has degree d over K ,
there are precisely n embeddings σ1, . . . , σn of K into C. Assuming L/Q is Galois,
each of these can be extended to an embedding αi : L → C such that αi |K = σi .
However, these extensions are not unique, and it is easy to see that there are [L : K ] = d
choices for each αi . In particular, in the case where L/K is a cyclic extension with
Galois group generated by θ it holds that the composite automorphisms αi ◦ θ j (·), 1 ≤
j ≤ d, run through the d choices of αi . Hence, for a fixed choice of α1, . . . , αn the nd
automorphisms of L can each be uniquely represented by some αi ◦ θ j (·), which we
denote by α

j
i (·), 1 ≤ i ≤ n, 1 ≤ j ≤ d. Given the usual ordering of embeddings of K ,

this induces two systematic orderings on the embeddings of L by running through either
the i or j coordinates first.

2.4. Cyclic Algebras

Definition 9. Let K be a number field with degree n, and let L be a Galois extension of
K of degree d such that the Galois group of L over K is cyclic of degree d, Gal(L/K ) =
〈θ〉. For nonzero γ ∈ K we define the resulting cyclic algebra

A = (L/K , θ, γ ) := L ⊕ uL ⊕ ... ⊕ ud−1L
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Cyclic Extension A�ach 

Degree Degree 

Fig. 1. Structure of a cyclic algebra.

where ⊕ denotes the direct sum, u ∈ A is some auxiliary generating element of A
satisfying the additional relations xu = uθ(x),∀x ∈ L and ud = γ . We will call d
the degree of the algebra A. We call such an algebra a division algebra if every element
a ∈ A has an inverse a−1 ∈ A such that aa−1 = 1.

The relations among K , L and A are illustrated in Fig. 1. In fact, every central simple
algebra over a number field is cyclic.

Since θ fixes K , the center of the cyclic algebra is precisely K . Oftentimes the condi-
tion γ ∈ K is replaced by the stronger condition γ ∈ OK , and we will use this condition
in our work to guarantee the existence of a certain subring known as the natural order.
Note that the division property does not hold for arbitrary γ , and such algebras are not
always easy to construct, which we will discuss later in this section.

We present a matrix representation of elements of A which proves useful for com-
puting multiplication in cyclic algebras. We can naturally view an element a ∈ A as an
d-dimensional vector Vec(a) over L , in which case we can view left multiplication of ele-
ments as matrix–vector operations. This is done by defining the map φ : A → Md×d(L),
where for x = x0 + ux1 + ... + ud−1xd−1 ∈ A with each xi ∈ L ,

φ(x) =

⎛
⎜⎜⎜⎜⎜⎝

x0 γ θ(xd−1) γ θ2(xd−2) . . . γ θd−1(x1)

x1 θ(x0) γ θ2(xd−1) . . . γ θd−1(x2)

x2 θ(x1) θ2(x0) . . . γ θd−1(x3)
...

...
...

. . .
...

xd−1 θ(xd−2) θ2(xd−3) . . . θd−1(x0)

⎞
⎟⎟⎟⎟⎟⎠

.

We call this mapping a left regular representation of A, because it holds for any a, b ∈ A
that φ(a)Vec(b) = Vec(ab), and that φ(ab) = φ(a) · φ(b). In the case where A is a
division algebra it follows that each φ(a) is an invertible matrix. Since θ is well defined
on LR, we abuse notation and extend this map to φ : ⊕d−1

i=0 ui LR → Md×d(LR). We
derive lattices from subrings of a cyclic algebra by vectorizing their images under φ.

Definition 10. Let A = (L/K , θ, γ ) be a cyclic division algebra. A Z-order Λ in A
is a finitely generated Z-module such that Λ · Q = A and that Λ is a subring of A with
the same identity element as A. We call Λ maximal if there is no Z-order Γ such that
Λ � Γ � A. Here, Λ · Q = {∑m

i=1 aiqi : ai ∈ Λ, qi ∈ Q,m ∈ Z≥1}.
Since we are only concerned with Z-orders in this paper, we will just refer to them as
orders.

Example 1. The ring of integersOK of a number field K is the unique maximal order of
a number field. In the case of cyclic algebras a maximal order is not necessarily unique.
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An order of particular interest that we will use in our LWE construction is known as the
natural order, defined as Λ := ⊕d−1

i=0 uiOL . Unlike in the case of OK , this order is not
necessarily maximal. (However, we are going to work with natural orders that are also
maximal.) Note that in order for Λ to be closed under multiplication the element γ must
lie in OK .

2.4.1. Non-Norm Condition

It is not a priori obvious whether well-defined cyclic division algebras or orders actually
exist. As observed earlier, the existence of γ enforcing the division algebra condition is
a key component in constructing such objects. Fortunately, it is sufficient for γ to satisfy
the so-called non-norm condition [44].

Proposition 1. The cyclic algebra A = (L/K , θ, γ ) of degree d is a division algebra
if and only if none of the elements γ t , 1 ≤ t ≤ d − 1, appears in NL/K (L), where NL/K

represents the relative norm of L into K .

In other words, this condition states that the lowest power of γ that is norm of some
element of L , is γ d .

2.4.2. Order Ideals

Analogous to the use ofOK ideals in RLWE, we will be interested in ideals of an order Λ

of a cyclic division algebra A. Although Λ is a ring, it is non-commutative—thus there
are three types of ideals. A left (respectively right) ideal I of Λ is an additive subgroup of
Λ such that for any i ∈ I, r ∈ Λ, we have r · i ∈ I (respectively i · r ∈ I). A two-sided
ideal of Λ is an additive subgroup that is closed under left and right scaling by Λ, i.e., a
right ideal that is also a left ideal. The sum and product of two ideals I,J are defined as
usual; I+J = {i+ j : i ∈ I, j ∈ J } andI ·J = {∑m

l=1 il · jl : il ∈ I, jl ∈ J ,m ∈ N}.
In the case of two-sided ideals we have the standard notion of a fractional ideal; I is a
fractional ideal of Λ if cI = J for a two-sided ideal J and some c ∈ K . In the rest
of this paper, a (fractional or integral) ideal is always restricted to be two-sided, unless
otherwise stated.

We remark that the structure of the collection of two-sided ideals of the natural order
is not as simple as those of OK , or indeed those of an arbitrary maximal order. In a
maximal order, the group of two-sided ideals is a free abelian group generated by the
prime (e.g., maximal) ideals [43, Theorem 22.10], from which one can deduce obvious
definitions of inverse and coprime ideals. For a general order Λ, we define its prime
ideals as its maximal two-sided ideals and the inverse of an ideal I ⊂ Λ is

I−1 = {x ∈ A : I · x · I ⊂ I},

which lines up with the expected definition in the two-sided case (e.g.,I ·I−1 = I−1·I =
Λ).

For the case of the natural order, we do not have such a well-behaved ideal group, but
a nice exposition is given in [33, Sect. 3]. In particular, for a two-sided ideal I ⊂ Λ,
I ∩ OK is an ideal of OK . For an ideal I ⊂ OK , (I · Λ) ∩ OK = I, from which it
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follows that this intersection map is a surjection onto the ideals of OK . However, it is
not in general an injection since several ideals of Λ may have the same intersection with
OK . Since the ideals of Λ do not in general form a finitely generated abelian group, we
define two ideals I,J of Λ to be coprime if I + J = Λ.

Nonetheless, since the orders to be constructed in Theorem 2 are both natural and
maximal, it will always hold for a two-sided ideal I that I · I−1 = I−1 · I = Λ and
(I−1)−1 = I. These properties will be required in the proofs of Lemmas 6 and 7.

2.4.3. Some Useful Ideals

For an order Λ we define the codifferent ideal

Λ∨ = {x ∈ A : Tr(xΛ) ⊂ Z}

where Tr refers to the reduced trace, defined Tr(a) := TrK/Q(Trace(φ(a))). Similarly,
for an ideal I we define the dual ideal

I∨ = {x ∈ A : Tr(xI) ⊂ Z}.

Since the matrix trace satisfies Trace(AB) = Trace(BA), this definition is two-sided.
Note that the codifferent ideal and a general dual ideal may be fractional ideals rather
than full ideals, and they satisfy the equality I∨ = Λ∨ · I−1 for any ideal I.

We will also be interested in principal ideals, but must take more care with these than
in commutative settings. For a central element t ∈ K , we can define simply 〈t〉 = t · Λ,
the set of elements of Λ divisible by t . However, for a general t that does not lie in the
center of Λ we need the slightly more complex definition

〈t〉 =
{

m∑
i=1

ri tsi : ri , si ∈ Λ,m ∈ N

}
,

which can easily be seen to be a two-sided ideal, moreover the smallest one that contains
t .

2.4.4. Orders and Ideals as Lattices

Any order Λ of a cyclic algebra A = (L/K , θ, γ ) has dimension nd2 over Z and thus
generates a lattice of dimension nd2 over Z. We will consider the following represen-
tation of these lattices, which extends naturally to ideals of orders as well. Consider an
element x = ⊕d−1

i=0 ui xi ∈ Λ. We can consider x as a vector over HL of dimension d by
σA(x) := {σL(x0), σL(x1), . . . , σL(xd−1)}. Then, the collection σA(Λ) forms a lattice
of dimension nd2 over Z. We will refer to this representation as the “module represen-
tation" and will sometimes double index the element x , denoting by xi, j the embedding
σ j (xi ), and extend this notation in the obvious manner to the space

⊕d−1
i=0 ui LR. Though

this representation is conceptually simple, we remark that it has some drawbacks in the
case where |σi (γ )| �= 1 for some i when considering sizes of lattice elements; we will
choose γ carefully in our constructions to remove this issue.
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As in (R)LWE, we will need to sample Gaussian distributions over our ambient space in
certain norms. In the case of RLWE, the continuous Gaussians are sampled in KR

∼= H .
Since a cyclic algebra A can be viewed as a d-dimensional algebra over L , we use
the visualization from the previous subsection and sample our error distributions over⊕d−1

i=0 ui LR, which has the same structure as a vector space as HL
d . For simplicity we

restrict ourselves to the case when |σi (γ )| = 1 for each i . Although this is a strong
condition on γ it holds in the case where it is a root of unity, which we will enforce later.

We consider the norm of an element of A to be equal to the norm of the cor-
responding module element in Ld of dimension nd2 used in [22], e.g., ‖x‖ =
‖(σL(x0), σL(x1), . . . , σL(xd−1))‖2 for x = x0 + ux1 + ... + ud−1xd−1 ∈ A. It is
straightforward to check that this is indeed a norm in the case where |σi (γ )| = 1 for
each i , since γ is fixed under θ and multiplying by γ does not change the norm of an
entry of σL . In fact, if |σi (γ )| = 1 for each i , ‖x‖ is equivalent to a representation in
Frobenius norm ‖ · ‖F of matrices:

‖x‖2 =
∑

σ∈σK

‖σ(φ(x))‖2
F

where σ , when applied to φ(x), is a short notation of its extension to L . We have

‖xy‖2 =
∑

σ∈σK

‖σ(φ(xy))‖2
F =

∑
σ∈σK

‖σ(φ(x))σ (φ(y))‖2
F

≤
∑

σ∈σK

‖σ(φ(x))‖2
F‖σ(φ(y))‖2

F

≤
∑

σ∈σK

‖σ(φ(x))‖2
F

∑
σ∈σK

‖σ(φ(y))‖2
F = ‖x‖2‖y‖2

where the first inequality is due to the sub-multiplicativity of Frobenius norm. In this
case, the norm is sub-multiplicative.

It is clear that this norm extends to any y ∈ ⊕d−1
i=0 ui LR in a natural manner. Now

that we have defined a norm, it is easy to define a Gaussian distribution Dr on A, or its
discrete analogue on Λ by sampling over the module LR

d .

2.4.5. The CRT

In this subsection we state the CRT for order ideals, and deduce some important con-
sequences. We note that the following lemmas are merely adaptations of those in [27,
Sect. 2.3.8] extended to the case of cyclic algebras. The first is just the CRT.

Lemma 4. Let I1, . . . , Ir be pairwise coprime ideals of an order Λ of a cyclic alge-
bra A, and let I = ∏r

i=1 Ii . Then, the natural map Λ → ⊕r
i=1(Λ/Ii ) induces an

isomorphism Λ/I → ⊕r
i=1(Λ/Ii ).

We call a CRT basis for a set of coprime order ideals I1, . . . , Ir a basisC = {c1, . . . , cr }
of elements of Λ satisfying ci = 1 mod Ii , ci = 0 mod I j for i �= j .
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Lemma 5. Given pairwise coprime ideals I1, . . . , Ir of an order Λ, there is a deter-
ministic polynomial time algorithm that outputs a CRT basis c1, . . . , cr ∈ Λ for those
ideals.

The proof is the same as in the ring case [27, Lemma 2.13]. Using Lemma 5 we can
efficiently invert the natural CRT isomorphism. Given a = (a1, . . . , ar ) ∈ ⊕r

i=1(Λ/Ii ),
it can be easily checked that its inverse is b = ∑r

i=1 ai ci mod I.
The next two lemmas will be required later to construct an efficiently invertible bijec-

tion between quotient spaces I/〈q〉 · I and Λ/〈q〉.

Lemma 6. Assume q is unramified in L. Let I be an ideal of the natural orderΛwhich
is maximal and let J = q · Λ = 〈q〉 · Λ, where q is a prime integer and 〈q〉 = ∏r

i=1 qi
is a decomposition into prime ideals inOK . Assume γ /∈ qi for each i . Then, there exists
an element t ∈ I ∩ OK such that the ideal t · I−1 ⊂ Λ is coprime to J , and we can
compute such a t efficiently given I and the prime factorization of J .

Remark 1. The condition on γ will be immaterial in our use case, since when γ is a
unit the only OK ideal that contains γ is OK itself. Meanwhile, the unramification of q
will arise (relatively) naturally in the work, so it is not really a restriction.

Proof. For an ideal I denote by I its intersection with K , which is a non-trivial ideal
of OK (see [33, Sect. 3]). We apply the corresponding [27, Lemma 2.14] to obtain t ∈ I
such that t · I−1

and J are coprime as ideals of OK and t ∈ I \ ⋃r
i=1 qi · I. Assume,

for a contradiction, that t · I−1 + J �= Λ i.e., the ideals are not coprime. Then, there is
some maximal ideal M of Λ containing t · I−1 and J . Since q is unramified in L and
γ /∈ qi , by [33, Propositions 1 and 4], this ideal must be one of the ideals qi · Λ since it
contains J . Then t ·I−1 ⊂ qi ·Λ and consequentially t ∈ qi ·I because I ·I−1 = Λ in
a maximal order. Since t and qi are central, it follows that t ∈ qi · I, a contradiction. �

The next lemma will be the one we use in our reduction. As in RLWE, in practice we
are interested in the case where J = 〈q〉 for a prime integer q and P = Λ∨. We will
use the familiar notation Iq := I/q · I for an ideal I and q ∈ Z throughout the paper.

Lemma 7. Let Λ, γ and q be given in Lemma 6. Let I,J be ideals of Λ, with t ∈
I ∩OK chosen as above such that t ·I−1 and J are coprime as ideals, and letP denote
an arbitrary fractional ideal ofΛ. Then, the functionχt : A → A defined asχt (x) = t ·x
induces a module isomorphism from P/J · P → I · P/I · J · P . Furthermore, in the
case J = 〈q〉 for a prime integer q we can efficiently compute the inverse.

Proof. The proof is similar to that of [27]. Since t lies in the center of Λ, it is clear
that multiplication by t induces a module homomorphism. Given the map χt : P →
I · P/I · J · P and j ∈ J · P , χt ( j) = t · j ∈ I · J · P , so it is clear that J · P is
in the kernel of this map. Conversely, if χt (x) = 0 then t · x ∈ I · J · P , from which
it follows that I−1 · t · x ⊂ J · P . From the definition of coprime, t · I−1 + J = Λ,
from which it follows that there exists a ∈ t · I−1, b ∈ J such that a + b = 1. Hence,
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x = (a + b) · x = a · x + b · x . Since a · x, b · x ∈ J ·P , it follows that x ∈ J ·P , from
which injectivity follows immediately.

To demonstrate efficient invertibility, we must work slightly harder. Now let J = 〈q〉.
Compute t as in Lemma 6 and observe that the bijection χt : Λq → Iq is an additive
homomorphism. Thus, it suffices to compute the inverse of all elements of a Z basis of
Iq , since then any element can be inverted by computing its representation in this basis
and inverting that. We construct such a basis as follows. First, choose n2 · d4 elements
xi , i = 1, . . . , n2 ·d4 from Λq uniformly at random and compute yi = χt (xi ) for each i .
It follows that each yi is a uniformly random element of Iq . Then, with high probability
the yi ’s form a spanning set of Iq (see the proceeding lemma), which we can reduce to
a Z basis y′

1, . . . , y
′
n·d2 . This basis satisfies the desired property that each element has

a known inverse. If this algorithm fails (e.g., there is no suitable basis y′
1, ...y

′
n·d2 ), we

repeat, choosing a fresh set of elements x1, . . . , xn2·d4 until we succeed. �

Lemma 8. Given a set of n2 · d4 independent and uniformly random elements Ξ ⊂
Z
n·d2

q , the probability that Ξ contains no set of n · d2 linearly independent vectors (over
Zq) is exponentially small in d.

This lemma is a straightforward adaptation of Corollary 3.16 of [42].

2.5. Lattice Problems

Computational problems on lattices represent the foundations of the security of (R)LWE,
and will do so for our Cyclic LWE as well. The standard lattice problems are as follows.

Definition 11. Let ‖ · ‖ be some norm on R
n and let ξ ≥ 1. Then the approximate

Shortest Vector Problem (SVPξ ) on input a lattice L is to find some nonzero vector x
such that ‖x‖ ≤ ξ · λ1(L).

Definition 12. Let ‖ · ‖ be some norm on R
n and let ξ ≥ 1. Then the (approximate)

Shortest Independent Vectors Problem (SIVPξ ) on input a lattice L is to find n linearly
independent nonzero vectors x1, . . . , xn such that maxi (‖xi‖) ≤ ξ · λn(L).

Definition 13. Let ‖ · ‖ be some norm on R
n , let L be a lattice, and let d < λ1(L)/2.

Then the Bounded Distance Decoding problem (BDDL,d ) on input y = x+ e for x ∈ L
and ‖e‖ ≤ d is to compute x, or equivalently e.

The above problems are all well investigated and believed to be sufficiently hard to
base post-quantum cryptographic security on; there are no known algorithms for any of
these problems (for suitable parameters) running in polynomial time in dimension n.

Unfortunately, these problems are not directly suitable for CLWE, where we will be
interested in their adaptations to lattices generated by order ideals, similarly to how ideal
lattices are used the ring case. Specifically we have the same problems on lattices that
they induce under the map σA(·). So, SVP becomes:
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Definition 14. Let A be a cyclic algebra, let I be some (possibly fractional) ideal of
the natural order Λ. Then, for an approximation factor ξ ≥ 1, the A-SVPξ is to find a
nonzero element a ∈ I such that |a| := ‖σA(a)‖2 ≤ ξ · λ1(I), where as usual λ1(I)

denotes the minimal length of nonzero elements of I in the given norm.

Remark 2. When we use these problems in our security reductions, we will assume
that the ideals are in fact integral ideals (e.g., we exclude fractional ideals). Observe that
this may be done without loss of generality, since solving the A-SVP problem on the
fractional ideal I may be done by solving it on the integral ideal cI (where c ∈ K is the
element such that cI is integral) and rescaling the solution.

Essentially we have a specialized version of the SVP problem; we must find an element
of I with minimal norm (up to approximation factor) in the ideal I. The extension of
SIVP to A-SIVP is analogous, but since we consider our objects as Z-lattices we require
the independent ‘vectors’ a1, . . . , ar to be linearly independent over Z. For BDD, we
need a suitable ambient space, and use the following definition.

