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Abstract

The recent technological and scientific advances has allowed for the fabrication
and ever-progressing characterization of interacting quantum mechanical systems.
I focus on the theoretical description of such hybrid quantum systems. Specifi-
cally, I discuss two prototypical classes of light-matter systems: polaritonic and
optomechanical systems. They are characterized by linear and nonlinear quantum
mechanical interactions, respectively. I introduce possible physical realizations, dis-
cuss light-matter interaction giving rise to polaritons, and derive optomechanical
interaction for a ferromagnetic system. The experimental reality also requires an un-
derstanding of dissipation and decoherence. I therefore describe how input-output
formalism can be employed to model the optical response of open hybrid quan-
tum systems. In addition, I discuss the possibility of the electromagnetic vacuum
modifying chemistry by the formation of hybridized light-matter states, polaritons.
These theoretical approaches to open hybrid quantum systems have wider appli-
cability than their physical realizations and further elucidates the possibilities of
light-matter interaction.

This dissertation is composed of an introductory text and five publications —
three of which have been published while two are under peer review at the time of
writing.
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Tiivistelmä (Abstract in Finnish)

Teknologinen ja tieteellinen kehitys on mahdollistanut vuorovaikuttavien kvantti-
mekaanisten systeemien valmistamisen sekä karakterisoinnin. Keskityn tällaisten
kvanttimekaanisten hybridisysteemien teoreettiseen kuvaukseen. Erityisesti tar-
kastelen kahta hyvin yleistä valon ja aineen vuorovaikutuksesta seuraavaa luokkaa
hybridisysteemeille: polaritonisia sekä optomekaanisia systeemejä. Ne kattavat
sekä lineaariset että epälineaariset kvanttimekaaniset vuorovaikutukset. Esitte-
len lukuisia fysikaalisia toteutuksia, käyn läpi polaritoneihin johtavan valon ja
aineen vuorovaikutusen teoriaa sekä johdan optomekaanisen kytkennän ferro-
magneettiselle systeemille. Käytännössä vaaditaan kuitenkin myös dissipaation ja
dekoherenssin ymmärtämistä. Esittelen sen tähden, miten näiden tosiasiallisesti
avoimien kvanttimekaanisten hybridisysteemien optista vastetta voidaan kuvata.
Näiden asioiden lisäksi käsittelen niin sanottua polaritonista kemiaa, eli mahdolli-
suutta muokata kemiallisia reaktioita elektromagneettisen tyhjiön ja aineen vuoro-
vaikutuksella. Tämän väitöskirjan muodostamalla teoreettisella lähestymistavalla
on hyötyä monenlaisille hybridisysteemeille, ja toisaalta se auttaa ymmärtämään
entistä paremmin valon ja aineen vuorovaikutusta.

Tämä väitöskirja koostuu johdanto-osasta sekä viidestä julkaisusta, joista kaksi
on väitöskirjan julkaisun aikaan vielä vertaisarvioitavana.
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Chapter 1

Introduction

Physics strives to explain nature as emerging from simple premises. However,
we intuitively know that the world around us isn’t particularly simple. This
conundrum is explained by interactions: if we have a model of nature that consists
only of, say, elementary particles with well-defined properties, it is the interactions
between these particles that produce incredible complexity. Fundamentally, all you
need is to understand these elements, particles and their interactions, and physics
is finished. In practice, such a program is just exceedingly difficult.

Another viewpoint is offered by a few modern fields within physics, for in-
stance, condensed matter theory. We accept that there are emergent features arising
from elementary interactions that can be modelled as is. Perhaps, there is some
inner structure we are neglecting and, thus, our approach is necessarily incomplete.
If such a phenomenological theory is able to explain our observations, nevertheless,
it gives an insight to our reality. Fundamental physics is also physics of emergence
and collective behavior [1].

Recent technological advances have lead to the possibility of constructing phys-
ical systems, involving many elementary particles, that can be fully understood
only in a quantum mechanical description. Furthermore, we are at a point where
manufacturing a hybrid of distinct systems is possible. This gives rise to the field
of hybrid quantum systems [2–7]. Their potential is inspiring. The platform provided
by hybrid quantum systems can be used to devise more accurate sensing and
measurement technology. In the far-distant future, it would be beneficial and,
therefore, reasonable to use our knowledge of quantum mechanics in communi-
cation and information processing tasks [8–11]. Hybrid quantum systems play a
key role in such quantum networks [12, 13] as they provide a way to transduce
information between different physical realizations. For example, we could still
carry information over long distances by light but perhaps hope to further process
it in an electronic or mechanical system.

We do not construct hybrid quantum systems as to show our technological
prowess. They allow for studying fundamental physics. All hybrid systems are
based on light-matter interactions or electromagnetism — it is currently quite
difficult to think of technologies based on gravitational or nuclear forces. On one
hand, light provides a probe to new materials and physical effects. One can think
of, for instance, metamaterials with designed optical properties [14, 15] or inferring
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non-local electronic correlations of topological states using spectroscopy [16]. On
the other hand, the possibility of connecting multiple separate systems allows for
collective effects [17] as well as observing quantum mechanical features of our
world like quantized energies and entanglement [18–21].

When I write about hybrid quantum systems, there is a level of abstraction
involved. It represents an idealized and imagined version of reality. Rather, what
we have is systems coupled to measurement devices and whatever environment
they are in. Such interactions we have trouble controlling. In the study of quantum
mechanics, we tend to call them open quantum systems [22]. We can only begin to
approximate and cleverly work around such complexity. It brings about a new
set of physics: How do we understand any experiment in practice? At the same
time, it brings about a set of philosophical questions on the arrow of time and the
physical meaning of information.

As interesting as the foundational questions are, the focus of this thesis far more
practical and rooted in shorter-term goals. One of the main questions presented
here is the issue of understanding optical, frequency-resolved, measurements of
hybrid quantum systems. It is a question partially motivated by experiments. Thus,
the hybrid systems come with certain physical realizations. I focus on the specifics:
what is the underlying cause or interaction that results in a hybrid quantum system.
Nevertheless, the ideas of this dissertation can likely be used for many realizations
I do not discuss here.

This dissertation focuses on two separate physical systems highlighting differ-
ent aspects of hybrid quantum systems. First, I discuss polaritons. It is a short-hand
name for light-matter systems whose quantum mechanical interaction can be pre-
sented in a linear form. Strictly speaking, polaritons are the hybridized excitations
of light and matter, much like photons are the excitations of light. They can be
created by, for instance, inserting atoms or molecules in an optical cavity. The
hybridization between the vacuum electromagnetic field and the matter produces a
very distinct optical response (as discussed in Ch. 2). Much of the recent interest in
polaritons is due to the idea, coming far outside physics, that the light-matter cou-
pling may produce changes in chemical reactivity (as discussed in Ch. 3). Second,
I discuss opto- and magnomechanics in Ch. 4. It provides another prototypical
class of hybrid quantum systems which are characterized by nonlinear interactions.
Optomechanics refers to the idea that light carries momentum and can induce
radiation-pressure force on matter. Of subsequent interest is magnomechanics;
magnetization of a ferromagnetic material may produce similar interaction.

I explicitly state the purpose of the introductory part of the dissertation. I describe
the thoughts we had before any work was done, the many misguided steps I took,
and what we ultimately learned. The structure of this dissertation is therefore not
that of an article. I want to use this opportunity to recollect what was (or still is)
difficult for me to understand. My aim is to interweave these difficulties with the
basic physical principles and descriptions so that the included publications may be
understood. I hope that these choices make this text worth something.
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Some reading advice I should give: This thesis is somewhat technical and
assumes that the reader is familiar with advanced quantum mechanics [23, 24].
The unit convention is that of h̄ = 1 almost everywhere. This means that whenever
I write an angular frequency (often symbolized by ω) I tend to mean energy (as the
two are related by E = h̄ω). I do not separate quantum mechanical operators from
their classical counterparts by any typographical feature. I think that it is clear
from the context which one I mean. In contrast, I try to carefully denote vectors by
a bold typeface (for instance, x refers to a vector living in three-dimensional space
but xk to its component k) in this introductory text, because there is no unifying
convention in the included publications.
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The theory of quantum electrodynamics describes
Nature as absurd from the point of view of common
sense. And it agrees fully with experiment. So I hope
you accept Nature as She is — absurd.

Richard P. Feynman
QED: The Strange Theory of Light and Matter

(Princeton University Press, 1985)
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Chapter 2

Polaritons: hybridization of light and matter

In this chapter, I discuss the low-energy, non-relativistic quantum description
of light-matter interaction in detail. It gives rise to hybridized quantum states
which are termed as polaritons. I here describe their optical response within the
input-output formalism, which is also the focus of [I] and [II].

Hybridization of light and matter states elucidates foundational questions in quan-
tum theory as well as leads to interesting applications. Historically, it started from
coupling atoms to microwave and optical cavities to provide new measurement
and quantum control techniques. The trapping of photons in cavities allowed for
preparing quantum states of light, entanglement of atoms, non-destructive mea-
surements, and seeing decoherence of quantum systems; the inevitable destruction
of quantum information [25, 26]. In many ways, it has provided a foundation for
the quantum technological revolution.

Replacing atoms by organic molecules provides many more possibilities for
applications and investigations at the boundary of classical and quantum worlds.
The matter degrees of freedom are greatly increased. Recently, the hybridization of
photons with such large matter systems has been shown to be possible — first in
semiconductors [27, 28] and then in other optical systems. It allows for modifying
optical properties [29], creation of hybrid Bose–Einstein condensates [28] and a
new type of laser [30], and it has been suggested to affect chemistry of the involved
molecules, for example. The modification to chemistry is discussed in Ch. 3 while
this chapter focuses on optical properties.

2.1 Quantum electrodynamics of light-matter coupling

The theory of quantum electrodynamics (QED) provides the most accurate de-
scription of interactions between light and matter. Its development formed the
foundation for the standard model of physics with the techniques of quantum
field theory and renormalization. In the classical limit, it corresponds to Maxwell’s
equations.
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In the case of coupling molecular degrees of freedom to low-intensity light fields,
much of the complicated and beautiful machinery of QED can be avoided [31].
There is no need for constructing a Lorentz invariant description of the matter, for
instance. (Here, I also neglect spins.) The focus of this chapter is quite opposite
from the physics tradition I have been entrenched in: to understand the light-matter
coupling in large molecular systems involving many degrees of freedom. I briefly
introduce the idea behind the quantization of light-matter interaction [32].

The classical electrodynamics is characterized by Maxwell’s equations, and the
effect of electric and magnetic fields to charged particles by Lorentz force [33, 34].
If point-like particles of charge ei and mass mi are subjected to an electromagnetic
field, their positions qi obey the equation of motion

miq̈i = eiE(qi, t) + eiq̇i × B(qi, t), (2.1)

presuming that the electric field E and the magnetic field strength B are inde-
pendent of the velocity of the particle (or, in other words, neglecting classical
renormalization of fields).

Next, the electric and magnetic fields can be simplified and partially unified.
Consider the Gauss law for magnetism and the Maxwell–Faraday equation,

∇ · B = 0 and ∇× E = −∂B
∂t

, (2.2)

respectively. It immediately follows that B = ∇× A satisfies the first equation.
The electric field must then be E = − ∂A

/
∂t −∇ϕ in order to satisfy the second

equation. The quantity ϕ is often called scalar potential and A vector potential. It is
important to note that these potentials are not physical but rather a mathematical
tool, called gauge fields. This is reflected in the fact that the potentials can be
transformed according to A → A −∇ f and ϕ → ϕ + ∂ f

/
∂t for an arbitrary scalar

function f without changing the physical electric and magnetic fields.
With the renewed definitions of the electric and magnetic field in terms of the

vector and scalar potential it is possible to derive the energy contained within the
coupling. This means dwelling into Lagrangian and Hamiltonian formalism of
classical mechanics [35]. First, the Lagrange function L can be deduced by matching
the associated Euler–Lagrange equation to Eq. (2.1). This gives

L = ∑
i

[
1
2

miq̇2
i + eiq̇i · Ai − eiϕi

]
+ LEM, (2.3)

where LEM is an electromagnetic Lagrange function independent of the positions qi,
while the potentials are evaluated at these positions, ϕi ≡ ϕ(qi, t) and Ai ≡
A(qi, t). Finding the Hamilton function is then a matter of using the Legendre
transformation. The canonical momenta pi are modified by the coupling and, in this
case, read as pi = ∂L

/
∂q̇i = miq̇i + ei Ai. We arrive at the typical starting point of

the discussions on light–matter coupling [32], the minimal coupling Hamiltonian H
for a collection of point-like particles

H = ∑
i

[
(pi − ei Ai)

2

2mi
+ eiϕi

]
+ HEM. (2.4)
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This result is often highlighted as obeying the principle of minimal substitution,
i.e., we only had to change pi → pi − ei Ai. One should note that the particles feel
the vector and scalar potentials only locally.

In the low-energy theory, the gauge freedom of the vector and scalar potentials
can be used advantageously to choose a gauge which gives the easiest frame to
work in. There are two common choices: the Coulomb gauge and the dipole gauge.
Here, I first discuss the Coulomb gauge while the dipole gauge is derived in the
quantum description.

In the Coulomb gauge, the vector potential is chosen so that ∇ · A = 0 holds.
Thus, ∇ · E = −∇2ϕ. The Gauss law in this gauge gives

∇ · E = −∇2ϕ = ρ/ϵ0, (2.5)

where ρ is the charge density and ϵ0 the vacuum permittivity. The solution to
this Poisson equation for point-like charges ρ = ∑i eiδ(q − qi) is the Coulomb
potential ϕ(q) = ∑i ei/(4πϵ0|q − qi|), explaining the name of the gauge. Thus, it
is physically reasonable to denote ∑i eiϕi = V({qi}) and treat it as a molecular or
atomic potential.

The remaining Maxwell’s equation, Ampére–Maxwell equation,

∇× B = µ0 J + µ0ϵ0
∂E
∂t

, (2.6)

allows for fixing the vector potential A. Here, J is the charge current and µ0 is the
vacuum permeability. It gives a wave equation that reads as

∇2 A − 1
µ0ϵ0

∂2 A
∂t2 = −µ0 J − 1

µ0ϵ0
∇∂ϕ

∂t
. (2.7)

Since the Coulomb gauge fixes ∇ · A = 0, it is possible to replace the right-
hand side with the component J0 of the current obeying ∇ · J0 = 0. Without
charges, we see the historically important result that light is an electromagnetic
wave traveling in vacuum. Thus, c = 1/

√
µ0ϵ0 is the speed of light. It is the

foundation of quantization in the non-relativistic theory as well, since the effect
of moving charges is often neglected. Here, it corresponds to a mental image of
almost-stationary charges in molecules, for instance.

The energy of the electromagnetic field can be derived from the Euler–Lagrange
equation which should match the Maxwell’s equations. This gives for the Hamilto-
nian, in terms of the electric and magnetic field,

HEM =
1
2

ϵ0

∫
d3q

(
E2 + c2B2

)
. (2.8)

The integration is taken over the whole space of the fields.
The quantization of the molecular system is straightforward as it is enough

to promote the canonical coordinates to operators with the commutation relation[
qi, pj

]
= iδij. A much more complicated issue is the quantization of electromag-

netic modes because of the wide range of possible systems. Here, postponing the
discussion of realistic systems, I assume an empty cubic box of volume V with
ideally reflecting bounding surfaces. In the absence of any moving charges, the
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electromagnetic modes inside the box obey the wave equation (2.7) and it can be
solved in the Fourier space. The quantization process can be framed in the typical
way of finding canonical coordinates and setting up the commutation relations.
However, it is more conventional and often useful to use dimensionless bosonic
operators instead. I omit these steps here. The vector potential can be written in
terms of a wave vector k and two orthogonal unit polarization vectors ελ (k · ελ = 0
and ελ · ελ′ = δλλ′ ) as

A(q, t) = ∑
k

∑
λ

ελ

√
1

2ϵ0ωkV
[

akλei(k·q−ωkt) + a†
kλe−i(k·q−ωkt)

]
, (2.9)

where
[
akλ, a†

k′λ′
]
= δkk′δλλ′ . In empty space, the dispersion relation between the

frequency ωk and the wave vector k is found to be simply ωk = c|k|. Inserting
the quantized vector potential to the Hamiltonian leads to, after a relatively long
calculation,

HEM = ∑
λ,k

ωk

(
a†

kλakλ +
1
2

)
. (2.10)

Here, the polarization plays no other role than providing two copies of the electro-
magnetic mode. More generally, the frequency ωk may depend on it.

In principle, it seems I am done. I have presented the quantized form of the
vector potential and the electromagnetic Hamiltonian which can be inserted to
the Hamiltonian in Eq. (2.4). However, the resulting expression is difficult to
use. The vector potential in the light-matter coupling can be further simplified by
physical reasoning. If the charge system is smaller than the wavelength of the light,
an atom or a molecule for instance, the wave functions change appreciably on a
size scale that is much smaller than the wavelength 2π/|k|. Thus, the evidently
quantum mechanical factor eik·q can be replaced by a classical value eik·ri , where
ri denotes the approximative position of the charge system. This is known as the
dipole approximation.

A conventional form of the light-matter Hamiltonian is obtained when the
many-charge system is represented by energy eigenstates without radiation. Let
us assume that there are identical and distinguishable copies of the same system,
mental image being atoms or molecules, which are labelled by the subscript n. I
assume here that the Coulomb interaction between the different systems can be
neglected. Furthermore, I do not include the term proportional to A2 in Eq. (2.4)
assuming that it is negligibly small. When the light-induced modification to ener-
gies is small, it appears as a reasonable assumption. If c†

nν generates an excitation
of energy Enν to the charge system n, then the Hamiltonian reads as

H = HEM + ∑
n,ν

Enνc†
nνcnµ + ∑

λ,k
∑

n,ν,µ

(
gn,kλ,νµakλ + g∗n,kλ,µνa†

kλ

)
c†

nνcnµ, (2.11)

where the light-matter coupling constant is

gn,kλ,νµ = i
(
Enµ − Enν

)
√

1
2ϵ0ωkV

(
ελ · dn,νµ

)
eik·rn . (2.12)
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Here, dn,νµ is the dipole moment of the system n projected to the energy eigen-
states

∣∣ψnµ

〉
, defined as dn,νµ =

〈
ψnν

∣∣∑i∈n eiqi
∣∣ψnµ

〉
.

This is the intellectual foundation on which [I], [II], [IV], and [V] is based. The
light-matter interaction is now quantized, and the interpretation is clear: it is possi-
ble for the matter, the charge system, to get excited by the absorption of a photon
or to relax by emitting one. Evidently, this is a low-energy limit of QED as it is
straightforward to imagine processes which employ several photons. If there is no
energy transfer, the coupling vanishes. The coupling constant (2.12) itself depends
both on the zero-point fluctuations of the electromagnetic field (through the square
root term) as well as on the direction of the transition dipole moment dn,νµ with
respect to the polarization vector ελ and the position of the system rn within the
field. These latter findings hold only in the dipole approximation.

The dipole gauge presents another useful choice for calculations regarding
light-matter interaction. It more directly shows that it is indeed the dipole moment
that couples to the electromagnetic field, regardless of what the underlying degrees
of freedom within the dipole moment are. The dipole gauge can be derived from
the Coulomb gauge by the so-called Power–Zienau–Woolley gauge transforma-
tion [36, 37]. It requires the dipole approximation together with a long-wavelength
assumption. That is, it is assumed that k · rn is constant for all systems and the
vector potential is fully independent of the positions A(q) ≡ A(0). In the quantum
formulation, it is a unitary transformation, defined by U = exp[id · A(0)] where
d = ∑i eiqi is the total dipole moment operator [38, 39]. Since A(0) commutes with
qi and pi, the transformation on Eq. (2.4) gives

HPZW = UHU† = HEM + ∑
i

p2
i

2mi
+ V({qi})− d · E + ∑

kλ

1
2ϵ0V

(ελ · d)2. (2.13)

Here, E = − ∂A(0)
/

∂t . This expression is particularly useful for semiclassical
analysis because the dipole moment can be directly specified as d = d({qi}). There
is no reference to any energy states as in the Coulomb gauge. Moreover, one can
associate the dipole moment d to an electronic or vibrational mode of a molecule.
Here, by vibrational I refer to nuclear motion within the molecule. The price to
pay for this description is the dipole self-energy term proportional to (ελ · d)2.
It appears formally divergent, only renormalized by restricting the number of
photon modes. Note that the dipole self-energy is second order in the zero-point
fluctuations of the electromagnetic field and, in this sense, small compared to the
dipole interaction d · E.

The long-wavelength assumption is crucial to the derivation of the dipole-
gauge Hamiltonian. If there is position dependence in the form of phase factors,
the vector potentials at different positions do not commute. When one generalizes
the transformation for multiple dipole moments at different positions as U =
exp[i ∑n dn · An], the dipole interaction follows as ∑n dn · En. However, there is
a wide variety of terms that are second order in the zero-point fluctuations. One
should be able to neglect them if the fluctuations are small enough. This line of
thinking is present in [IV] and in [V].

The derivation of light-matter coupling I presented provides a nice physical
picture of photon exchange but there are a few issues when applied to physical
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systems. They are something to be aware of.
First, the choice of gauge should not matter as the vector potential A is not

an observable. But it does when further assumptions are made. Gauge issues
especially arise when the matter Hamiltonian is further approximated to only a
handful of energy levels (i.e., the Hilbert space is truncated) in the context of very
strong light-matter coupling. For instance, the energy spacing between levels in
the hybrid system and the number of emitted photons may then depend on the
gauge unless it is specifically accounted for [40–42]. Furthermore, the exclusion of
the second-order term, A2 in the Coulomb gauge and (ελ · d)2 in the dipole gauge,
has some unphysical theoretical consequences. It removes gauge invariance but
also may break coordinate invariance even if the long-wavelength limit k → 0 is
taken, lead to a radiating ground state, and destroy bound states [43, 44]. For this
reason, the dipole gauge may appear more favourable as the calculation of the
dipole self-energy term (ελ · d)2 can be more straightforward than including A2.
(If A contained only a single mode, then A2 can be dealt with by redefining the
bosonic operator ak,λ so that it corresponds to neglecting A2 outright.)

Second, not all electromagnetic fields are well described within an empty box
of volume V with ideally reflecting surfaces. In fact, few are. The mental image in
the derivation is that of optical cavities. However, the mirrors forming an optical
cavity are never ideally reflecting but, rather, photons in the cavity escape to their
electromagnetic environment. This poses a problem: how to make sure that the
correspondence principle holds and that the quantization procedure works when
the classical system should already be treated as an open system? In the case of
electromagnetism, one of the solutions is the introduction of classical quasi-normal
modes [45]. This is intimately connected with the definition and magnitude of
the effective mode volume Veff of a confined light mode that should replace the
quantization volume V in the light-matter coupling constant (2.12). Smaller the
mode volume Veff, larger the light-matter coupling. It has lead to a considerable
search for as small Veff as possible [46, 47].