Definition 15. Let A be a cyclic algebra, let I be some (possibly fractional) ideal of
a maximal Z-order Λ, and let δ < λ1(I)/2. Then the A-BDDI,δ problem, on input
y = x + e for x ∈ I and e ∈ ⊕d−1

i=0 ui LR satisfying |e| ≤ δ, is to compute x .

2.6. The Learning with Errors Problem

We will briefly recall the initial Learning With Errors (LWE) problem here; in Sect. 3 we
will extend it to cyclic algebras. The problem comes in two forms; search and decision,
both of which are based on the LWE distribution. Let n and q be positive integers, and
let α > 0 be some error parameter. Define T := R/Z, the unit torus.

Definition 16. For a secret s ∈ Z
n
q , a sample (a, b) ← As,α is taken by sampling a

uniformly random vector a ∈ Z
n
q and e ← Dα and outputting (a, b) = (a, 〈a, s〉/q + e

mod Z).

Given the above distribution, the LWE problem comes in two forms.

Definition 17. The search LWE problem is to recover s from a collection of samples
As,α . The decision LWE problem on input a collection of samples on Z

n
q ×T is to decide

whether they are uniform samples or were taken from As,α for some secret s, where s is
drawn uniformly at random from Z

n
q .

Typically, the number of samples provided in each of these problems depends on the
application. Since the decision problems has a probabilistic element, we will be interested
in the advantage of the algorithms that solve it, which is defined as the difference between
their acceptance probabilities on samples from an LWE distribution As,α and the uniform
distribution. In practice, the decision problem is of more interest in cryptography.
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We will not define the popular extensions of these problems to number fields or
modules, known as Ring-LWE and Module-LWE, but the unfamiliar reader may find
details in [27] and [22], respectively, both of which we reference frequently in this work.

3. The CLWE Problem

In this section we present the general definition of CLWE together with justifications
for choices made in the definition, as well as constructions of specific algebras to use.
We will save the security properties for Sect. 4.1.

Definition 18. Let L/K be a Galois extension of number fields of dimension [L : K ] =
d, [K : Q] = n with cyclic Galois group generated by θ(·). LetA := (L/K , θ, γ ) be the
resulting cyclic algebra with center K and invariant u with ud = γ ∈ OK . Let Λ be an
order of A. For an error distribution ψ over

⊕d−1
i=0 ui LR, an integer modulus q ≥ 2, and

a secret s ∈ Λ∨
q , a sample from the CLWE distribution Πq,s,ψ is obtained by sampling

a ← Λq uniformly at random, e ← ψ , and outputting (a, b) = (a, (a · s)/q + e
mod Λ∨) ∈ (Λq ,

⊕d−1
i=0 ui LR)/Λ∨.

Remark 3. Unlike in commutative spaces, the order of multiplication of a and s is
important; our choice is (a · s), but similar security properties would hold if one took
(s · a) instead. Also observe that our modulo reduction in the second coordinate of the
pair is well defined, since (a · s) ∈ Λ∨

q .

As usual, the associated CLWE problem will come in search and decision variants.

Definition 19. Let Ψ be a family of error distributions over
⊕d−1

i=0 ui LR. The search
CLWE problem, which we denote by CLWEq,s,ψ , is to recover s from a collection of
independent samples from Πq,s,ψ for arbitrary s ∈ Λ∨

q and ψ ∈ Ψ .

We do not state the number of samples allowed for this (or the next) problem, as typically
it depends on the application.

Definition 20. Let Υ be some distribution on a family of error distributions over⊕d−1
i=0 ui LR andUΛ denote the uniform distribution on (Λq , (

⊕d−1
i=0 ui LR)/Λ∨). Then,

the decision CLWE problem, written D-CLWEq,Υ , is on input a collection of indepen-
dent samples from either Πq,s,ψ for a random choice of (s, ψ) ← U (Λ∨

q ) × Υ or from
UΛ, to decide which is the case with non-negligible advantage.

3.1. Discussions

3.1.1. Relation to Module-LWE

First, we explain why we choose the order of multiplication a · s. As discussed in the
introduction, the transformation from a (primal) RLWE sample to n related LWE samples
provides our motivation. Here, one RLWE sample a · s+ e, where a, s, e ∈ Rq ∼= Zq [x]

xn+1 ,
generates n LWE samples by considering the multiplication operation as As+ e, where
A := rot(a) is a negacyclic matrix. For appropriate choices of error distributions, this is
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precisely n LWE samples with the exception that there is some structure in the matrix A.
By ordering the multiplication a · s, we get a similar transform from CLWE to MLWE.
Assuming for now that we have a discretized form of CLWE, and observing that for
q ∈ Z we have Λq ∼= ⊕d−1

i=0 uiOL/qOL (see [33]), we transform a CLWE sample
a · s + e into matrix–vector form to get φ(a) · s + e, where s and e are vectors of
dimension d over OL/qOL . Setting A = φ(a), one can see that for appropriate choices
of error distribution this is similar to d samples from the MLWE distribution with some
additional structure in the matrix A, as intended.

3.1.2. The Natural Order vs. Maximal Order

In this work we consider the case where the natural order Λ of A is also a maximal
order. The benefit of using the natural order is that it is simple to construct and represent,
whereas finding a maximal order is computationally slow. Additionally, the natural order
is somewhat orthogonal, in the sense that it has the same span in each ui coordinate inde-
pendently of the other coordinates. This is advantageous when considering the relation
to MLWE, where the module is always taken to be the full module Od

K .
As mentioned above, two-sided ideals in a maximal order form a free abelian group,

which is not necessarily the case in the natural order. Further, as lattices, a maximal order
gives denser (maximally so) sphere packing than the natural order, since the latter is a
sublattice (of at least one maximal order). Fortunately, we will construct in Theorem 2
cyclic algebras whose natural order is also maximal, thus enjoying both the simplicity
of the natural order and the convenience of a maximal order.

Example 2. Quaternion algebra over Q is defined by H = {x + j y : x, y ∈ Q(i)}, with
the usual relations i2 = j2 = −1 and i j = − j i . It can be seen as a cyclic division
algebra (Q(i)/Q, (·),−1) where (·) denotes the complex conjugate and −1 is a non-
norm element. A quaternion has matrix representation

(
x −y
y x

)
.

The Lipschitz integers L ⊂ H form the (non-maximal) natural order L =
{x + j y : x, y ∈ Z[i]} . The maximal Hurwitz order is given by

H = {a + bi + cj + d(−1 + i + j + i j)/2 : a, b, c, d ∈ Z} .

It is easy to check that, as Z-lattices of dimension 4, the Lipschitz order is a sublattice
of the Hurwitz order, of index 2.

3.1.3. A Pair of Number Fields

In MLWE, we are free to choose the dimension of our module over the underlying
number field K . However, in the cyclic algebra case we are restricted to cases where
we can find L , K , and γ such that A = (L/K , θ, γ ) is well defined. From a theoretical
standpoint it is not immediately clear whether we want to consider asymptotic security
in terms of n or d, but following our motivation from MLWE we suggest that n is likely
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the suitable choice since the module dimension d is typically small in applications using
MLWE, whereas the dimension of the underlying field K is large. However, there seems
to be no a priori reason why with the right techniques one could not consider both n and
d asymptotically; the only case a cyclic algebra precludes is high-dimensional MLWE
over a low dimension number field L , because the parameter d occurs in both the module
and field dimension.

3.2. Evading BCV Style Attacks

In our CLWE construction we have enforced that γ is selected so that A is a division
algebra. We do this to avoid attacks in the style of [12] on the m-RLWE protocol. For
m = 2, them-RLWE protocol of [35] can be considered as a structured variant of MLWE,
where the matrix A in the operation As + e is a negacyclic matrix over some ring Rq .
More explicitly, 2-RLWE considers the tensor product of two fields K = K1 ⊗ K2 and
runs the LWE assumption in the ring of integers Rq . The example use case given in
[35] considers power-of-two cyclotomics K1, K2 defined by the polynomials xk1 + 1
and yk2 + 1, respectively, claiming that the resulting problem in Rq = Zq [x,y]

(xk1+1,yk2 +1)

effectively corresponds to an RLWE problem of dimension k1 · k2 due to an obvious
homomorphism between K and the two-power cyclotomic field L of degree k1 · k2. The
problem also represents a structured MLWE instance over Zq [x]

(xk1+1)
of dimension k2.

However, the observation of [12] is that there is a smaller field K ′ containing K1
such that there is a homomorphism from K into K ′ with a well-defined image for y.
This is because the roots of distinct two-power cyclotomic polynomials are algebraically
related. For example, in the case k1 = 8, k2 = 4, it is clear that the map taking y to x2 and
fixing K1 is a well-defined homomorphism from K to K1. Using this homomorphism,
[12] simplifies the problem of solving one 2-RLWE instance by considering it as four
RLWE instances in dimension k1 rather than one instance in dimension k1 ·k2, essentially
removing the module dimension k2 from the problem.

We argue that the non-norm condition ofγ precludes the existence of a homomorphism
removing the module structure by taking a well-defined cyclic algebraA = (L/K , θ, γ )

to a smaller subfield containing K . We restrict our search to maximal subfields of A,
since any subfield is contained in at least one maximal subfield. It is a well-known
result on division algebras that any maximal subfield E of A contains K and satisfies
[E : K ] = d, and that in the case of a cyclic division algebra A there is a choice of
u′ ∈ A such that the cyclic algebra A′ := ⊕

j u
′ j E is isomorphic to A (see Sect. 15.1,

Proposition a of [41]). Assume, for a contradiction, that we had such a homomorphism
χ : A → L , where without loss of generality we assume the maximal subfield is L
by the aforementioned proposition. Since L is Galois, the restriction of χ to L is an
automorphism of L . It is clear that χ must agree on conjugates, since χ(u) · χ() =
χ(u ·) = χ(θ() ·u) = χ(u) ·χ(θ()) for any  ∈ L . However, this contradicts χ being
injective on L and it follows that no such homomorphism exists. Hence, we conclude
that the attack style of [12] does not threaten our algebraic structure.
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3.3. Concrete Algebras for CLWE

In order to apply the CLWE assumption in a practical cryptosystem, one must choose
a concrete algebra as an ambient space. More generally, we are interested in finding
families of algebras suitable for CLWE that allow for asymptotic analysis and varied
security levels. Our search for algebras is motivated by the restrictions and conditions
discussed in the previous section. In particular, we are interested in cyclic division
algebras satisfying the following properties:

– The non-norm element γ must lie inOK to keep the natural order closed under mul-
tiplication, and should satisfy |γ | = 1 in order to maintain both the coordinatewise
independence and sub-multiplicative properties of the norm.3

– The dimension n := [K : Q] of the division algebra should be large and the degree
d := [L : K ] should be small. This is to maintain the analogy with structured
MLWE (the degree corresponds to the module rank) and follows from the search-
decision reduction, which takes time polynomial in n but not in d.

– The base field K should be cyclotomic and q should split completely in K . This is
also a result of the methodology of the search-decision reduction, which uses the
well-understood factorization of 〈q〉 in OK . In addition, since the bulk of lattice-
based cryptography is done over cyclotomic fields, we consider algebras which are
small extensions of these as somewhat natural. We observe that an improved proof
of decision security may allow this point to be dropped, whereas the other two
points feel more integral.

Although significant effort has been expended by coding theorists to construct cyclic
division algebras satisfying a variety of conditions, such as in [44] or [21], we find
ourselves with a fairly unique set of restrictions. In particular, for reasons relating to
desired applications, the majority of algebras used in coding theory are either of small
total dimension or have small [K : Q] and scale asymptotically in [L : K ]. Since we are
interested in scaling up K asymptotically, we will have to build novel algebras satisfying
the above requirements ourselves. We will, however, make heavy use of the following
theorem as an intermediate step. Here ζm denotes a primitive mth root of unity where
ϕ(m) = n is the degree of the base field K = Q(ζm).

Theorem 1. [21] Let m = pa be a prime power and let K = Q(ζm). Then, there exist
infinitely many cyclic Galois extensions M/K of degree m such that ζ im is not a norm of
M/K for 0 < i < m.

We remark that the theorem is effective in the sense that it provides an explicit descrip-
tion of M , and we provide a summary of the recipe for constructing M . The crucial aspect
of its construction is that M is a subfield of some cyclotomic extension of K , K (ζq ′) for
a prime q ′, but we present its full description for completeness.

3We abbreviate the condition |σi (γ )| = 1 for all i by |γ | = 1, since in fact these are equivalent for
algebraic γ .
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First, find some prime q ′ such that q ′ = 1 mod pa but q ′ �= 1 mod pa+1, so that
pa is the highest power of p dividing q ′ − 1.4 Set M ′ = K (ζq ′) so that by coprimality
M ′ = Q(ζmq ′). Then Gal(M ′/K ) is a cyclic group of order q ′ − 1 generated by some
automorphism σ . Denote by M the subfield of M ′ fixed by σm . Then [M : K ] = m by
the fundamental theorem of Galois theory and the extension is both cyclic and Galois.
Finally, localization theory is used to show that the powers of ζm are not norms in this
extension. In this way, the theorem constructs M explicitly.

The part of this theorem of our interest is that it allows us to scale K asymptotically,
but this comes with a drawback of very high degree M , i.e., it only permits a degree-m
extension M of a degree-ϕ(m) base field K . We present a new method that uses this
theorem as a starting point to construct good algebras satisfying our restrictions. More
precisely, our construction will begin with Theorem 1 and then use elementary methods
from Galois theory to build more favorable fields.

3.3.1. Constructions using Subfields

We squash the field M from Theorem 1 to a subfield L of small index over the base K
satisfying the necessary properties to generate a cyclic algebra.

Theorem 2. Let K = Q(ζm), where ϕ(m) = n, be a prime power cyclotomic with
m = pa for some integer a and prime p. Then, there exists a cyclic Galois extension
L/K of any index d dividing m within which ζm satisfies the non-norm condition.

Remark 4. Since the proof will provide an explicit description of L , the correct interpre-
tation of this theorem is that we can construct cyclic division algebras A = (L/K , θ, γ )

with 〈θ〉 = Gal(L/K ), γ = ζm, K = Q(ζm), and [L : K ] is any divisor of m = pa .
Figure 2 shows all possible cases of intermediate field L between K and M .

Proof. Let K = Q(ζm) for a fixed m = pa with prime p and integer a. Following the
construction of Theorem 1 fix a cyclic Galois extension M/K of degree m such that ζ im
is not a norm of an element of M into K for any i = 1, 2, . . . ,m − 1. We will choose L
as a suitable intermediate extension M/L/K . Let σ denote the generator of Gal(M/K ),
an automorphism of degree m. For d dividing m, σ d fixes an extension L of K with
[M : L] = |Gal(M/L)| = m/d and it follows from the tower lemma that [L : K ] = d.
We will show that L is a satisfactory extension of K .

First, since Gal(M/L) is a normal subgroup of Gal(M/K ) we see that L/K is a
normal, and hence Galois,5 extension. It follows from standard Galois Theory that

Gal(L/K ) ∼= Gal(M/K )/Gal(M/L).

Both groups in the quotient are cyclic, and so Gal(L/K ) is cyclic with some generator
θ . Furthermore, this isomorphism also allows us to deduce |Gal(L/K )| = d.

4It is easy to show that infinitely many primes satisfying this condition always exist by appealing to
classical theorems of Chebotarev or Dirichlet.

5Since in this case all extensions are separable.
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Fig. 2. Cyclic subfields between M and K from Galois correspondence. 〈σ i 〉 denotes the group generated by
σ i , where σ is the generator of Gal(M/K ).

We’ve shown that L/K is a cyclic Galois extension of degree d; we are left to show
that ζ im is not a norm for i = 1, . . . , d − 1. Let M denote NM/K (M×) and L denote
NL/K (L×). Say ζ im ∈ L , fixing x ∈ L such that NL/K (x) = ζ im . Now by transitivity of
the norm,

NM/K (x) = NL/K (NM/L(x))

= NL/K (xm/d)

= ζ
(m/d)i
m

where the first equality follows from x ∈ L and the second since the norm is multi-
plicative. M does not contain any power of ζm except ζm

m = 1 since ζm is a non-norm
element in M/K , so it follows that m|(m/d)i and so d|i . From this we conclude that
ζm, ζ 2

m, . . . , ζ d−1
m do not lie in L and so ζm satisfies the non-norm condition. �

Remark 5. We presented the proof in the above form for ease of legibility, but it is
straightforward to extend the argument in the final paragraph to show that ζ jd+1

m satisfies
the non-norm condition for any j = 0, 1, . . . , (m/d) − 1.

This is an effective construction that allows us to build cyclic division algebras of the
form A = (L/K , θ, γ ) where |γ | = 1, K is an arbitrary prime power cyclotomic, and L
is an extension of K with degree divisible by the prime p. For cryptographically relevant
examples, we can consider degree 2 or 4 extensions of a 2-power cyclotomic or degree
3 extensions of a 3-power cyclotomic. Given the impossibility result of Appendix A and
the restriction on the absolute value of γ , we view these algebras as essentially the best
possible, at least for the case where K is a prime-power cyclotomic.
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As discussed in Sect. 3.1, the natural order is not necessarily a maximal order. Nev-
ertheless, the following theorem shows that the specific family of algebras we have
constructed in Theorem 2 represents a lucky case (its proof is given in Appendix B).

Theorem 3. For the family of cyclic division algebrasA = (L/K , θ, ζm) constructed
in Theorem 2, the natural order of A is maximal.

This makes our constructed family of algebras very attractive, as it enjoys both the
simplicity of the natural order and the nice property of a maximal order.

Remark 6. In the context of multiblock space-time coding [21], the construction of
Theorem 1 allows for a space-time code form antennas and ϕ(m) blocks, i.e., a relatively
small number of blocks. With our new construction Theorem 2, any number ϕ(mk),
k ∈ N such that mk is a power of p, of blocks becomes possible. Further, using a
maximal order leads to optimum coding gains; it was not realized in [21] that the natural
order from Theorem 1 is actually maximal.

3.3.2. Constructions using Compositum Fields

The algebras with prime-power cyclotomic centers of the previous subsection use the
field construction technique of Theorem 2, and as such they are restricted to algebras
whose dimension N is in the form pk(p − 1) for a prime p and integer k. We present
another method of constructing algebras using compositum fields that allows us to target
dimensions not achievable in this setting.

This method starts from extensions which are nearly what we are looking for and
applies field compositums (cf. [43, Chapter 30]). Say we have a Galois field extension
L ′/K ′ with non-norm element γ ∈ OK ′ whose Galois group is cyclic of degree d. Let F
be some other Galois number field with F∩L ′ = Q. Then Gal(L ′F/K ′F) ∼= Gal(L ′/K ′)
and γ is a non-norm element in L ′F/K ′F . Relabeling this extension as L/K and letting
θ denote the cyclic generator of the Galois group gives a cyclic field extension with
non-norm γ such that [L : K ] = d and [K : Q] = [K ′ : Q] · [F : Q]. The relations
among these fields are illustrated in Fig. 3a.

One can generalize this method to the case where the base field can not be written
conveniently as a compositum of two fields. Let L ′/K ′ be a cyclic Galois extension of
degree d with non-norm element γ and let K be another Galois number field which
contains K ′. Then K L ′/K is a cyclic Galois extension of degree k for some k dividing
d, and in particular if K ∩ L ′ = K ′ then k = d since the fields are linearly disjoint above
K ′. See Fig. 3b for the relations among these fields.

Similar to the subfield method, we also have the following theorem for the compositum
field method (the proof is given in Appendix B).