Lastly, there is a wide range of metallic and dielectric systems that can support
electromagnetic resonances. Common examples are plasmon and surface-plasmon-
polariton (SPP) excitations. They are a consequence of oscillations of electrons in
the metal. SPPs form specifically at a metal-dielectric interface. The focus of [I]
is on the light-matter coupling between molecules and SPPs. The description
in terms of classical electrodynamics is changed which then adds to quantiza-
tion considerations. (The quantization of SPPs is discussed in [48], for instance.)
Fundamentally, the light-matter coupling can still be described in the form of
the Hamiltonian (2.11) but with different mode volume Veff, polarization ελ, and
dispersion relation ωk = ω(k).

2.2 Jaynes–Cummings model and its extensions

Let us then focus on relatively straightforward Hamiltonians that follow from the
general expression (2.11). There is a rich history for such models [49–51].

First, consider a single degree of freedom described by a two-level system, e.g.,
an electronic excitation of a single atom. If the energy spacing of the electronic
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ground and excited state matches, for instance, the fundamental frequency of an
optical cavity, the higher order electromagnetic modes can be neglected to a good
approximation. In this case, the Hamiltonian (2.11) may be simplified to

H = ω0σ†σ + ωca†a +
(

ga + g∗a†
)(

σ + σ†
)

. (2.14)

In this expression, σ (σ†) refers to the annihilation (creation) operator of the excita-
tion in the two-level system. This is often called the Dicke model [49]. Here, it is
more of a starting point than the point of interest.

It makes sense to modify the Dicke model because working with it is cum-
bersome. Physically, there is a clear motivation: if the two-level system and
the cavity are on resonance and ωc = ω0 holds, then the terms σa and σ†a† in
the Hamiltonian change the energy by 2ω0 whereas the other terms retain the
value of energy. This can be seen also by moving to the interaction frame with
the unitary transformation U = exp

[
i(ω0σ†σ + ωca†a)t

]
. One can show that

U†aU = aeiωct and U†σU = σeiω0t. Consequently, on resonance, the interac-
tion term U†σaU = σaei2ω0t rotates very fast compared to U†σ†aU = σ†a. The
often-used argument is that the exponential averages out over time. Thus, the
rotating-wave approximation neglects these oscillatory terms [32]. The approximation
however breaks down at very strong couplings g [52].

A prototypical light-matter model obtained from the Dicke model by rotating-
wave approximation is called the Jaynes–Cummings model [50]. Its Hamiltonian
reads as

HJC = ω0σ†σ + ωca†a + gσ†a + g∗a†σ. (2.15)

Now, the total number of excitations is preserved as
[
HJC, σ†σ + a†a

]
= 0. Thus,

the two systems, the molecule and the cavity, simply interchange excitations at a
rate g. It should be recalled that the eigenfrequencies ω0 and ωc are here assumed
to be in close proximity of one another.

Finally, after all these steps, I can specify polaritons more concretely. They are
the excited eigenstates or the excitations of the Jaynes–Cummings Hamiltonian.
Since the number of excitations is a constant, one can deduce that there are an
infinite amount of subspaces based on the number n of cavity photons. For each
subspace, there are two relevant states: |n + 1, g⟩ and |n, e⟩, where g (e) refers to the
ground (excited) state of the molecule. An exception is the true ground state |0, g⟩
which forms a subspace of its own. I write the operation of the Hamiltonian to the
n-photon subspace states in a matrix form as
(

HJC |n + 1, g⟩
HJC |n, e⟩

)
=

(
(n + 1)ωc g

√
n + 1

g∗
√

n + 1 nωc + ω0

)(|n + 1, g⟩
|n, e⟩

)
≡ Hn

(|n + 1, g⟩
|n, e⟩

)
.

(2.16)

The diagonalization of the coefficient matrix Hn gives the polaritonic states, which
now hybridize the two states in play, and gives the two eigenenergies

E±(n) = nωc +
ωc + ω0

2
±
√
(n + 1)|g|2 + (ω0 − ωc)2/4. (2.17)
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In this thesis, my focus is on the single-excitation subspace with n = 0 since it
is the lowest energy subspace, relevant for many experiments. The cavity is in
the electromagnetic vacuum state or it contains a single photon. On resonance,
ωc = ω0, the energy level splitting between the polariton states is the smallest but
the levels are still separated by

Ω = 2|g|, (2.18)

which is called the vacuum Rabi splitting [32]. (Sometimes, it is denoted by R and,
often, “vacuum” is omitted.) Moreover, the higher (lower) energy polariton state is
referred as the upper (lower) polariton in short.

Note that the coefficient matrix H0 [as defined in Eq. (2.16) with n = 0] serves
also to define the original Jaynes–Cummings Hamiltonian. I write it in a quadratic
form as

HJC =
(
a† σ†)H0

(
a
σ

)
. (2.19)

It is now evident that it does not matter for the lowest energy subspace whether σ

is a ladder operator of a two-level system or a harmonic oscillator. It is expected.
A straightforward but important extension of the Jaynes–Cummings model is

N identical systems coupled to a single cavity mode. It is often called the Tavis–
Cummings model [51]. With the lessons learned, I directly write it in a matrix
presentation as

HTC =
(
a† σ†

1 . . . σ†
N
)




ωc g1 g2 . . . gN
g∗1 ω0 0 . . . 0

g∗2 0 ω0
. . .

...
...

...
. . . . . . 0

g∗N 0 . . . 0 ω0







a
σ1
...

σN


. (2.20)

The solution of the eigenvectors is not straightforward anymore but the eigenvalues
can be solved analytically from the (N + 1)-dimensional coefficient matrix H0.1

The polariton eigenenergies are

E± =
ωc + ω0

2
±

√√√√ N

∑
i=1

|gi|2 + (ω0 − ωc)2/4, (2.21)

while there are N − 1 states of energy ω0. This is visualized in Fig. 1(a). Com-
paring to the Jaynes–Cummings eigenenergies (2.17), |g|2 has been replaced by
N ⟨|g|2⟩ where ⟨·⟩ represents the arithmetic average over N couplings (i.e., ⟨|g|2⟩ =
∑N

i=1 |gi|2/N). Consequently, the vacuum Rabi splitting is Ω = 2
√

N
√

⟨|g|2⟩.
The Tavis–Cummings model provides important insight to many experiments

in the field of polaritons. The fact that the Rabi splitting Ω ∝
√

N can be enhanced

1If D(N) = det(H0) for N systems so that D(1) = ω0ωc − |g1|2, then one can derive and use the
recursion relation D(N) = ω0D(N − 1)− |gN |2ωN−1

0 for N ≥ 2 to find the eigenvalues.

12



FIGURE 1: (a) Eigenenergies and associated degeneracies of the Tavis–Cummings model.
(b) Potential energy diagram associated with molecules in the Holstein–Tavis–Cummings
model.

by adding more and more molecules makes the experimental observation of po-
laritons feasible. Since in many cases the individual couplings are very weak, it is
enough increase the concentration of the molecules within the cavity to enhance
the total coupling. However, as becomes relevant in the next chapter, it also means
that there are many more states at the unperturbed molecular energy ω0 (when
N − 1 ≫ 2). These states do not have any photonic component but rather they are
superpositions over molecular states [53, 54]. They also turn out to be optically
invisible as shown in the next section. Thus, these states are often called dark states
or exciton reservoir in polaritonics literature.

Finally, to end this section, I shortly discuss the model in [I] and [II]. Its motiva-
tion is to describe a cavity and organic molecules with an electronic excitation but
also vibrational states. These two molecular degrees of freedom may be coupled. It
causes Stokes shift: the absorption and fluorescence frequency of molecules need
not be the same. The energy that excites the molecule goes partially to the vibra-
tional modes, to the generation of phonons. The simplest model Hamiltonian that
captures this effect adds to the Tavis–Cummings Hamiltonian a vibrational mode
of frequency ωv for each two-level system [55]. Hence, one more name needs to be
added to the model. It is now called the Holstein–Tavis–Cummings model and it
reads as

HHTC = HTC +
N

∑
i=1

[
ωvb†

i bi +
√

Sωvσ†
i σi

(
bi + b†

i

)]
. (2.22)

The coupling between vibrations and electronic states is characterized, for historical
reasons, by the dimensionless Huang–Rhys factor S [56]. More generally, one can
add multiple vibration modes, each with different Huang–Rhys factors.

The molecular part in the Holstein–Tavis–Cummings model corresponds to the
picture originally thought of by Franck and Condon [57, 58]. Writing vibrational
part in terms of quadrature operators q =

(
b + b†)/

√
2 shows that the vibrational

ground state in the electronic excited state is shifted by
√

S compared to the
electronic ground state. The picture in the eigenspace of the vibrational coordinate q
is thus that of two displaced harmonic oscillators, as in Fig. 1(b). Stokes shift follows
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when the electronic excitation is fast compared to vibrational motion, ω0 ≫ ωv,
and its lifetime long compared to the time scale of vibrational relaxation. That is,
the decay rate of the electronic excitation κm is much smaller than the decay rate of
phonons γ, or κm ≪ γ. The most likely electronic transitions are then those that
do not involve changes in the vibrational state represented by up- and downward
arrows in Fig. 1(b).

2.3 Role of dissipation

In polaritonics, one talks about weak, strong and ultrastrong coupling to categorize
the effects of light-matter coupling. In the previous section, there is however only
a single dimensionless parameter, Ω/ω0, determining the strength of the coupling.
Realistically, the light and the matter interact with their environment leading to
dissipation, which is intimately related to finite linewidths in the optical spectrum.
This gives rise to another parameter relating the polaritonic linewidth Γ to the total
coupling Ω as Ω/Γ. Now, one can identify a regime as weak coupling if Ω/ω0
and Ω/Γ are small whereas ultrastrong-coupling regime is characterized by a
large fraction Ω/ω0 at which point the assumptions of the low-energy light-matter
interaction start to break down [52]. Strong-coupling regime lies between the two.
One can then ask: What is the polaritonic linewidth Γ in terms of the dissipation
rates of the individual systems? Does dissipation affect the optically observed Rabi
splitting?

The exact answers to these questions depend on the models used. They are
answered, in my opinion, in a physically reasonable and pleasing way with the
input-output formalism. I introduce the important ideas by an example calculation
by starting from the literature results and then modifying them based on the
physical setup.

Input-output theory of quantum optics refers to a form of scattering theory.
It can be derived in the typical open quantum system scheme of defining the
quantum system of interest, the environment, and the interaction between the
two [22]. Specifically, it is assumed that, for a system operator a and bosonic envi-
ronment operators bk, the interaction resembles the rotating wave approximated
form ∑k λk(b†

k a + a†bk) with some coupling constants λk. I omit the derivation here
— see e.g. [59]. Importantly, the derivation is done within the Heisenberg picture
of time-dependent operators. The input and output fields are defined in terms of
the environment operators and connected by the system. In terms of the system’s
dynamics, the input field may be seen as external noise on the system while there
is also an associated dissipative term. The dynamical equation of the system could
be called quantum Langevin equation in this point of view. When the input field
is specified with certain correlations, the input-output formalism is equivalent
with the quantum master equation for the density matrix in the Lindblad form
(or Gorini–Kossakowski–Sudarshan–Lindblad equation) providing a Markovian
description of the open quantum system dynamics [59].

Let us then consider an optical cavity which encloses N molecules. Suppose this
system is well described by the Tavis–Cummings model in the single-excitation
subspace. That is, I treat the operators σj in Eq. (2.20) as obeying the bosonic
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FIGURE 2: Schematic input-output pictures. (a) Cavity containing molecules probed by
incoming light (driving) and reflected back; part of the light is emitted to the other side
(detection). The fluctuations from the detection side, depicted by the dashed arrow, are
neglected. (b) The important fields in the example calculation: Specifically, cavity (C) is
driven and it mediates the emission as well. It is coupled to molecules (M) whose direct
fluorescence is neglected.

commutation relations [σi, σ†
j ] ≈ δij. The polaritonic system is probed through

the cavity by driving it with laser light. One can then measure either the reflected
or the transmitted light. For simplicity, I assume that the transmitted light does
not interfere with the driving laser but is really due to cavity leakage. There are
two sets of environmental modes for the cavity: one set allows for the driving
and reflection and the other set allows for the transmission. These are physically
separated by the cavity as in Fig. 2.

The equations of the motion in the input-output formalism are

ȧ = −iωca − i ∑
j

g∗j σj −
κ

2
a −

√
κain, (2.23a)

σ̇j = −iωmσj − igja −
κm

2
σj −

√
κmσin,j. (2.23b)

Here, κ and κm are the dissipation rates for the cavity and the molecules, respec-
tively. I assume here that every mode has an associated and separate bath —
the possibility of transferring energy or information through a common bath is
neglected — but all molecules are similarly coupled to their own baths.

Next, one can divide the input operators based on the environmental modes.
The cavity input operator ain separates into contributions from the driving and
thermal fluctuations. Thus, I denote

√
κain =

√
κextad

in +
√

κintath
in. The drive

couples to the system with the rate κext whereas the thermal fluctuations couple
with κint. In total, κext + κint = κ.

A typical quantum optical description of fluctuations (so-called white noise
approximation) is achieved by setting

〈
ath

in(t)
〉
= 0 and

〈
ath†

in (t)ath
in(t

′)
〉
= nthδ(t−

t′), where nth is the number of thermal photons at the cavity frequency ωc. Since
in the optical regime ωc is much larger than the typical temperature scales, I
approximate nth ≈ 0 here. Since the input-output equations (2.23) are linear, one
can effectively forget about the thermal input operator ath

in. The same holds for the
molecule operators σin,j as I assume that the molecules and the cavity are nearly
resonant, ω0 ≈ ωc. I omit the thermal input operators from the notation.

Formally, input operators depend on the environmental states in the past. In
the same vein, output operators describe the present in terms of the future. These
operators are then connected by the system in the present through input-output
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relations

aout(t)− ain(t) =
√

κa(t) and σj,out(t)− σj,in(t) =
√

κmσj(t). (2.24)

Here, I want to emphasize that these relations provide a “scattering” picture that is
independent of any detectors or such — they really tell only about causality. We
then assign to the cavity output operator ad

out the meaning that it describes really
those fields that connect to the detectors. Further taking into account that there are
two sides to the cavity, I write for the cavity instead

aR
out − ad

in =
√

κR
exta and aT

out =
√

κT
exta, (2.25)

where now κR/T
ext describe the coupling rate to the detectors of the reflected and

transmitted signal. The assumption about the drive and the transmitted radiation
not interfering is encoded by disregarding the input term in the latter equation.

In this dissertation, I focus on measurements which probe the stationary re-
sponse of the system. (As a theoretical tool, input-output formalism works also for
investigating time-dependent response.) A natural observable in this case is the
transmitted power spectral density [60] which is given by

ST(ω) =
1

2π

∫
dτ eiωτ

〈
aT†

out(t)aT
out(t + τ)

〉
, (2.26)

where t can be set to zero due to stationarity. In short, I call this quantity the
(optical) spectrum. A similar quantity can be devised for the reflected power as
well as the driving power.

We have all the tools to calculate the spectrum of the Tavis–Cummings polariton
system. First, note how useful working in Fourier space is for this problem: the
spectrum is a Fourier transform of the autocorrelation function and the linearity of
the equations of motion (2.23) allow for a straightforward calculation. In Fourier
space2,

a(ω) =
1

i(ω − ωc)− κ/2

[
i ∑

j
g∗j σj(ω) +

√
κextad

in(ω)

]
, (2.27a)

σj(ω) =
igj

i(ω − ω0)− κm/2
a(ω). (2.27b)

These expressions gather all the definitions and approximations made so far. They
allow solving the cavity operator a(ω) in terms of the driving field ad

in(ω). They
are linearly related in Fourier space as a(ω) = r(ω)ad

in(ω). If we assume a classical
monochromatic drive of frequency ωd so that ad

in(ω) = αδ(ω − ωd), the spectrum
can be resolved to be

ST(ω) =
∫

dω′
〈

aT†
out(ω

′)aT
out(ω)

〉
(2.28)

= |α|2κT
ext|r(ω)|2δ(ω − ωd), (2.29)

2Here, I choose the convention that the Fourier transform of a function f (t) is given by f (ω) =
1

2π

∫
dt eiωt f (t). It implies that the inverse tranformation f (t) =

∫
dω e−iωt f (ω). Furthermore, the

Fourier transformation of d f
/

dt becomes −iω f (ω). I denote f †(ω) as the Fourier transform of f †(t).
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where the essence of the polaritonic spectrum is contained in the function

r(ω) =

√
κext

i(ω − ωc)− κ/2 + ∑j |gj|2
i(ω−ω0)−κm/2

. (2.30)

It is also important to note that the response under monochromatic drive is equally
monochromatic. There are no inelastic processes included in this model of a cavity
that could modify the frequency.

Let us quickly analyze the polaritonic spectrum, i.e., focus on the function r(ω).
There are four important parameters: the detuning ωc − ω0, the dissipation rates κ

and κm and the total coupling ∑j
∣∣gj
∣∣2 = N ⟨|g|2⟩. If κ = κm = 0 is taken, the

response r(ω) diverges at the Tavis–Cummings polariton frequencies (2.21). The
response vanishes at ω0 which explicitly shows that the other N − 1 eigenstates
are indeed dark. For so small dissipation rates that the polariton frequencies ω±
are hardly modified, the response function on resonance ω0 = ωc simplifies near
these polariton frequencies to

|r(ω)|2 ≈ κext/4

(ω − ω±)2 + 1
4
(

κ
2 + κm

2
)2 , (2.31)

which shows that the polaritonic linewidth Γ is in fact just an average (κ + κm)/2.
(I obtain this by calculating the first-order Taylor polynomial around ω± of the
denominator and then assuming κ, κm are small compared to N ⟨|g|2⟩.) In the same
limit, one can also find the polariton frequencies ω± by finding the extremal points
of |r(ω)|2. On resonance ω0 = ωc, the result is

ω± ≈ ω0 ±
√

N ⟨|g|2⟩+ κκm/4. (2.32)

Thus, it seems that dissipation can increase the observed Rabi splitting. This of
course holds only for small linewidths because, at some point, the polariton peaks
should coalesce if N ⟨|g|2⟩ ≪ Γ = (κ + κm)/2. A few examples of polaritonic
spectra are plotted in Fig. 3.

2.4 Electronic strong coupling and vibrations

As mentioned in Sec. 2.2, the Tavis–Cummings model is not necessarily a good
description of all molecules. Molecular vibrations and their coupling to an elec-
tronic excitation changes the optical properties of molecules. The effect of Stokes
shift on the polaritonic spectrum at first quite unclear. What is the role of the
fluorescence or absorption frequency? Furthermore, vibrations have their own
intricate dynamics and provide another dissipation channel.

These points are motivated by experiments. One experiment was more moti-
vating than others for us: it was observed that the amount of Stokes shift strongly
affected the light emitted from a polaritonic system [61]. There are a few differ-
ent observations. First, the experiment was conducted using surface-plasmon-
polaritons (SPPs) which are strongly coupled to nearby molecules. The radiative
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FIGURE 3: Normalized cavity emission ST for the Tavis–Cummings model. Here, κ = κm
for simplicity. The blue solid curve and orange dotted curve have no detuning, ω0 = ωc,

but in the former κ/
√

N ⟨|g|2⟩ = 0.2 and in the latter κ/
√

N ⟨|g|2⟩ = 2. The gray dashed

line corresponds to the blue one except it is detuned so that ωc − ω0 =
√

N ⟨|g|2⟩.

decay of SPPs is often due to surface imperfections but, nevertheless, the emission
is polarized according to a specific polarization direction set by the bare SPP. So
much so that in the orthogonal polarization almost no emission is observed. This
polarization dependence was changed by coupling the SPP to molecules — the
emission to the orthogonal polarization became possible. Furthermore, the smaller
the Stokes shift of the molecules, the more orthogonally polarized emission there
was. Second, the “symmetry” of the polariton peaks on resonance was changed:
the upper polariton peak intensity decreased as the Stokes shift increased.

Input-output formalism is particularly suited to model this kind of an exper-
iment. It is natural to extend the definition of output fields to include different
polarizations. The role of the polarization is also evident in the light-matter cou-
pling as discussed in Sec. 2.1. In the case of a SPP–molecule system, the molecules
can also directly emit through a thin dielectric layer they are embedded in. This
is the solution we present in [I] to the question why emission is observed in both
polarizations. Even though the surface-plasmon-polariton is driven, the light-
matter interaction transfers energy to the molecules which can radiate it. The
SPP couples only to a certain polarization but the molecules can couple to any
polarization if their dipole moments are not ordered but rather point to random
directions. Furthermore, we expect that the emission from the SPP and molecules
is incoherent.

Let me denote the polarization in which the bare SPP emits by p and the orthog-
onal direction by s. The generalization of the output fields that are “transmitted”,
taking into account all the above points, is

ΣT
out,p =

√
κT

o c +
√

κT
m ∑

j

(
d̂j · ûp

)
σj, (2.33a)

ΣT
out,s =

√
κT

m ∑
j

(
d̂j · ûs

)
σj. (2.33b)

Here, the unit vectors d̂j and û denote the direction of the dipole moment of the
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molecule j and the polarization, respectively. The inclusion of the dot product
between them is in line with what we know about light-matter coupling, Sec. 2.1.

Figuring out the input-output description for such an involved system is one of
the main points of [I]. The other important point is the solution of the input–output
equations involving the Holstein–Tavis–Cummings model. I omit the technical
details here but I shortly discuss the underlying assumptions. I also note that
similar techniques are used in Ref. [62] that worked out the solution independently
of us at the same time.

The vibrational mode brings forth a nonlinear interaction. It is discussed at
length in Ch. 4. For instance, the dynamics of the bosonic operator b of the vibra-
tions depends on σ†σ. This term can be neglected in the single-excitation subspace,
assuming that the molecules are in their electronic gruond state for the most part.
Then, vibrations provide another bath for the electronic excitation mode, exciton
in short, σ. We further assume that there are no induced correlations between the
SPP or cavity mode and vibrations — it represents a mean-field approximation. In
such a case, the input-output equations can be approached using so-called polaron
transformation that diagonalizes the molecular system (i.e., exciton and vibrations)
alone. Considering first molecular spectroscopy, or the input-output equations
without the SPP, allows us to identify absorption and fluorescence functions of
the molecules, A(ω) and F(ω; ωd) respectively [see Eqs. (2.37) and (2.38) below]. I
discuss their mathematical definitions later on but, using Fig. 1(b) as an intuition-
building tool, the absorption should be maximized at ω = ω0 and the fluorescence
at ω = ω0 − 2Sωv if ωd ≈ ω0. In contrast to the cavity case, the molecular vibra-
tions now provide inelastic scattering so that fluorescence at frequency ω depends
on the probe frequency ωd.

The response function r(ω) presented in the previous section is changed to

r(ω)√
κext

=
[
i(ω − ωc)−

κ

2
+ N ⟨|g|2⟩ A(ω)

]−1
. (2.34)

That is, we changed the Lorentzian function [i(ω − ω0)− κm/2]−1 to A(ω). The
SPP response under strong coupling is thus solely defined by the absorption
properties of the molecules.

In the calculation of the polarized emission spectrum, one has to take into
account or model incoherence. That is, we do not wish to accidentally include
coherence between the molecules, e.g., all the molecules are in the same phase.
The light-matter coupling constants gj are important to this end. Note that, in the
dipole approximation, gj ∝ eik·rj where rj is the position of the molecule. In the
experiment [61], the molecules are distributed over much larger distance than the
wavelength of the SPP mode. The phase factor is then randomized uniformly. If
one neglects this dependence (which does not change the polariton eigenenergies),
the fluorescence contains spurious coherence effects, sub- or superradiance. I found
this the hard way as, at first, it didn’t cross my mind that the phases of gj would
matter.

The polarized emission spectrum in this incoherent limit is

ST
s (ω; ωd) = |αr(ωd)|2CsF(ω; ωd), (2.35a)
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ST
p (ω; ωd) = |αr(ωd)|2

[
κT

o δ(ω − ωd) + CpF(ω; ωd)
]
, (2.35b)

where Cp/s are constants determining the rate at which the decay of electronic
excitations is observed. [See Eq. (32) in [I] for the definitions.]

These equations, I think, are the main result of [I]. The emission to s-polarization
becomes possible because of the light-matter coupling and random orientations of
the dipole moments. The absorption modifies the polariton response function r(ω)
which in turn modifies the fluorescence F of the molecules. The p-polarized emis-
sion is partly due to the radiative decay of SPPs and partly due to the molecular
fluorescence. The relative magnitude of these emissions is determined by the trans-
mission rates κT

o and Cp — their ratio is essentially a fitting constant in experiments.
The functions A and F have, of course, definitions that are related to vibrations.

We find that there are two important vibrational correlators. They are expressed us-
ing an operator Qj = exp

[√
S(b†

j − bj)
]

that resembles the displacement operator
of vibrations [63]. The two- and four-point correlators

〈
Q†

j (ω1)Qj(ω2)
〉
= P(ω1)δ(ω1 + ω2), (2.36a)

〈
Q†

j (ω1)Qj(ω2)Q†
j (ω3)Qj(ω4)

〉
= L(ω1, ω2, ω4)δ(ω1 + ω2 + ω3 + ω4), (2.36b)

define the absorption and the fluorescence functions as

A(ω) =
∫

dE
P(E + Sωv)

i(ω − ω0 − E)− κm
2

, (2.37)

F(ω; ωd) =
∫

dω1 dω2
L(ω1, ωd − ω − ω1, ω2)

[i(ω1 − ω0 + Sωv)− κm
2 ][i(ω2 + ω0 − Sωv)− κm

2 ]
. (2.38)

The fluorescence function F is difficult to interpret but the absorption function A
gives rise to a very clear interpretation. The expression of A(ω) is simply the
convolution of the Lorentzian function we have without vibrations, and then a
function P(E) that describes the vibrations. In fact, it has a probability interpreta-
tion due to our choice of the Fourier transformation conventions: P(E) gives the
probability to transform E amount of energy to or from vibrations in the excitation
process. So it simply tells the amount of phonons generated when E > 0. The
negative energies (E < 0) are related to so-called anti-Stokes processes where the
electronic excitations happens from an excited vibrational state. The maximum of
P(E) is roughly at E = Sωv which matches the intuitive picture in Fig. 1(b). Fur-
thermore, thermodynamics dictates that P(E)/P(−E) = exp(−E/kBT) where T is
the temperature of the vibrations. This relation is termed as the detailed balance.
That is, at low temperature, no phonons can be absorbed from the environment
and P(E < 0) = 0. Such functions P(E) have been studied in other contexts,
for instance, in charge tunneling where it would describe the energy absorbed or
emitted to the environment during tunneling [24, 64, 65].

The presence of vibrations breaks the symmetry between the higher and lower
energy polaritons. Theoretically, it is a direct consequence of P(E), the probability
to generate phonons. When a molecule is excited, a part of the energy can go
to vibrations. This energy has of course a lower limit; that no energy went to

20



phonons. It means that the weight of the absorption spectrum moves towards
higher energies. This interferes with the upper polariton peak — a part of the
energy in the polariton state goes to vibrations — and its optical response is thus
weakened.

The essence of [II] is the evaluation of the function P(E) in the case of vibrational
dissipation. One can view this work as an open quantum system generalization
of the absorption function defined by Huang and Rhys in the 1950s [56]. The
function P(E) can be evaluated for an input-output model but our focus is on
a slightly different model. The issue with the input-output formalism is that it
assumes the rotating-wave approximation. It is well suited for optical systems.
The question is about the characteristic frequency scales of the system at hand
and the scale produced by the interaction with their environment — the relaxation
rate. For an optical cavity, ωc ≫ κ typically holds. However, the vibrational time
scales are much longer than those in the cavity. It can thus be that the dissipation
rate γ of the vibrations is of the same order with the frequency ωv, and that the
relevant environmental modes are higher frequency than the vibrations. This
is the case for (quantum) Brownian motion. The vibrational dynamics is then
described by the equations of motion for the position and momentum quadratures,
xj = (bj + b†

j )/
√

2 and pj = i(b†
j − bj)/

√
2, as

ẋj = ωv pj, (2.39a)

ṗj = −ωvxj − γpj + ξ, (2.39b)

where the noise ξ is not white but rather has the autocorrelation

〈
ξ(t)ξ(t′)

〉
=
∫

dω exp
[
−iω(t − t′)

] γω

2πωv

[
coth

(
ω

2kBT

)
+ 1
]

. (2.40)

The noise ξ is specified so that it obeys the detailed balance relation and, so, should
accurately describe thermal fluctuations [66].

The description of the vibrations and their thermal fluctuations allows for the
calculation of the function P(E) and, consequently, the absorption function A(ω).
This alone allows solving the cavity spectrum. The main observation of [II] is that
the observed Rabi splitting is affected by the vibrational dissipation in many ways.
For instance, it becomes dependent on temperature. The larger the temperature,
the larger the molecular linewidth and the observed Rabi splitting.

What I however could not figure out was how to approach the solution of the
fluorescence F. The four-point correlator is rather difficult to solve for. I was only
able to solve it in the limit of no vibrational dissipation γ → 0 in [I]. I find it
rather unfortunate: it would have been nice to confirm that the Stokes shift follows
from vibrational dissipation. That is, if a molecule is excited, it mostly emits at
the fluorescence frequency. On the other hand, it seems obvious that the typical
argument should fail without vibrational dissipation. It would be interesting to
understand how the transition to the Franck–Condon picture in Fig. 1(b) happens
as it must somehow be related to vibrational decoherence on the electronic excited
state.
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Such a regime is less pure from a fundamental point
of view . . . .
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Chapter 3

Polaritonic chemistry: a physicist’s viewpoint

In this chapter, I discuss the possibility of changes in chemistry by the formation
of polaritons. I first give an overview of some important results in polaritonic
chemistry, both experimental and theoretical. Then, I focus on our own work in [IV]
and in [V] which provides some insight into this complex field from statistical
physics. These publications consider vibrational strong coupling and ground-state
reactions so that electronic excitations do not play a role at all.

3.1 Idea of vacuum-modified chemistry

It is evident that light can alter chemical reactions, for there would be no intelligent
life on Earth without photosynthesis. It is equally evident that there are physical
consequences of the electromagnetic vacuum such as the polaritons discussed in
the previous chapter, the Casimir effect [67], and the Lamb shift [68, 69]. Could the
electromagnetic vacuum affect chemical reactions as well?

Over the past two decades, this has been an inspiring question right on the
border of (quantum) physics and chemistry. The intuition is that the formation of
polaritons changes the energetics of molecules, dictating the likelihood of reactions.
The molecules get to borrow some qualities from the light. This requires strong
enough light-matter coupling which means that microcavities or similar fabricated
electromagnetic vacua are needed. At the same time, the hybrid states including
many systems behave collectively, and thus, it would seem natural that the more
molecules participate, the stronger the effect. It seems reasonable if one associates
the vacuum Rabi splitting as the measure of the “total” coupling.

Controlling chemistry by vacuum would clearly have a great technological
benefit, if the effect is strong enough. In practice, the fabrication of microcavities is
relatively straightforward and, so, polaritonic systems should be readily available.
It though seems mysterious to physical intuition. What even is the polaritonic
effect? Does the vacuum somehow enhance or slow down the rate of reactions?
Both have been claimed to happen [70–74], which is in some ways troubling if one
hopes for a generic polaritonic effect. It could be, of course, intimately connected
to specific reactants or molecules or the types of reactions. For a physicist not well-
versed in chemistry it is also slightly troubling. Nevertheless, I was so intrigued by
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the ideas of collectivity and coherence between light and matter that I hoped to
understand at least a part of it.

The field of polaritonic chemistry is young and there is not yet fully-formed
consensus on what is going on. Theoretically, it really is an unsolved problem.
Its difficulty arises from combining quantum electrodynamics and chemistry, and
the fact that computational methods are not readily usable. Furthermore, it is
impossible to simulate the typical experimental realizations of polaritonic systems
which contain a very large number of molecules. We are thus at a point where we
try to build intuition on what is important. I first introduce what other people have
considered and focus then on the main points of [IV] and [V].

3.1.1 Overview of experimental works

I give a quick summary on the present status of claimed effects in polaritonic
chemistry. I roughly outline a few experimental works, but much more detailed
descriptions can be found in several other outstanding reviews [75–77].

Polaritonic chemistry has been investigated both for electronic and vibrational
strong coupling. The important difference between the two is the energy scale:
vibrational energies are typically of the order 10 meV whereas electronic excitations
are several orders of magnitude higher, 1 eV. This restricts the possible optical sys-
tems if they are to provide a resonant effect. Therefore, electronic strong coupling
is commonly studied in plasmonic or sub-micrometer-sized cavity systems with
molecules embedded in a solid environment, while vibrational strong coupling can
be studied in optical cavities supporting microfluidistics (the separation between
the mirrors being of order 10 µm). The size of optical cavities is often further in-
creased by matching higher-order modes of the cavity to the vibrational resonance.
Microfluidistic approach is evidently more useful for applications than embedding
reactants in solids. It also provides, in principle, the possibility to track chemical
reactions by other than optical means.

Let me next highlight some experimental results.
In the case of electronic strong coupling, isomerization of molecules1 has been

claimed to be affected by strong coupling. In this experiment that has marked
a starting point to the field of polaritonic chemistry, tuning the optical cavity
into resonance with one of the excitation energies of a molecule modifies the rate
of isomerization [78]. Another experiment shows that a chemical reaction with
oxygen that destroys optical properties of a dye molecule is greatly slowed down
in a plasmonic system as the vacuum Rabi splitting is increased [79]. The effect
is reportedly not resonant, as in the other example, but rather depends almost
linearly on the detuning between the plasmon frequency ωc and the molecular
excitation energy ω0. The rate is slowed down more when ωc < ω0 than on
resonance ωc = ω0; although, the detuning range is at most roughly ten percent
(i.e., |ωc − ω0|/ω0 ≲ 0.1).

Due to the aforementioned experimental reasons, the focus has recently been
mostly on vibrational strong coupling. The general idea is to couple a cavity

1Isomer refers to a specific configuration of a molecule; isomerization is essentially a process of
changing the shape of a molecule. Different isomers can have different properties.
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to a vibrational mode that is relevant for the chemical process — and since we
don’t really know what is going on, this seems to be an arduous trial and error
approach. Nevertheless, it has been reported that the formation of polaritons can
both slow down [70, 71] and speed up reactions [73, 74]. A common theme in
these reports is that the polaritonic effect is resonant and, often, the magnitude of
the effect is proportional to the Rabi splitting. Furthermore, the cavity vacuum
mode can reportedly induce a change in the ratio of two different reaction rates,
effectively allowing for the selection of the predominant reaction product from a
single reactant [72]. It has also been claimed that underlying molecular symmetries
of vibrational modes play a role in determining the modification due to the vacuum
field [80].

As interesting and seemingly many-faceted the reported effects are, some sci-
entifically necessary asterisks must be added. There are only a few groups in the
world providing these inspiring experimental results — in fact, I have referenced
only works from three groups. Furthermore, these are not straightforward experi-
ments as one has to have great control over both optics and chemistry. A few failed
replication attempts have been reported [81, 82]. Especially, Ref. [82], which tries
to replicate the experiment in Ref. [73], fails to see any polaritonic effect.

3.2 Understanding polaritonic chemistry

There are many theoretical approaches to polaritonic chemistry — so many in fact
that there are even reviews on them [83–87]. Here, I give a very biased overview,
focusing on the analytical results within a subsection of polaritonic chemistry
concerning ground-state reactions. This means that there is no discussion on
the modern computational techniques like density-functional theory (DFT) and
quantum mechanics/molecular mechanics (QM/MM) simulations in the context
of polaritonics. I genuinely believe that there must be a way to understand the
issue from some simple physical principles and illustrations. To limit the scope, my
focus is on reaction rates and how they are affected by the formation of polaritons.

Before going on with the discussion on polaritonics, there is a need to go
through some nomenclature and theoretical framework of physical chemistry.

3.2.1 Physical picture of chemical reactivity

Chemical reactions are categorized into adiabatic and diabatic reactions [88, 89].
The notion comes from the fact that chemistry involves molecules, and the interac-
tions between the electronic and nuclear degrees of freedom depend on the specific
molecular system. In the adiabatic regime, the electrons are assumed to equilibrate
much faster than the nuclear motion. This is formalized in the Born–Oppenheimer
approximation which separates the wavefunction of the molecule into nuclear and
electronic degrees of freedom. Effectively, it allows one to think of reactions hap-
pening on a potential energy surface depending only on nuclear coordinates while
the electronic system is integrated over. One may extend this line of thought to
excited states as well. This is particularly useful in photochemistry [89] but, other-
wise, it is often enough to focus on the ground state. The diabatic, or nonadiabatic,
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FIGURE 4: One-dimensional potential energy surface V(q) entailing two states, denoted by
coordinates q±, separated by an energy barrier.

reactions are those where the time-separation argument fails. The electronic system
becomes partially excited during the nuclear motion. This can be represented by an
effective interaction between the different electronic states, and, if this interaction
is small, the Fermi golden rule should hold to a good approximation.

I should note that both [IV] and [V] consider toy models of adiabatic ground-
state reactions. They are the focus here. I review their basic description here for
reference.

The adiabatic reactions may be classically characterized with a potential V(q)
where q represents the nuclear coordinates [90]. The different molecular states
are identified as the minima of the potential. In this regime, the crown jewel of
reaction rate theories is the transition state theory. The mental model it provides
seems to be popular and well-utilized, and it supports naturally some quantum
modifications.

The principal idea of the classical transition state theory can be elucidated for
an one-dimensional potential V(q) describing a molecular system. For simplicity,
let us assume there are two minima separated by a potential barrier as in Fig. 4.
When the molecule is in contact with a heat bath, it is expected that there are
transitions between the two minima due to thermal activation. The nature of the
argument is then statistical: if the molecule is prepared so that it is initially in
one of the states, there is over time a finite probability to find the molecule in the
other state as well. However, it is often prohibitive to calculate the full probability
distribution in terms of the position q and time t. The transition state theory solves
this problem by instead considering only the flux of probability or population
over the barrier. That is, the transition rate is assumed to be proportional to the
probability to find the molecule in a state that corresponds to the coordinate q at
the maximum of the potential and with a momentum p that leads the molecule into
the other state. Concretely, let us fix that q = 0 corresponds to the maximum point
of the potential (i.e., the transition state) and the molecule is initially prepared in
a state that corresponds to negative q = q−. The transition rate to the state with
positive q = q+ is given by

Γ = ⟨δ(q)θ(p)p/m⟩ . (3.1)

Here, θ(p) is the Heaviside function, δ(q) is the Dirac delta function, and m is
the effective mass of the mode. The probability distribution of coordinates and
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momenta is then argued from statistical physics. Since the molecule is prepared
in the state around q = q−, the initial distribution would be well approximated
even if the other state at q = q+ was neglected. It however requires that the
rate of transitions is much slower than the internal dynamics within the well.
Effectively, this argument amounts to a harmonic approximation of the poten-
tial V(q) around q−. Then, the likelihood P(q, p) for the coordinate and its asso-
ciated momentum to have values q and p, respectively, follows the Boltzmann
form P(q, p) ∝ exp[−H(q, p)/(kBT)] when the heat bath enclosing the molecule
is at temperature T and H(q, p) is the classical Hamiltonian, or the energy, of the

molecule. Now, H(q, p) ≈ p2

2m + 1
2 mω2

0(q − q−)2. This avoids the potentially diffi-
cult calculation of the full partition function, let alone the full dynamical problem.
Thus, evaluating the expectation value gives

ΓTST ≈ ω0

2π
exp

[
−V(0)

kBT

]
, (3.2)

which can be identified with the Arrhenius rate expression.
This idea is readily extended to describe more involved systems. The main

problem becomes the identification of the transition states and relevant reaction
pathways. Somehow, the multidimensional information residing in the nuclear
coordinates q must be projected to a one-dimensional space. Without dwelling in
the issues of uniqueness of the transition state and other issues, the same argument
can be generalized to multidimensional system [90, 91]. The resulting equation is
known as the Eyring equation [92] and it reads as

Γ = κ
kBT

h
Z ̸=

Zi
exp

(
− Eb

kBT

)
. (3.3)

Here, Eb refers to the potential energy barrier [instead of V(0)]. The partition
function Zi is evaluated in the well from which the transition happens, typically in
the harmonic approximation. The quantity Z ̸= is formally identified as a partition
function at the transition state: For a multidimensional system, this state should be
at a saddle point of the full potential V(q) with only a single unstable mode. The
harmonic approximation at the transition state is utilized again in the calculation
of Z ̸= which contains all other modes except the unstable one. Furthermore,
both Zi and Z ̸= can be calculated in the quantum regime, resulting in quantum
transition state theory. The modification due to multiple degrees of freedom is
sometimes called the Grote–Hynes factor κGH = Γ/ΓTST . Lastly, κ is an ad hoc
transmission coefficient characterizing the recrossings back to the initial well which
could have been included in the one-dimensional rate expression as well. Here,
κ = 1 everywhere.

3.2.2 Overview of theory efforts in polaritonic chemistry

The analytical efforts to describe polaritonic chemistry of adiabatic ground-state
reactions are best summed as modifications of the transition state theory result (3.3).

Due to the complexity of the full N-body polaritonic problem, there has been
considerable focus on single-molecule polaritonic chemistry. In these cases, it
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has been noted that the Grote–Hynes factor κGH can provide cavity frequency-
dependent changes to reaction rates [39, 93]. This assumes that the transition
state has an associated dipole moment. In the simplest case of a one-dimensional
molecular potential, it reads as κGH = λ/ωb, where ωb is the barrier frequency —
ω2

b ∝ − ∂2
qV(q)

∣∣∣
q=0

in Fig. 4 — and λ is the barrier frequency modified by the light-

matter coupling. The latter frequency λ is obtained by substituting to the lower
polaritonic eigenenergy E− in Eq. (2.17) that ω0 → −ωb under the rotating-wave
approximation. In this model, the cavity decreases the reaction rate if the barrier
frequency ωb, not the well frequency ω0, is in resonance with the cavity.

A particularly transparent calculation for an N-body system is provided by
Zhdanov [94], who also uses one-dimensional potential surfaces for molecules.
The main assumption is that the reactant well is at resonance with the cavity while
the product well and the barrier frequency are either so far detuned that the light-
matter coupling to them can be neglected or that they are simply optically inactive.
The quantum mechanical model describing the reactant molecules and the cavity
is the Tavis–Cummings model with equal coupling constants gi = g (although, it
is called Dicke model in the article). The calculation then proceeds with using the
eigenenergies (2.21) to calculate the energy barrier and the quantum mechanical
partition functions when, in the transition state, one of the N molecules resides
on top of the potential barrier. The transmission coefficient κ is assumed to be
unchanged by the coupling. In the leading order of the Rabi splitting Ω, this results
in the reaction rate Γg that reads as

Γg

Γ0
≈ 1 +

Ω2

4N(kBT)2

(
kBT
ω0

− e−ω0/kBT

[
1 − e−ω0/kBT

]2

)
, (3.4)

where Γ0 is the reaction rate without the cavity. The term in brackets is negative
when kBT ≳ ω0 and positive otherwise — if temperature is high, the rate is
decreased. More importantly, this result clearly shows the scaling with respect
to N: Even though the Rabi splitting Ω is compared to the temperature, only one
of the N molecules can be in the transition state resulting in an extra factor of
N in the denominator. Since at resonance Ω = 2

√
Ng, the factors of N exactly

cancel and Ω2

4N(kBT)2 = g2

(kbT)2 . Truly, one compares the single-molecule light-matter
coupling strength to the temperature which is assumed to be small in experiments.
Thus, there appears to be almost no change in the reaction rate, Γg ≈ Γ0. Similar
considerations and conclusions are present in a few other works [38, 95]. It has been
further noted that if one treats the nuclear and photonic coordinates classically,
the energy barrier Eb is changed only by the N-independent dipole self-energy
term [38].

There is also a contrasting viewpoint. Yang and Cao have argued that the
collective effect of polaritonics is similar to the difference between the Jaynes–
Cummings and Tavis–Cummings models [93]. That is, it is implied that one could
use the single-molecule (N = 1) reaction rate modification and then further modify
the rate by replacing g →

√
Ng. This is mechanistically in line with what is

presented in Sec. 2.2 but seems to be at odds with the saddle point formulation of
the multidimensional transition state theory.
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3.3 Quantum tunneling regime — a toy model

My initial idea was this:
By definition, the existence of polaritons is due to coherence or, to be more exact,

coherent exchange of energy between light and matter. At the same time, quantum
tunneling is a coherence phenomenon as it follows from the wave-like qualities
of matter. They could be intimately linked and the polaritonic effect would be
explained as a genuine quantum effect.