Theorem 4. Let K = Q(ζn) where n = pr and p is prime, L/K be a finite cyclic
extension of degree d with Gal(L/K ) = 〈θ〉 and Gal(L/Q) abelian, and F = Q(ζqt )

where F ∩ L = Q. Suppose the natural order Λ ⊂ A = (L/K , θ, ζn) is maximal.
Then, if [F : Q] and d are coprime, the natural order Λ′ of the cyclic division algebra
A′ = (LF/K F, θ ′, ζn) is also maximal.
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Fig. 3. Constructions using field compositums: a base field K is a compositum K ′F , b K cannot be written
as a compositum.

Table 1. Sample parameters of cyclic algebras.

Method Center K n = [K : Q] d = [L : K ] Total dimension N = nd2 of A

Subfield Q(ζ81) 54 3 486
Subfield Q(ζ256) 128 2 512
Subfield Q(ζ64) 32 4 512
Subfield Q(ζ512) 256 2 1024
Subfield Q(ζ128) 64 4 1024
Subfield Q(ζ243) 162 3 1458
Compositum Q(ζ192) 64 3 576
Compositum Q(ζ576) 192 2 768
Compositum Q(ζ384) 128 3 1152

The subfield method is given in Sect. 3.3, while the compositum method is given in Appendix 3.3.2

3.4. Sample Parameters

Now that we have discussed our techniques for constructing suitable number fields we
proceed to demonstrate that these methods are able to attain cryptographically relevant
dimensions. In this section, we present a small selection of proof-of-concept dimensions
in Table 1 where we take our motivation for choices of dimension from KYBER and
NewHope, since they are the successful second round NIST candidates whose methods
are most similar to our own. Thus, we aim for dimensions in the region of between 512
and 1024, dimensions proposed for both NewHope and KYBER (which also achieves
dimension 768). Of course, these schemes are restricted to having power-of-two ring
dimension n and so their choices of dimension may not be optimal in general, but
FrodoKEM [13], a plain LWE scheme, suggests dimensions in around the same range,
specifically 640, 976, and 1344, so we consider dimensions in this region a sensible
starting point. Corresponding to KYBER and other MLWE-based schemes we will set
a small ‘module’ rank d := [A : L]. We are constricted in our choice of fields by the
fact that d appears as a square in the total dimension N = nd2, but for the most part we
are able to work around this problem.
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3.4.1. Subfields

Two-Power Cyclotomic K We begin with straightforward cases where we can apply
Theorem 2 immediately to obtain fields in suitable dimensions. Let K be a two-power
cyclotomic field, K = Q(ζ2k ), with dimension n := 2k−1. Since the rank d = [L :
K ] = [A : L] is a small power of two, the dimension n of K will be dictated by the
choice of module rank d. We construct rank 2 and 4 examples as follows:

– For d = 2 we have [A : K ] = 4, so for total dimension 1024 we set K = Q(ζ512).
– For d = 4 we have [A : K ] = 16, so for total dimension 1024 we set K = Q(ζ128).

To obtain algebras in dimension 512, simply pick K with dimension n/2 e.g., Q(ζ256)

and Q(ζ64), respectively. In all cases, Theorem 2 lets us pick the non-norm element γ

as a root of unity.
Three-Power Cyclotomic K Since 3 � 1024, one cannot achieve algebras in dimension
1024 with a 3-power cyclotomic center and instead we set about searching for algebras
of nearby dimensions. Although we are unable to build fields in this case with dimension
around 1024, we can get close to the more lightweight cryptographic dimension of 512
used in schemes targeting a lower security level. Recall that if K = Q(ζ3k ) then K has
dimension n := φ(3k) = 2 ·3k−1. Again, the module rank is a power of 3 and the choice
of module rank will define the choice of n.

– For d = 3 we have [A : K ] = 9, so for total dimension 486 we set K = Q(ζ81).
The next achievable dimension is 1458, for which K = Q(ζ243).

– For d = 9 we have [A : K ] = 81. To achieve the same total dimensions we take
small base fields K = Q(ζ9) and Q(ζ27), respectively.

3.4.2. Compositum Fields

We give example algebras of dimensions 576, 768 and 1152 in Table 1 with less restrictive
dimension using field compositum techniques. We propose two alternate methods of
applying field compositums in Fig. 3a: either use Theorem 2 to make an algebra which
already has large dimension by selecting large center K and small extension L , then
compose a small field F onto K and L to tweak the total dimension. Alternatively, one
can create algebras by selecting small fields L and K using Theorem 1 and composing
both with a large field F .

We begin with an example of the first method that achieves dimension 768. Let L ′ be
a degree two extension of the field K ′ = Q(ζ64) chosen by Theorem 2 with non-norm
root of unity γ , so that the corresponding algebra A′ has dimension 128. Compose both
L ′ and K ′ with the field F = Q(ζ9), denoting the compositums by L and K respectively.
Then γ is still a non-norm element in the extension L/K , a degree two extension that
is cyclic and Galois, and the algebra A = (L/K , θ, γ ) is a cyclic algebra of dimension
6 × 128 = 768, as required. We observe that here the center K corresponds to the fields
with fast operations used in [29].

Our final method of composing large degree fields onto small degree extensions is
aimed at targeting odd module ranks. Begin by choosing the desired module rank d as a
(likely small) odd prime. Then set K ′ = Q(ζd) and pick L ′ as a cyclic Galois extension
of K ′ in which the dth root of unity is a non-norm element using Theorem 1. Let
F := Q(ζ2k ) and again let L and K denote its compositum with L ′ and K ′ respectively.
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Fig. 4. Reductions for LWE. The bold arrow denotes a quantum step.

Then A = (L/K , θ, γ ) is a cyclic algebra with n := [K : Q] = (d − 1)2k−1 and
d = [L : K ] a small prime. The form of the total dimension N = d2(d − 1)2k−1

constrains our choice of dimension, but for examples of cryptographically relevant sizes
with d = 3 one can consider setting k = 6 or k = 7 to achieve dimension N = 576 or
N = 1152 respectively.

3.5. Extensions where q Splits Completely

All suggested algebras in the previous section satisfy the conditions required for our
chosen norm ‖σA(x)‖2 to be well defined. In particular, they have root of unity non-
norm γ and K is cyclotomic. Because any q = 1 mod m splits completely in Q(ζm),
it is straightforward to find q which splits completely in OK .

Later in this paper, in order to enable efficient multiplication algorithms, it will turn
out that it is convenient to have a modulus q that splits completely into a product of prime
ideals in both OK and OL . Recall Lemmas 6 and 7 also require q be unramified in L . An
appeal to Chebotarev’s Density Theorem suggests that a proportion of 1/d of the primes
q that split completely in K also do so in L . In cases where d is small this suggests
that finding such primes should not prove too arduous; but since cryptosystems require
specific parameters rather than density arguments, we provide constructions satisfying
the requisite conditions on q in Appendix C.

4. Security Proof

The ‘standard’ security reductions used in [42] and [27] firstly reduce certain lattice
problems to search LWE and RLWE, then establish hardness of the decision problem
via a search-decision reduction. This proof follows a sequence of shorter reductions as
shown in Fig. 4.

The reduction from the approximate SVP to the search LWE problem implies that
search LWE is at least as hard as approximate SVP. It can be explained as follows:
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first, the approximate SVP is reduced to the problem of sampling a discrete Gaussian
of narrow variance over a lattice, where intuitively sampling from a sufficiently narrow
Gaussian should output a vector whose norm is reasonably short compared to the first
minima. Then, a quantum algorithm reduces the problem of sampling from a narrow
Gaussian to that of solving the BDD problem on the dual lattice. Finally, a transformation
maps an instance of the BDD problem to an appropriate instance of the LWE problem,
reducing the BDD problem to that of search LWE.

For applications in cryptography, the hardness of the decision problem is preferred
to that of the search problem. Assuming that the decision problem is hard implies that
LWE samples are computationally indistinguishable from uniform, so intuitively an
LWE sample can be used to hide a message m as an element of Z

n
q by adding it to b.

Using similar machinery, we reduce a BDD problem to search CLWE using the same
method as in [27]. The methodology of their search-decision reduction is an adaptation
of that of Regev’s, which relies on guessing each coordinate of the secret s separately.
The adaptation to the ring case instead guesses the coordinate of the secret ring element s
modulo a suitable collection of ideals pi such that guessing s mod piO∨

K requires only
a polynomial number of guesses, from which s is recovered using the CRT. We apply
a similar method in suitable subrings to deduce the hardness of our decision problem.
The main technical novelty is to deal with non-commutativity in the proof.

For the remainder of this paper, we will always be working in an extension of number
fields L/K , where [L : Q] = [L : K ] · [K : Q] = d · n. Recall from the motivation
of structured MLWE and the sample algebras given that in practice we seek asymptotic
security in n, since the parameter d corresponds to the typically small module dimension.

4.1. Hardness of Search CLWE

In the following, let A be a cyclic division algebra over a number field L with center K
and natural, maximal order Λ with |γ | = 1. Let α = α(n) ∈ (0, 1) and q = q(n) ≥ 2,
unramified in L , be parameters such that α · q ≥ ω(

√
log N ). We denote by A−DGSξ

the problem of sampling a discrete Gaussian DI,ξ , where I is some ideal of the order
Λ. Also denote by N the total dimension of A, N := nd2.

For the reduction of BDD to Search CLWE, we begin with the cyclic algebra analogy
of the BDD-to-LWE samples transformation from Sect. 4 of [27]. As is standard for
LWE security, we use the following ‘modulo q’ definition of BDD:

Definition 21. For anyq ≥ 2 theqA−BDDI,δ problem is as follows: given an instance
of the A−BDDI,δ problem y = x + e with solution x ∈ I and error e ∈ ⊕d−1

i=0 ui LR

satisfying ‖e‖2,∞ ≤ δ, output x mod qI.

We use (a special case of) Lemma 3.5 from [42], which lifts immediately since it is
lattice preserving.

Lemma 9. For any q ≥ 2 there is a deterministic polynomial time reduction from
A−BDDI,δ to qA−BDDI,δ .
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We now present an algorithm which transforms qA-BDD samples to CLWE samples
given some additional Gaussian samples. The algorithm is the same in spirit as Lemma
4.7 of [27], but has some technical differences induced by the structure of cyclic algebras.

Lemma 10. Let A be as above. There is a probabilistic polynomial time algo-
rithm that on input a prime integer q ≥ 2, a fractional ideal I∨ ⊂ Λ, a
qA−BDDI∨,αq·ω(

√
log(nd))/

√
2nd·r instance y = x + e where x ∈ I∨, a parameter

r ≥ √
2q · η(I), and samples from the discrete Gaussian DI,r ′ with r ′ ≥ r , outputs

samples that are within negligible statistical distance of the CLWE distribution Πq,s,Σ

for a secret s = χt (x mod qI∨) ∈ Λ∨
q , where χt is as in Lemma 7 and Σ is an error

distribution such that in the case where |γ | = 1 the resulting error e′′ has marginal
distribution in its i, j th coordinate that is Gaussian with parameter ri, j ≤ α.

Proof. The proof will be in two parts—first, we will describe the algorithm, then we
will prove correctness.

Begin by computing an element t ∈ I such that I−1 · 〈t〉 and 〈q〉 are coprime using
Lemma 6. We can now create a sample from the CLWE distribution as follows: take an
element z ← DI,r ′ from the Gaussian samples, and compute a pair

(a, b) = (χ−1
t (z mod qI), (z · y)/q + e′ mod Λ∨) ∈ (Λq × (

d−1⊕
i=0

ui LR)/Λ∨)

where e′ ← Dα/
√

2.
We now claim that these samples are within negligible statistical distance of the CLWE

distribution and that s is uniformly random. First we show that a ∈ Λq is statistically
close to uniform. By assumption, r ≥ q ·η(I) and so by appealing to Lemma 1 it can be
seen that any value z mod qI is obtained with probability in the interval [ 1−ε

1+ε
, 1] ·β for

some positive β, from which it follows immediately that the statistical distance between
z mod qI and the uniform distribution is bounded above by 2ε. Since χt of Lemma
7 and its inverse are both bijections, we conclude that a = χ−1

t (z mod qI) is within
statistical distance 2ε of the uniform distribution over Λq .

Now we must show that b is in the form (a · s)/q + e′′, for some suitable error e′′ and
a uniformly random s, where we condition on some fixed value of a. By construction,

b : = (z · y)/q + e′ mod Λ∨

= (z · x)/q + (z · e)/q + e′ mod Λ∨,

so since z = t · a mod Λ∨
q and t lies in the center of A it follows that (z · x)/q =

(a · t · x)/q = (a · s)/q mod Λ∨ for s := χt (x mod qI∨). It follows that s is
uniformly random over Λ∨

q as long as x is uniform over I∨, since χt is a bijection.
Finally it is left to show that, conditioned on a fixed value ofa, the marginal distribution

of the i, j th coordinate of the error term e′′ = (z · e)/q + e′ is negligibly close to that
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specified by Σ . We can explicitly calculate the error as

e′′ =
d−1∑
i=0

ui

⎛
⎝ ∑

j+k=i

θk(z j ) · ek(1 − (1 − γ )1 j+k≥d)

⎞
⎠ + e′ (1)

where the sum j + k is taken modulo d and the function (1 − (1 − γ )1 j+k≥d) is 1 if
j + k < d and γ otherwise.6 Since |γ | = 1 and z ← DI,r is spherically distributed,
it follows that multiplying by γ and applying the permutation of j coordinates induced
by θ does not change the distribution of zi, j . Hence, each marginal distribution may
be analyzed independently as in the case of MLWE, and the result follows using the
analysis of the error from Lemma 4.15 of [22]. �

Though we do not specify the covariance of Σ , one can see that each entry of σA(z)
appears in σA(e′′) exactly d times, and so by symmetry each element of σA(e′′) has
nonzero correlation with at mostd2 other entries. Hence, a proportion of at most nd4

n2d4 = 1
n

of entries of Σ are nonzero. This is the family of error distributions we will claim hardness
of search CLWE for; we remark that it is a Gaussian distribution whose marginals are
Gaussian with variance at most α.

Definition 22. We define the family of error distributions Σα as the set of all Gaussian
distributions Σ over

⊕d−1
i=0 ui LR whose marginal distribution in its (i, j)th coordinate

is Gaussian with parameter ri, j ≤ α.

The following theorem is our analogy of Lemma 4.10 of [22].

Theorem 5. Given an oracle that solves CLWEq,Σα for input α ∈ (0, 1), an integer
q ≥ 2, an idealI ⊂ Λ, a number r ≥ √

2q ·ηε(I) satisfyingr ′ := r ·ω(
√

log N )/(αq) >√
2N/λ1(I∨), and polynomially many samples from the discrete Gaussian DI,r there

exists an efficient quantum algorithm that outputs an independent sample from DI,r ′ .

As usual, we obtain Theorem 5 in two steps, first the main reduction of Lemma 10,
then the following quantum step adapted from [42]. We use a form of A−BDDI,δ from

[22] where we bound the offset in the norm ‖e‖2,∞ := max j

√
(
∑d−1

i=0 |σ j (ei )|2) ≤ δ,
where σ denotes the canonical embedding of I.

Lemma 11. There is an efficient quantum algorithm that given any N = n · d2-
dimensional lattice from some ideal I, a real δ < λ1(I∨)/(2

√
2nd), and an oracle that

solves A-BDDI∨,δ with all but negligible probability, outputs an independent sample
from DI,

√
dω(

√
log(nd))/

√
2δ
.

We can then prove Theorem 6 in the standard iterative manner; for a very large
value of r , e.g., r ≥ 22NλN (I), start by sampling classically from DI,r . Then apply

6This term is just indicating whether or not we have had to use the relation ud = γ in this summand or
not.
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the above algorithm to obtain a polynomial number of samples from DI,r ′ . Repeating
this step gives samples from progressively narrower distributions, until we arrive at the
desired Gaussian parameter s ≥ ξ . In order to classically sample the initial collection
of Gaussian samples, we use the standard Lemma 3.2 of [42] to sample DI,r on the
module representation

⊕d−1
i=0 ui LR.

Theorem 6. Let A be a cyclic division algebra over a number field L with center
K and natural, maximal order Λ with |γ | = 1. Let α = α(n) ∈ (0, 1) and q =
q(n) ≥ 2, unramified in L, be parameters such that α · q ≥ ω(

√
log N ). Then, there

is a polynomial-time quantum reduction from A-DGSξ to search CLWEq,Σα for any
ξ = r · √

dω(
√

log (d · n))/αq, where r >
√

2q · ηε(I).

From this we deduce the following corollary, similarly to [22], since the lattice structure
of our algebra is merely a special case of their modules.

Corollary 1. LetA,Λ, α and q be as above. Then, there is a polynomial-time quantum
reduction from A-SIVPξ to search CLWEq,Σα for any

√
8Nd · ξ = (ω(

√
dn)/α).

4.2. Search To Decision Reduction

In this subsection we will show that the hardness of decision CLWE follows from that
of the search problem. Once again, we will follow a combination of the expositions of
[27] and [22] for the ring and module cases, making necessary changes for the structure
of cyclic algebras. We will make heavy use of the following CRT style decomposition,
a rephrasing of [33, Lemma 4].

Lemma 12. Let Λ be the natural order of a cyclic division algebra A = (L/K , θ, γ )

and let I be an ideal of OK which splits completely as I = q1...qn as an ideal of OK .
Then, we have the isomorphism

Λ/IΛ ∼= R1 × ... × Rn,

where Ri = ⊕d−1
j=0 u

j (OL/qiOL) is the ring subject to the relations ( + qiOL)u =
u(θ() + qiOL) and ud = γ + qi .

Of course, this is not a true CRT decomposition, because we are considering ideals of
OK rather than those of Λ. In the case where γ is a unit, Λ∨ = ⊕

i u
iO∨

L and the above
lemma is also valid in the case where each instance of OL and Λ are replaced with their
respective duals. Also note that γ is a non-norm element in this lemma. The reduction
from DGS to search CLWE requires Λ to be maximal, and currently the only known
value of γ which makes the natural order maximal is an n-th root of unity, which is also
a non-norm element. So these conditions are consistent.

As in [27], our reduction will be limited to certain choices of algebras. The above
lemma considers the splitting of the ideal I as an ideal of the base field K . Setting
I = 〈q〉, the ideal generated by the modulus q, we will consider cases where q splits
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completely in the base field. Now consider the family of algebras A in Sect. 3.3 and
let K = Q(ζpa ) have dimension n. It follows that if q ≡ 1 mod pa then q splits
completely into a product of prime ideals q1, . . . , qn as an ideal of OK . Hence, we
obtain the decomposition

Λ/qΛ ∼= R1 × ... × Rn

where Ri is as in Lemma 12.
Also as in [27], we see no way to avoid randomizing the error distribution in the

resulting decision problem. Further, we show that an oracle for D-CLWEq,Υα on an
algebra A = (L/K , θ, γ ) is also an oracle for the decision problem on any algebra
A′ = (L/K , θ, γ ′) over the same number fields L , K and some other root of unity
γ ′ ∈ OK . Intuitively this implies that for fixed L and K as in Sect. 3.3 the hardness of the
D-CLWE problem is invariant under the choice of root of unity γ and will be required for
Lemma 15. This is because there exist efficient, easy-to-compute isomorphisms sending
A to A′, which we will define shortly. The security reduction is similar in spirit to that
for Ring LWE applying field automorphisms.

The main theorem of this subsection is Theorem 7 (given in the end of this subsection);
we emphasize that our algorithm is only intended to be efficient in the dimension n of
the base field K , since we expect to fix d as a small constant in practice. We will prove
Theorem 7 in the usual manner: first we show that it is sufficient to recover the value of
s ∈ Λ∨/qΛ∨ in one of the rings Ri (Lemma 13). Then, we use a hybrid distribution to
define a decision problem in Ri , for which we demonstrate a search to decision reduction
(Lemma 14). We then use a hybrid argument to conclude the proof (Lemma 16).

4.2.1. CLWE in Ri

In this section we will abuse notation and denote by s mod Ri the value of s ∈ Λ∨/qΛ∨
in the Ri coordinate under the isomorphism of Lemma 12.