The coupling of a tunneling system to a cavity does change its tunneling rate.
However, this does not depend on the number of systems which means that the
effect is not collective. For this reason, as the result closely mirrors that in the
thermal activation regime [Eq. (3.4)], I pondered a lot whether or not to write it
down. I concluded that I should; the result is [V].

Polaritonic quantum tunneling is nevertheless interesting as it can be compared
to the reported high-temperature results. For instance, Eq. (3.4) implies that the
reaction rate increases very slightly when kBT < ω0. Polaritonic tunneling gives
another type of insight and, furthermore, it is a difficult problem whose solution
might have some relevance for other hybrid quantum systems as well. This is
because the tunneling of a polaritonic system concerns very many systems. It
greatly differs from the typical setting where a single system, perhaps coupled to a
dissipative environment, escapes a potential barrier.

Finding a suitable approach to polaritonic quantum tunneling took a while. I
became somewhat familiar with the approaches and viewpoints of both physics
and chemistry. Within physics the literature is already vast [90, 96–100]. Tunneling
is relevant to fields like cosmology, particle and nuclear physics, and condensed
matter theory [97, 101]. In chemistry, the focus is more on quantum corrections and
theoretical generalizations for thermally activated processes [102–104].

The method I eventually ended up using to describe polaritonic quantum
tunneling is called the Im F method, Im F referring to the imaginary part of the
free energy [96]. It was developed in the 1960s by Langer in the context of bubble
nucleation [105]. The approach is differs quite a lot from, e.g., the transition state
theory and can be devised fully in the quantum formalism.

Consider again a two-well system as in Fig. 4 with a large energy difference
between the wells. When the temperature of the environment is very low compared
to other energies, there is no thermal activation. Thus, the only way the system can
relax is by tunneling through the barrier. This relaxation means that all the states
in the metastable well have a finite lifetime. In the Hamiltonian formalism this is
a problem because these states are not proper energy eigenstates. If we were to
disregard this, however, we could proceed with writing the partition function for
the metastable well alone,

Z = ∑
n

e−βEn → e−βE0 when βEn = En/kBT ≫ 1. (3.5)

Here, E0 represents the lowest energy in the system. Now, still suspending the
disbelief on Hamiltonian formalism not holding here, we can deduce that E0 must
also contain the information about the finite lifetime. If the system was somehow
initialized in the lowest energy state, its probability to remain in the state should
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decay in time. Since this probability is given by |exp(itE0)|2, the only resolution is
that E0 contains an imaginary part, that is,

|exp(itE0)|2 = |exp(it Re E0 − t Im E0)|2 = exp(−2t Im E0) ̸= 1. (3.6)

A finite and constant decay rate Γ = 2 Im E0 can now be related back to the partition
function Z and the free energy F as

Γ = − 2
β

Im lnZ = 2 Im F, (3.7)

where the free energy is defined as in statistical physics by F = − lnZ/β. Even
though my argumentation here seems rather sketchy, it can be shown, through
rather complex analytical continuation tricks, that the classical transition state
theory can be derived in the same way from an imaginary part of a classical
partition function — only the prefactor changes [98, 106].

There is a wealth of literature on how to calculate the imaginary part of the free
energy, especially in the limit of low temperature [96–98, 101]. The central idea
is to use path integral formalism in semiclassical approximation to evaluate the
partition function Z = tr

(
eβH). It amounts to finding classical periodic solutions

in an inverted potential and the quadratic fluctuations around them. In the low-
temperature limit, these solutions are called instantons.

The Im F method is suitable for polaritonics because it naturally extends to
many degrees of freedom. For instance, without doing any difficult calculations, it
is straightforward to infer the tunneling rate of N independent and distinguishable
systems. That is, if a single system has a tunneling rate Γ0 = −2 Im lnZ0/β, then
the factorization of partition functions for the N-body system, Z = ZN

0 results
in the total tunneling rate Γ = NΓ0. The Im F method has been utilized in open
quantum systems extensively because one can naturally introduce an environment
for the tunneling system and integrate it out. One of the landmark results is by
Caldeira and Leggett who showed that friction or dissipation leads to exponential
suppression of the tunneling rate [107]. In [V], I however neglected the coupling
to the environment and the dissipation it produces, as the main focus was on the
collective polaritonic effect: How does the polaritonic quantum tunneling rate
depend on the number N of systems?

The model I used in [V] for the molecular potential is as simple as possible
in order to have a solvable problem. In the spirit of the transition state theory, I
assume that there is a metastable potential where the system, a molecular degree of
freedom, is trapped. The presence of the true potential minimum is neglected. The
potential V(q) of a single system is assumed to depend only on a single coordinate q.
Furthermore, the coupling to the vacuum of the cavity is through this coordinate.
This is in line with the dipole approximation presented in Sec. 2.1. The Hamiltonian
of the tunneling system is

H =
1
2

N

∑
i=1

p2
qi
+

1
2

p2
x +

N

∑
i=1

V(qi) +
1
2

ω2
c x2 +

√
ω0ωc

N

∑
i=1

gixqi, (3.8)

V(q) =

{
1
2 ω2

0q2, q ≤ a,

−∞, q > a,
(3.9)
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where x is the single-mode cavity quadrature of eigenfrequency ωc. Here, pqi and
px are the momentum associated with qi and x, respectively, and they have been
rescaled so that they contain the effective masses of the modes. The reasoning
for this kind of model is that, in the potential well, the energy levels with finite
lifetime are reasonably well approximated by a harmonic oscillator. (Formally, this
is true at least in the a → ∞ limit.) Thus, this is nothing but a metastable version
of the Tavis–Cummings model discussed in Sec. 2.2 without the rotating-wave
approximation.

I quote here a simplified version of the low-temperature tunneling rate modifi-
cation caused by the cavity, as it serves as a starting point for the next section as
well, leaving all the details in [V]. In the strong-coupling regime, the presence of
the cavity modifies the total tunneling rate (which is proportional to the number N
of systems) by a factor

r =
Γ(N)

NΓ0
≈
〈

ωH
ω0

exp
[
−S0

(
ωH
ω0

− 1
)]〉

. (3.10)

Here, Γ0 refers to the single-system tunneling rate without the light-matter cou-
pling and S0 = 2Eb/ω0 is the bare action determining Γ0 as Γ0 ∝ e−S0 . In the
high-temperature limit, S0 = Eb/(kbT) as in the Arrhenius rate expression. The
angular brackets remind that if the light-matter couplings gi have some distribu-
tion, we should average over it. The polaritonic effect is tidily contained within the
harmonic mean frequency defined as

ωH
ω0

=
N
〈

g2〉

N⟨g2⟩−g2

ω0
+ g2

(
1+δ

2
1

ω+
+ 1−δ

2
1

ω−

) , (3.11)

where ω± are the polariton eigenfrequencies and δ = (ω2
0 − ω2

c )/(ω2
+ − ω2

−) de-
scribes detuning. The light-matter couplings are as if weighing factors of the
harmonic mean. Importantly, however, the bare frequency ω0 obtains a weighing
factor proportional to the number N of systems whereas the polariton frequen-
cies ω± have a weight of unity. This corresponds to the picture of the eigenstates
discussed in the context of the Tavis–Cummings model. Thus, when the number N
of systems is large and the individual couplings small, no modification is to be
found and r ≈ 1. Moreover, the polaritonic effect appears not to be resonant as the
tunneling rate is not maximized at ω0 = ωc.

3.4 Collectivity from classical theory

There are many ways to approach a difficult physical problem. More often than
not, however, the first approach is quite similar independently of the problem.
To use the case of polaritonic chemistry as an example, this first approach is to
take well-known theories concerning reaction rates and try to modify them to
accommodate polaritons. If it works out then it is done. If it does not, well, then
there is truly a problem or even a crisis. The resolution in physics is often that
one had to think about the underlying principles of the theory carefully. However,
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without taking the first approach and seeing it fail, it is very difficult to come to
understand the cause of the problem.

After a lot of thought, we at least see one failure of the reaction rate theories
when naively applied to polaritonics. This applies to the whole quantum tunneling
calculation as well.

Consider the expression in Eq. (3.10). It seems to imply that the rate of escape
from a metastable potential per system is Γ(N) = r(N)Γ0, where I have explicitly
denoted the dependence on the number N of trapped systems forming the polariton
states. Presumably, this relation should describe how the number N of trapped
systems evolves. Since Γ describes the instantaneous rate of escape, I would write

d
dt

N = −Γ(N)N (3.12)

as the equation that determines the population N(t) at time t. It definitely makes
sense without the polaritonic interaction in which case Γ(N) = Γ0 leads to an
exponential decay of the population.

Is this accurate for an interacting system in general? No, it is not. Rather, it
seems that we have inadvertently assumed something about the system. I will
argue this from another perspective.

Let us consider an alternative, probabilistic description for the N trapped
systems. When pj(t) is the probability to find the jth system still trapped at time t,
the expected value of systems is ⟨N⟩ = ∑j pj(t). Intuitively, the probability pj(t)
must decay in time. I shall conjecture, as many have done, that this probability
decays according to an equation similar to the number of systems, that is,

d
dt

pj(t) = −Γj pj(t), (3.13)

where the rate Γj could depend on the system. Here, the different systems can
couple differently to the cavity, and they may not behave identically anymore. The
question is whether or not Eq. (3.12) corresponds to summing over Eq. (3.13) which
gives

d
dt

⟨N⟩ = ∑
j

Γj pj = ⟨Γ⟩ ⟨N⟩+ ∑
j

δΓj pj, (3.14)

where I have divided the rate into a mean and a deviation as Γj = ⟨Γ⟩+ δΓj. If we
identify N in Eq. (3.12) with the expectation value ⟨N⟩, it appears that some kind
of mean-field approximation has been made. I have neglected the fluctuation of
the rates. Furthermore, it is not clear if ⟨Γ⟩ corresponds to Γ(N) when the number
of systems is not fixed from the start.

The beginning of this story is mostly rationalization after writing [IV] to be
perfectly honest. At first, our focus was including all the molecular states and
not just the one from which the system escapes. These other states were fully
neglected in the quantum tunneling calculation — including them is fairly difficult.
The intuition was and is that all the molecules forming the polariton must know
each other. They can discuss through the vacuum of the cavity, after all, even if
they are in different states. Somehow this should be represented by the transition
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rates Γj. This line of thought became clearer to us after a presentation by Mark
Dykman on atoms in magneto-optical traps in the context of time crystals [108]. A
fully distinct physical system leads to similar modeling considerations but with an
entirely different interpretation.

Often, Eq. (3.13) is called a master equation [109, 110]. It is straightforwardly
generalized to multiple states. Dropping the system index j for now and denoting
the possible states by Greek letters, its general form reads as

d
dt

pµ(t) = ∑
ν

Γνµ pν(t)−
(

∑
ν

Γµν

)
pµ(t). (3.15)

Here, Γµν describes the transition rate from the state µ to the state ν. The change
of probability is related to the difference between the inflow (first term) and the
outflow (second term) of probability. This equation encodes the fact that the total
probability ∑µ pµ does not change and so it can be set to unity.

The master equation provides an evidently Markovian description of a system.
The likelihood of transitions between different states depends only on the state of
the system at that time. Here, it is justified by the separation of time scales: rate of
transitions is assumed to be small compared to other internal frequency scales [90,
109, 110].

An important realization is that Γµν’s must be related to thermodynamics.
Considering a classical system of fixed number N of constituents in a thermal
bath of temperature T and some energies Eµ associated to the state µ, the thermal
equilibrium should correspond to the Boltzmann distribution

pµ(t → ∞) ∝ exp
(
− Eµ

kBT

)
, (3.16)

where kB is the Boltzmann constant. If the system thermalizes and the stationary
state of the system corresponds to the Boltzmann distribution — as we may assume
for a polaritonic system which is not driven — the issue is resolved by assuming
that

Γµν

Γνµ
= exp

[
Eµ − Eν

kBT

]
. (3.17)

This assumption is called the detailed balance, since it fixes the in- and outflow of
probabilities to be the same in the stationary state ( d

dt pµ = 0) [109].
In [IV], the principal idea is that the detailed balance may be used in conjunction

with a simple model for polaritonic energies to describe the collective stochastic
behavior of a polaritonic system. The states and their energies are associated
with the minima of a potential function that mimics Eq. (3.8). The molecules
themselves are described by a potential with two minima as in Fig. 4. The minima
are associated with molecular states (in chemistry, for instance, the reactant and
product state of a unimolecular reaction).

In the polaritonic system, different molecules effectively interact through the
cavity. Modifying the state of one molecule will affect the cavity state which in turn
will affect another molecule. The strength and the type of the interaction depends
on the light-matter terms gjxqj. Compare this term to the classical example of

33



spring connecting two masses at x and qj. It is otherwise the same but, now, we can
have either repulsive or attractive interactions described by the sign of gj. Though,
the only thing that can matter is the sign difference due to the U(1) symmetry of the
vacuum field. (There cannot be an observable change in physics if we transformed
x → −x.) The effective interactions between molecules are of the second order
in the light-matter coupling — the effective coupling between molecules j and k
is then proportional to gjgk. The total potential energy of the polaritonic system
depends on the state of every molecule through these effective couplings. More
technically, the potential energy minima which we associate to molecular states
change. The cavity induces a potential energy term that depends on the collective state —
whether the molecules are in one minimum or in the other.

This results in collective behavior that drastically differs from the “mean-field
picture” of using transition rates calculated by e.g. transition state theory within the
master equation. We even predict spontaneous symmetry breaking: Even if the two
molecular states had the same energy, all the molecules would go to the same state
because of the cavity-induced interaction. This requires only two conditions. First,
the Rabi splitting must be large enough. This is easy as we can simply increase the
number N of molecules. Second, the effective interactions between the molecules
should be of roughly equal strengths. That is, the light-matter constants gj should
be similar or, more technically, the standard deviation of g’s should be small
compared to their average. If this latter condition is not fulfilled and there is a large
range of couplings, the polaritonic system does something peculiar: it minimizes
the energy by separating the molecules based on their coupling constants gj. Those
with a larger coupling will go to another state than those with smaller coupling.
For example, one can imagine a case where half of the molecules have a coupling
constant g0 and the other half has exactly the opposite phase coupling −g0. The
molecules with the same coupling attract one another while those with different
sign repel — and so, the two halves predominantly have different states. This
describes phase separation based on the light-matter coupling which does not
change the macroscopic number of reactants and products in the steady state.

I note that these changes to the stationary state of the polaritonic system are
reflected in the transition rates. The attractive interaction between molecules slows
down the reaction rates.

In polaritonic chemistry experiments, I expect that the variance of g’s is large.
This means that phase separation is more likely but it would be difficult to confirm
and the fluctuations in the light-matter couplings may destroy it. Again, the effect
is not resonant because the cavity frequency ωc describes only how difficult it is for
the molecules to change the cavity state. The dimensionless parameter describing
the light-matter interaction turns out to be Ω/

√
ω0ωc, i.e., the Rabi splitting is

compared to the eigenfrequencies in the system. This kind of a thermodynamic
argument does therefore not produce an effect that is directly relatable to existing
experiments. However, if the disorder leading to different light-matter couplings
can be or is experimentally removed, we predict that the formation of polaritons
has a strong effect on chemistry and can even cause a phase transition.

Our work in [IV] shows an approach to collective reactivity that is far removed
from the perspective of the transition state theory. Furthermore, it highlights that
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the distribution of light-matter coupling constants g has an observable effect. It
is surprising in the sense that this distribution does not change the polaritonic
eigenenergies which depend only on ⟨g2⟩. But it really does change the effective
(repulsive or attractive) interactions between molecules which affect the underlying
collective chemistry.

What is curious about this classical argumentation and consequent results is that
it seems fully incommensurate with the quantum tunneling calculation presented
in the previous section. Even if one takes into account the fact that the tunneling
rates are dependent on the individual light-matter couplings gi, the results remain
different. The only resolution I see is that the presence of the true minimum energy
state, not just the metastable one, plays an important role. It seems impossible to
“factorize” the polaritonic system in a way assumed by the transition state theory
and the quantum tunneling calculation. For collective systems, these approaches
give only a part of the picture.
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Inexhaustible
The strength of fire is running through me
Spine like beam of light
What mortal could ever break this force?

Joseph Duplantier
Gojira – Backbone

From Mars to Sirius
(Prosthetic Records, 2005)
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Chapter 4

Optomechanics: nonlinear interactions

There is a world of hybrid quantum systems beyond polaritons that are character-
ized by bilinear Hamiltonians. These nonlinear systems are the focus of the present
chapter. I use so-called cavity optomechanics as a prototypical example. Our work
in [III] considers magnomechanics that is closely connected to this field. Here, the
main role is reserved for a detailed understanding of opto- or magnomechanical
interactions while the openness of such systems plays more of a supporting role.

4.1 Cavity optomechanics

Whereas polaritons are formed by a coherent exhange of energy between two
systems, optomechanics follows if one system can alter the resonant frequency of
another system. In cavity optomechanics, this idea becomes reality: mechanical
motion of the cavity itself causes a change in its resonant frequency [111, 112]. This
nonlinear interaction between light and matter is mediated by a radiation-pressure
force.

Optomechanics has profoundly elucidated the boundary between quantum and
classical worlds. The optomechanical interaction has been used to cool macroscopic
mechanical resonators close to their quantum mechanical ground state [113, 114].
Two such resonators have been entangled with its help [20, 21, 115, 116]; a famous
point of contention in the early days of quantum mechanics [117]. The control
of these systems has allowed for establishing relationship between the entropy
cost and accuracy of clocks [118] as well as sensitive and even quantum-limited
measurements [119–121]. Of applied interest is the signal processing made possible
by optomechanical nonlinearities [122, 123] and the fact that optomechanics could
work as a mediator or an interface of quantum information between different
physical systems [4, 124, 125].

Optomechanics can be understood from elementary physical arguments. Con-
sider a standing wave between two parallel plates. If one plate is fixed but the
other one is allowed to move while remaining parallel, the standing wave has
to change. Let us assume some initial distance L between the plates and a small
displacement x in the moving plate. From the physics of waves we know that a
standing wave is possible only if there is exactly an integer amount of half wave-
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lengths λ/2 between the plates. This relation reads as L + x = mλ/2 with m being
an integer. Let us assume it is independent of the speed v of the wave. Then, the
frequency f of the standing wave is

f (x) =
v
λ
=

mv
2

· 1
L + x

=
mv
2L

[
1 − x

L
+
( x

L

)2
+ . . .

]
. (4.1)

When the displacement x is small compared to L, that is, |x| ≪ L, we may neglect
all terms beyond the first order term x/L to a good approximation.

I inadvertently define the displacement x so that x > 0 corresponds to mov-
ing the plates away from one another. This is reflected in the sign of x in the
frequency f (x). Farther the plates, lower the frequency. If such directionality did
not exist, the standing wave would not be affected by the motion at all and there
would be no optomechanics to speak of.

For a wide range of media the standing waves within them are well described
by harmonic oscillators. This is the case for the electromagnetic vacuum within
a cavity, for instance. The energy stored in the standing waves in the quantum
description is thus

H = h f (x)a†a ≃ h̄ω0(1 − x/L)a†a, (4.2)

where ω0 = 2π f (0) = mπv/L is the bare eigenfrequency of the standing wave
while x is still treated classically. Curiously enough, the radiation-pressure force is
now encoded into this elementary model: the classical force on the moving plate is
given by F = −∂x ⟨H⟩ = h̄ω0

L n where n =
〈

a†a
〉

is the expected number of photons
in the system. Again, the signs matter as a positive force means that the plates
are pushed apart by the standing waves. It seems reasonable, considering that the
wave is reflected at the plates.

Finally, optomechanical interaction is obtained by claiming that the motion of
the moving plate can be described by a harmonic oscillator as well. Then, the total
energy of the optomechanical system is

H = h̄ω0a†a + h̄ωmb†b + h̄ga†a(b + b†). (4.3)

This conventional form of the Hamiltonian follows from denoting the mechanical
eigenfrequency by ωm and the optomechanical coupling by g = xZPM ∂ f

/
∂x
∣∣
x=0,

where xZPM is the quantum mechanical zero-point amplitude defined by x =
xZPM(b + b†).

In this simple example, we found only a nonlinear interaction between light and
matter. What if there is a linear interaction present, for instance a†b + b†a? In cavity
optomechanics, they are often neglected because the typical optical frequency is
many orders of magnitude larger than the mechanical one, ω0 ≫ ωm. Similar to
the idea of rotating wave approximation, the operators in the interaction are in the
interaction frame a → ae−iω0t and b → be−iωmt so that a†b rotates at a frequency
ω0 − ωm which is fast compared to ωm. Neglecting the linear terms is another form
of the rotating wave approximation.

In practice, one successful type of an optomechanical system has been an elec-
tric microwave circuit with a mechanical element. The cavity is then essentially an
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LC-oscillator. In these approaches, mechanical motion modulates the capacitance of
the circuit which in turn modifies the resonant frequency. Alternative optomechan-
ical systems that more clearly correspond to the above model include patterned
photonic crystals [113] and flexible optical cavities [126, 127]. The derivation of the
Hamiltonian in each case matches that of Eq. (4.3) with a different frequency f (x)
and a different mechanical mode x.

4.2 Magnomechanics

Magnomechanics is a magnetic variation of cavity optomechanics. Simply put, the
idea is to replace the often-used microwave cavity by a ferromagnetic resonance
(FMR). The opto- or magnomechanical coupling is caused by magnetic shape
anisotropies that change the FMR frequency.

This is a relatively new idea. The first experimental evidence of the magnome-
chanical coupling in the sense of Eq. (4.3) was published in 2016 [128] and, as far as
I know, there is only one other experimental work at the time of writing [129]. Both
of these experiments employ a ferromagnetic sphere embedded in a microwave
cavity. The idea, more or less, is to drive the microwave cavity which interacts with
the magnetic degree of freedom, FMR, which in turn excites vibrational modes of
the sphere due to the magnetoelastic interaction. The cavity works as a lens to the
magnomechanical system.

Besides the physical interest of replacing an optical system by a magnetic one,
there is a technological benefit. Optomechanics in the microwave regime has had
prolonged success and, the name notwithstanding, the typical wavelengths of light
are then of the order of millimeters. This constrains how small the elements in
the resonator can be — of the order of millimeters. It might not seem like much.
However, it makes quantum information applications with many such systems
impractical. A quantum computer capable of full-fledged error correction based
on microwave technology and trapped ions requires a chip larger than a football
field if it is to factorize a 1024-bit number [130]. Without the microwave cavities,
the optomechanical systems could be much smaller, and magnetic systems offer an
interesting alternative in that regard. Furthermore, magnetic systems have more
parameters, more knobs, to tune such as an external magnetic field. These allow
for a tunable magnomechanical coupling.