Definition 23. The Ri − CLWEq,Σα problem is to find the value s mod Ri given
access to the CLWE distribution Πq,s,Σ for some arbitrary Σ ∈ Σα .

In the following lemmata we make use of the automorphisms of K coordinatewise on the
rings Ri . Since K is a Galois extension of Q and q splits completely, it follows that the
automorphisms σi of K act transitively on the ideals qi . We demonstrate how to extend
these to functions of A. First, extend these automorphisms to automorphisms αi of L
in some arbitrary manner. Then, we can extend these to isomorphisms αi : A → A′,
with A′ = (L/K , θ, γ ′), which agree with αi on L and send u to u′ with u′d = αi (γ )

and xu′ = u′θ(x) for x ∈ L . By the construction of K from [21], αi (γ ) is a non-
norm element since it is some primitive nth root of unity, and so it is easy to check that
this A′ is a well-defined division algebra and that αi is indeed an isomorphism which
sends A to A′. Furthermore, it fixes the family of error distributions Σα . This is because
each component of z · e + e′ is defined coordinatewise over the d copies of LR in the
module representation of A, and since αi induces the same permutation of the entries
of the canonical embedding of L in each coordinate as an automorphism of L it fixes
the family of choices for each of z, e, e′; hence, since αi is an isomorphism the family
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of distributions z · e + e′ is fixed. It follows that the extended αi function maps the
Ri−CLWEq,Σα problem in A to the same problem in A′, and moreover that this map
preserves Λ∨ and the CRT style decomposition (Lemma 12) of Λ∨

q by sending Ri to
some R j , where j depends on the choice of σi . We are now ready for the first step of
our reduction.

Lemma 13. There is a deterministic polynomial time reduction from CLWEq,Σα to
RiCLWEq,Σα .

Proof. Let Oi be an oracle for the Ri − CLWEq,Σα problem. Since Lemma 12 defines
an isomorphism, it is sufficient to useOi to solve the R j−CLWEq,Σα for each j . Let α j/ i

be an extension of the automorphism of K mapping q j to qi , which exists by transitivity.
Then, given a sample (a, b) ← Πq,s,Σ , we construct the sample (α j/ i (a), α j/ i (b)).
Since Λq and Λ∨

q are fixed by each α j/ i , the resulting pair is a valid CLWE sample in
A′ = (L/K , θ, α j/ i (γ )); feeding these samples into Oi outputs a value t j mod Ri .

We claim α−1
j/ i (t j ) = s mod R j . Since α j/ i is an automorphism, each sample (a, b) is

mapped to a new CLWE sample (α j/ i (a), α j/ i (a · s/q + e) mod Λ∨) in a new algebra
A′. We may write the second coordinate as α j/ i (a) · α j/ i (s)/q + α j/ i (e) mod Λ∨.
Since our automorphisms fix our family of error distributions Σα and map the uniform
distribution to the uniform distribution, it follows that this is a valid CLWE instance with
secret α j/ i (s) and error distribution Σ ′ ∈ Σα . Hence, Oi outputs t = α j/ i (s) mod Ri ,
from which we recover α−1

j/ i (t) = s mod R j , as required. �

4.2.2. Hybrid CLWE and Search-Decision

For this section we must introduce the cyclic algebra analog of the Hybrid LWE dis-
tribution used in [27]; we use the decomposition into the rings Ri rather than the CRT.

Definition 24. For a secret s ∈ Λ∨
q , distribution Σ over

⊕
j u

j LR, and i ∈ [n],
we define a sample from the distribution Π i

q,s,Σ over Λq × (
⊕d−1

i=0 ui LR)/Λ∨ by
taking (a, b) ← Πq,s,Σ and h ∈ Λ∨

q which is uniformly random and independent
mod R j , j ≤ i and 0 mod R j , j > i , and outputting (a, b + h/q). If i = 0, we define
Π0

q,s,Σ = Πq,s,Σ .

Using this distribution we define a worst-case decision problem relative to one Ri and
reduce it to the search problem Ri−CLWE.

Definition 25. For i ∈ [n] and a family of distributions Σα , the W-D-CLWEi
q,Σα

problem is defined as the problem of finding j given access to Π
j
q,s,Σ for j ∈ {i − 1, i}

and valid CLWE secret s and error distribution Σ ∈ Σα .

For a technical reason in the following proof, we restrict our secret s so that s mod Ri

lies in a set Gi with the property that g �= h ∈ Gi implies g− h is an invertible element.
Applying this restriction for each i places s ∈ G for a set G = G1 × · · · × Gn of size
|G| = ∏

i |Gi |. We will call such a set G a pairwise different set. We need to guarantee
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that there exist sufficiently large choices of G. It is not difficult to see that the maximal
set sizes |Gi | = qd and |G| = qnd , because any set of matrices in Md×d(Fq) of size at
least qd + 1 contains two matrices with the same first row, whose difference is therefore
uninvertible. Constructions of such maximal sets G are given in Appendix D.

Lemma 14. Assuming constant d and s ∈ G, there is a probabilistic polynomial-time
reduction from Ri−CLWEq,s,Σα to W-D-CLWEi

q,Σα
for any i ∈ [n].

Proof. We follow the standard search-decision methodology of guessing the value of
the secret mod Ri and then modifying the samples so that the decision oracle tells us
whether or not our guess was correct. Note that there are only |Gi | possible values of
s mod Ri , which is bounded above by qd

2
, polynomial in n, and so we may efficiently

enumerate over the possible values.
We define the transform which takes a value g ∈ Λ∨

q and maps Πq,s,Σ to Π i−1
q,s,Σ if

g = s mod Ri or Π i
q,s,Σ otherwise as follows. On input a CLWE sample (a, b) ←

Πq,s,Σ , output the pair

(a′, b′) = (a + v, b + (h + vg)/q) ∈ Λq × (

d−1⊕
i=0

ui LR)/Λ∨,

where v ∈ Λq is uniformly random mod Ri and 0 mod R j for j �= i and h ∈ Λ∨
q is

uniformly random and independent mod R j , j < i and 0 on the other R j . It is clear that
a′ is still uniformly distributed on Λq , so we are left to show b′ is correctly distributed.
For a fixed value of a′, we write

b′ = b + (h + vg)/q

= (as + h + vg)/q + e

= (a′s + h + v(g − s))/q + e,

where e is still drawn from Σ . If g = s mod Ri , then v(g − s) = 0 mod Ri , and so
the distribution of the pair (a′, b′) is precisely Π i−1

q,s,Σ . Otherwise, v(g − s) is uniformly
random mod Ri by assumption on G and 0 mod the other R j , and so letting h′ =
h + v(g − s) we see that the distribution of (a′, b′) is precisely Π i

q,s,Σ . �

Remark 7. This is the only stage of the proof which enforces that the asymptotic com-
plexity scales only with n and not with d, since we are forced to guess all of s mod Ri

at once.

Since the above reduction is secret preserving, the required decision oracle for W-D-
CLWEi

q,Σα
has the additional restriction that s ∈ G, but for the purposes of the rest of

our proof it will be more convenient to have access to an oracle solving the at least as
hard problem where s is arbitrary. Additionally, in practical applications we will use the
decision problem for arbitrary s, so we see no benefit of the tighter reduction where s is
restricted.
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4.2.3. Worst-Case to Average-Case Decision Reduction

Now that we have removed the restriction that s ∈ G, we are able to follow the skeleton
of the RLWE search-decision reduction of [27] more liberally.

Definition 26. The error distribution Υα on the family of possible error distributions
is sampled from by choosing an error distribution Σ ← Σα and adding it to Dr, where
each ri := α((n · d2)1/4 · √

yi ) for y1, . . . , yn·d2 sampled from Γ (2, 1).

Definition 27. For i ∈ [n] and a distribution Υα over possible error distributions, an
algorithm solves the D-CLWEi

q,Υα
problem if with a non-negligible probability over the

choice pairs (s,Σ) ← U (Λ∨
q ) × Υα it has a non-negligible difference in acceptance

probability on inputs from Π i
q,s,Σ and Π i−1

q,s,Σ .

This is the average case decision problem relative to Ri ; in our worst-case to average-
case reduction we will need to randomize the choice of error distribution, which we do
by sampling from Υα .

Lemma 15. For any α > 0 and i ∈ [n] there is a randomized polynomial-time reduc-
tion from W-D-CLWEi

q,Σα
to D-CLWEi

q,Υα
.

Proof. Since the definition of Υα is a distribution over the family of distributions
obtained by sampling from Σα and adding an elliptical Gaussian, the proof is the same
as Lemma 5.12 of [27], except we replace each instance of mod qi R∨ with mod Ri and
each instance of Rq with Λq . �

Remark 8. This choice of Υα means that the error covariance matrix in our decision
problem is closer to diagonal than that in the corresponding search problem! In fact,
if one increased the elliptical error in the decision problem, one could ‘flood out’ the
non-diagonal entries of the covariance matrix, leading to elliptical error which is easier
to handle in practice.

Finally, we use a hybrid argument. We must first show that Πn
q,s,Σ is uniformly random

given Σ sampled from Υα , but again this follows the same method as the ring case,
except we must replace their use of Lemma 1 by [37, Lemma 2.4].

Lemma 16. Let Υα be as above and let s ∈ Λ∨
q . Then given an oracleO which solves

the D-CLWEq,Υα problem there exists an efficient algorithm that solves D-CLWEi
q,Υα

for some i ∈ [n] using O.

Proof. The proof is identical to the ring case, Lemma 5.14 of [27], except that the
indexing set Z

∗
m is replaced by [n]. �

Denote by CLWEq,Σα,G the search CLWE problem where s ∈ G for arbitrary fixed
G ⊂ Λ∨

q . To sum up, we have obtained the main result of this section:
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Theorem 7. Let Λ be the natural order of a cyclic algebra A = (L/K , θ, γ ), d
constant, q ∈ poly(n) and assume that α · q ≥ ηε(Λ

∨) for a negligible ε = ε(n). Then,
there is a probabilistic reduction from CLWEq,Σα,G for any pairwise different G ⊂ Λ∨

q
to D-CLWEq,Υα which runs in time polynomial in n.

4.3. Summary and a Remedy for Secret Space

There are certain technicalities and subtleties in our security proof, which we briefly
summarize as follows.

The hardness of Search CLWE in Sect. 4.1 requires a natural order Λ that is maximal.
Nonetheless, Lemma 10 (due to Lemmas 6 and 7) is the only stage of the proof that
assumes such a natural, maximal order. An improved proof technique may be able to
drop this assumption (e.g., to use the natural order). The search to decision reduction
in Sect. 4.2 requires a natural order Λ, due to the CRT decomposition of Lemma 12.
A better version of CRT may extend the reduction to a maximal order. Fortunately,
the orders we take from Theorem 2 are both natural and maximal, thereby meeting
these requirements. The requirement of unramified q in Theorem 6 (due to Lemma 6)
is minimal: for the algebras of Theorem 2, the only unsuitable primes are the p and q ′
used in the construction (cf. Sect. 3.3).

Lemma 14 enforces that s lies in a pairwise different set G. It is the only stage of
the proof which requires such a set. We emphasize that our reduction takes the search
CLWE problem where s ∈ G for arbitrary fixed G to the decision CLWE problem for
arbitrary secret s. In other words, we claim hardness for the full decision problem, based
on hardness of a restricted search problem. Also, our reduction implies that the decision
problem is as hard as the search problem for the hardest choice of G. See Appendix D
for more details.

Remark 9. The so-called normal form is used de facto in LWE-based cryptography.
We note that the normal form reduction is agnostic to the secret space G. More precisely,
starting with a secret s ∈ G gets cancelled in the transformation and replaced by a new
secret s′ derived from the error distribution (see Lemma 18 in Sect. 5.1). Therefore, the
secret space in the normal form of CLWE is the expected space in relation to other LWE
normal forms.

Even if our secret space is still exponentially large in n, it may be a concern with
security of CLWE if the above reductions were best possible (e.g., decision CLWE is
polynomial-time equivalent to restricted search, rather than at least as hard). Fortunately,
it is possible to remedy the loss of secret space by using a prime modulus q that totally
ramifies in relative extension L/K . The proofs of the following theorems are given in
Appendix E.

Theorem 8. Let A be a cyclic division algebra over a number field L with center K
and natural, maximal order Λ with |γ | = 1. Let α = α(n) ∈ (0, 1) and q = q(n) ≥ 2,
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completely split in K , and the ideals above q in K totally ramify in L, be parameters
such that α · q ≥ ω(

√
log N ). Then, there is a polynomial-time quantum reduction from

A-DGSI,ξ to search CLWEq,Σα for any ξ = r · √
dω(

√
log (d · n))/αq, where d is

constant, r >
√

2q · ηε(I) and I and qΛ are coprime.

Note the DGS to search CLWE reduction requires a restriction on the ideal lattice
problems that it holds for, but the search to decision part does not depend on any chosen
ideal:

Theorem 9. Let Λ be the natural order of a cyclic division algebraA = (L/K , θ, γ ),
d is constant, q ∈ poly(n) such that the ideals above q in OK are maximally ramified
in OL , and assume that α · q ≥ ηε(Λ

∨) for a negligible ε = ε(n). Then, there is a
probabilistic reduction from CLWEq,Σα to D-CLWEq,Υα which runs in time polynomial
in n.

4.3.1. Explicit Primes for the Reduction

Which primes is the reduction valid for? We need q ∈ Z such that q splits completely
in K , say as qOK = q1...qg , and that these primes are maximally ramified in L , i.e.,

qiOL = Q
[L:K ]
i .

To find such primes, we need to review how the algebras used are constructed. We set
K = Q(ζm) and M = Q(ζmq ′), where q ′ = 1 mod m is a prime, and gcd(m, q ′) = 1.
For a degreed extension of K , fix an intermediate field K ⊂ L ⊂ M of the correct degree,
via the generator of the Galois group of M/K . Recall that we impose gcd(d,m) > 1.

From [45], the ramified primes of Q in M are the primes dividingmq ′, and the ramified
primes of K in M are the primes dividing q ′. Since q ′ is prime, there is only one prime
q dividing it, which is itself. To see that q = q ′ has the correct ramification, observe the
following:

By our choice of q, it is completely split in K . If we label the ramification index e,
the inertial degree f , and the number of primes q splits into by g, using the identity
[K : Q] = eqK/Q

f qK/Qg
q
K/Q

, we know that gqK/Q
= [K : Q], and f qK/Q

= eqK/Q
= 1.

Moreover, q is ramified in Q(ζmq), and q does not divide m. This (with the condition on
q) implies that f qM/Q

= 1. Also, eqM/Q
= φ(q) = q−1 = [M : K ] and gqM/Q

= [K : Q]
. Multiplicativity of the ramification index and inertial degree then gives eqL/K = [L : K ],
f qL/K = 1 and gqL/K = 1, for any intermediate field L .

This means that once an algebra is fixed, there is only one prime that the above
reduction is valid for. This might seem like a significant issue; but, to construct an
algebra of fixed size, there are infinitely many primes q that can be used to construct
M , and thus L . This means that if we know the kind of prime we want to use before
the algebra is constructed, there are in effect infinitely many primes to choose from. For
example, we can consider K = Q(ζ128), and construct a degree 4 extension of K to
generate an algebra of dimension 1024 over Q using the prime q = 3457, and the above
reduction holds for those parameters.
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5. CLWE in Cryptography

In this section we present a proof-of-concept cryptosystem using CLWE. To demonstrate
our comparison against MLWE our scheme will closely resemble the typical ‘compact’
LWE cryptography schemes over modules, in particular KYBER (see [5]), although it is
likely that an adaptation of Regev style encryption from [42] would suit CLWE as well.

5.1. Making CLWE Suitable for Cryptography: Normal Form

We implicitly use some standard LWE facts: firstly, we discretize our error distribution
e to Λ∨

q ; discretizing does not reduce security since an attacker may always discretize
the samples themselves. Secondly, we can ‘tweak’ the problem so that e, s ∈ Λq .
Fortunately, in the case where γ is a unit, Λ∨ = ⊕

i u
iO∨

L and so this tweak is precisely
multiplying on the right by the tweak factor taking O∨

L to OL (see, e.g., [38]). Finally,
we require hardness of a ‘normal’ form for the CLWE distribution, where s is sampled
from the same distribution as the noise e.

We require two facts for our proof: firstly, given that q splits completely in K the
ring Λq is isomorphic to the direct product of n full matrix algebras over Md×d(Fq),
which can be seen by appealing to the CRT-style decomposition of Lemma 12 and
Wedderburn’s Theorem as in [33, Propositions 1 and 4]. Secondly, we require that a
non-negligible fraction in n of elements of Λq are invertible, which follows for fixed,
small, d and q ∈ poly(n) from this direct product decomposition. Otherwise, our proof
follows the outline for that of plain LWE from [4]. Given these two facts, we proceed
with showing that the normal form of the CLWE distribution is as hard as the case of
taking the secret uniformly at random.

Lemma 17. For a fixed d and q ≥ (n + 1), a non-negligible proportion of elements of
Λq are invertible.

Proof. Following the decomposition of Lemma 12 and Wedderburn’s Theorem, it is
sufficient to show that a non-negligible proportion of elements of

Md×d(Fq) × · · · × Md×d(Fq)

are invertible, where there are n copies of Md×d(Fq). The proportion of invertible ele-
ments of Md×d(Fq) is precisely

(qd − 1)(qd − q) . . . (qd − qd−1)

qd2

=
(
qd − 1

qd

)
. . .

(
qd − qd−1

qd

)

=
(

1 − 1

qd

)
. . .

(
1 − 1

q

)

≥
(

1 − 1

q

)d

,
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from which it follows that the total fraction of invertible elements in Λq is at least
((1 − 1

q )d)n . By assumption, q ≥ n+ 1, and so (1 − 1
q )nd ≥ ((1 − 1

n+1 )n)d ≥ (e−1)d =
e−d , as required. �

Remark 10. This lower bound of e−d means that the normal form reduction will be
asymptotic in n but only valid for fixed d. However, as d increases the number of
invertible matrices in Λq is bounded above by (1 − 1

q )nd , and so the reduction would be
efficient in d in the case where one enforced a relation on q and d, such as q ≥ nd + 1,
or more succinctly q ≥ N .

Lemma 18. There is a probabilistic polynomial time reduction from the CLWE prob-
lem with uniformly random secret s, possibly over a limited secret space G, and error
distribution χ to the CLWE problem with secret s′ ← χ .

Proof. It is sufficient to show that there is an efficient transformation taking samples
with secret s to samples with some new secret s′ taken from χ . Sample pairs (a, b) ←
Πq,s,χ until a pair (a1, b1 := a1 · s + e1) such that a1 is invertible in Λq is obtained.
Since a non-negligible fraction of elements of Λq are invertible by Lemma 17, this step
takes only polynomial time.

Now, given a pair (ai , bi ) ← Πq,s,χ , we obtain a sample from the CLWE distribution
Πq,e1,χ by outputting (ai , bi ) = (aia

−1
1 , aia

−1
1 b1 − bi ). Since a−1

1 is invertible, ai is
uniform. Similarly,

aia
−1
1 b1 − bi = (aia

−1
1 (a1 · s + e1)) − ai · s + ei

= aia
−1
1 e1 − ei ,

and so (ai , bi ) is a valid CLWE sample with secret e1 and error distribution χ . Relabeling
e1 as s′ completes the proof. �

5.2. Sample Cryptosystem

Our scheme is parameterized by an algebra A := (L/K , θ, γ ), where A is as in Sect.
3.3, an error distribution Σ , and a prime modulus q ≡ 1 mod m (recall K = Q(ζm))
which is completely split in L . We will denote with bold faced letters the vector form of
an element of Λq , e.g., if a = a0 + ua1 + ... + ud−1ad−1 then a = (a0, a1, . . . , ad−1).
We note that OL/qOL has a polynomial representation of dimension n · d, and so we
encode our message ∈ {0, 1}n·d2

as an entry of Λq as a vector m of d {0, 1} polynomials.
The scheme proceeds as follows:

– Alice generates a CLWE sample (a, b := a · s + e), where a ∈ Λq is uniformly
random and s, e ← Σ , and outputs public key a,b.