4.2.1 Ferromagnetic resonance

The magnetization of a ferromagnetic sample can be made to precess at a rate
that depends on external factors. This precession is the FMR. As in the case of
nuclear magnetic resonance or other spin resonances, it can be seen by applying
a strong static magnetic field to the sample and probing it with an alternating
magnetic field oriented in the perpendicular direction relative to the static field.
Fundamentally, ferromagnetism is caused by the angular momentum carried by
the electrons of the material, but FMR is a phenomenon well understood from
classical electromagnetism [131].
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If a ferromagnet consists only of a single domain, its magnetic state is described
by a single magnetization vector M, independent of the position within the magnet.
Subjecting the magnet to an external magnetic field H results in an effective mag-
netic field Heff within it. This effective field includes the response of the magnet to
the external field — this is to be discussed at length. In any case, the magnetiza-
tion M and the effective field Heff interact. They would prefer aligning with one
another and, thus, the magnetization experiences a torque. Dynamically, this is
described by the equation of motion

dM
dt

= −γM × Heff − λM × (M × Heff), (4.4)

which is also called the Landau–Lifshitz–Gilbert equation [132]. The proportional-
ity constant γ in the torque is the gyromagnetic ratio which can vary from the free
electron value in different materials. The damping, or dissipation, is represented
by the latter term proportional to λ which is a phenomenological parameter. Physi-
cally, this equation is constructed so that it describes a rotating magnetization; for
all times, the magnitude of the magnetization remains constant. Its value is called
the saturation magnetization MS = |M|.

The ferromagnetic resonance mode is the time-dependent solution of Eq. (4.4).
(The time-independent solution is that M is parallel to Heff.) For a constant ef-
fective field Heff in the z direction and in the absence of dissipation, λ = 0, the
magnetization in the x and y directions is given by Eq. (4.4) as

(
Mx(t)
My(t)

)
= exp

[
γ|Heff|t

(
0 −1
1 0

)](
Mx(0)
My(0)

)
(4.5)

≡
(

cos(ωKt) − sin(ωKt)
sin(ωKt) cos(ωKt)

)(
Mx(0)
My(0)

)
(4.6)

with any initial condition. The solution describes magnetization that rotates around
the z axis at the angular frequency ωK = γ|Heff|. This is the FMR frequency. The z
component follows from the normalization condition M2

z = M2
S − M2

x − M2
y and is

a constant in the present case. Often, however, the effective field Heff depends on
the magnetization M. This may change the circular precession to an elliptic one.

The effective field Heff describes FMR fully. It can include

1) the external field H,

2) the demagnetizing field Hdm that describes the shape-dependent response
to the external field as to satisfy the boundary conditions of the Maxwell’s
equations,

3) the magnetoelastic field Hme to model the material-dependent interplay
between elastic deformations and magnetism,

4) the crystal anisotropy field Han to take into account the possible magnetic
contribution from the lattice structure of the material.

Similar to the concept of force in classical mechanics, the effective field is a super-
position of all such fields. Its main value is differentiating magnetic effects while
retaining one cohesive framework of the magnetic system.
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In some cases, the idea of fields is helpful. In others, it can be more useful to
work with the free-energy density F associated with the field. It plays an important
role, as it determines the magnomechanical Hamiltonian. The two frameworks are
connected by the functional derivative relation

µ0Hi = − δ

δM
Fi, (4.7)

where µ0 is the vacuum permeability. For instance, in this definition, the external
field H corresponds to Fext = −µ0M · H.

Magnetoelastic interaction is conventionally written in terms of the free energy.
For cubic crystals1 specifically, the magnetoelastic free-energy density is estimated
by [133, 134]

Fme=
B1

M2
S
(M2

xϵxx + M2
yϵyy + M2

z ϵzz) +
2B2

M2
S

(
Mx Myϵxy + Mx Mzϵxz + My Mzϵyz

)
,

(4.8)

where B1/2 are material- and sample-dependent magnetoelastic constants [134],
and the elastic deformation is encoded in the strain tensor defined as

ϵij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi
+ ∑

k

∂uk
∂xi

∂uk
∂xj

)
. (4.9)

The vector field u describes displacement from an assumed neutral position of
the magnet and, here, the notation xi should be understood as referring to the
coordinate system (x, y, z) = (x1, x2, x3). Focusing on the terms in the strain that
are linear in u, it can be seen that B1 describes deformations that change the size
of the magnet whereas B2 describes the effect of shear to the magnetization. I was
surprised to learn that B1 can be of either sign: some materials wish to shrink and
some to expand when magnetized in order to minimize the free energy. In contrast,
the conventional (cubic crystal) ferromagnetic materials dislike shear in which case
B2 is a positive constant [134].

Crystal anisotropy field describes the effect of crystal structure on magneti-
zation. It can lead to preferred direction of magnetization with respect to the
underlying lattice axes of the material. In a similar spirit to the magnetoelastic
energy, this magnetocrystalline free-energy density for cubic crystals is estimated
by

Fan =
K1

M4
S

(
M2

x M2
y + M2

y M2
z + M2

z M2
x

)
+

K2

M6
S

M2
x M2

y M2
z (4.10)

with some constants K1 and K2 [133]. This expression, as well as the magnetoe-
lastic free energy, follows from symmetry arguments — such as invariance under

1I mistakenly implied in [III] that this is a general quality of magnetoelasticity independent of the
crystal structure. It is not. In the context of [III], there is only a single relevant strain component
and, thus, the change can only be in the relevant magnetization component and the magnitude of the
effective magnetoelastic constant. It is also consistent with CoFeB as the possible magnetic material for
the experiments.
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axis permutation — and only including the lowest order terms in the magne-
tization [135]. In [III] the crystal anisotropies are neglected as we assume the
magnetoelastic effects to be stronger. In any case, it does not change the physics of
magnomechanics.

Magnomechanics is realized in a ferromagnetic system alone since the magnet
can have vibrational modes. Magnomechanical coupling is evidently in the demag-
netizing and magnetoelastic fields. In principle, the crystal anisotropies may also
be connected to the shape and motion of the magnet. Such effects are assumed to
be small in comparison to other shape effects.

4.2.2 Suspended magnetic beam

The program to finding the magnomechanical coupling of a vibrating single-
domain magnetic beam follows: First, all the free energies related to the effective
magnetic field must be specified. From the free-energy description, the station-
ary state of the magnetization within the beam may be obtained. This lays the
foundations of quantization. The FMR mode around the stationary state can be
solved and then quantized. All the while the magnetization and the FMR mode
depends on the shape of the beam. Allowing the beam to vibrate and quantizing
those vibrations, the magnomechanical coupling can be found.

The remaining premise is how the beam geometry should be defined. There
are two clear candidates: a bridge and a cantilever. Their only difference is that,
in a bridge, the two ends of the beam are fixed (and thus it is also called doubly-
clamped beam) whereas a cantilever has only one fixed end and the other one is
free to move about. In practice and in theory, they work differently. Herein, as
in [III], my focus is on a bridge setup.

There are three directions to be defined: the beam axis, the external static field
to generate the FMR mode, and the external alternating field to drive the FMR.
Our choice is partially experimentally motivated. We set the beam axis and the
external static field in the same plane, while the alternating field is perpendicular
to this plane. It allows for varying the direction of the static field while retaining
the perpendicularity to the driving field. Furthermore, as discussed later on, the
static field can be used in devising measurement and driving schemes.

The beam itself should be as low mass m as possible to benefit the vibrational
qualities of the magnet. Especially, the zero-point motion amplitude xZPM is
proportional to 1/

√
m. Practically, this is achieved by making very thin beams. The

relevant beams for magnomechanics are thus of height h, width w, and length L
so that L > w ≫ h. The smaller the width, the more sense it makes to describe
the beam as an one-dimensional object. This greatly simplifies the description of
deformations: the displacement u has a single non-vanishing component with a
functional relationship ux = ux(z) when the beam axis is in the z direction. It is a
reasonable approximation for beams of finite width, as well.

The setup is depicted in Fig. 5. At this point, one might observe a problem
without proceeding with the calculations. There is no difference if the beam would
have been displaced downwards instead of upwards as in Fig. 5. There is no
directionality, there is no magnomechanics.
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FIGURE 5: Sketch of a beam with a displacement. Here, Id represents a current which
causes a Lorentz force f on the beam in the presence of a static magnetic field H0. For other
symbols, see the main text. Reprinted with permission from [III], Copyright American
Physical Society.

This problem can be solved by introducing directionality in two different ways.
The setup can be modified so that the static field points out of the plane of the
beam. Alternatively, we can assume that there is a static deformation — similar
to Fig. 5 — and the beam vibrates around the already-deformed configuration. I
am unsure which realization came first, but such deformation is also observed
experimentally. It is a consequence of fabricating multi-layer beams. The practical
idea is to have an insulating magnetic layer and a separate conducting layer for
using currents in measurements.

Theoretically, we proceed by dividing the deformation ux ≡ u into a static and
a dynamical component by

u(z, t) = u0(z) + u1(z, t) (4.11)

together with an assumption that the static deformation is large in the sense
of u0 ≫ u1. I drop the subscript x for simplicity. This approach requires the
calculation to be second order in u in order to calculate the effect of the vibrations
to first order which are proportional to u1. In accordance, the dynamics of the beam
are described by a nonlinear Euler–Bernoulli beam equation

ρA
∂2u
∂t2 + EIx

∂4u
∂z4 −

[
−P +

EA
2L

∫ L

0
dz
(

∂u
∂z

)2
]

∂2u
∂z2 = f , (4.12)

where A = wh is the beam cross-section area and Ix = wh3/12 the bending
modulus, ρ the density, E the Young’s modulus, P the axial load or compression,
and f a possible external force on the beam.

Our idea was initially to describe the deformed beam by setting P = 0 and by
specifying a finite derivative for u0(z) at the ends of the beam. However, this does
not result in beams that look physical. The point is that P describes compression
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or tension in the system. This differs greatly from simple boundary conditions.
We then understood that the compression may follow from the internal tension
between different layers of beam. Here, it is P that causes the static deformation.
More conventionally, it describes an axial force which is easy to test: Put a piece of
paper on a table and softly push two sides towards one another. At first, the paper
resists but with enough force it will deform upwards. This is called the buckling
transition. The deformed configuration follows if P > 4π2EIx/L2. In contrast, take
a piece of paper and bend it from two opposite edges to the same direction while
trying to keep your hands as far apart as possible. The result is quite different: the
center remains very flat and there is a great tension. This is what setting P = 0 and
fixing the boundary conditions would describe.

Finally, the demagnetizing field Hdm can be specified. It follows from the
magnetostatic part of the Maxwell’s equations, that is, ∇ · B = 0 and ∇× H = 0.
The difference between B and H is the magnetization M. The role of demagnetizing
field is to modify the H-field so that the magnetostatic equations are satisfied. We
have that

B =

{
µ0Hout = µ0(H0 + Hdm), outside the beam,

µ0(Hin + M) = µ0(H0 + Hdm + M), inside the beam.
(4.13)

More often than not, the demagnetizing field outside the magnet is called a stray
field. The analytical solution of these equations is admissible only in special
cases. If we approximate the beam as infinitely thin and as having infinite width
and length, the demagnetizing field of a deformed magnet can be obtained by a
boundary condition argument: the magnetostatic equations require that the B-field
is continuous in the normal direction of the beam and the H-fields continuous in
the tangential directions. Without deformation the stray field is zero, and using
this as an ansatz gives the conditions for the normal (subscript n) and tangential (t)
components of the demagnetizing field

Hdm,n = −Mn, Hdm,t = 0, Hdm,y = 0. (4.14)

This expression shows that the magnetization wishes to follow the shape of the
deformed beam. Here, we assume that the ferromagnet however remains as a
single domain and that the deformation does not induce position dependence in the
magnetization. In the end, it is useful to transform the local coordinate system (n, t)
that depends on the deformation u(z) to the original coordinate system (x, z). This
gives, finally,

(
Hdm,x
Hdm,z

)
=

1

1 + [∂zu]2

(
−1 ∂zu
∂zu −[∂zu]2

)(
Mx
Mz

)
. (4.15)

and the corresponding free-energy density

Fdm
µ0

=
1
2

1

1 + [∂zu]2
M2

x −
∂zu

1 + [∂zu]2
Mx Mz +

1
2

[∂zu]2

1 + [∂zu]2
M2

z . (4.16)

Without the deformation only Fdm = µ0M2
x/2 remains. Turning the magnetization

towards x, out of plane, costs energy. Consequently, in magnetism literature, x
would be called a hard axis.
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We assume that the strain producing the static deformation produces such a
large effect that it overpowers any crystal anisotropies in the material. In other
cases, such anisotropies might be necessary to include.

The classical Hamiltonian, the total free energy, is obtained by integrating
over the beam. At this point, many of the terms disappear due to the boundary
conditions of doubly-clamped beam u(z = 0) = u(z = L) = 0. In the end, there
are only four terms

H/(whL) = −µ0H · M +
B1

M2
S

M2
z ϵ̄zz + µ0M2

x/2 + µ0

(
M2

z − M2
x

)
ϵ̄zz (4.17)

with the strain now averaged over the beam as

ϵ̄zz =
1
L

∫ L

0
dz

1
2

(
∂u
∂z

)2
. (4.18)

To reaffirm the point about the necessity of the static deformation, observe that
the strain depends only on the square of u. Thus, the energy changes as much to
upward as to downward displacements, and there is no magnomechanics without
the buckling of the beam in an in-plane magnetic field.

The steps to the magnomechanical coupling follow the program set about in the
beginning of this section. The static magnetization is obtained by minimizing the
total free energy while considering a static field H = H0 and a strain ϵ̄zz. Due to
the demagnetizing field, it prefers to stay in the yz plane (refer to the coordinate
system in Fig. 5). The magnetic system can be quantized and the FMR frequency
can be solved for a fixed strain, then expanded around the static and dynamic
deformations, u0 and u1 respectively. The explicit form of u0 and the eigenmode
decomposition of u1 is obtained from the Euler–Bernoulli equation. Finally, the
vibrations can be quantized as well. (In [III] the order is slightly different; we first
expand the strain and then quantize the magnetization but the result is the same.)

One important difference between opto- and magnomechanics is the quanti-
zation. In contrast to the cavity mode, the magnetization M is not quantized as a
bosonic mode but rather obeys the commutation relations

[
Mi, Mj

]
= i ∑k ϵijk Mk

with the fully antisymmetric Levi–Civita tensor ϵijk [23]. These are of course the
commutation relations of spin or angular momentum as well, arising from the same
considerations. Especially, one can relate the magnetization M to a spin MS system.
This is the macrospin model. The magnetization in a coordinate system (x′y′z′) —
which is chosen so that z′ points into the direction of the static magnetization —
can be mapped to a bosonic mode m by the Holstein–Primakoff transformation

Mz′

MS
= 1 − ξm†m,

M+′

MS
=
√

2ξ

√
1 − ξ

2
m†mm,

M−′

MS
=
√

2ξm†

√
1 − ξ

2
m†m,

(4.19)

where ξ = h̄γ/(whLMS) is a dimensionless parameter and M±′ = Mx′ ± iMy′

are the ladder operators. Here, ξ characterizes the ratio between the classical
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energy µ0whLM2
S stored within the magnet and a single quantum of energy at

the frequency γµ0MS. For magnets whose volume is larger than a few cubic
nanometers, typically ξ ≪ 1. Moreover, we retain the bosonic description similar
to optomechanics, if we can assume that the number n of excitations of the mode m,
which are called now magnons, is such that nξ ≪ 1 as well. In such a case, one can
only consider the lowest-order expansion in ξ so that M+′ ∝ m. It however limits
how much the magnon mode can be driven before there are saturation effects.

The magnomechanical coupling of the nth vibrational mode in the deformed
beam setup obeys

gm,n = 2(gme
n − gdm

n )

(
c cos2 θ +

1
c

cos 2θ

)
− 2cgdm

n , (4.20)

where θ is the angle of the magnetization vector M with respect to the z direction,
c is a squeezing factor related to the ellipticity of the FMR mode, and two separate
coupling constants are given by

gme
n = −β̄n

hxZPM
n
L2

γB1

MS
, (4.21a)

gdm
n = +β̄n

hxZPM
n
L2 γµ0MS, (4.21b)

β̄n =
L
h

∫ L

0
dz(∂zu0)(∂zχn). (4.21c)

The dimensionless parameter β̄n contains the information about static deformation
and vibration modes as χn is the nth vibrational eigenmode corresponding to the
eigenfrequency ωn.

The squeezing factor c is also related to a truly magnetic property resulting
from the free energy: hysteresis. In the process of minimizing the free energy with
respect to the magnetization, there can be a local minimum in addition to the global
one. Since the minima depend on the external field as well, the magnetization
may remain in the energetically unfavored state as the external field is varied.
Here, it is due to the magnetoelastic and demagnetizing fields in the presence of a
static deformation. The resulting model for hysteresis closely imitates a seminal
description in the field, the Stoner–Wohlfarth model. Hysteresis is characterized
by a coercive field Hc. When the strength of the magnetic field is below Hc, there
are multiple minima. The coercive field when the external magnetic field is in the y
direction, perpendicular to the beam axis, can be solved and it reads

Hc = 2

∣∣∣∣∣
B1

µ0M2
S
+ 1

∣∣∣∣∣ϵ
(0)
zz MS. (4.22)

The superscript (0) is to emphasize that the strain here is due to the static deforma-
tion.

The squeezing factor c describes, on a more technical level, how much the
momentum quadrature of the magnon mode m must be squeezed in order to
diagonalize the FMR Hamiltonian. It is given by

c =

√
H0 cos(θ − ϕ) + Hcζ cos(2θ)

H0 cos(θ − ϕ) + (1 − 2ϵ̄
(0)
zz )MS + Hcζ cos2(θ)

, (4.23)
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where ζ = sign
(
−B1 − µ0M2

S
)
= ±1, |H0| = H0 is the magnitude of the static

external field and ϕ its direction as in Fig. 5. Without the strain, the value of the
squeezing factor is simply c =

√
H0/(H0 + MS). The fact that squeezing is always

present in magnon systems has given rise to discussion how it can be utilized in,
for instance, entanglement [136, 137] and generation of quantum states [138].

In every expression there is a competition between the demagnetizing and
magnetoelastic fields. This is characterized by the ratio B1/(µ0M2

S) = −gme
n /gdm

n .
There are two distinct regimes, that of B1 < −µ0M2

S and that of B1 > −µ0M2
S. In

the former case, the fields have an opposite tendency and the magnetoelasticity
wins. Magnetization in the z direction is strongly preferred and, thus, z is an easy
axis. In the latter case, either the fields have the same tendency or demagnetizing
field wins making z a hard axis. These regimes have different hysteresis curves
and thus can be experimentally separated.

The magnomechanical coupling in the end depends only the magnetic pa-
rameters B1/(µ0M2

S) and H0/MS, and the mechanical parameters like the static

strain ϵ̄
(0)
zz and the “mode overlap” β̄n. From the Euler–Bernoulli equation (4.12) it

follows that these mechanical parameters are mapped one-to-one to maximum of
the static deformation um = max |u0(z)|. For instance, the dimensionless parame-
ter β̄n is plotted in Fig. 6 in terms of um.

The magnomechanical constant in the case of dominating demagnetizing field
and a negative magnomechanical constant, 0 > B1 > −µ0M2

S, is graphed in Fig. 7
as a function of the direction of the external magnetic field. The inset represents
the hysteresis curve, focusing on the relation between the magnetization and the
external field in the y direction. What appears interesting and unexpected at first is
that the coupling is larger for the hysteretic part and may diverge. In these points,
the local minimum is also very unstable in the sense that the energy barrier to
escape from the state goes to zero. A closer look also reveals that a larger magnetic
field does not necessarily result in a larger coupling. Rather, the coupling changes
sign and is even zero at some configurations.

After all that work, it would seem that finding that the magnomechanical
coupling can simply vanish due to an unfortunate choice magnetic field is dis-
couraging. It is not so. Having a system with tunable interaction is exactly what
we are after. Moreover, even if the optomechanical interaction in the sense of the
Hamiltonian (4.3) is not present, there are higher-order terms that were neglected.
One of them is the so-called cross-Kerr term of type a†ab†b. Such terms can be
finite even without the static deformation since they do not have an immediate
issue with symmetry.

4.2.3 Brief comment on other geometries

The magnomechanical coupling follows in a similar fashion for a cantilever — a
thin beam fixed only on one end. In contrast to the bridge, it is enough to take
into account only the first order displacement u in the magnetoelastic and demag-
netizing fields. Then, the total magnetic free energy of the cantilever depends
on the position of the free end u(L). The shape-dependent free-energy terms are
proportional to Mx Mzu(L) and the relevant magnetoelastic constant is the shear
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FIGURE 6: The dimensionless parameter β̄n for five first modes as a function of the maximum
deformation um. Here, n = 1 is the lowest order mode, and β̄n = 0 for n = even modes. For
small deformations β̄n ∝ um/h, but the nonlinearity of the Euler–Bernoulli equation results
in a nonlinear behaviour for large deformations. Reprinted with permission from [III],
Copyright American Physical Society.

FIGURE 7: Magnomechanical coupling constant gm,n as a function of the external field
direction ϕ. The different curves represent different magnetic field strengths H0; the dotted
lines correspond to the metastable magnetization configuration. The parameters are um/L =

0.1 and B1 = −0.6µ0 M2
S so that 50Hc ≈ MS. The inset shows the corresponding hysteresis

curve for components perpendicular to the beam. Reprinted with permission from [III],
Copyright American Physical Society.
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constant B2. The symmetry argument remains: if the external magnetic field is in
the plane of the neutral position of the cantilever, there is no magnomechanical
interaction.

Somewhat more interesting is the question of “bulky” systems. For instance,
the ferromagnetic materials in [128, 129] are in the shape of spheres. The theoretical
analysis in [128] argues that the magnomechanical coupling can be found by
quantizing the magnetization in the magnetoelastic energy and then gathering the
terms which give an optomechanical interaction. This leads to magnomechanical
coupling proportional to

g ∝
B1

V

∫
d3x

(
ϵxx + ϵyy − 2ϵzz

)
, (4.24)

when the FMR mode is precessing around the z axis and V is the spherical magnet
volume. At this point, again, symmetry seems to play a somewhat confusing
role: the coupling vanishes for mechanical modes that retain the spherical shape
without shear. For the strains, I mean that only ϵxx = ϵyy = ϵzz are non-vanishing.
This happens even though the magnetoelastic energy cares whether the sphere
shrinks or expands. There is a clear directionality. However, it does not affect the
FMR mode. This is a simple consequence of the magnetoelastic energy; for such a
shrinking or expanding sphere the relevant term is

Fme =
B1

M2
S

(
M2

xϵxx + M2
yϵyy + M2

z ϵzz

)
→ B1

M2
x + M2

y + M2
z

M2
S

ϵzz = B1ϵzz. (4.25)

That is, there is no coupling between the strain and the magnetization if the mag-
nitude of the magnetization remains constant.2 Ultimately, this is not much of a
problem since there are many other mechanical modes that have a finite magne-
toelastic coupling. As a final remark on spheres, I note that the magnomechanical
coupling g scales as g ∝ 1/D2 with D being the diameter of the sphere, so the mag-
netic systems are in fact small, of the order of few hundred micrometers [128]. This
is similar to the deformed beam geometry wherein g ∝ 1/L2 if all other parameters
are fixed.

4.2.4 Input–output scheme

The advance of the beam setup of Fig. 5 is that both the FMR and the mechanical
mode can be driven individually. The signs of magnomechanical interaction may
be observed as changes in reflection or transmission of the driving signals.

If the magnetic beam is conducting, which can be achieved either by using a
ferromagnetic metal or by constructing bilayer beam with separate conducting
and insulating ferromagnetic layers, a current Id can be driven through it. This
produces a Lorentz force per unit length as f = Idµ0(H0 sin ϕ + MS sin θ) pointing
always to the normal direction of the beam (the contribution proportional to MS
assumes that the current is flowing through the magnet). At the same time, the
vibrations of the beam produce an electromotive force due to induction. This seems
reasonable if one considers the beam to be a part of circuit enclosing some area

2For a sphere, the demagnetizing field is Hdm = −M/3 [131]. That is, it is independent of the size.
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and, thus, some magnetic flux. The vibrations of the beam change the flux. These
ideas are called the magnetomotive scheme.

The FMR mode is driven by an alternating magnetic field h, produced by
an alternating current in a microwave line. This requires “a good contact” as
the spatial extent of the FMR mode and the driving field must have an overlap.
The FMR mode can be seen as an absorption of power in the driving process, or
alternatively with an external antenna measuring the transmitted microwaves.

An interesting feature (or a possible nuisance) is that the drives can interact. The
current Id that drives the mechanical vibrations produces a Lorentz force together
with the alternating field h. This force is to the y direction and may drive transverse
vibrations. However, the frequency scales of the mechanical and FMR mode are
often of different orders, and thus, this cross-driving can be neglected.

The picture of the input and output fields is readily applicable. Phenomenologi-
cally, I write for the diagonalized (and bosonized) FMR mode l and the vibrational
mode b

l̇ =
i
h̄
[HS, l]− κ

2
l −√

κelin, (4.26)

ḃ =
i
h̄
[HS, b]− γ

2
b −√

γebin, (4.27)

where HS is the full magnomechanical Hamiltonian similar to Eq. (4.3)

HS/h̄ = ωK l†l + ωmb†b + gml†l
(

b† + b
)

. (4.28)

The dynamical equations are supplemented with the relations lout = lin +
√

κel
and bout = bin +

√
γeb. These equations allow for, eventually, the solution of the

reflection coefficient; how much of a probe signal gets reflected. This provides the
way to observe magnomechanics.

The dissipation rates κ and γ for the FMR and the vibrations, respectively, play
an important role in optomechanics [111]. In general, for any quantum application,
it is required the modes are of high quality, that is, ωm ≫ γ and ωK ≫ κ. In
cavity optomechanics and thus in magnomechanics, the relation of ωm to κ is also
important. In [III] we assume that the FMR dissipation rate or linewidth is much
larger than the mechanical eigenfrequency, κ ≫ ωm. The opposite limit of ωm ≫ κ

is called the resolved-sideband limit. Many of the experiments mentioned in the
beginning of the section rely on this regime but, for instance, the signal processing
effects do not.

To enhance the magnomechanical coupling, the FMR mode should be driven.
The drive also linearizes the coupling Hamiltonian. One can redefine the FMR
mode in such a case by l =

√
n+ δl, where n is the number of excitations, magnons,

uphold by the drive in the presence of dissipation, and δl represents deviation from
this equilibrium. If the deviations are assumed small, the second-order term δl†δl
may be neglected in the interaction, and the Hamiltonian simplifies to

HS/h̄ = ωKδl†δl + ωmb†b +
√

ngm

(
δl + δl†

)(
b† + b

)
. (4.29)

Here, the terms proportional only to b + b† and δl + δl† have been displaced away
to the definitions of b and δl.
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FIGURE 8: Reflection coefficients for the (a) FMR and (b) mechanical mode. The external
field strength is fixed by H0 = 5Hc while the other parameters are as in Fig. 7. In (b),
ωd = ωK − ωm whereas in (a) ωd = ωK . The relevant parameters are fixed by 2

√
ngdm =

0.8ωm and κ = 15ωm, γ = 0.1ωm and κe/κ = 0.1, γe/γ = 0.01. Reprinted with permission
from [III], Copyright American Physical Society.

In the description l =
√

n + δl, it is implicitly assumed that the number n of
magnons obeys some classical equation, depending on the driving power. The
deviation δl then obeys, in fact, the same input-output equation as l itself. Thus,
it is somewhat common and convenient, although slightly confusing, to rename
δl → l.

Due to the linearity of the Hamiltonian the outputs and the inputs are linearly
related. Such a relation holds in frequency space as well. This in turn gives the
transmission, reflection, and transduction coefficients. For instance, the reflection
coefficient Sl

11 of the FMR mode is lout = S11lin + . . . whereas the transduction
coefficient Slb from mechanics to FMR follows from lout = Slbbin + . . . .

Focusing on the reflection coefficients, magnomechanics in the non-resolved
sideband regime gives rise to the amplification of microwave signals and a “mag-
netic” spring effect. Fig. 8(a) shows the amplification, given a drive frequency
ωd that is resonant with the FMR mode, ωd = ωK. The reflection coefficient be-
comes greater than unity at the sideband frequencies ωK ± ωm at the strongest
couplings. The latter means that the FMR mode shifts the resonance frequency
of the vibrations. Thus, the mechanical system absorbs the most power at a fre-
quency that depends on the magnomechanical coupling. This results in magnetic
field-dependent dips in the reflection coefficient as shown in Fig. 8(b).
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4.3 Many facets of hybrid quantum systems

An interesting aspect of hybrid quantum systems is that we can easily imagine a
single system that exhibits both linear and nonlinear interactions. Likewise, it is
easy to imagine systems with more than two physically important modes. The
latter I already mentioned in passing: the successful experiments on magnome-
chanics [128, 129] employ magnons, photons, and phonons at the same time. The
purpose of this penultimate section is to take a broader look on such systems, going
beyond [I]–[V].

Magnon-photon-phonon systems have recently seen also theoretical attention.
There are two relevant classes: systems with both opto- and magnomechanical in-
teractions and systems with one nonlinear and one linear interaction. For instance,
one can add to the magnomechanical interaction a linear resonant interaction be-
tween a FMR mode and a light mode as in [128, 129]. It has been suggested that
these partly linear, partly nonlinear systems can be used to investigate tripartite
entanglement [139] and that magnons could enhance ground-state cooling of a
mechanical resonator [140]. On the other hand, the combined opto- and magnome-
chanical interaction can be used to effectively probe the magnons optically [141].
That is, there is ground to cover in understanding how opto- or magnomechanical
effects are modified by the presence of a coupling to another degree of freedom.

Next, I must point out a direct connection between the discussion of polaritons
in Ch. 2 and optomechanics: the field of molecular optomechanics [142, 143].
Physically, the point is to couple a molecular vibration mode to a cavity instead
of an electronic excitation. Optomechanical interaction follows from the dipole
interaction and the classical argument of the depolarizing field (that is the electric
field equivalent of the demagnetizing field). If the dipole moment d of a molecule
depends on the classical electric field E as d = d0 + αE where α is polarizability
tensor [33], then the dipole interaction d · E results in an interaction proportional
to E · (αE). This term modifies the eigenfrequencies of the cavity. Optomechanical
interaction is then achieved if α depends on a vibrational coordinate of the molecule.
This interaction has been suggested as the mechanism behind surface- and tip-
enhanced Raman scattering [143] which are widely-used spectroscopic tools for
studying vibrational resonances of molecules.

Organic molecules provide innately different frequency scales through their
vibrational and electronic excitations. In Ch. 2, the mental picture is of light-matter
coupling to the higher-energy electronic excitation while the much lower-energy
vibrations perturb the coupling. In molecular optomechanics, it can be inversely
asked how does the higher energy electronic state perturb the optomechanical
interaction.

The presence of different energy scales begs the general question of “emergent”
resonances: What can be achieved by tuning, for example, some interaction energy
between two systems on resonance with a third one? This is relevant for schemes
utilizing dressed (i.e. driven) spin states as qubits [144] which can be seen as a form
of Floquet engineering [145–148]. In the same vein, the possibility of tuning system
resonances with respect to dissipation rates as to realize reservoir engineering has
been suggested as another tool for future devices [149–151].
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“Beware of the man who works hard to learn
something, learns it, and finds himself no wiser than
before,” Bokonon tells us. “He is full of murderous
resentment of people who are ignorant without
having come by their ignorance the hard way.”

Kurt Vonnegut
Cat’s cradle

(Holt, Rinehart and Winston, 1963)
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Chapter 5

Conclusion

I hope that you have learned as much by reading this introductory part as I have
writing it, and feel ready to tackle the actual scientific publications right after the
list of references. Before embarking on such an arduous journey, let me conclude
by summarizing what is important in this introduction and how it connects to the
five included publications.

I show through detailed examples a few physical phenomena and principles
underlying hybrid quantum systems. The generality of quantum mechanical frame-
work means that the types of hybrid systems described here are representative. We
could have chosen some other starting points and arrived at a similar description.
However, knowing the system is only a part of the relevant physics. I therefore
focus on describing measurements and dissipation channels. For the physical real-
izations of hybrid quantum systems considered in this dissertation, the main tool
is the input-output formalism. It is particularly suited for stationary, frequency-
resolved, optical measurements. Its usage in the context of molecular systems
strongly coupled to confined electromagnetic modes is the heart of publication [I]
where it is extensively described. An extended discussion in the same framework
about dissipation and its effect on polaritonic spectroscopy can be found in [II].

I show that hybrid quantum systems are not only interesting because of, say,
their quantum informational possibilities, like utilizing non-classical correlations
in quantum computing and communication, but they pose new challenges to our
physical understanding. Particularly curious is the case of polaritonic or vacuum-
modified chemistry. Understanding the transitions or reactions within a hybrid
system still remains difficult. In this introduction, I give an outlook to the field and
how our work in [IV] and [V] fits in. Here, my focus is more on the physical ideas
so that their concrete manifestations are left to the publications. It remains to be
seen whether or not polaritonic chemistry will have such a foundational impact
as understanding the role of the electromagnetic vacuum had in the theory of
quantum electrodynamics and in physics at large. Whatever the case, it is exciting.

Finally, I discuss nonlinear interactions in the context of hybrid quantum sys-
tems. I specifically focus on a new field, magnomechanics, to highlight the process
of figuring out the quantum mechanical interaction. In the context of magnetism,
it is quite involved. I outline the relevant physical ingredients and the important
results. A more detailed understanding can be obtained from [III]. I hope that this
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introduction and the publication together can give new ideas on how to approach
magnomechanical systems and help realizing their technological potential.

Hybrid quantum systems will certainly thrive and see much more attention
given to them in the future. The prospect of quantum technological revolution
fuels the efforts. We will see continued interest in the field of quantum information
and sensing and, in short term, a great devotion to utilizing magnetic systems in
its applications on top of the state-of-the-art research lines like superconducting
circuits. I will not try to predict the future any further — it is futile since one’s
imagination has limits — as we have only scratched the surface of the possibilities
of hybrid quantum systems. I will, however, conclude that they will not only pose
engineering challenges but questions of fundamental physics.
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We construct a model describing the response of a hybrid system where the electromagnetic field—in
particular, surface plasmon polaritons—couples strongly with electronic excitations of atoms or molecules. Our
approach is based on the input-output theory of quantum optics, and in particular it takes into account the thermal
and quantum vibrations of the molecules. The latter is described within the P(E ) theory analogous to that used in
the theory of dynamical Coulomb blockade. As a result, we are able to include the effect of the molecular Stokes
shift on the strongly coupled response of the system. Our model then accounts for the asymmetric emission from
upper and lower polariton modes. It also allows for an accurate description of the partial decoherence of the
light emission from the strongly coupled system. Our results can be readily used to connect the response of the
hybrid modes to the emission and fluorescence properties of the individual molecules, and thus are relevant in
understanding any utilization of such systems, such as coherent light harvesting.

DOI: 10.1103/PhysRevB.100.245426

I. INTRODUCTION

Photonic structures, such as optical cavities or surface
plasmon polaritons, can modify an electromagnetic vacuum
field by confining the light to smaller volumes and restrict-
ing the number of available photonic modes. Any electronic
excitation inside such modified vacuum can interact much
more strongly with the confined light mode. This interaction
can become strong enough for the coupling energy to show
up in the absorption and emission spectra of such systems,
suggesting the formation of hybrid light-matter states, called
polaritons. Common examples studied in this strong-coupling
limit are single atoms [1], excitons in semiconductors [2], and
photoactive molecules [3,4].

More recently, strong coupling of molecules with con-
fined light modes has been the focus of interest because the
hybridization between light and matter into polaritons not
only delocalizes the excitation over many molecules, but also
changes their potential-energy surface, and thus provides a
new way to control chemistry [5]. Experiments on strongly
coupled molecules have already shown (i) suppression of
photo-oxidation of TBDC J-aggregates coupled to plasmonic
nanoprisms [6], and of photoisomerization of Spiropyran in-
side an optical cavity [7]; (ii) enhanced electronic conductivity
in organic semiconductors [8]; (iii) intermolecular excitation
energy transfer over large distances inside optical cavities
[9,10]; and (iv) enhanced decay of triplet states in erythrosine
B molecules [11]. Since polaritons are like interacting dressed
photons with mass, they can undergo Bose-Einstein conden-
sation even at room temperature [12], which further enables
very efficient and thresholdless polariton lasing [13,14].

Strong coupling between a single molecule and electro-
magnetic field is very hard to achieve [15,16]. The com-
mon way to circumvent this problem is to couple multiple
molecules to the same photonic mode. Often these systems are

still described within effective two-state models accounting
only for the two polaritonic states [17]. However, such a
description disregards the fact that the visible polariton modes
are now superpositions of several molecular excitations and
the photonic mode, and they are not the only eigenmodes of
the system. The response of the whole system also depends
on the presence of “dark modes,” i.e., superpositions having
no photonic component. These dark modes become relevant
especially when dissipation processes within the molecules,
such as those linked to vibrations, are included. In this case,
they can dramatically affect the predicted guiding of the
chemistry, and even the validity of the whole concept. They
have been taken into account in some multiscale simulations
coupling the investigated molecules to thermal environments
[18]. However, those simulations often consider the transient
response, whereas the majority of experiments on light-matter
coupling concern stationarily driven setups.

Here we construct a detailed description of the stationar-
ily driven response of the strongly coupled system, taking
into account the effect of inhomogeneous broadening of the
molecular response due to quantum and thermal vibrations of
the molecules. We take the vibrations into account via the
P(E ) theory analogous to that used in Coulomb blockade
[19,20]. This theory describes the probability of absorbing
(for E > 0) or emitting (E < 0) the energy E to/from the
vibrations. For the specific models of harmonic vibrations,
such a P(E ) function can be calculated exactly. In general, we
find how this P(E ) is related to the absorption and emission
spectra of individual molecules. Therefore, an alternative ap-
proach is to deduce an effective P(E ) for the measured spectra
of individual molecules. The resulting fluorescence spectrum
is similar to that found via quantum many-body theory [21].
However, in these approaches, only the transient response is
considered which requires assumptions on the initial state
of the system. In our work, the focus is on the stationary
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response, in which case different conservation laws and their
explicit breaking come into focus. What is more, we connect
this fluorescence spectrum directly to the absorption/emission
spectrum of the strongly coupled system. In a certain limit of
parameters, the resulting inhomogeneous broadening of the
molecular absorption/emission then determines the linewidth
of the polariton modes. In particular, our model explains the
asymmetric emission spectra of upper and lower polaritons
seen in many experiments [22–27], as well as the varying
polarization of that emission depending on the quantum co-
herence of the system, as shown recently [22].

Besides the detailed description of the vibrations, we in-
clude polarization of the confined light field and the positions
of the molecules. The position of a molecule with respect to
the light field only amounts to a phase factor to the light-
matter coupling, but collectively it leads to experimentally
observable effects. Perhaps the most striking effect is the
superradiance due to coherent emission described by Dicke
in the 1950s [28], but conversely it is seen in the usual
experiments where many molecules are distributed over a
region larger than the light wavelength. On the other hand,
the polarization of the light and the transition dipole moment
of a molecule determine whether there is coupling at all: if
these directions are perpendicular, the coupling vanishes. This
provides another way to control light-matter interaction which
could be used in applications [29]. In this paper, we describe
both the incoherent and coherent limits of polaritonics.

Although many aspects of our theory can be generalized
to any confined light mode, such as resonances of Fabry-
Pérot cavities, here we focus in particular on surface plasmon
polaritons (below, plasmons) driven by an external light field.
Plasmons are evanescent like electromagnetic modes propa-
gating along a metal-dielectric surface with a two-dimensional
momentum �k along the surface. In general, they have a
nonlinear dispersion ω(�k), and due to the evanescent nature
their electromagnetic field is highly confined to the surface.
Because of this confinement, the dipolar coupling to molec-
ular excitations residing at the surface can be made strong
[3,23], leading to the observed avoided crossing between
the two systems and thus offering the possibility to control
photochemical reactions. A typical way to launch plasmons is
via the Kretschmann configuration, i.e., coupling an external
electromagnetic field to the surface modes via a prism [30].
In this setup, the angle with which the light enters the prism
determines a specific plasmon �k vector. Hence, in this work,
we concentrate on a single plasmon mode with defined �k and
a generic frequency ωc.

To be specific, we consider the plasmon-molecule system
in the strong-coupling regime. We describe the plasmon by a
single bosonic mode c of frequency ωc and a given polariza-
tion ûpl with respect to its wave vector �k. A concrete example
of such a plasmon is the surface plasmon polariton traveling
along an interface in the xy plane in the y direction with
ûpl = (0, sin β, cos β ) as in Fig. 1(a). The plasmon interacts
with N identical molecules [31,32], which we approximate
as two-level systems with transition frequency ωm. We de-
note the rising (lowering) operator of a molecule with σ

†
j

(σ j). As in typical experiments, we assume that the electric
dipole moments of the molecules point in uniformly random

FIG. 1. (a) The measurement setup in which a surface plasmon
polariton is excited on an interface where it can strongly couple
to molecules. (b) Schematic with relevant parameters to the input-
output formalism.

directions n̂ j . Following the standard approach of quantum
optics [33,34], the Hamiltonian of the strong-coupled system
is in the rotating wave approximation (h̄ = 1),

Hs−c = ωcc†c +
N∑

j=1

(ωmσ
†
j σ j + g jσ

†
j c + g∗

jc
†σ j ). (1)

The position �r j of a molecule affects the coupling g j in two
ways: it contains a complex phase factor due to the phase
of the plasmon, and the coupling strength depends on the
distance to the interface. If this distance is independent of
the polarization, the latter effect may be disregarded and the
average value used. Also, the coupling strength depends on the
angle between the plasmon polarization and dipole moment of
a molecule. Thus, we write g j = gei�k·�r j (n̂ j · ûpl ).

In addition to the strong-coupled system, we include the
vibrational modes of the molecules. We assume a single
vibration mode b j per molecule with eigenfrequency ωv ,
but the generalization to multiple modes is straightforward
(Appendix A). These vibrations and their interactions are
described by

Hv =
N∑

j=1

ωvb†
jb j +

N∑
j=1

ωv

√
Sσ

†
j σ j (b

†
j + b j ). (2)

The coupling between electronic and vibrational modes
is quantified with a dimensionless parameter

√
S, the

Huang-Rhys factor [35], which is related to the Stokes shift
measured in fluorescent emission.

We seek an approach to find the response of the strongly
coupled plasmon-molecule system in the presence of vibra-
tions. To this end, we employ the input-output formalism of
quantum optics [36,37]. We assume that there are separate
bosonic baths for each molecule, vibration, and plasmon to
which the coupling is linear in σ j, b j , and c, respectively. In
the Markov approximation, these couplings are described by
the dissipation rates κ̃ j, γ j , and κ of the molecules, vibra-
tions, and plasmon. In the following, we suppose identical
molecules and vibrations so that γ j = γ and κ̃ j = κ̃ . We
neglect the thermal fluctuations of plasmons and molecules
here as h̄ωm, h̄ωc � kBT even at room temperature. We
simplify the molecule-vibration Hamiltonian by introducing
a new polaron operator σ S

j = e
√

S(b†
j−b j )σ j ≡ Qjσ j . Lastly,
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we assume a low driving power which corresponds to the
single-excitation limit σ †σ ≈ 0. We find that when h̄ωv

kBT >
γ S
2κm

,
where κm = κ̃ + γ S is the total effective damping rate of the
individual molecules, the dynamics of the vibrational modes
b j are approximately uncoupled from the plasmon-molecule
system, as shown in Appendix B. This allows us to use the
Caldeira-Leggett model [38] for the vibrational dynamics.
The plasmon and molecular equation are, in this case,

ċ = −iωcc − i
∑

j

g∗
jσ

S
j Q†

j − κ

2
c − √

κextcin, (3a)

σ̇ S
j = −iω̃mσ S

j − ig jQjc − κm

2
σ S

j − √
κext

m Qjσin, j, (3b)

where ω̃m = ωm − Sωv is the renormalized molecular fre-
quency, while κext and κext

m are the couplings to external
driving fields. For the plasmon-molecule system, we assume
that only the plasmon is driven so that cin = αe−iωd t and
σin, j = 0.