– To encrypt m ∈ {0, 1}n·d2
, Bob samples t, e1, e2 ← Σ and outputs u := φ(a)T t+

e1, v := φ(b)T t + e2 + � q
2 � · m.

– To decrypt, Alice computes c = v− φ(s)Tu and recovers each coordinate of m by
rounding the corresponding entry of c to 0 or � q

2 � and outputting 0 or 1 respectively.



   22 Page 38 of 67 C. Grover et al.

Remark 11. There are two benefits of instantiating this scheme in the cyclic algebra
setting rather than over modules as in [5], both following from the matrix embedding φ.
Firstly, in the module setting Alice must publish a matrix A rather than the vector a in
her key, since φ(a) lets us generate a matrix; this saves a factor of d in the size of the
public key. Secondly, by extending b to φ(b) we are able to increase the dimension of
v, and correspondingly increase the size of the message by a factor of d.

Example 3. Recall our explicit algebras from Sect. 3.3. Without considering stream-
lined implementation for specific NIST submissions, we will pick toy comparison param-
eters for equivalent module-based systems and ring-based schemes, e.g., KYBER and
NewHope. For the module case, consider a module of dimension 4 over a ring L of
dimension 256, with 2-power cyclotomic base field [K : Q] = 64. Our public key (a,b)

requires storing only 8 elements of Rq = OL/q · OL rather than 20 in the form (A,b).
Our message consists of 1024 bits, corresponding to the total dimension of the algebra
rather than the module versions 256 which corresponds to the field dimension; if the
private key size is 256, our CLWE scheme allows a rate-1/4 binary error correction
code, while KYBER does not. Our ciphertext sizes are the same. As far as the modulus
q is concerned, we find q = 3329 splits completely in a quartic cyclic extension L of
K , which matches with the modulus q used in KYBER;7 meanwhile, q = 3457 splits
completely in K but ramifies totally in another relative extension of K . Overall this
represents a noteworthy gain in key and message size without loss in efficiency. For the
ring case, consider an instantiation of NewHope in dimension 1024. Both public keys
are in the form (a, s) and so require equivalent levels of storage (8 elements of a field of
dimension 256 or 2 in dimension 1024), and the same phenomenon is true of ciphertext
sizes and message length. However, a larger modulus q = 12289 is used in NewHope.
Hence, we hope to gain in security without losing much efficiency. A limitation of our
current method is that we cannot achieve rank d = 3, similar to the RLWE limitation
over power-of-2 rings.

Before considering security and correctness we need a somewhat technical lemma
allowing the use of the matrix transpose operation. Essentially, it states that if the CLWE
problem is hard in an algebra A, then for a, s, e ∈ Λq , the equation φ(a)T s+e is a valid
CLWE instance in some other algebra A′ for which the CLWE problem is still hard.

Lemma 19. LetA = (L/K , θ, γ ), where γ is a unit, be a cyclic division algebra with
matrix embedding φ(a) and natural order Λ. Then there exists another cyclic algebra
A′ = (L/K , θ, γ −1) with matrix embedding φ′(a′) and natural order Λ′ such that for
a ∈ A there exists a′ ∈ Λ′ satisfying φ(a)T = φ′(a′). Moreover, A′ still satisfies the
division algebra condition, and Λ′

q and Λq canonically isomorphic as additive groups.

Proof. The fact thatA′ is still a division algebra follows from the non-norm property on
γ and the fact that NL/K (L×) is a multiplicative group. Λ′

q and Λq are additive isomor-

7The initial version of KYBER uses q = 7681, but it has been reduced to 3329 later which does not split
completely in L = Q(ζ512). It is noteworthy that, with a similar technique, further reduction of q in CLWE
may also be possible.
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phic because both algebras share the same underlying fields and γ, γ −1 are both units of
OL . Since the first row of φ(a) is precisely (x0, γ θ(xd−1), γ θ2(xd−2), . . . , γ θd−1(x1)),
by setting a′ = x0 + uγ θ(xd−1) + · · · + ud−1γ θd−1(x1) and observing that θd is the
identity it is easy to check that φ(a)T = φ′(a′). �

The proofs of correctness and security are similar in spirit to those of other compact
LWE schemes such as, e.g., NewHope [3] or KYBER [5]. We proceed with a somewhat
informal security argument.

Lemma 20. The defined scheme is IND-CPA secure under the assumption that the
decision CLWEq,Υ problem is hard.

Proof. The goal of an IND-CPA adversary is to distinguish, with non-negligible advan-
tage, between encryptions of two plaintexts m1,m2. The challenger chooses i ∈ {0, 1}
uniformly at random and encryptsmi as u, v. By the assumption that the decision CLWE
problem is hard, the adversary cannot distinguish between the case where b = as + e
and the case where it is replaced by a uniform random b′, so we replace b in the public
key given to the adversary by b′ and also use b′ to compute the challenge ciphertext v′.
Setting v′′ := v′ − � q

2 � · mi , it follows by Lemma 19 that u, v′′ represent two samples
from a valid CLWE distribution with secret t, and so the adversary cannot distinguish
them from uniform with non-negligible advantage. Hence, the challenger cannot distin-
guish v′ and hence v from uniform with non-negligible advantage and so cannot guess
i with non-negligible advantage. �

Finally, we demonstrate conditions on the error term for the scheme to be correct.

Lemma 21. The defined scheme is correct as long as the ∞ norm of e′ = (φ(e)T t +
e2 − φ(s)T e1) is less than � q

4 �, where the ∞ norm is over the vector of all polynomial
coefficients of each ui entry of e′ of dimension n · d2.

Proof. To decrypt, Alice computes v − φ(s)Tu and computes m by rounding. Since
φ(·) is a homomorphism, we have

v − φ(s)Tu = φ(b)T t + e2 +
⌈q

2

⌋
· m − φ(s)T (φ(a)T t + e1)

= φ(e)T t + e2 − φ(s)T e1 +
⌈q

2

⌋
· m

= e′ +
⌈q

2

⌋
· m.

from which the result follows immediately. �

We note that the error term e′ will be unsurprising to those familiar with LWE-based
cryptography. Although we do not provide concrete correctness estimations, the error
parameters for our decision reduction are equivalent to those of MLWE up to some small
covariance terms. We do not expect this covariance to greatly affect the distribution of the
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error and thus for equivalent parameter choices we expect a similarly small probability
of decryption failure.

5.3. Operational Complexity in Cyclic Algebras

In the previous subsection we showed that the CLWE problem can be used to construct a
standard LWE-based cryptosystem. Assuming that parameters across all variants of the
LWE assumption are roughly equivalent, the CLWE problem supports key and message
sizes as advantageous as those of the RLWE problem, and better than those of the
module case. Along with storage considerations, another important facet of the ambient
space in LWE cryptography is the efficiency of operations. Here, we will consider the
asymptotic complexity of multiplication in a cyclic algebra in order to compare it to the
ring and module variants. Since in practice we consider operations modulo some prime
q, addition in rings, modules, and cyclic algebras can be considered as addition in vector
spaces over Zq , which has complexity dominated by that of multiplication.

Consequently, we only concern ourselves with a comparison of the cost of computing
the multiplication operation As in the three cases. In order to keep our comparison
consistent, we let N denote the total dimension of the underlying LWE instance. In the
ring case, N denotes the ring dimension; in the module case, N = nd, where n denotes
the ring dimension and d the module rank; in the cyclic algebra case N = nd2, where
the ring dimension is nd and the algebra has ‘module’ rank d. However, since it will be
important later we remark here that the cyclotomic part of the ring will be of dimension
n rather than nd. The three cases can be considered as follows:

– In the ring case, the operation As over Zq is a representation of the ring operation
a · s in Rq ∼= Zq [X ]/(XN + 1). Using the CRT decomposition in dimension N of
[28], this operation is decomposed into coordinatewise multiplication in a vector
of dimension N over Zq , following which the decomposition is reversed to recover
a · s. The complexity of this technique is dominated by that of the CRT decompo-
sition, which takes time O(N log N ), although the coordinatewise multiplication
also requires time O(N ).

– In the module case, A is a d×d matrix over Rq . In this case, one can compute As by
applying the CRT in dimension n coordinatewise on A and s. This requires d2 + d
applications of the CRT, for a total asymptotic complexity of O(d2n log n) =
O(Nd log(N/d)). Again, this hides a coordinatewise multiplication step which
takes time O(Nd) in this setting.

– In the cyclic algebra case, A is a matrix in the shape φ(a), where φ(a) is the
left regular representation of a ∈ Λq . We estimate the complexity of the operation
φ(a)·s in Appendix F. Explicitly, our algorithm has complexity O(N log(N/d2))+
Õ(Ndω−2) in the case where q splits completely in L , with ω ∈ [2, 2.373] denoting
the exponent of matrix multiplication. The latter term corresponds to the cost of
multiplication in our analog of the finite fields used in the CRT method for RLWE.

We see that, in the case of completely splitting q, cyclic algebras compare favorably
with modules for multiplication in the same dimension N and when d grows to infinity,
depending on the exact relationship between log d2 and dω−2. Recall that for our reduc-
tion to hold, we require d to be constant, in which case all three complexities discussed
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above are the same (since the constant d will be hidden by the constant appearing in
the O(·)). Moreover, we currently do not know how to construct CLWE instances for
arbitrary field degree and module rank, e.g., n = 256 and d = 3 like in Kyber.

6. Conclusions and Future Work

The primary goal of this work is the introduction of the Learning with Errors problem
over Cyclic Algebras, CLWE, adding to the family of available LWE assumptions for
use in cryptography. To this end, the central pillars of an LWE problem are provided
for the cyclic algebra case. First, in order to provide a foundation for the construction
the notion of lattices derived from two-sided ideals of the natural order of a cyclic
algebra are applied in cryptography for the first time. Then, in Sect. 3, the CLWE
problem is formally introduced, following which explicit algebras are provided with
dimensions and structure appropriate for cryptographic use. Then, in Sect. 4, the usual
LWE security reductions are established in the CLWE case, namely, samples from the
CLWE distribution appear pseudorandom to an onlooker with no knowledge of the
secret s. Finally, in Sect. 5, the necessary steps are taken to mold the CLWE problem
into a practical format for cryptography. Normal form reduction is shown and a sample
cryptosystem in this form is provided. Additionally, the complexity of operations in
CLWE cryptography is compared to that of RLWE and MLWE-based schemes.

Cyclic algebras exhibit substantial novel structures within lattice-based cryptography,
and discovering use cases for these previously unseen features represents an exciting
area of future research. We outline a few directions of future research in the following.

From a theoretical standpoint, the most pressing question to be solved about CLWE
is whether or not the search and decision problem are polynomial time equivalent, or
instead if the hardness of the decision variant can be based directly on hard lattice
problems via some other technique. In this work, the effectiveness of our technique to
show the hardness of the decision problem depended on the modulus q: the case of
completely split q resulted a loss of secret space; while the case of ramified q remedied
this issue, we have not managed to come up with efficient multiplication.

Another method of establishing the hardness of decision RLWE that is not shown for
CLWE in this work is a direct to decision reduction, which more generally represents
a security proof for the decision problem that holds for wider classes of cyclic division
algebras than those of Sect. 4.2. The direct to decision reduction of [40] is the only
security reduction for RLWE which establishes the hardness of the decision problem
without enforcing that K is a cyclotomic field within which q splits completely, as in
the search-decision reduction of [27] and the presented analog for CLWE. Dropping this
restriction, and hence widening the possible choices of cyclic algebras supporting the
hardness of the decision problem, would provide larger design space for CLWE-based
cryptography.

As for another direction of future work, we view a drawback of our work to be
that we are restricted to certain instances of cyclic algebras. Although in practice most
cryptography would use a fixed choice of algebra, this is a function of our methods and
may be possible to remove. Additionally, showing the aforementioned direct-to-decision
reduction may generalize the choice of algebras.



   22 Page 42 of 67 C. Grover et al.

Finally, this work is focused on the theoretical construction of a non-commutative
Ring-LWE assumption, and we leave practical analysis and implementation of cryptog-
raphy based on CLWE as further research.
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A. Impossible Algebras

We show that certain algebras that would otherwise be what we are looking for do not
exist under our restrictions. As discussed above we would like to begin with a base field
that is cyclotomic, K = Q(ζm) for integer m, and proceed to fix some low degree cyclic
Galois extension L/K and non-norm element γ ∈ OK with |γ | = 1, e.g., γ is a root
of unity. Given these restrictions and the shape of lattice cryptography, the most natural
fields to look for are low degree extensions of two-power cyclotomics, e.g., m = 2k .
Unfortunately, we are able to prove the non-existence of a large class of such extensions.

Theorem 10. Let K = Q(ζm) for some positive integer m and let p ≥ 2 be some
integer which is coprime with m. Then, for any Galois extension L/K of degree p each
ζm, ζ 2

m, . . . , ζm−1
m lies in NL/K (K×).

Proof. Since L/K is a Galois extension of degree p, the relative norm map NL/K (·)
induces the map x → x p on elements x ∈ K×. Let 1 ≤ i ≤ m − 1 be an integer; we
will prove the theorem by finding 1 ≤ j ≤ m − 1 such that NL/K (ζ

j
m) = ζ im . Since ζm

and its powers lie in K , the relative norm map takes ζ
j
m to ζ

j p
m and we are left to solve

the congruence j p ≡ i mod m. By assumption, g.c.d.(m, p) = 1 and so p is invertible
modulo m. Denoting this inverse p−1 and letting j = p−1i mod m it is easy to see that
j p ≡ i p−1 p ≡ i mod m. The theorem statement follows immediately. �

This theorem precludes the existence of a very large class of cyclic division algebras
with cyclotomic base field. In particular, if the degree of [L : K ] is coprime with m then
we cannot have our restrictions that |γ | = 1, is integral, and that K is cyclotomic. We
draw attention to the specific classes whose non-existence we are interested in: in an

http://creativecommons.org/licenses/by/4.0/
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ideal world we might instantiate CLWE with K = Q(ζ2k ) and [L : K ] = d for arbitrary
small integer d corresponding to the module rank, which in practice is likely to be at
most say 5. However, as a result of Theorem 10 we know that d cannot be coprime with
2k and must be even in order to permit a suitable γ , from which it follows that we cannot
have d = 3, 5.

B. Proofs of Theorem 3 and Theorem 4

Before proving Theorem 3 we need some additional concepts and a Lemma. Given a
K -central division algebra A and some OK order Λ in it, then the OK -discriminant of
Λ, d(Λ/OK ), is a certain ideal in OK [43, p.126]. While A has many maximal orders
they all share the same discriminant, which is called the discriminant of the algebra dA.
Now the key fact about discriminants we need is that an order Λ is maximal if and only
it’s discriminant equals that of dA.

We will now use the notation of Sect. 3.3. According to [21] the field M and therefore
also its subfield L are subfields of Q(ζm, ζq ′), where m = pa , and q ′ �= p is some large
prime. Let n = ϕ(m) = pa−1(p− 1). Furthermore it is known that q ′ splits completely
in the field K = Q(ζm). Let us now denote with

q ′OK = q′
1 . . . q′

n,

the prime ideal decomposition of q ′ in K . We then have the following result.

Lemma 22. Let (L/K , θ, ζm) be an index d division algebra of Theorem 2 and let Λ
be the corresponding natural order. Then we have that

d(Λ/OK ) = (q′
1, . . . q

′
n)

d(d−1). (2)

Proof. According to [44, Lemma 5.4] we have that

d(Λ/OK ) = d(L/K )dζ d(d−1)
m = d(L/K )d ,

where d(L/K ) is the relative number field discriminant of the extension L/K . In order
to find the discriminant of the natural order, it is now enough to find d(L/K ). By the
basic theory of cyclotomic fields we know that Q(ζm, ζq ′) = Q(ζmq ′). We also know that
the only ramified primes in the extension Q(ζmq ′)/Q are p and q ′ and their ramification
indices are e1 = n and e2 = q ′ − 1, respectively. Furthermore ramification index of p
in the extension Q(ζm)/Q is e1. As ramification indices are multiplicative in towers of
extensions we can deduce that the only primes that are possibly ramified in the extension
Q(ζmq ′)/Q(ζm) are those that lie above q ′ in the ringOK . As q ′ is not ramified in Q(ζm),
we get again by the multiplicativity of the ramification indices that all the primes q′

i are
totally ramified in the extension Q(ζmq ′)/Q(ζm). Therefore, they are also totally ramified
in the extension L/Q(ζm). Because q ′ does not divide d the prime ideals q′

i are tamely
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ramified. Dedekind’s discriminant theorem now implies that

d(L/K ) = (q′
1 . . . q′

n)
(d−1).

�
Now we are ready to prove the natural order in Theorem 3 is actually maximal.

Proof. The proof is based on the result in [43] that states that an order is maximal if
and only if it has the same discriminant as the discriminant of the algebra. According to
Lemma 22 we have that

d(Λ/OK ) = d(L/K )d = (q′
1 . . . q′

n)
d(d−1). (3)

According to [43] the discriminant of the maximal order will always divide the discrim-
inant of the natural order. Hence, we know that the only prime ideals that can possibly
divide the discriminant of the maximal order are q′

i . Let us now assume that Qi is prime
ideal above q′

i in M . By abusing notation we will denote with Mq′
i
theQi -adic completion

of M and in the same way the respective completion Lq′
i
.

Following the proof of [21, Theorem 4] we can see that the authors actu-
ally prove that ζm is a non-norm element in the extension Mq′

i
/Kq′

i
for each prime

ideal q′
i . Using the same proof as in Theorem 2 we can now see that ζm is a non-

norm element in the extensions Lq′
i
/Kq′

i
, for all i . According to [43, Theorem 30.8]

A⊗K Kq′
i
∼= (Lq′

i
/Kq′

i
, θ ′, ζm), where θ ′ naturally extends θ . As ζm is a non-norm ele-

ment, (Lq′
i
/Kq′

i
, θ ′, ζm) is an index d division algebra. By definition of the local index

we can see that the local indices mq′
i

are d for all q′
i . We now know that q′

i are the only
possible primes dividing the discriminant and that their local indices are d. According
to [43, Theorem 32.1] the discriminant of the algebra A is

dA =
n∏

i=1

q′
(mq′

i
−1) d2

m
q′
i

i =
n∏

i=1

q′(d−1)d
i ,

completing the proof. �

The proof of Theorem 4 is similar.

Proof. We have K = Q(ζn) for n = pr where p is prime, and L/K a degree d
extension. Thus, we have K ⊂ L ⊂ Q(ζnm) for some integer m, by the Kronecker-
Weber theorem. In our context, we may take gcd(n,m) = 1. The prime ideals of OK F

which ramify in OLF lie above the same integer primes as the prime ideals of OK which
lie above OL , because of the disjointness of L and F . Denote this set of primes by
S = {p1, . . . , pl}. Write piOK F = ∏

j pi j ; the ramification index of pi in K F is 1.
Moreover, pi j is totally ramified in Q(ζnmqt ), and if ramified in LF , is totally ramified
in LF by multiplicativity of the ramification data. Since L/K induces a CDA with
maximal natural order, and [LF : K F] = [L : K ], we know that pi � d, and so the
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pi j are tamely ramified. This means we can apply Dedekind’s discriminant theorem and

obtain d(Λ′/OK F ) = d(LF/K F)d = ∏
i, j p

d(d−1)
i j .