We model a measurement on the plasmon-molecule system
so that the incoming light cin produces a reflected �R

out and
transmitted �T

out field. These fields contain both the plasmon
and the molecular emission, but not the emission of phonons
from the vibrations because they are usually not measured.
Phonon emission hence allows for a loss of energy in the
process, so that the power in the output fields can be lower
than the one in the input. We also separately include coupling
to s- and p-polarized light represented by ûp = ûy and ûs =
ûx [Fig. 1(a)]. Since the propagating plasmon cannot emit
s-polarized light to the direction perpendicular to the interface
but the molecules have no directional preference, we consider
s- and p-polarized output fields separately. The output fields
obey a general expression,

�
T/R
out,s/p = (

δ
T/R
R cin +

√
κ

T/R
o c

)
δs/p

p +
∑

j

η
T/R
j,s/pσ j . (4)

In this equation, δT
R = 0 and δR

R = 1, meaning that only the
reflected field interferes with the input field. The δ

s/p
p is

defined similarly because the plasmon couples only to p-
polarized modes. The constants η

T/R
j,s/p describe the coupling

of the molecule electronic states to the environmental s- and

p-polarized free-space modes, and thus η
T/R
j,s/p =

√
κ

T/R
m (n̂ j ·

ûs/p). These fields and couplings to the system are represented
schematically in Fig. 1(b). The output spectral density is
obtained from

ST/R
s/p (ω; ωd ) = 1

2π

∫
dteiωt

〈
�

T/R†
out,s/p(0)�T/R

out,s/p(t )
〉
, (5)

where ω is the frequency of the output field and ωd is the
driving frequency.

We note that the Markov approximation leading to Eqs. (3)
disregards the heating of the various baths of the plasmons,
molecules, and vibrations. These heating effects can be disre-
garded when the heat conductance from those baths to other
degrees of freedom exceeds that due to the losses described
by κ, κm, and γ .

II. P(E ) THEORY

The presence of the vibrations makes the input-output
equations (3) nonlinear as they contain products of different
dynamical fields. This nonlinearity leads to an inelastic (flu-
orescent) response of the molecules to the light field, where
the emitted light from the molecules takes place at lower
frequencies than the absorption. This is often referred as the
Stokes shift. In order to take this nonlinearity into account
in the output spectra, we introduce P(E ) theory similar to
the one in a dynamical Coulomb blockade [19]. Recently,
the same problem has been discussed in Ref. [39] using
similar methods, but only in a specific limit of vibrations
(see below). The identification of P(E ) allows for a more
general approach, also enabling the resolution of polariton
emission, which is lacking from Ref. [39]. Let us first define
P(t ) = 〈Q†

j (t )Qj (0)〉 and its Fourier transform,

P(E ) = 1

2π

∫
dteiEt P(t ). (6)

When the molecules are identical, P(E ) does not depend
on the molecule index j; this assumption is easily lifted if
needed. The P(E ) function normalizes to unity and is real for
stationary vibrations, i.e., 〈Q†

j (t + τ )Qj (τ )〉 = 〈Q†
j (t )Qj (0)〉

for any time τ . We can thus interpret the P(E ) function as
a probability distribution of transforming energy E to the
vibrations (E > 0), or vice versa (E < 0). This P(E ) function
is characterized by four parameters: vibration eigenfrequency
ωv , their linewidth γ , Huang-Rhys factor S, and temperature
T of their bath. It constitutes a full description of the response
of the vibrations.

We present a general derivation of the P(E ) function and
a related L function assuming Gaussian thermal fluctuations.
Then, we derive P(E ) analytically in the limit in which γ

vanishes. In this regime, P(E ) is related to the absorption
function defined by Huang and Rhys [35]. However, our
analytic results for the response also apply in the case of
general γ and can be used for different models of vibrations.

A. Derivation of P(E )

We now derive the P(E ) function analytically in a similar
manner as in the context of dynamical Coulomb blockade
[19]. To establish notation, we omit the molecular index j here
and denote x = b† + b and p = i(b† − b), the dimensionless
position and momentum operator, respectively. Then, we may
write Q†(t ) = ei

√
Sp(t ) in the correlator P(t ), which is the

inverse Fourier transform of P(E ). This correlator can be
evaluated for thermal vibrations. If the vibrations are de-
scribed by a harmonic-oscillator Hamiltonian, the fluctuations
are Gaussian and the weak version of the Wick’s theorem
(see, e.g., Ref. [19] and an example of a non-Gaussian P(E )
in Ref. [40]) applies. We identify P(t ) as the characteristic
function of fluctuations of the stochastic quantity p(t ) − p(0),
where everywhere in the calculations p(t ) should be ordered
to the left of p(0). We assume the thermal vibrations to
be stationary, and therefore the expectation value of p(t ) −
p(0) vanishes [as 〈p(t )〉 = 〈p(0)〉 for stationary vibrations].
Consequently, for Gaussian fluctuations, we can write the
characteristic function in terms of the variance alone. In that
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case [20],

P(t ) = eT 〈(i√S[p(t )−p(0)])2〉/2 = eS〈[p(t )−p(0)]p(0)〉, (7)

where the latter equality uses the fact that 〈p(t )2〉 = 〈p(0)2〉.
The operator T takes care of ordering p(t ) before p(0), but
that operator is no longer needed in the second equality be-
cause, there, p(t ) always precedes p(0) in operator products.

Now, p(t ) can be obtained by solving the quantum
Langevin equations without the rotating wave approximation
(also known as the Caldeira-Leggett model [38]),

ẋ(t ) = ωv p(t ), ṗ(t ) = −ωvx(t ) − γ p(t ) + ξ (t ), (8)

where γ is the linewidth of vibrations, and ξ is a Langevin
force describing the thermal fluctuations. It has the correlator

〈ξ (t )ξ (t ′)〉 =
∫

dω exp[−iω(t − t ′)]Sξ (ω), (9)

where the noise correlator is given by

Sξ (ω) = γω

πωv

[
coth

(
ω

2kBT

)
+ 1

]
(10)

for thermal noise [41].
The Langevin equations (8) can be solved via Fourier

transform. The result is(
x(ω)
p(ω)

)
= 1

ω2 − ω2
v + iωγ

(−ωv

iω

)
ξ (ω). (11)

After some Fourier analysis with the help of Eqs. (9)–(11), we
find P(t ) = eJ (t )−J (0) according to Eq. (7), with

J (t ) = S〈p(t )p(0)〉

= Sγ

πωv

∫
dωe−iωt ω3(

ω2 − ω2
v

)2 + ω2γ 2

×
[

coth

(
ω

2kBT

)
+ 1

]
. (12)

The resulting P(E ) is thus governed by three dimensionless
parameters: the Huang-Rhys factor S, the quality factor of
vibrations ωv/γ , and the relative temperature kBT/ωv . Note
that in the Caldeira-Leggett model, J (t ) is related to the
vibrational spectral density Jv (t ) = Sω2

v〈x(t )x(0)〉 via their
respective Fourier transforms by Jv (ω) = J (ω)/ω2.

A simpler expression for J (t ) is obtained if, instead of the
Caldeira-Leggett model, one uses the usual quantum optical
equation ḃ = −(iωv + γ

2 )b + √
γ bin, as in [39] for example.

Then, for white noise 〈bin(t )b†
in(t ′)〉 = (nth + 1)δ(t − t ′), we

find

J (t ) = S(nth + 1)e−iωvt− γ

2 |t | + Sntheiωvt− γ

2 |t |. (13)

Here, nth = (eωv/(kBT ) − 1)−1 is the Bose factor, i.e., the mean
number of thermal phonons at the vibrational frequency ωv .
We arrive at the same solution from the Caldeira-Leggett
model by using the method of residues to calculate the integral
(12) and then approximating γ � ωv . This is hence the limit
where Ref. [39] is valid. However, typical multiscale quantum
chemistry calculations assume the opposite limit of a large
γ � κ̃ , where molecular vibrations decay before the photon
excitation.

Lastly, there are two general properties of the P(E ) func-
tion worth noting. First, since P(t ) may be regarded as a
characteristic function of the probability distribution P(E ), the
raw moments of the energy can be expressed as

E(En) = in dnP(t )t

dtn

∣∣∣∣
t=0

= in dneJ (t )

dtn

∣∣∣∣
t=0

. (14)

With the help of this formula, the mean and variance of P(E )
can be found. Second, the Kubo-Martin-Schwinger (KMS)
relation for thermal fluctuations at temperature T leads to the
detailed balance condition (or emission-absorption asymme-
try) for P(E ),

P(−E ) = exp

(
− E

kBT

)
P(E ). (15)

This asymmetry in P(E ) is relevant for the anti-Stokes part of
the spectrum. Some approximations, such as the white-noise
approximation, break this balance condition.

B. L function

Another quantity we encounter that is relevant for the
emission spectrum of a molecule is the Fourier transform of
the four-point correlator,

L(t1, t2, t3) = 〈Q†(t1)Q(t2)Q†(0)Q(t3)〉. (16)

This function is clearly related to P(t ) as for certain time argu-
ments it coincides with the definition of P(t ), e.g., L(t, 0, 0) =
P(t ). Using the same assumptions as in the derivation of P(E ),
we may write

L(t1, t2, t3) = e−ST 〈[p(t1 )−p(t2 )+p(0)−p(t3 )]2〉/2, (17)

where T orders operator products so that they are in the same
order as in Eq. (16). Now, since the vibrations are stationary,
we may write L in terms of P(t )’s,

L(t1, t2, t3) = P(t1 − t2)P(t1 − t3)P(t2)P(−t3)

P(t1)P(t2 − t3)
. (18)

Even if we can fully calculate J (t ), the Fourier transform of
L is not straightforward to evaluate numerically in the general
case.

C. γ = 0 limit

Next, we consider the limit in which the dissipation rate
of vibrations vanishes and derive expressions for both P(E )
and L. We note that the definition of J (t ), given by Eq. (12),
contains a nascent δ function,

P̃(ω) = 1

π

γω2(
ω2

v − ω2
)2 + ω2γ 2

, (19)

which in the limit γ → 0 reduces to P̃(ω) = 1
2 [δ(ω − ωv ) +

δ(ω + ωv )]. Therefore,

J (t ) = S(nth + 1)e−iωvt + Sntheiωvt . (20)

Note that this coincides with the limit γ → 0 in the white-
noise model given by Eq. (13). The corresponding character-
istic function P(t ) is known in probability theory to be that of
the Skellam distribution [42]. It is a distribution that describes
the difference of two independent Poisson processes. In our
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case, these processes are the emission and absorption of
phonons. P(E ) then describes the total number of phonons
transferred from/to vibrations to/from their environment. The
resulting P(E ) function is

P(E ) =
∞∑

k=−∞
pk (S)δ(E − kωv ), (21a)

pk (S) = e−S(2nth+1)

(
1 + 1

nth

) k
2

Ik[2S
√

nth(nth + 1)], (21b)

where Ik (x) is the modified Bessel function of the first kind.
In the zero-temperature limit, pk (S) = e−S Sk

k! for k � 0 and
pk (S) = 0 for k < 0, i.e., the probability to emit phonons
becomes Poissonian and the absorption probability vanishes.

We find the average and variance of the γ = 0 distribution
by using Eqs. (14) and (20),

E(E ) = Sωv and var(E ) = (2nth + 1)Sω2
v . (22)

The variance depends on the temperature so that for high
temperatures kBT � ωv , the variance is directly proportional
to the temperature: var(E ) ≈ 2SωvkBT . It should be noted that
both the variance and the average are proportional to S, which

also holds for a Poissonian quantity. The physical picture is
that the mean of E describes the Stokes shift in the molecules,
whereas the variance (or standard deviation) is connected with
the inhomogeneous broadening of the molecular linewidth
due to vibrations.

Finally, we derive L in the γ → 0 limit using Eq. (18). It
is necessary to simplify 1/P(t ) in order to find the Fourier
transform of L. Since P(t ) = eJ (t )−J (0) and J (t ) ∝ S, we may
find 1/P(t ) by changing S → −S in Eq. (21). Using the parity
of the modified Bessel function of the first kind Ik (−x) =
(−1)kIk (x), we can express the inverse as

1/P(t ) =
∞∑

k=−∞
pk (−S)e−ikωvt

=
∞∑

k=−∞
(−1)k exp[2S(2nth + 1)]pk (S)e−ikωvt . (23)

Below, we omit the S dependence and denote pk (S) = pk .
The Fourier transform of L is straightforward with the help

of Eq. (23). We obtain

L(ω1, ω2, ω3) = 1

(2π )3

∫
dt1dt2dt3L(t1, t2, t3)eiω1t1+iω2t2+iω3t3

=
∑

k1,k2,k3,k4,k5,k6

(−1)k1+k2 pk1 pk2 pk3 pk4 pk5 pk6 e4S(2nth+1)δ(ω1 − [k1 + k3 + k4]ωv )

× δ(ω2 − [k2 − k3 + k5]ωv )δ(ω3 + [k2 + k4 + k6]ωv ). (24)

This result can be used to obtain the fluorescence spectrum
of a molecule. The expression is slightly cumbersome to use
because the six sums obtain values from −∞ (or from 0
when T = 0) to ∞. This problem is alleviated by the rapid
decrease of pk as a function of k. Consequently, Eq. (24) is
straightforward to compute numerically.

III. STOKES SHIFT

Before solving the full plasmon-molecule problem, we
illustrate how the P(E ) theory is used to model a mea-
surement of the Stokes shift in a molecule-vibration sys-
tem. This is achieved by removing the plasmon term from
Eq. (3b) and driving the molecules, i.e., adding the term
σin, j = αeiθ j√

N
δ(ω − ωd ) where θ j represents the phase of the

driving field for molecule j. The driving is scaled so that
the total input power spectral density is given by Iin =
|α|2δ(ω − ωd ). Then, we solve Eq. (3b) with Fourier trans-
form and convolution theorem. The spectra ST/R are found
from Eq. (5) when the output fields are changed to �

T/R
out =∑

j (
√

κ
T/R
m σ j + δ

T/R
R σin, j ). Here, the “reflected” field should

not be understood literally, but rather as the field that contains
the driving field. The “transmitted” field is fully from the
molecular fluorescence. Since σ j = Q†

jσ
S
j and the solution

σ S
j of Eq. (3b) depends on Qj , we encounter a four-point

correlator 〈Q†
j (ω1)Qj (ω2)Q†

k (ω3)Qk (ω4)〉 in the calculation of

ST/R. Here, Q†
j (ω) refers to the Fourier transform of Q†

j (t ). As-
suming that the vibration modes are independent and identical
in different molecules, the correlator factorizes into two-point
correlators when j �= k. These resulting two- and four-point
correlators are related to P(E ) by

〈Q†
j (ω1)Qj (ω2)〉 = P(ω1)δ(ω1 + ω2), (25a)

〈Q†
j (ω1)Qj (ω2)Q†

j (ω3)Qj (ω4)〉
= L(ω1, ω2, ω4)δ(ω1 + ω2 + ω3 + ω4), (25b)

where L(ω1, ω2, ω4) is the Fourier transform of Eq. (18) in the
general case.

When discussing the response of molecules to driving, it
is useful to introduce a frequency � = ωd − ω̃m, which is the
detuning between the driving and renormalized molecular fre-
quency. Without vibrations, the molecular response is charac-
terized by χ (�) = (i� − κm

2 )−1, which describes Lorentzian
absorption and emission spectra. However, in the presence
of vibrations, the information about the spectral properties is
contained in

A(�) =
∫

dEP(E )χ (� − E ) (26)

and

F =
∫

dω1dω2L(ω1, ωd − ω − ω1, ω2)

×χ (ω1 − �)χ (ω2 + �). (27)
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(a) (b)

FIG. 2. (a) P(E ) functions for γ = 0 showing the weights of δ-
function peaks when κm

ωv
= 0.5 and kBT

ωv
= 0.5. (b) The normalized

emission and absorption with S = 2. Emission is evaluated with the
driving frequency ωd = ω̃m. Here, we choose κT/R

m = κext
m = κm

10 .

These functions are associated with absorption and fluores-
cence of molecules, respectively, and play an important role
in the plasmon-molecule problem.

A. Incoherent limit

Let us assume that molecules are randomly arranged, so
that the phase θ j is random. Averaging over them, the resulting
spectra are

ST/R(ω; ωd )

|α|2 = κT/R
m κext

m F (�; ω − ωd )

+ δ
T/R
R

[
1+ 2

√
κ

T/R
m κext

m Re[A(�)]
]
δ(ω − ωd ).

(28)

The emission spectrum ST is determined by F , which de-
scribes inelastic scattering (output field frequency ω different
from driving frequency ωd ). In the “reflected” field SR, we
also find the input power spectral density Iin and a term
proportional to A representing absorption.

Both F and A are straightforward to determine from
Eqs. (21) and (24), i.e., when the vibrational linewidth γ →
0. Then, F is also δ peaked at frequencies ω − ωd = mωv

with an integer m. The absorption spectrum is obtained from
power conservation SA(ωd ) = Iin − ST − SR evaluated at the
driving frequency ω = ωd and it is mostly determined by A.
In Fig. 2(b), we have plotted the emission spectrum ST along
with the absorption spectrum SA. The absorption maximum
is at the bare molecular frequency ωm, while the emission
maximum is at approximately ωm − 2Sωv . The difference is
the Stokes shift. The spectra correspond to the results de-
scribing the transient response obtained with Green functions
[21]. However, in our stationary model, the absorption is not
a mirror image of the emission because the emission may also
happen from the excited vibrational states.

B. Coherent limit

Besides the experimentally more typical incoherent situ-
ation, we look at the coherent limit. Then the phase eiθ j is
fixed. This happens, for instance, when the distance between
the molecules is much smaller than the wavelength of the
driving field or the molecules are in a suitably chosen lattice.

We renormalize the input in this case to be σin, j = α
N e−iωd t

so that again the total input power is distributed evenly and
is independent of the number of molecules N . Then, the
calculation can be repeated to give

ST/R(ω; ωd )

|α|2

= δ
T/R
R

∣∣1 +
√

κ
T/R
m κext

m A(�)
∣∣2

δ(ω − ωd )

+ κT/R
m κext

m

[
F

N
+

(
δ

T/R
T − 1

N

)
|A(�)|2δ(ω − ωd )

]
.

(29)

Interestingly, we obtain an explicit dependence on the number
N of molecules for two terms. One of those terms is the inelas-
tic emission term F , which means that for large N , the spectra
are mostly elastic. However, if the vibrations are absent, i.e.,
S = 0 which leads to P(E ) = δ(E ), F = |A(�)|2δ(ω − ωd )
and the 1/N-dependent terms cancel. Therefore, this coherent
effect is not related to the sub- or superradiance of molecules
described by Dicke [28]. Rather, it is related to vibrations
and their enhanced nonradiative emission, which shows up
as a diminishing fluorescence as the number of molecules
increases.

IV. PLASMON-MOLECULE SYSTEM

With the tools developed in Secs. II and III, we can
return to the problem of a strongly coupled plasmon-molecule
system and find the polarized spectra of the system using
Eqs. (3) (with only the plasmon being driven, i.e., σin, j = 0 in
this case). We integrate Eq. (3b) from an initial time ti → −∞
to t f = t and neglect the initial condition σ S

j (ti ) which has no
role in a stationary situation. We substitute this into Eq. (3a),
which leads to

ċ = −
(

iωc + κ

2

)
c − √

κextcin

−
∑

j

|g j |2
∫ t

−∞
dt ′e(iω̃m+ κm

2 )(t ′−t )Q†
j (t )Qj (t

′)c(t ′). (30)

At this point, we average the equation over the fluctuating
vibrations and use a mean-field approximation. This leads
to the P(E ) function since 〈Q†

j (t )Qj (t ′)〉c(t ′) = P(t − t ′)c(t ′).
Consequently, the elastic response of the plasmon is given by
c(t ) = αr(ωd )e−iωd t , where

r(ωd )√
κext

=
⎡
⎣i(ωd − ωc) − κ

2
+

∑
j

|g j |2A(�)

⎤
⎦

−1

. (31)

Vibrations provide a channel of relaxation, broadening the
response which is associated with the real part of A. The
imaginary part contains information about the frequencies of
the polariton modes. When the vibrations are absent, i.e.,
S = 0 and P(E ) = δ(E ), the usual strong-coupling response
is obtained as A → χ with Rabi splitting proportional to√∑

j |g j |2 at ωc = ωm. When the vibrations are present,

especially the upper polariton branch is perturbed, as Fig. 3
shows.
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(a) (b)

FIG. 3. Response function |r(ωd )|2/ωv of Eq. (31) for a single
molecule for (a) S = 0 and (b) S = 1. The other parameters are
g/ωv = 1.5, kBT

ωv
= 0.5, κ/ωv = 0.1, κext = κ/2, and κm/ωv = 0.5.

The response function also determines the direct plasmon emission
spectrum.

Finally, σ S
j can be solved from Eq. (3b) in terms of Qj

by Fourier transformation using the convolution theorem and
c(ω) = αr(ωd )δ(ω − ωd ). Then we have all we need to eval-
uate the output spectra with Eqs. (4) and (5).

A. Incoherent polaritonic response

Let us consider a large number N of identical molecules
with random dipole moment directions n̂ j . In this case, we can
replace the sums over the molecule index with an integral over
a surface of a sphere,

∑
j → N

4π

∫
d�. Then, because g j =

gei�k·�r j (n̂ j · ûpl ) where ûpl = (0, sin β, cos β ) is the plasmon
polarization vector, the square of the Rabi splitting in Eq. (31)
is

∑
j |g j |2 = Ng2/3 ≡ g2

N . We assume that the positions of
the N molecules are random over a region that is large
compared to the wavelength of the plasmon so that we may
replace ei�k·(�r j−�rk ) → δ jk for an ensemble average. Using these
assumptions, the polarization dependence shows up in the
spectra as the coefficients

Cs/p =
∑

j,k

g jη
T/R
j,s/p

(
gkη

T/R
k,s/p

)∗ =
⎧⎨
⎩

κ
T/R
m g2

N
5

κ
T/R
m g2

N
5 [2 − cos 2β],

(32)

where the upper/lower line is for s/p. Above, only the terms
where j = k contribute in the sum, which results in four-point
correlators as in Eq. (25b).

The s- and p-polarized emission spectra are

ST
s (ω; ωd ) = |αr(ωd )|2CsF, (33a)

ST
p (ω; ωd ) = |αr(ωd )|2[κT

o δ(ω − ωd ) + CpF
]
. (33b)

The main difference between the s- and p-polarized spectra is
because the plasmon emits only p-polarized light. The molec-
ular fluorescence is also slightly enhanced in this polarization
for β �= 0.