It remains to see that A′ is a division algebra, and what dA′ is. As in the subfield
case, we consider algebras arising from completions of number fields at certain prime
ideals. Let piOK = ∏

j qi j . We know that by construction Aqi j = (Lqi j/Kqi j , θ
∗, ζn)

is an index d CDA, where Aqi j denotes the completion of A at qi j and θ∗ extends θ .
We are interested in the index of algebras A′

pi j
= (LFpi j /K Fpi j , θ

′′, ζn). These can
be presented in form Aqi j ⊗Kqi j

K Fpi j ∼= A′
pi j

. It is a consequence of [43, Theorem

31.9] that A′
pi j

has local index d if and only if gcd([K Fpi j : Kqi j ], d) = 1. As K F/K
is a Galois extension we know that [K Fpi j : Kqi j ] divides [K F : K ] = [F : Q].
Therefore, it follows that since gcd(d, [F : Q]) = 1, also gcd([K Fpi j : Kqi j ], d) = 1.
We can conclude that mpi j = d for all pi j . It follows that A′ is a division algebra and

that dA′ = ∏
i=1 p

(mpi j −1) d2
mpi j

i j = ∏n
i=1 p

(d−1)d
i j = d(Λ′/OK F ), as required. �

C. Extensions where q Splits Completely in L

We would like q to be of roughly appropriate cryptographic size (say between 3000 and
15000 as a soft estimate, once again presuming parameters similar to those of NewHope
or KYBER). Having q split completely in L is not as straightforward as in K because
L is not a cyclotomic field, so we return to our examination of the proof of Theorem 1.
Recall that in this proof the extension field L is a subfield of K (ζmq ′) for some prime
integer q ′ satisfying q ′ = 1 mod m and, for m = pa , pa+1 does not divide q ′ −1. That
is, a is the highest power of p that divides q ′ − 1. We have several methods to ensure
that q splits completely in L , of which we start with the most naive.

Naive Method For our general method we rely on the following fact: If qi is an ideal
of OK which splits completely in an extension M/K then it splits completely in any
intermediate field M/L/K . As it is conceptually simpler to apply this idea to the integer
q than to the OK -ideals qi , we use a simpler statement, that if 〈q〉 splits completely
in some M containing L then it splits completely in L . This gives us an easy way
to find some q that splits completely by examining a cyclotomic field that contains
L: let K = Q(ζm) and let M = K (ζq ′). Then since q ′ = 1 mod m it follows that
M = Q(ζmq ′). Thus, q splits completely in M if and only if q = 1 mod mq ′ and
consequentially splits completely in our extension L if q = 1 mod mq ′. Since there
are infinitely many primes equal to 1 mod mq ′ this recipe always provides a prime q
that splits completely in L . The upside of this method is that it is both very general and
simple, since all candidate fields L we construct are contained in a larger cyclotomic
field. Theoretically, this method can be extended to any abelian extension of Q using
the partial converse of the Kronecker–Weber Theorem. However, using the Kronecker–
Weber Theorem constructively is not as straightforward as picking q ′ as in the proof of
Theorem 1, so this extension to general abelian L is slightly contrived.

The downside to this method is that it seems that often this will result in unrealisti-
cally large q. Since q ′ = 1 mod m and not 1 mod pa+1, q ′ must be chosen carefully
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and there are not many ‘small’ primes satisfying these conditions. For example, in our
quadratic extension case with m = 512 the smallest prime that is 1 mod m but not 1
mod 2m is q ′ = 7681. The smallest q which is 1 mod (512 · 7681) has to be bigger
than 512 · 7681 = 3932672, which is inappropriately large for lattice cryptography. Of
course, one could be lucky here and have much smaller q for different choices of L and
K , but in general we regard this as a theoretical result rather than a practical method.
Even for smaller 2-power cases such as m = 128 one must set q ′ = 641, which leads to
a smallest valid prime of q = 820481.

Remarkably, this is much less bad in the cubic case; K = Q(ζ81) gives q ′ = 163
as a suitable prime and q = 26407 still splits completely. This is perhaps slightly too
large, but certainly not so much so that it is completely impractical. Nonetheless, we
move on to a better method for quadratic cases.

Quadratic case In the case where L/K (K = Q(ζ512)) is a quadratic extension we are
able to choose substantially smaller q by examining the unique quadratic subfields of
E ′ := Q(ζq ′). We rewrite M as the compositum of E ′ and K , and observe that since our
chosen L contains K our method of choosing L as a subfield of M allows us to write
L = EK for a subfield E of E ′. In the case where L is a degree two extension of K
we know that E is a quadratic field, and since E ′ is a prime cyclotomic field we have
an explicit description for its unique quadratic subfield E ; namely that E = Q(

√
q ′)

if q ′ = 1 mod 4 and E = Q(
√−q ′) is q ′ = 3 mod 4. It is a standard fact that the

discriminant dE of E is q ′ if q ′ = 1 mod 4 and −q ′ otherwise. Finally, we know that
a prime q splits completely in E if and only if the congruence dE = x2 mod q has
a solution, e.g., if dE is a square mod q. Plugging in the prime numbers q = 12289
and q ′ = 7681 that are common in cryptography we see that q ′ = 1 mod 4 and that
7681 = 37882 mod 12289, so that q = 12289 splits completely in E, K , and thus L ,
as required. Since this prime is explicitly the prime used in NewHope for all parameter
sets we view this method as a substantial improvement on the previous technique.

Quartic fieldsAgain, we use the method of describing L as a compositum MK/K . Now,
M will be a quartic subfield of the field Q(ζq ′) and one can establish the linearly disjoint
nature of M and K required to express L as this compositum by, e.g., examining their
discriminants: since K is a power-of-two cyclotomic field the only prime appearing in its
discriminant is 2, and since M is a subfield of Q(ζq ′) the only prime in its discriminant is
q ′. Since they have coprime discriminants they are linearly disjoint, and since ramified
primes are factors of the discriminant we have a relatively easy way to discount q being
ramified (q �= 2, q ′), so the remaining case to concern ourselves with is q being inert.

Since the discriminants are coprime we have a method for explicitly describing the
integral basis of L = MK ; the integral basis for K is clear, and an integral basis for
M in fixed dimension can be computed relatively easily since it has degree 4. Then, the
product of their integral bases is an integral basis for L . Now one only needs to check
whether q splits completely in M , since splitting in K is well understood. We are unable
to provide a general method for finding such q, but an easy computation reveals that for
q = 10753 and K = Q(ζ256) there is a quartic field M such that q splits completely
in M and K and hence L . Since we have a relatively small range in which we wish
to place q and M has low degree we do not consider the cost of this search as a large
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drawback since it can be done efficiently on computational software such as SAGE or
PARI.

Remark 12. In fact, this quartic method can be applied to other instances where we do
not have an explicit description of the subfields of K (ζq ′) which have degree d over K :
define the families of q which split completely in K , then check whether those q split
completely in L using computational software. Since q = 1 mod m and m is relatively
large, there will not be many q to check of appropriate size for lattice cryptography, and
so we conclude that this method is sufficient for fixed choices of fields L , K for which
a satisfactory q exists.

Compositum Fields Since a prime q is completely split in a compositum field K1K2
if and only if it is completely split in both K1 and K2, it is ready to extend the above
method to compositum fields.

For the case of Fig. 3a, suppose we have found primes q completely split in K ′ and
L ′ using the above method. Then we choose q that is also completely split in F , which
ensures it is completely split in compositum field K = K ′F , hence in L = L ′F .

For the case of Fig. 3b, we choose q that is also completely split in K , which
ensures it is completely split in compositum field L = K L ′.

D. Restricting the Secret Space

In Lemma 14 we need to use a fact that is implicit in the search-decision reduction of
[27]: for uniformly random v ∈ Ri and an incorrect guess g of the secret s modulo Ri ,
the distribution of v(g−s) is uniformly random. In the ring and module cases, the secret
space is decomposed into a direct product of finite fields, so it is clear that v(g − s) is
uniformly random in each finite field for g �= s.

In our case, an appeal to Wedderburn’s theorem demonstrates that, since for our
parameter choices each Ri is a central simple algebra over OK

∨/qiOK
∨ ∼= Fq , each

Ri is isomorphic to the full matrix ring Md×d(Fq), for which it is not true in general
that v(g − s) is uniformly random for g �= s; in fact, it is uniformly random if and only
if g − s is invertible. Thus, we restrict our secret s so that s mod Ri lies in a set Gi

with the property that g �= h ∈ Gi implies g − h is an invertible matrix. Applying this
restriction for each i places s ∈ G for a set G = G1 × · · · × Gn of size |G| = ∏

i |Gi |.
Now, an incorrect guess g ∈ Gi of s mod Ri results in a distribution of v(g− s) which
is uniformly random mod Ri . We will call such a set G a pairwise difference set.

We also need to guarantee that there exist sufficiently large choices of G. A simple
method for constructing a valid Gi is by fixing some arbitrary embedding β of Fqd into
Mn×n(Fq) and letting Gi equal the image of this embedding, such that |Gi | = qd and
|G| = qnd . Indeed, a Gi constructed in this way is maximal because any set of matrices
in Md×d(Fq) of size at least qd +1 contains two matrices with the same first row, whose
difference is therefore uninvertible.

There are a number of choices of embedding β, and thus set Gi , equal to the
number of irreducible polynomials of degree d in Fq [x], which can be calculated by
the Necklace polynomial and in general will vastly exceed q. We make clear that our
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reduction will take the decision CLWE problem for arbitrary secret s to the search
CLWE problem where s ∈ G for arbitrary fixed G, which we denote by CLWEq,Σα,G .
Thus, our reduction states that the decision problem is as hard as the search problem for
the hardest choice of G, precluding obvious attacks on the unique case where G = OLq

∨
and the CLWE problem with s ∈ G corresponds to d parallel copies in L of the RLWE
problem.8 For a general set G, s ∈ G will not provide parallelization since they need
not have the property of L that they are entirely contained in one u coordinate of A.
Additionally, even though elements of G constructed this way co-commute, they do not
lie in the center of Λ and the multiplication a · s in the CLWE instance will not be a
commutative operation.

Of course, fixing a G of size qnd restricts the size of the secret space by a factor of
qnd

qnd2 , a substantial loss in size even for fixed, small d. For concrete parameter settings,

this may result in a much easier problem, but asymptotically it is still exponential in n
and thus establishes a suitable hardness property for decision CLWE. Of course, attacks
based on exhaustive search are unlikely to represent the best attacks on the CLWE
problem, so this may or may not substantially aid an attacker in practice.

In fact, there is no a priori reason why Gi should be a field, or even closed under
multiplication. For example, fixing a pair of invertible matrices M1, M2 and replacing
Gi with M1 ·Gi ·M2 = {M1XM2|X ∈ Gi } results in a new set of size qd whose pairwise
differences are all invertible but is not multiplicatively closed in general. Although the
field embedding technique is perhaps the most elegant way of building Gi , and certainly
the most constructive, it may transpire that taking s from some set with less algebraic
structure is advantageous in terms of the hardness of the resulting search problem. One
can also construct the valid set Gi +X by adding a fixed matrix X to each element of Gi ,
but this technique is somewhat constrained by the fact that LWE samples are additive
in the secret s (e.g., one could just add a · X into the second coordinate of the resulting
samples).

Although this restriction is not ideal, we have a remark about the implications on
the security of the CLWE problem. Restricting the secret space in (R)LWE problems is
not an uncommon idea: tertiary secrets, where each coordinate of s ∈ {−1, 0, 1}, are
used in the NIST candidate LAC [24] amongst others, and security whilst restricting
the secret to orders or subfields is discussed in [11], and to other K -lattices in [39].
Overall, we suspect that the decision CLWE problem is polynomial time equivalent to
the search CLWE problem without restriction on s, in particular when the number of
samples is small as in our applications in Sect. 5, and that the restriction is a function
of our reduction technique rather than some causal property of the CLWE distribution.
For the purposes of constructing a cryptosystem, we assume that this reduction implies
that the decision CLWE problem is hard.

8Although this case exists only when each qiOL is a prime ideal in OL .
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E. The Case where q Totally Ramifies in Relative Extension L/K

Here, we apply a decomposition in terms of Λ ideals:

Λq = Λ/qΛ = Λ/Pe1
1 ...Peg

g , (4)

where the Pi are maximal two-sided ideals in Λ and the ei are some positive integers.
Moreover, the following holds (see [30]):

Λ/Pi ∼= M fi (Fqei ),

where fi ei = d. When ei = d, we have Λ/Pi ∼= M1(Fqd ) = Fqd , a finite field.

We reduce CLWE to CLWE modulo Pd
i using a similar proof as above, and from

there reduce to CLWE modulo Pi . The secret then lies in some finite field, so the differ-
ence of any two elements will invert and the size of the secret space will be unrestricted.
However, in order to achieve this we will have to consider the reduction for ideal lattice
problems where the ideal is coprime to the ideal generated by the modulus q. This is still
an infinite set of ideal lattices. Before proceeding with the reduction, we first remove the
restriction on the ramification of the modulus present in the statements of the technical
lemmas.

In [34], Propositions 1 and 4 state that for pi ⊂ OK unramified, and inert or split
in OL , piΛ = ⊕d−1

j=0 u
jpiOL , and the piΛ are the largest two-sided ideals containing

qΛ. In our case, we are dealing with pi ramified and not split in OL .
Let p ∈ Z be a prime such that pOK = p1...p[K :Q]. Moreover, let piOL =

(P1...Pg)
e, where eg = [L : K ] and e > 1; importantly, this means that fPi =

[OL/Pi : OK /pi ] = 1. Set I = P1...Pg ⊕ uP1...Pg ⊕ ... ⊕ ud−1P1...Pg in Λ =
OL ⊕ uOL ⊕ ... ⊕ ud−1OL . It can be verified that I is a two-sided ideal.

Background on the following definitions can be found in [43].

Definition 28. The order ideal ordOK (X) of a finitely generated OK -module X is
defined as follows:

1. If X = 0, ordOK (X) = OK ;
2. If X is not an OK -torsion module, ordOK (X) = 0;
3. If X is a nonzeroOK -torsion module, then X has anOK -composition series, whose

composition factors are {OK /pi } , with pi ranging over some set of maximal ideals
of OK . Set ordOK (X) = ∏

i pi , where the number of factors equals the number
of composition factors of X .

Definition 29. Let M be an integral ideal of Λ. Define its norm by

NA/K (M) = ordOK Λ/M

Lemma 23. (24.6 of [43]) Let J be a prime ideal of Λ, and let J ∩ OK = p. Set
f = [Λ/J : OK /p]. Then NA/K (J ) = p f .
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Lemma 24. (Theorem 24.13 of [43]) For any maximal integral ideal M, Nrd(M) = p
for M lying above p, if OK /p is a finite field.

To prove the desired result we use a norm argument, considering the norm ofI, NA/K (I),
defined in Definition 29 to be ordOK (Λ/I). What is ordOK (Λ/I)? Since Λ/I is non-
zero, ordOK (Λ/I) �= OK . Furthermore, Λ/I has OK -torsion: observe that (OK ∩
I)(x + I) ⊂ I(x + I) ∈ I, for all x ∈ Λ, so (OK ∩ I)(Λ/I) = 0 and Λ/I is an
OK -torsion module. Thus, ordOK (Λ/I) �= 0. This leaves 3. Composition series can
be hard to figure out explicitly, but in fact our calculation of ordOK (Λ/I) will reduce
to figuring out ordOK (OL/J ), for some ideal J of OL . This has an easy description
when J is a product of prime ideals: ordOK (OL/P) = p fL/K , where P∩OK = p and
fL/K = [OL/P : OK /p], the inertial degree. So ordOK (OL/P) = NL/K (P) (see [43],
4.33).

Proposition 2. Let pOL = (P1...Pg)
e, where eg = [L : K ] and e > 1. Set I =

P1...Pg ⊕ uP1...Pg ⊕ ... ⊕ ud−1P1...Pg. Then I is a maximal ideal in Λ.

Proof. We consider two related norms, the norm from A to K , denoted NA/K , and
the reduced norm, denoted Nrd . They are related as follows: NA/K = Nd

rd , where
[L : K ] = d. In our case the inertial degree fL/K = 1, so OL/P j ∼= OK /p ∼= Fp, and
[OL/P j : OK /p] = 1. Moreover, we have

Λ/I = (OL ⊕ uOL ⊕ ... ⊕ ud−1OL)/(P1...Pg ⊕ uP1...Pg ⊕ ... ⊕ ud−1P1...Pg)

∼= OL/P1...Pg ⊕ uOL/uP1...Pg ⊕ ... ⊕ ud−1OL/ud−1P1...Pg

∼= (OL/P1...Pg)
d ∼= (OK /p)g·d ,

so f = gd. Thus, if I is prime, by Lemma 23 above, NA/K (I) = pgd . We have:

NA/K (I) = ordOK (Λ/I) = ordOK ((OL/P1...Pg)
d) = ordOK (OL/Pd

1 ...Pd
g)

= NL/K (Pd
1 ...Pd

g) = NL/K (Pd
1)...NL/K (Pd

g) = NL/K (P1)
d ...NL/K (Pg)

d

= ordOK (OL/P1)
d ...ordOK (OL/Pg)

d = pd ...pd = pgd ,

as required. So I has the same norm as a prime ideal.
We finally show that if I were not a maximal two-sided ideal (so prime), then we

obtain a contradiction. Suppose we have I � J � Λ, where J is a maximal two-
sided ideal of Λ. Then |Λ/J | < |Λ/I|, and so [Λ/J : OK /p] < [Λ/I : OK /p], or
equivalently fJ < fI for f as defined previously. Then NA/K (I) = p fI � p fJ =
NA/K (J ); using the relation between the norms gives Nrd(I) � Nrd(J ), which are
both ideals of OK - but Nrd(I) is maximal in OK , so Nrd(J ) cannot be a proper ideal
containing it. This is a contradiction, and the result follows. �

Corollary 2. Let pi ⊂ OK be a prime ideal above prime q ∈ Z, such that piOL = Pe
i ,

for some positive integer e ≤ [L : K ] = d. Then I = Pi + uPi + ... + ud−1Pi is the
maximal ideal of Λ lying above pi .
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Proof. We have three statements to prove: that I is a two-sided ideal, that it is maximal,
and that it lies above pi . The latter statement is clear:I∩OK = Pi∩OK = pi . Moreover,
maximality follows from Proposition 2.

To see that it is an ideal, first note that it is additively closed. In addition, for
any element of Gal(L/K ), say θ , we have θ(Pi ) = Pi , because the automorphism
permutes the primes above pi , and there is only one that can be permuted. We now drop
the subscript and write P. Let a ∈ I and b ∈ Λ. Then

1. a · b = (a1 + ua2 + ... + ud−1ad−1) · (b1 + ub2 + ... + ud−1bd−1)

=
∑d−1

j=0
u jγ αi jk

∑d−1

i+k≡ j mod d
θk(ai )bk ⊂

∑d−1

j=0
u jγ αi jk

∑d−1

i+k≡ j mod d
θk(P)bk

⊂
∑d−1

j=0
u jγ αi jk

∑d−1

i+k≡ j mod d
P ⊂ P ⊕ uP ⊕ ... ⊕ ud−1P = I,

2. and b · a = (b1 + ub2 + ... + ud−1bd−1) · (a1 + ua2 + ... + ud−1ad−1)

=
∑d−1

j=0
u jγ αi jk

∑d−1

i+k≡ j mod d
θk(bi )ak ⊂

∑d−1

j=0
u jγ αi jk

∑d−1

i+k≡ j mod d
θk(bi )P

⊂
∑d−1

j=0
u jγ αi jk

∑d−1

i+k≡ j mod d
P ⊂ P ⊕ uP ⊕ ... ⊕ ud−1P = I,

where αi jk =
{

1, i + k �= j

0, i + k = j
. Thus, I is closed by multiplication on both sides. �

We can use our result on maximal ideals to say the following:

Lemma 25. Assume q ∈ Z is prime such that q is completely split in OK , f
q
L/Q

= 1,

and eqL/K > 1. Let I ⊂ Λ be an ideal not contained in the same maximal ideal as

qΛ, and let J = q · Λ = 〈q〉 · Λ, where q is a prime integer and 〈q〉 = ∏r
i=1 qi is a

decomposition into prime ideals inOK . Assume γ /∈ qi for each i. Then, there exists an
element t ∈ I ∩ OK such that t · I−1 ⊂ Λ is coprime to J , and we can compute such
a t efficiently given I and the prime factorization of J .

Proof. For an ideal I denote by I its intersection with K , which is a non-trivial ideal

of OK . As usual, we obtain t ∈ I such that t · I−1
and J are coprime as ideals of

OK and t ∈ I\⋃r
i=1 qi · I. Assume, for a contradiction, that t · I−1 + J �= Λ,

i.e., the ideals are not coprime. Then, there is some maximal ideal M of Λ containing
t · I−1 and J . Write qiOL = (P1...Pg)

e. Since q is has inertial degree equal to 1
in OL and γ /∈ qi , by the theorem in the previous section, this ideal must be one of
the form P1...Pg ⊕ uP1...Pg ⊕ ud−1P1...Pg since it contains J . Then t · I−1 ⊂
P1...Pg ⊕ uP1...Pg ⊕ ud−1P1...Pg and consequentially t ∈ (P1...Pg ⊕ uP1...Pg ⊕
ud−1P1...Pg) · I because I · I−1 = Λ in a maximal order. Since t is central it follows
that t ∈ ((P1...Pg ⊕ uP1...Pg ⊕ ud−1P1...Pg) · I) ∩ OK . Thus, we have t ∈ qi
and t ∈ I, i.e., t ∈ qi ∩ I. Since I is not contained in any of the maximal ideals
above q, I lies above an integer m where gcd(q,m) = 1. Bezout’s theorem tells us
that there exist a, b ∈ Z such that aq + bm = 1. Thus, qi and I are coprime, and
t ∈ qi ∩ I = qiI—which is a contradiction. �
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Note here we have had to impose an extra condition—that I does not share a maximal
ideal with q. This means that the relevant intersections with OK are coprime ideals, and
the proof goes through. This is not a particularly strong restriction, as there are many
such ideals I.

Lemma 26. Let Λ, γ , and q be given in Lemma 3. Let I,J be ideals of Λ as above,
with t ∈ I ∩ OK chosen as above such that t · I−1 and J are coprime as ideals, and
let P denote an arbitrary fractional ideal of Λ. Then, the function χt : A → A defined
as χt (x) = t · x induces a module isomorphism from P/J · P → I · P/I · J · P.

Furthermore, in the case J = 〈q〉 for a prime integer q we can efficiently compute the
inverse.

Proof. The proof only relies on the ramification of q insofar as the above lemma does,
so the proof holds under the conditions of the previous lemma. �

The above results mean that, subject to the weak condition in Lemma 25, the reduction
to search CLWE in the main body of the paper holds for primes q such that q is split
completely in OK , and has f qL/Q

= 1, using an ideal I ∈ Λ that doesn’t share a
maximal ideal with the prime q. This removes the restrictions on q, and we have traded
q unramified in OL with arbitrary ideal I, for q having f qL/Q = 1 with I containing any
integer which is coprime to q. There has been a tradeoff between the number of valid
primes and the number of valid ideals.

The following is the first step in the reduction using ramified primes.

Reducing CLWE to CLWE modulo Pd
i As above, we use the extended embeddings

of K to A. Since any embedding of K can be extended to an embedding of L , we use
those extended embeddings to send A = (L/K , θ, γ ) to A′ = (L/K , θ, γ ′), where γ ′
is the image of γ under a chosen embedding. These maps preserve the decomposition
of Λ∨

q by sending Pi to some P j—we below show that these embeddings permute the
primes Pi modulo qΛ. We will abuse notation and denote the action of α on the cosets
Λ/qΛ also by α.

Lemma 27. Let α be an isomorphism fromA → A′ as above. Fix a prime q ∈ Z such
that qOK = p1...pg. Let Pi be a prime ideal of Λ lying above the prime ideal pi ⊂ OK .

Then, considering α as acting on the cosets of Λ/qΛ, α(Pi + qΛ) = P j + qΛ, for
some i �= j .

Proof. First observe that α permutes the primes of OK , since it was induced by an
element of Gal(K/Q). Thus, α(pi ) = p j , and so α(pi + qΛ) = p j + qΛ, where we
have used that α fixes Λq . Moreover, since pi ⊂ Pi , we have p j + qΛ = α(pi +
qΛ) ⊂ α(Pi + qΛ) = α(Pi ) + qΛ. Since α fixes Λ/qΛ, we in fact have that α(Pi ) +
qΛ ⊂ Λ/qΛ. Note that α(Pi ) is a prime (and hence maximal) α(Λ) ideal. Thus,
α(Pi )+α(qΛ) = α(Pi )+qΛ is a prime ideal of α(Λ)/α(qΛ) = α(Λ/qΛ) = Λ/qΛ.
So we find that α(Pi + qΛ) corresponds to a maximal ideal of Λ/qΛ lying above p j ;
thus, α(Pi + qΛ) = P j + qΛ. �
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Lemma 28. (Reduction from CLWE to Pd
i -CLWE) There is a deterministic polyno-

mial time reduction from CLWEq,Σα to Pd
i -CLWEq,Σα .

Proof. Let Oi denote an oracle for the Pd
i -CLWEq,Σ problem. Equation (4) defines an

isomorphism, so we can use the oracle Oi to solve the Pd
j -CLWEq,Σ problem for each

j. Let α j/ i be an extension of the automorphism of K that maps q j to qi .
Given sample (a, b) ← Πq,s,Σα , construct a sample of the form

(
α j/ i (a), α j/ i (b)

)
.

Since Λq and Λ∨
q are fixed by each α j/ i , the sample is a valid CLWE sample in A′ =

( L/K , θ, α j/ i (γ )
)
. Feeding this sample into Oi outputs a value t j mod Pd

i .
We show that α−1

j/ i

(
t j

) = s mod Pd
j . Since α j/ i is an automorphism, each (a, b) is

mapped to CLWE sample
(
α j/ i (a), α j/ i (a · s/q + e) mod Λ∨)

in the algebra A′, and
we can write α j/ i (a)·α j/ i (s)/q+α j/ i (e) mod Λ∨. As stated above, our automorphisms
fix our family of error distributions, and map the uniform distribution to the uniform
distribution, so this is a valid CLWE instance with secret α j/ i (s) ∈ α j/ i (Λ

∨
q ) = Λ∨

q and

error distribution Σ ′ ∈ Σα . So Oi outputs t = α j/ i (s) mod Pd
i , which yields α−1

j/ i (t) =
s mod Pd

j , since the embeddings permute the Pi , and thus the Pd
i , as required. �

CLWEModuloPi We now show that it suffices to solve the problem modulo Pi , rather
than modulo Pd

i . Since s is not zero in Λ/qΛ, s is not in Pd
1 ...Pd

g , so there exists a

k : s �∈ Pd
k . We will first show that the corresponding problem for RLWE can be solved;

we will then show that the problem for CLWE can be solved using the method for RLWE.
First, we need some lemmas and definitions.

RLWE Let R = Z[x]/Φn(x), where Φn(x) is the nth cyclotomic polynomial. Then
R is the ring of integers of the nth cyclotomic field, denoted K . Let Rp = R/pR,
and R∨ = {x ∈ K : Tr(x R) ⊂ Z} be the dual lattice. An RLWE sample has the
form (a, b) = (a, (a · s)/p + e mod R∨) ∈ Rp × T, where a ← Rp uniformly at
random, s ← R∨

p , and e sampled according to some error distribution; finally, T is the
unit torus. Let pOK = ∏r

i=0 p
e
i , for e > 1. Let pi, j -RLWE be the problem of finding

s mod p
j
i , given RLWE sample (a, b). We show that we can solve this problem, given

access to a pi,1-RLWE oracle. Note that knowing s mod pei is sufficient to find s, by
using automorphisms and the CRT.

Lemma 29. Given RLWE sample (a, b) and an oracle for pi,1-RLWE oracle, we can
solve pi,e-RLWE.

Proof. Let (a, b) be an RLWE sample, and submit (a, b) to the oracle to obtain an
element x such that x ≡ s mod pi . Then x−s ∈ pi . We can write x−s = α·p+β · fi (ζn),
where α, β ∈ OK , since OK = Z[ζn] for cyclotomic fields, and p = (p, fi (ζn)), where
Φn(x) = ∏

i=0 f j (x) mod p, and the f j are irreducible modulo p. So x−s−β fi (ζn) =
α · p ⊂ pOK , and s ≡ x − β fi (ζn) mod pOK . We proceed to construct an element
congruent to s modulo peOK , since peOK ⊂ peiOK .

Replace s by (x−s−β fi (ζn))/p. Then (a, b′) = (a, (a ·( 1
p (x−s−β fi (ζn)))/p+

e′ mod R∨) is a valid RLWE sample. Submit it to the oracle to obtain y such that
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y ≡ x−s−β fi (ζn)
p mod pi . As before, write this in terms of the generators of p, and subtract

the fi (ζn) term to obtain an element in pOK , resulting in y−d· fi (ζn)− x−s−β fi (ζn)
p = p·e

for some d and e ∈ Ok . Replace x−s−β fi (ζn)
p by y−d· fi (ζn)

p − x−s−β fi (ζn)
p2 . Continue in this

manner until we have v−w· fi (ζn)
p − ... − y−d· fi (ζn)

pe−1 − x−s−β fi (ζn)
pe = z ∈ OK . Rearrange

for s = pez − pe−1(v − w · fi (ζn)) + ... + p(y − d · fi (ζn)) + x − β fi (ζn). Clearly
s ≡ pez − pe−1(v − w · fi (ζn)) + ... + p(y − d · fi (ζn)) + x − β fi (ζn) ≡ x mod pi .
Moreover by construction we have found an element in the same coset modulo pe as s,
namely pe−1(v − w · fi (ζn)) − ... − p(y − d · fi (ζn)) − x + β fi (ζn). Reducing modulo
pei , we obtain an element of OK congruent to s, which is a solution to pi,e-RLWE. �

Solving Pi,d -CLWE

Lemma 30. Let q ∈ Z be prime such qOK = ∏
pi , piOL = Pd

i and qΛ = Pd
1 ...Pd

g .
Given CLWE sample (a, b) and an oracle for the CLWE mod Pi problem, we can solve
the CLWE modPd

i -problem.

Proof. Submit (a, b) to the oracle for x ∈ Λ∨
q : x ≡ s mod Pi . By Proposition 2,

I = Pi + uPi + ...+ ud−1Pi is the maximal ideal of Λ lying above pi . So we can take
Pi = Pi + uPi + ... + ud−1Pi . Then x − s ∈ Pi , and hence xi − si ∈ Pi for each i ,
where xi and si are the i th coefficient of x and s respectively.
The prime ideals of the ring of integers of an algebraic number field lying above the
prime q have the form Pi = (q, fi (α)), for some polynomial fi and α ∈ OL . Thus,
proceeding as in the RLWE case, we can express xi −si in terms of q and fi (α), subtract
the fi (α) term, and have an element divisible by q. We replace the si with the resulting

element,
xi−si−bi · f j (α)

q , for each i , to obtain a new valid CLWE sample with new secret
x ′, and then query the oracle for a value congruent to x ′ modulo Pi . We can iterate the
procedure as before, until we have an element yi such that yi ≡ si mod Pd

i .
We can then obtain an element y such that yi − si is divisible by qd for each i , and

hence y − s is divisible by qd , so y − s ∈ Pd
i . �

This lemma means that if we can solve search CLWE modulo Pi , we can construct
a solution to search CLWE modulo Pd

i ; we can then use the argument of the preceding
section (using the embeddings and the CRT) to find the secret s and solve CLWE.
In the following section, in a series of steps mirroring the standard methods, adapted
largely from [26], we establish the hardness of the decision problem.

Hybrid CLWE and Search to Decision

Definition 30. For s ∈ Λ∨
q , distribution Σ over ⊕ j u j LR, and i ∈ [n], define a sample

from distribution Π i
q,s,Σ over Λq ×

(
⊕d−1

j=0u
j LR

)
/Λ∨ by taking (a, b) ← Πq,s,Σ and

h ∈ Λ∨
q which is uniformly random and independent mod P j , for j ≤ i and 0 mod P j ,

for j > i, and outputting (a, b + h/q). If i = 0, define Π0
q,s,Σ = Πq,s,Σ . Then for
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i ∈ [n] and a family of distributions Σα, the WD-CLWEi
q,Σα

problem is to find j given

access to Π
j
q,s,Σ for j ∈ {i − 1, i} and CLWE secret and error distribution s,Σ .

Lemma 31. For any i ∈ [n] there is a probabilistic polynomial-time reduction from
Pi -CLWEq,s,Σα,G to WD-CLWEi

q,s,Σα
.

Proof. We proceed as usual. There are |Λ/Pi | possible values of s mod Pi , which is
bounded above by |Λ/Pi | = qd , so we may efficiently enumerate over the possible
values. We want a transform which takes g ∈ Λ/Pi and maps Πq,s,Σ to Π i−1

q,s,Σ if

g = s mod Pi or to Π i
q,s,Σ otherwise. Take CLWE sample (a, b) ← Πq,s,Σ , and

output

(
a′, b′) = (a + v, b + (h + vg)/q) ∈ Λq ×

(
d−1⊕
i=0

ui LR

)
/Λ∨,

with v ∈ Λq uniformly random mod Pi and 0 mod P j for j �= i , and h ∈ Λ∨
q uniformly

random and independent mod P j for j < i and 0 on the other P j . Then a′ is uniformly
distributed on Λq , so it remains to prove b′ is distributed correctly. Fix a′, then

b′ = b + (h + vg)/q

= (as + h + vg)/q + e

= (
a′s + h + v(g − s)

)
/q + e

where e is drawn from Σ . If g = s mod Pi , then v(g−s) = 0 mod Pi so the distribution
of

(
a′, b′) is Π i−1

q,s,Σ . Otherwise, v(g − s) is uniformly random mod Pi (since Λ/Pi is
a field) and 0 modulo the other P j . Setting h′ = h + v(g − s), one can see that the
distribution of

(
a′, b′) is Π i

q,s,Σ , as required. �

Worst-Case to Average-Case Decision Reduction
This stage of the reduction holds identically to that of the main body of the paper,

replacing Ri with Pi .

F. Estimating the Multiplication Complexity

The overall flow to compute the multiplication is depicted in Fig. 5, which is explained
in detail in the sequel.

F.1. Algorithm for Multiplication in Cyclic Algebras

We recall some details necessary to understand our multiplication algorithm. Recall that
in the explicit constructions of Theorem 2 the base field K is cyclotomic and q is a prime
integer chosen so that 〈q〉 splits completely in OK as 〈q〉 = q1 . . . qn , where n is the
dimension of K as an extension of Q. Furthermore, the degree of L over K is a typically
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Fig. 5. Depiction of the multiplication algorithm for cyclic algebras. [CLB17] is referred to as [15].

small d. Then, following the CRT-like decomposition of Lemma 12 we write

Λq ∼= R1 × · · · × Rn

for Ri = ⊕d−1
j=0 u

jOL/qiOL . We will show that each Ri is a skew polynomial ring
over Zq , and in particular a skew polynomial ring for which we can apply the algorithms
of [15] to compute multiplication independently in each Ri in Õ(dω) operations in Zq ,
which output elements whose u coordinates are in the form

∑
i i ki for ki ∈ OK q and

{i } some arbitrary normal basis for OLq over OK q . We remark that the representation
as a skew polynomial ring need not contradict the fact that we viewed the rings Ri as
matrix rings in Sect. 4.2, since computing matrix multiplication can be reduced to the
problem of computing multiplication of skew polynomials (see [15]). Since ω ≤ 2.373,
this leads to a complexity of approximately Õ(Nd0.373) and it is possible to compute the
multiplication in each Ri in parallel. However, we must also compute the complexity
of the splitting isomorphism.

F.2. The Rings Ri

In order to apply the algorithm of [15], we must confirm that each Ri satisfies the
following conditions:

– Ri is the quotient of a skew polynomial ring with center OK /qi by a polynomial
in the form Xd − γ .

– γ is a norm from OL/qiOL into OK /qi .9

– OL/qiOL is a field extension of OK /qi or an étale-OK /qi algebra.

The first of the conditions follows immediately from the definitions of a skew polynomial
ring and a cyclic algebra. The veracity of the latter conditions will depend on how the
prime ideal qi of OK splits in OL as qiOL . Since qi is prime in K and L/K is Galois,

9Due to the modulo reduction this does not contradict the assumption that γ is not a global norm.
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we know

qiOL =
g∏
j=1

(qi, j )
e

for some prime ideals qi, j in OL and integers e, g satisfying e f g = [L : K ] = d,
where f denotes the inertial degree. Assuming that L is constructed as a subfield of a
cyclotomic field as in [21], it is a Galois number field and it follows that each qi splits
with the same e, f, and g. Furthermore, since they are coprime as ideals of OK , their
factorizations’ in L are disjoint. Thus, we are left to consider three cases.

We first consider the case where each qiOL remains prime in OL . It follows that
OL/qiOL is a finite field, and computing the norm of qiOL indicates OL/qiOL ∼= Fqd .
In this case it is easy to see that OL/qiOL is a finite field extension of OK /qi ∼= Fq and
consequentially, because the norm map is surjective over finite field extensions, that γ

is a norm. Here it is clear that the algorithms of [15] can be applied.
The second case we consider is g = d, e = f = 1. Now each qiOL splits

completely in OL into a product of prime ideals qi,1 . . . qi,d . By the CRT we have

OL/qiOL ∼=
d⊗
j=1

OL/qi, j

where each OL/qi, j ∼= Fq , and it follows that OL/qiOL is an étale-OK /qi algebra.
We are left to show that γ is a norm, which we show via the stronger condition that
the norm map in this extension is surjective. By the CRT, OL/qiOL is isomorphic to a
direct product of d copies of Fq . Since the embeddings of L cyclically permute the ideal
factors of qi it follows that the relative norm of an element (x1, . . . , xd) ∈ ⊗d

j=0 OL/qi, j

is precisely
∏d

k=1 xk mod q. It is easy to see that this norm is surjective (because
any x ∈ Fq is the norm of, e.g., (1, 1, . . . , x)) and now once again we can apply the
multiplication algorithms of [15].

Intermediate cases, where qi splits into a product of prime ideals with the same
norm such that e = 1, f g = d, can be handled using a straightforward combination of
these two methods.

The final case to consider is the ramified case, when e �= 1. Now the factorization
of qiOL contains some power peii of a prime OL ideal pi . In this case, we are not able
to verify that the necessary conditions for the algorithms of [15] hold. However, we
observe that the ideal 〈q〉 ramifies in OL if and only if q divides the discriminant of OL .
Since only a finite number of primes divide this discriminant, we restrict ourselves to
considering the cases where q does not ramify. We emphasize that in the main cases of
interest, where K is themth cyclotomic field withm having small divisors and [L : K ] is
small, it is particularly unlikely that the large modulus q typical in cryptography divides
the discriminant of L . Indeed, when we pick L as a subfield of K (ζq ′) for some large
prime integer q ′ using the techniques of [21] as in Theorem 2, it is easy to quantify which
primes potentially ramify for a fixed choice of fields: either q ′ or the primes smaller than
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or equal to the divisors of m. As an easy example, the modulus q = 12289 does not
ramify in the example algebras given in the Sect. 3.4 achieving dimension 1024.

F.3. Complexity of the CRT Style Isomorphism

We have shown that we may apply the algorithms of [15] to compute the multiplication
operation in each Ri in complexity Õ(dω). We are left to consider the complexity of the
isomorphism defined by Lemma 12 generating the rings Ri . Essentially, this operation
is a coordinatewise split of the u coordinates of Λq = ⊕d−1

j=0 u
jOL , where each entry

is split into its mod qiOL parts. That is, the isomorphism maps

d−1∑
j=0

u j x j →
n⊗

i=1

d−1∑
j=0

u j (x j mod qiOL).

Splitting one element xi ∈ OK can be done in time O(n log n) using the CRT algorithm
of [28] when K is a cyclotomic field of dimension n. However, L is a not a cyclotomic
field, but instead a small degree d cyclic extension of a cyclotomic. Furthermore, we
are trying to split the elements of L modulo ideals of K extended to those of L . We do
not know of an existing general, efficient way of doing this. The naive estimate for an
optimal method would take time O(nd log nd), where nd is the dimension of L , but we
suspect something this efficient is impossible. We have to perform d such splits, which
would result in a total complexity of O(N log N/d). Note that this compares relatively
closely with the Õ(Nd0.3) claimed for the multiplication step, and since these steps
are sequential rather than parallel which of them dominates the asymptotic complexity
would depend on the exact relationship between n and d, but the result is an operational
complexity essentially equivalent to that of the ring variant.

Of course, the discussion of the previous paragraph relies on our implausibly low
estimate of O(nd log nd) complexity of the CRT split and so we do not claim such
efficiency. Instead, we present techniques in the proceeding sections to work around
the problem of splitting the L part modulo the K ideals in the factorization of q. Our
methods are particularly efficient in the case where q splits completely in L , but can be
generalized to arbitrary splitting at only a small cost.

F.4. Fast Cryptography when q Splits Completely in L

We consider an explicit method for implementing fast cryptography in the special case
where the ideal 〈q〉 splits completely in OL . By construction, 〈q〉 = ∏

i qi in OK , so
in this case we split 〈q〉 = ∏

i, j qi, j in OL , where the prime OK -ideals have prime

decomposition in OL denoted qiOL = ∏d
j=1 qi, j .

We recall some facts about the extension OLq of OK q . It is clear that the extension
is cyclic of degree d, with Galois group generated by θ . By the CRT,

OK q
∼=

∏
i

OK /qi ∼= Fq
n
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OLq
∼=

∏
i, j

OL/qi, j ∼= Fq
nd

where operations on the finite field products are applied coordinatewise. We represent
the CRT decomposition of OLq as (Fq

d)n , where each copy of Fq
d corresponds to the

extension
∏

j OL/qi, j of OK /qi . In the finite field representation of
∏

j OL/qi, j , the

elements of OK /qi embed as elements of Fq
d with the same entry in each coordinate,

e.g., (x, x, . . . , x), corresponding to scalars over (Fq)
d , which can be seen from the

following argument: for k ∈ OK , k = x mod qi implies k − x ∈ qi . Then it follows
that k − x ∈ qi, j and thus k = x mod qi, j for each j . Furthermore there is a simple,
explicit, description of the action of θ in this representation: since θ cyclically shifts the
ideals in the factorization of qi , one can order each copy of Fq

d so that the action of θ on
(Fq

d)n is a cyclical shift of the coordinates of each of the n copies of Fq
d concurrently.

We exhibit this with a trivial example: set d = 3, n = 2. Then the action of θ on (Fq
3)2

is

θ(a1, a2, a3, b1, b2, b3) = (a3, a1, a2, b3, b1, b2).

A valid OK /qi basis for OL/qiOL of size d is e1, . . . , ed , where ei = (0, . . . , 1, . . . 0)

denotes the i th element of the standard basis of dimension d. Furthermore, this basis
is orthonormal in the sense that ei · e j = ei for i = j and 0 otherwise and cyclic10

in the sense that θ(ei ) = ei+1 (e.g., normal), since the Galois group 〈θ〉 of L over K
permutes the factors qi, j of qiOL for each i . Because the CRT splits OLq into a direct
product within which operations are computed coordinatewise, we can extend this to a
basis of OLq over OK q in the finite field representation by concatenating n copies of
this basis together, denoting by eni the vector of dimension nd (ei , ei , . . . , ei ). This basis
is still cyclic, with θ operating independently on each of the n copies of Fq

d and hence
the n copies of ei . Concatenating the bases in this way also preserves the orthonormal
property.

Denote the above basis by 1, . . . , d . Recall that the CRT-like decomposition
Lemma 12 splits each u coordinate, an element of OLq , into its mod qiOL parts. How-
ever, we already know the mod qiOL parts of each  j by construction. So, if we store
elements of OLq as  = ∑d

j=1  j k j for k j ∈ OK q we can split  into its OL/qiOL

components in time O(d · n log n) as long as the k j elements are stored in the poly-
nomial representation of OK q . Consequentially, we can perform the CRT style decom-
position of an element in Λq whose u coordinates are stored in this manner in time
O(d2 · n log n) = O(N log(N/d2)).

Now we see a way to achieve fast multiplication in Λq . We are required to perform
the CRT in each of the d u coordinates, after which we can plug the rings Ri into
the fast multiplication algorithm of [15]. Since the CRT is an isomorphism and we
know the image of i under the CRT, this reduces to d copies of the CRT in OK ,
each with complexity O(dn log n), and therefore a total multiplication complexity of
O(N log(N/d2)) + Õ(Ndω−2). However, this algorithm comes with complications

10As long as we choose the ordering in the right way.
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associated with the chosen representation of elements of OLq , which we handle in the
next section.

F.4.1. Handling Elements in the Representation

To use the above multiplication algorithms in the scheme of Sect. 5.2, we need to be able
to store the elements compactly and sample the elements efficiently. Storing elements in
this form turns out to be straightforward: each OLq element requires storing d elements
of OK q . An element of Λq is d elements of OLq , so in total we store d2 elements of
OK q , corresponding to one element of dimension N = nd2, which is equivalent to
storing d elements of dimension nd.

We now discuss how to efficiently sample elements of Λq according to an appro-
priate error distribution. Recall from the security reduction of Sect. 3 that the error
distributions we recommend in practice are spherical or elliptical Gaussians in the coor-
dinates of the embedding σA. We sample using the following result.

Theorem 11. Let L/K be a tower of number fields with [K : Q] = n and [L : K ] = d
where K is a prime-power cyclotomic field. Let q ≥ 2 be a prime modulus which splits
completely in OL and let 1, . . . , d be the cyclic basis of OLq over OK q satisfying
i ·  j = i if i = j and 0 otherwise. Then, the distribution on OLq obtained by
sampling k1, . . . , kd independently froma discreteGaussian overOK q in the polynomial
representation and outputting  = ∑

i i ki is a discrete Gaussian over OLq in the 2
norm over LR.

Proof. Recall that in the case where K is a prime power cyclotomic the power basis
is a rotation and a scaling of the canonical basis (see, e.g., [19]), so a discrete Gaussian
in the polynomial representation corresponds to a discrete Gaussian in the canonical
basis as well. Order the canonical embedding of OL such that elements of OK embed
as vectors of n blocks of length d that are the same in each block, e.g.,

k1 = (k1,1, k1,1 . . . , k1,1, k1,2, . . . , k1,n),

where each entry ki, j of ki appears d times. Since the i form a cyclic basis, in each
d-block the entries of i+1 are just a cyclic shift of those of i . 11 For a fixed choice of
basis the distribution in each d-block of  is independent, because the ki, j are sampled
independently from a spherical Gaussian. So we can consider one d block of  at a
time, and write the d-block of 1 as a1, . . . , ad . Since multiplication in the canonical
embedding is coordinatewise and the i form a cyclic basis, the first block of  can be
written as

⎛
⎜⎜⎜⎝

a1 a2 . . . ad
ad a1 . . . ad−1
...

...
. . .

...

a2 a3 . . . a1

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

k1,1
k2,1
...

kd,1

⎞
⎟⎟⎟⎠ .

11Again assuming a sensible ordering.
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Call the left matrix A and the right vector k. k is a Gaussian of parameter r , so Ak has a
Gaussian distribution with covariance matrix r · AA† by, e.g., [25, Lemma 2.5], and if
this is diagonal and constant on the lead diagonal then we are done. Due to the structure
of the canonical embedding and how we picked our basis in the OL/〈q〉 representation,
we have that ai = θ i (a1), and that for i �= j θ i (a1) · θ j (a1) = 0 mod q. It follows
that the off-diagonal entries of AA† are 0 (since product being 0 is preserved under
representations) and the diagonal entries are

∑d
i=1 |ai |2, where | · | denotes the absolute

value. Hence, the first d-block of  is a spherical Gaussian distribution, and since this
analysis holds for any block it follows that each block of  is a spherical Gaussian. One
also needs to show that the Gaussian distribution has the same variance in each block,
but this follows from the fact that the K -embeddings permute the mod qi values and fix
the 2 norm of KR. Explicitly, by construction each K embedding modulo 〈q〉 can be
extended ‘identically’ onto OL mod 〈q〉 in a way that fixes each i , so they must have
the same set of values in each block. (This would not be the case if we considered their
norm in a global sense, and the restriction modulo q is strictly necessary.) �

Note that the statement does not define the resulting parameter of the Gaussian outputting
, but the proof allows one to compute this: say each ki was chosen from a discrete

Gaussian of parameter r . Then each element of  has parameter
√∑

i |ai |2 ·r . Computing√∑
i |ai |2 is a one time cost for a fixed choice of 1, . . . , d , so one can sample the

required Gaussian over OLq of parameter r ′ by sampling from the discrete Gaussian

over OK q of parameter r = r ′/
√∑

i |ai |2.
Finally, to sample elements of Λq we merely sample each u coordinate inde-

pendently according to the above technique. If we wanted to use this method in the
cryptosystem of Sect. 5.2 to attain efficient operations then we would sample and store
all elements using this representation over the cyclic basis 1, . . . d .

Unfortunately, we are unable to generalize this theorem to the case where qi remains
prime, or even intermediate cases. In this case, there exist cyclic bases of OL/qiOL over
OK /qi , but since OL/qiOL is a finite field and thus has no zero-divisors the cyclic bases
are not orthogonal. Consequentially, the matrix A does not in general give a diagonal
AA† and thus the distribution of Ak has several potentially large covariance terms. If
one were able to tolerate the covariance, the method can be extended in this case. It is
also possible that a cyclic basis satisfying the condition that AA† is diagonal may exist
for certain choices of field, but we were not able to find such a family of fields. We note
that this question can be asked as a more generic question about finite fields: let F = Fqd

be a finite field with d > 1 and let θ denote the Frobenius automorphism of F . Does
there exist a cyclic basis b1, . . . , bd with b j = θ j (b1) for F over Fq satisfying

d−1∑
i=0

θ i (b1 · θ j−k(b1)) = 0
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for all j �= k less than d? Here j and k correspond to j, kth entry of AA†. We were
unable to come up with a basis satisfying this condition, but neither can we show that
no such basis exists.

Example 4. We exhibit an example of the basis 1, 2 in the simplest setting, that of a
degree 2 extension of Q. Let L = Q(i), with ring of integers OL = Z[i], and consider
the ideal 〈5〉 of OL . 5 factorizes in OL as 5 = (2 + i)(2 − i), and it is clear that
〈5〉 = 〈2 + i〉 · 〈2 − i〉 is a decomposition into a product of prime ideals.

Using the notation q1 := 〈2 + i〉, q2 := 〈2 − i〉, it is easy to check that 2 + i = −1
mod q2 and thus −(2 + i) = −2 − i is a valid choice for 1. Similarly, −(2 − i) =
−2 + i is an appropriate choice for 2. Correspondingly, the distribution obtained by
sampling k1, k2 ← Dr , the discrete Gaussian of parameter r over Z5, and outputting
k1 · (−2 + i) + k2 · (−2 − i) is a discrete Gaussian over OL mod 〈5〉. Furthermore,
to multiply two elements k = k11 + k22 and g = g11 + g22 modulo 5 one outputs
kg = (k1g1 mod 5) · 1 + (k2g2 mod 5) · 2, at a cost of two operations in Z5, and
performing the OL mod 5 CRT on each u coordinate of an element of the resulting
natural order Λ5 can be done by merely reading off the d2 = 4 values of ki and no
additional computation.

Furthermore, this is an example where the techniques of our next section may
be advantageous. We will generalize the multiplication and CRT technique so that one
is free to use any basis of OL over Z, for example the basis {1, i}. In this basis it is
particularly easy to sample a discrete Gaussian in the polynomial representation of OL

mod 〈5〉 ∼= Z5[x]
x2+1

, but the resulting multiplication operation and CRT decomposition is
not coordinatewise in the basis and so a small amount of efficiency is lost at a gain in
parameter of the Gaussian. Specifically, to compute the CRT on an element k = k1+k2 ·i ,
one has to precompute12 the values i = −2 mod q1, i = 2 mod q2 and output

(k1 − 2k2 mod q1, 2k2 mod q2),

which requires additional operations over Z5.

F.5. Generalizing to non-Split q and Arbitrary Bases

In order to construct the cyclic, orthonormal, basis of Theorem 11, the previous section
requires that q be completely split in both K and L . However, it is possible to drop the
splitting condition in L and obtain fast multiplication algorithms in the general case at
only a small loss of efficiency. We demonstrate the technique in this section and then
briefly describe cases where a general algorithm may be superior to the one requiring
that q splits by discussing alternatives to Theorem 11.

Observe that, regardless of the prime ideal decomposition of each qiOL , under
the CRT decomposition the quotient ring OL/qiOL is a vector space of dimension d
over Fq ∼= OK /qi . Consequentially, an arbitrary OK q basis 1, . . . , d of OLq can be
decomposed into n bases  j = (1, j , . . . , n, j ) so that each collection i,1, . . . , i,d
of qiOL parts is a vector space basis of dimension d over OK /qi . Indeed, in the split

12Note that precomputing the image of 1 is trivial.



Non-commutative Ring Learning with Errors from Cyclic Algebras Page 63 of 67    22 

case we constructed each i in this manner. Armed with this knowledge, we adapt the
multiplication algorithm as follows.

Choose an arbitrary integral OK -basis 1, . . . , d of OL . As a precomputation
phase, compute and store the images  j mod qiOL for each i and j . The CRT-like
decomposition of Lemma 12 splits each of the u coordinates of an element of Λq , an
element of OLq , into its mod qiOL parts. Once again, we suggest an algorithm where

elements of OLq are stored in the form  = ∑d
j=1  j k j for k j ∈ OK q , e.g., on elements

stored as K -combinations of this basis. We split  ∈ OLq into its OL/qi components in
time O(d · n log n), since

d∑
j=1

 j k j mod qiOL =
d∑
j=1

( j mod qiOL) · (k j mod qiOL),

where each k j mod qi can be computed in time O(n log n) by the K -CRT and each  j

mod qi mod OL was computed in the precomputation phase. Consequentially, we can
perform the CRT style decomposition of an element in Λq whose u coordinates are all
stored in this manner in time O(d2 ·n log n), since we must split d2 elements ofOK . This
decomposing complexity is the same as in the previous case where q splits completely.
Following this, each ring Ri can be plugged in to the algorithm of [15] to compute
the multiplication in time Õ(Ndω−2). However, since the i do not correspond to a
standard orthonormal basis we incur an extra cost when reversing this transformation.
Namely, each of the u coordinates of each ring Ri is output by the algorithm of [15] as
an element  ∈ OL mod qiOL expressed in an arbitrary normal basis. Before reversing
the decomposition we must allow for the complexity of expressing each element of the
output in the bases obtained by the images of 1, . . . , d mod qiOL , as this basis was not
necessarily normal. Since OL mod qiOL is a vector space of dimension d over Fq this
can be done via a precomputed change of basis matrix over Fq in time Õ(dω), and since
there are n rings with d coordinates each the complexity of computing this on every
coordinate is Õ(ndω+1). The resulting multiplication algorithm has total complexity
O(N log(N/d2)) + Õ(Ndω−1). While this represents only a minor asymptotic loss,
especially since we expect the first term to dominate the complexity, it is likely in
practice that the extra step required to recover the basis representation would cause a
tangible slowdown.

An unfortunate issue with this technique is that by replacing the orthonormal basis
with an arbitrary basis we have lost Theorem 11 and thus the efficient method for
sampling a discrete Gaussian in the representation  = ∑

j  j k j . However, this gener-
alization allows for the use of an arbitrary basis 1, . . . , d , unlike in the split case in
which we chose a specific basis. Since we require that elements of Λq are input into the
algorithm with u coordinates in the form

∑
j  j k j this algorithm can be combined with

the cryptosystem of Sect. 5.2 in the case where there is a basis g1, . . . , gd of OLq over
OK q in which one can compute the representation  = ∑

j g j k j particularly efficiently.
This is because one can just sample  from the usual Gaussian distribution over the
polynomial basis of OLq , compute its representation as  = ∑

j g j k j , and then apply
the multiplication algorithm in this form. More generally, the flexible choice of basis
allows for both non-split q and for a user to choose their favorite OL basis properties,
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such as a normal basis or a basis consisting of small elements. We remark that it is likely
possible to construct a pair of fields L/K that allow for a basis 1, . . . , d permitting
a fast algorithm transforming from the polynomial representation of OL to the repre-
sentation

∑
i i ki with each ki in polynomial representation, which would allow one

to bypass the complications of sampling Gaussian distributions by just sampling in OL

directly.

F.6. Generalizing to Other Centers

In the exposition of the previous section we required that q splits completely in the
center K . This corresponds to the requirement in the ring and module cases that q splits
completely in the field K , which allows the use of the NTT to compute multiplications
over a direct product of finite fields. However, there has been recent progress in loosening
this requirement for the NTT and allowing the modulus q to be 1 mod n rather than 1
mod m, where as usual K is the mth cyclotomic field of degree n. For example, in
the second round specification of KYBER [5] q is set as 3329 and n = 256, yet they
still support efficient NTT-based multiplication. In such cases, q is ‘well’ split but not
completely split, and the fast NTT operations use the method of [29], where q splits into
some product of prime ideals qi whose norms can be small powers of q.

We observe that our methods can be partially generalized to this case in the follow-
ing manner. Say 〈q〉 = ∏

i qi is a decomposition into prime ideals inOK and there exists
an efficient algorithm for fast multiplication inOK q . We can replace our condition that q
splits completely in OL with the condition that each ideal qi in the OK -factorization of q
splits completely into a product of d prime ideals qiOL = ∏d

j=1 qi, j in OL of the same
norm. Then, we can replicate the method of Appendix F.4 to find a cyclic, orthonormal
basis e1, . . . , ed of OL/qiOL over OK /qi and concatenate together the bases for each i
to make the cyclic, orthonormal, basis 1, . . . , d of OLq over OK q . Since the basis is
orthonormal, if  = ∑

i i ki and g = ∑
i i gi with each ki , gi ∈ OK q , then

 · g =
d∑

i=1

i (gi · ki ).

Since the basis is cyclic,

θ() =
∑
i

θ(i )ki

=
∑
i

i ki−1

where we define k0 := kd .
Now we are able to use existing fast multiplication algorithms in OK q to compute

operations inOLq by expressing elements in this basis. Represent each x = ∑d−1
i=0 ui xi ∈

Λq by expressing each xi ∈ OLq in the  j basis. Then, to multiply x and y in Λq one only
has to compute multiplications in OK q , since the operations required are just computing
the non-commutative relation u = uθ(), which merely permutes the i using θ ,
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and computing multiplication and addition, which can be done coordinatewise in the
orthonormal i basis. Each L multiplication requires d multiplications in K , and each u
coordinate of Λ requires d multiplications in L . Consequentially, naive multiplication in
Λq takes d3 instances of the efficient OK q -multiplication algorithm we have access to.
For specific K -multiplication algorithms it is likely that this process can be streamlined;
the intention of this section is merely to demonstrate that one can build efficient Λq

operations from more general efficient operations over the center in the same manner
that the techniques of Appendix F.4 used the CRT method.
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