Both the s- and p-polarized emission spectra are now rep-
resented with F and A found in molecular fluorescence given
by Eq. (28). Therefore, the emission of a strongly coupled
plasmon-molecule system is related to the properties of the
plasmon and the molecules separately with a few parameters
describing the plasmon-molecule coupling strength and their

FIG. 4. Elastic emission spectra for s and p polarization (red
and blue curves, respectively) from a plasmon-molecule system with
ωc = ωm. The different curves are offset and scaled for clarity. The
parameters are the same as in Fig. 3, except for gN

ωv
= 2, β = π

12 ,

κT
o = κ/2, κT

m = κm/3, and kBT
ωv

= 1.

intrinsic decay rates. Note also that these results hold for any
P(E ), i.e., these results are independent of the vibrational
model.

Since only the terms with F contribute to the inelastic
emission, for a given driving frequency ωd , the ratio of p- and
s-polarized emission at ω �= ωd is ST

p /ST
s = 2 − cos(2β ). For

example, for an interface of vacuum and silver in the Drude
model [34,43], β ≈ π

12 and ST
p /ST

s ≈ 1.13 at ωc = 2 eV. This
ratio is otherwise independent of the system.

In Fig. 4, we have plotted the elastic emission spectra from
Eqs. (33) using the P(E ) function (21). The s- and p-polarized
emission are similar for small S, but for larger values the com-
petition between the plasmon and molecule emission becomes
more noticeable. The ratio between elastically emitted p- and
s-polarized power is controlled by the ratio between κT

o and
Cs/p and the detuning ωc − ωm.

We find that the upper and lower polariton modes emit
asymmetrically as in other approaches [39,44–50] and exper-
iments [22–25,51]. This is caused by the asymmetry of the
effective dissipation rate � = κ/2 − g2

N Re[A(�)], which is
related to the molecule’s absorption spectrum. The number
of molecules affects the dissipation rate only via the size of
the Rabi splitting. Analytical insight can be obtained when
kBT � h̄ωv and S � 1. Then, we may consider only single-
phonon processes. When gN > ωv , we find the polariton
frequencies from the response function (31) for zero detuning
ωc = ωm to be approximately

ω± = ωm ± gN + Sωv

2

1

±gN/ωv − 1
. (34)

Thus, the vibrations affect both the position of the polariton
peaks as well as the size of the Rabi splitting. At these
frequencies, the dissipation rate in the first order of κm is
given by

�± = κ

2
+ κm

2

[
1 + Sω2

v

(gN ∓ ωv )2
+ Sω2

v

gN (gN ∓ ωv )

]
. (35)

Due to vibrations, the dissipation rate of the upper polariton
(�+) is larger than the dissipation rate of the lower polariton
(�−), which suppresses the upper polariton emission com-
pared to the lower polariton.
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FIG. 5. Comparison of experimental polarization ratio data and
corresponding theoretical fits for two different molecules. For
TDBC, ωm ≈ 2.10 eV and 2Sωv ≈ 5 meV, and for R6G, ωm ≈
2.27 eV and 2Sωv ≈ 97 meV. We estimate the plasmon linewidth to
be κ = 250 meV. The Rabi splitting for TDBC is 167 meV and, for
R6G, it is 337 meV. Our data on fluorescence of TDBC are limited
below 2.6 eV so we cannot produce an estimate for the polarization
ratio above 2.6 eV. In the legend, LP (UP) refers to lower (upper)
polariton.

An alternative method of using the equations for polarized
emission spectra (33) is to use experimental molecular absorp-
tion and fluorescence data. Then, to a good accuracy, the line
shape of absorption is related to Re(A) and fluorescence to
F , as seen in Eq. (28). From the real part of A, the imag-
inary part may be found numerically by Hilbert transform
(due to Kramers-Kronig relations). The response function is
then determined from the plasmon eigenfrequency ωc and
its linewidth κ together with the strong-coupling constant
gN . Although gN (and the magnitude of A) is unknown, it
can be fixed so that it corresponds to a given Rabi splitting.
Lastly, the coupling coefficients Cs/p and κT

o are needed to
evaluate the spectra. However, if we are only interested in the
relative magnitudes, it is enough to fix the ratios κT

o /Cs and
Cp/Cs. The latter ratio is given by the polarization angle β,
which can be evaluated with the dielectric functions of the
materials at the interface where the plasmon is excited. The
former ratio κT

o /Cs is difficult to determine directly from the
experiments, but it can be found by fitting to experimental
data.

In Fig. 5, we employ the above method to compare the
experimental results for the polarization ratio of the TDBC
and R6G molecules from Ref. [22] to our model. Here, the
polarization ratio PT

p /PT
s of the lower (upper) polariton is

defined as the ratio of the p- and s-polarized emission peak
intensity of the lower (upper) polariton. In our numerical anal-
ysis, we approximate the fluorescence data by a mirror image
of the absorption data over the zero-phonon frequency ω̃m.
We assume that the fluorescence is effectively independent
of the driving so that we can calculate and consider only the
elastic emission (see, also, Appendix C). Adding the inelastic
emission can only diminish the polarization ratio. Then we

calculate the polarization ratio using Eq. (33) and fit the
coupling rate ratio κT

o /Cs to the experimental data for each
branch separately.

For lower polariton peaks, we find reasonable agreement
with the fitted theoretical curves and the experimental data.
For upper polariton peaks, the correspondence is very lim-
ited. Theoretically, we would assume that the polarization
ratio increases for the upper polariton for positive detunings,
while for the lower polariton the ratio increases for negative
detunings. This is caused by the polaritonic state becoming
more plasmonic, which is seen from the response function
being peaked at ωd ≈ ωc in Fig. 3. While these trends can
be seen in Fig. 5, except for the R6G upper polariton branch,
some features differ from the theoretical description. From
an experimental point of view, the polarization ratio might be
affected by any external noise, especially in regions of small
s-polarized emission. In our modeling, we neglect the possible
dependence of the plasmon linewidth and coupling rate on the
plasmon eigenfrequency. Also, since we use the experimental
absorption data to determine the spectra, the line shape far
from the absorption maximum is also important.

The fitted ratio κT
o /Cs controls, generally speaking, the

magnitude of the polarization ratio. The effect of Stokes
shift seems to be important only at plasmon eigenfrequencies
below the fluorescence frequency of the molecules, while the
external coupling rates control the polarization ratio at higher
frequencies. From the fit to the experimental data, we find that
the ratio κT

o /Cs is larger for R6G than for TDBC. This implies
that if the plasmonic emission rate remains the same for the
TDBC and R6G samples, there is more molecular emission
for TDBC than for R6G.

B. Coherent polaritonic response

If we assume that the plasmon couples strongly to the
molecules and drives them coherently, the phase factor ei�k·�r j

is fixed to a constant. This leads to the introduction of two
different sums over the molecular indices,

C̃s/p =
∑

j

g jη
T/R
j,s/p =

{
0

gN

√
N
3 κ

T/R
m sin β,

(36)

where again the upper/lower line is for s/p. The sum in
C̃s vanishes because the plasmon polarization vector ûpl is
orthogonal to the s-polarization vector ûs, making the product
antisymmetric under reflection through the plane orthogo-
nal to ûs. This is what breaks the symmetry between the
polarization directions emitted from the strongly coupled
mode.

Then, we find the polarized emission spectra to be

ST
s (ω; ωd ) = |αr(ωd )|2Cs[F − |A(�)|2δ(ω − ωd )], (37a)

ST
p (ω; ωd ) = |αr(ωd )|2κT

o

∣∣∣∣∣1 + i
C̃p√
κT

o

A(�)

∣∣∣∣∣
2

δ(ω − ωd )

+ |αr(ωd )|2Cp[F − |A(�)|2δ(ω − ωd )].

(37b)

The s-polarized emission now vanishes fully when the vibra-
tions are absent. This result shows that coherence is crucial
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FIG. 6. Elastic emission spectra in the coherent case for two dif-
ferent numbers N of molecules. The curves for p-polarized emission
(only ones depending on N) are offset and scaled. Here, S = 1 and
the other parameters are the same as in Fig. 4.

to the destructive interference of emitted light [22], while
the vibrations still provide a mechanism for a partial loss of
coherence. On the other hand, the p-polarized spectrum
contains the interference terms between the plasmon and
molecular output fields. Similar to the Stokes shift case,
there are terms with different powers of the number N
of molecules. Considering the Rabi splitting (or gN ) to
be fixed, there is one term with an extra N factor from
C̃2

p and
√

N from C̃p. Increasing N leads to mostly elas-
tic p-polarized emission, as the inelastic terms and s-
polarized emission are independent of N . In contrast to the
Stokes shift case, the absence of vibrations does not re-
move the N dependence. Therefore, the result corresponds to
superradiance [28].

Figure 6 shows that the coherence and the resulting in-
terference between plasmonic and molecular emission have
a qualitative effect on the elastic spectra. The difference
between s- and p-polarized spectra becomes more evident.
While the s-polarized emission is likely to occur on the lower
polariton frequency, for the p-polarized emission, the upper
polariton frequency may be favored depending on the relative
magnitudes of κT

o , C̃p, and Cp.

V. CONCLUSIONS

To summarize, we have constructed a model that allows
one to describe the effect of vibrations on the strongly coupled
stationary response of driven coupled light-matter modes.
Depending on the case, one can either find the P(E ) function
describing the absorption and emission of vibrations in a
given model system, or relate the measured absorption and
fluorescence of uncoupled molecules to P(E ). With small
modifications, this approach can also be extended to the case
of molecule-cavity systems [4,17,51–53], plasmonic lattices
[54], and/or higher-order correlation functions of the emitted
light [16]. Our quantum Langevin equation approach allows
one to describe the stationary driven system, and hence it
complements the often-used computational methods usually
concentrating on transient response [18,45].
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APPENDIX A: GENERALIZATION TO MANY
NONIDENTICAL AND INTERACTING

VIBRATIONAL MODES

The P(E ) theory is straightforward to generalize to mul-
tiple vibrational modes when the modes couple linearly to
the molecule. A general interaction term in the Hamiltonian
is then λi jkl b

†
i jbkl + H.c., where bi j corresponds to the jth vi-

brational mode of the ith molecule. The molecule-vibrational
Hamiltonian is then diagonalized by first diagonalizing the
vibrational Hamiltonian and then using the polaron transfor-
mation. For simplicity, let us now discuss the case of a single
molecule. After the diagonalization of the vibrational part, we
may write the interaction Hamiltonian in terms of the new
diagonal vibrational modes b j as

Hm+v =
M∑

j=1

ωv, j

√
S jσ

†σ (x j + u j p j ), (A1)

where x j and p j are the position and momentum operator
of vibrations. The term u j p j follows from the fact that the
molecule couples to the bare vibrational modes. Because in
the Caldeira-Leggett model the position operator x j couples
to the position operator of an environmental (harmonic) mode,
the diagonalization is incommensurate with this model unless
u j = 0. In the single-excitation limit, we may then introduce

the operator σ S = Qσ ≡ ∏
j Q jσ , where Qj = e

√
S(b†

j−b j ). In-
troducing many molecules into the situation only adds one ex-
ternal index to each operator. When there is no coupling to the
plasmon, by following the same approximations as in the main
text, we find that the dynamics is given by the input-output
equation

σ̇ S = −
(

iω̃m + κm

2

)
σ S − √

κext
m Qσin, (A2)

with ω̃m = ωm − ∑
j S jωv, j . The equation for b j again decou-

ples from the dynamics of σ S in the single-excitation limit.
Similarly to the case of a single vibrational mode, we find
the two- and four-point correlators of Q in the calculation
of the spectra. However, since Q(t ) = ∏

j Q j (t ), the Fourier
transform of Q is always a convolution. After diagonalization,
we may treat the modes as independent so this structure shows
up as convolutions of P(E )’s and L’s defined in the earlier
sections. Thus, we have

〈Q†(ω1)Q(ω2)〉 = Ptot (ω1)δ(ω1 + ω2), (A3a)

〈Q†(ω1)Q(ω2)Q†(ω3)Q(ω4)〉 = Ltot (ω1, ω2, ω4)

× δ(ω1 + ω2 + ω3 + ω4),

(A3b)
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where Ptot (E ) = [P1 ∗ P2 ∗ · · · ∗ PM](E ) is a convolution over
M different modes, and similarly for Ltot. For example,

[L1 ∗ L2](ω1, ω2, ω3)

=
∫

dω′
1dω′

2dω′
3L1(ω1−ω′

1, ω2−ω′
2, ω3−ω′

3)L2(ω′
1, ω

′
2, ω

′
3),

(A4)

where L1 and L2 are defined for a single mode as the Fourier
transform of Eq. (16).

APPENDIX B: APPROXIMATION TO THE
POLARON EQUATION

We discuss the consistency of the approximation that al-
lows us to simplify the input-output equation of σ S

j . The full
dynamical equation of σ S

j for the strongly coupled plasmon-
molecule system, using the approach of [36], is given by

σ̇ S
j = − iω̃mσ S

j + ig jQjσz, jc − κ j

2
σ S

j + √
κ̃ jQ jσz, jσin,j

+ γ j

√
S

2
σ S

j (b j − b†
j ) + √

γ jSσ S
j (bin, j − b†

in, j ). (B1)

In the main text, we assumed the single-excitation limit in
which σz, j ≈ −1. In addition, we neglect the thermal fluc-
tuations and set σin, j = 0. Next we discuss when we can
neglect the two last terms that are generated by the coupling
of σ S

j to the vibrational baths. This approximation effectively
uncouples the vibrational dynamics from the dynamics of
the polaron operator σ S

j . As this approximation is related to
the molecule-vibration system, the coupling to the plasmon
may also be neglected, i.e. g j = 0. For notational brevity, we
omit the molecular index j. Let us consider an expansion
σ S = σ S

0 + σ̃ S
1 , where σ S

0 is the solution of

σ̇ S
0 = −

(
iω̃m + κm

2

)
σ S

0 − √
κext

m Qσin, (B2)

on Eq. (B1) with the above simplifications. Consequently, the
dynamics of σ̃ S

1 is given by

˙̃σ S
1 = −

(
iω̃m + κm

2

)
σ̃ S

1 + γ
√

S

2

(
σ S

0 + σ̃ S
1

)
(b − b†)

+
√

γ S
(
σ S

0 + σ̃ S
1

)
(bin − b†

in ). (B3)

We may now construct the next order of the expansion by
setting σ̃ S

1 = σ S
1 + σ̃ S

2 and fixing σ S
1 to be the solution of

σ̇ S
1 = −

(
iω̃m + κm

2

)
σ S

1 + γ
√

S

2
σ S

0 (b − b†)

+
√

γ Sσ S
0 (bin − b†

in ). (B4)

This equation can be solved with the solution of σ S
0 . The

dynamics of σ̃ S
2 is then determined by an equation similar

to Eq. (B3), where σ̃ S
1 is replaced by σ̃ S

2 and σ S
0 by σ S

1 .
Continuing this process gives then the expansion of σ S =∑∞

j=0 σ S
j . However, we focus only on the first order of the

expansion.
Consider now that the molecule is driven coherently, σin =

αe−iωd t , so that the solution of Eq. (B2) is

σ S
0 (ω) = α

√
κext

m χ (ω − ω̃m)Q(ω − ωd ). (B5)

Consequently, we obtain, from Eq. (B4),

σ S
1 (ω) =

√
Sχ (ω − ω̃m)

×
{

i
γ

2

[
σ S

0 ∗ p
]
(ω) + √

γ
[
σ S

0 ∗ (bin − b†
in )

]
(ω)

}
,

(B6)

where ∗ denotes a convolution in the Fourier space.
We are now interested in the consistency of the expansion,

but it is not straightforward to see the effect of the convolution
and the underlying dynamics of the vibrations. For this reason,
we compare the mean values of σ S

0 and σ S
1 . When the input

operators of the vibrations represent thermal noise, the bin

terms do not contribute to the average. The expectation value
of σ S

0 can be expressed as〈
σ S

0 (ω)
〉 = α

√
κext

m χ (ω − ω̃m)〈Q(0)〉δ(ω − ωd ). (B7)

For a thermal ensemble, 〈Q(0)〉 = exp[−S(nth + 1
2 )]. In the

calculation of the average of σ S
1 , we need the generalized

Wick theorem to write

S〈pn(t )p(0)〉 = nJ (t )〈pn−1(t )〉, (B8)

where J (t ) is the function defined in Eq. (12) and we define
its Fourier transform by J (t ) = ∫

dωe−iωt J (ω). We obtain

〈σ S
1 (ω)〉
= γ

2
α
√

κext
m χ (ω − ω̃m)

×
[∫

dω′χ (ω′ + ωd − ω̃m)J (ω′)
]
〈Q(0)〉δ(ω − ωd )

= γ

2

[∫
dω′χ (ω′ + ωd − ω̃m)J (ω′)

]
〈σ S

0 (ω)〉

≡ C
〈
σ S

0 (ω)
〉
. (B9)

Now we have a necessary condition for the consistency of
the simplification: The parameter C should be small compared
to unity for the expansion to be sensible. It can be estimated
by using the same approximation in Eq. (19) as in the γ = 0
calculation. Then (denoting � = ωd − ω̃m),

C = γ S

2
[(nth + 1)χ (ωv + �) + nthχ (−ωv + �)]

�=−ωv≈ γ S

κ̃ + γ S

nth + 1

2
. (B10)

In the last approximation, we have written the renormalized
linewidth κm in terms of the bare linewidth of the molecule κ̃

and neglected the smaller term χ (−2ωv ) for clarity. Now, it
is clear that the consistency of the approximation is related to
the temperature and the linewidths. This condition is always
fulfilled when nth < 1 or, alternatively, ωv

kBT > ln(2) ≈ 0.69. It
should be remembered that this is only a crude estimate and
larger values of γ can diminish the value of C.

APPENDIX C: CORRESPONDENCE TO EXPERIMENTS

In the experimental Kretschmann setup, a prism is used
together with white light to excite the plasmons. The angle
θ of incoming light with respect to the normal of the interface
then determines the plasmon eigenfrequency ωc. In our model,
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which is based on a coherent single-frequency driving at ωd ,
we can introduce a distribution ρ(ωd ) for light intensity. Then
we can relate our theoretical model to the observed spectra by
an integral relation

ST/R
s/p,obs(ω) =

∫
dωdρ(ωd )ST/R

s/p (ω; ωd ). (C1)

The distribution ρ(ωd ) can include features of the driving light
as well as the prism that couples the light to the interface. We
can generally divide the theoretical spectrum into elastic and
inelastic parts by ST/R

s/p (ω; ωd ) = Selδ(ω − ωd ) + Sinel(ω; ωd ).

Now, if we assume that the distribution of light is uniform and
its bandwidth large compared to the plasmonic linewidth κ ,
we have

ST/R
s/p,obs(ω) = Sel(ω) +

∫
dωd Sinel(ω; ωd ). (C2)

The inelastic contribution is due to vibrations and molecular
fluorescence [i.e., the function F (ω �= ωd )]. In the fit for
Fig. 5, we disregard the contribution from Sinel because its
main body is clearly separated from the elastic emission
coming around the polariton frequencies.
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ABSTRACT
We study the elastic response of a stationarily driven system of a cavity field strongly coupled with molecular excitons, taking into account
the main dissipation channels due to the finite cavity linewidth and molecular vibrations. We show that the frequently used coupled
oscillator model fails in describing this response especially due to the non-Lorentzian dissipation of the molecules to their vibrations. Sig-
natures of this failure are the temperature dependent minimum point of the polariton peak splitting, the uneven polariton peak height
at the minimum splitting, and the asymmetric shape of the polariton peaks even at the experimentally accessed “zero-detuning” point.
Using a rather generic yet representative model of molecular vibrations, we predict the polariton response in various conditions, depend-
ing on the temperature, molecular Stokes shift and vibration frequencies, and the size of the Rabi splitting. Our results can be used as a
sanity check of the experiments trying to “prove” results originating from strong coupling, such as vacuum-enhanced chemical reaction
rate.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0036905., s

I. INTRODUCTION

Strong coupling between electromagnetic modes and electronic
excitations has emerged as a tool to modify internal material prop-
erties and dynamics in various systems from light harvesting1 and
energy transport2–5 to controlling photochemical reactions.6–9 The
strong coupling regime is typically reached when the interaction-
driven splitting of the dressed state, or polariton, eigenenergies
becomes larger than their linewidth. Only then, the avoided cross-
ing in the energy spectrum can be identified. This is rather clear
in systems with a Lorentzian response that can be described by
adding imaginary parts to the photon/exciton eigenenergies. How-
ever, in the case of molecules, the main cause of linewidth broaden-
ing often originates from vibrational dissipation, which does not typ-
ically produce a Lorentzian response. Here, we consider in detail a
rather generic model system (two-level system and harmonic vibra-
tions) to explore the effects of Brownian vibrational dissipation to
the polaritonic spectrum. Comparing the results of such a model
to the experimentally obtained polariton fingerprints then provides
a sanity check of those experiments, helping to rule out spurious
effects.

Our approach is based on the open quantum system model that
we introduced in Ref. 10 to study the polariton response in the case
where surface plasmon polaritons couple strongly with molecular
excitations. Here, we modify this approach to concentrate on the
case of a cavity containing a large number of molecules interacting
with the cavity mode. The qualitative difference between these sys-
tems is that in the cavity case the molecular excitations are coupled
with the free field only via the cavity field. We also focus on study-
ing the role of vibrational dissipation on renormalizing the effective
strong coupling parameters, especially in the case approaching the
overdamped vibrations.

We consider the setup shown in Fig. 1. It consists of a cavity
with eigenfrequency ωc and linewidth κc, probed externally via a
field coupling through one of the cavity mirrors. Inside the cavity,
there are a (large) number N of molecules with excitation frequency
ωm. We denote the coupling energy between the cavity fundamen-
tal mode and a single exciton by g j. At the same time, the molec-
ular excitation couples to its vibration mode with eigenfrequency
ωv via a coupling strength

√
Sωv , where S is the Huang–Rhys

factor.11 We assume the vibrations to reside in a bath with tempera-
ture T, providing them with a linewidth γ. This vibrational coupling
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FIG. 1. Schematic picture of a measurement setup in which the cavity eigenfre-
quency ωc is controlled by both the length L between the mirrors and the angle α of
incident light of frequency ωd . This confined light mode couples to molecules with
harmonic vibrations. In this article, we focus on the elastic cavity emission or trans-
mission, that is, the observed light power at frequency ω = ωd . For explanation of
other parameters, see the main text.

gives the individual molecules their Stokes shift and provides their
inhomogeneous broadening.12

We illustrate the effects of this inhomogeneous broadening on
the polariton eigenmodes via the system response in Fig. 2. Com-
pared to the model in which the molecule response is taken as
Lorentzian—known as the coupled oscillator model—the polari-
tonic spectrum has a few distinct features. First, the vibrations cause
an asymmetry between the upper and lower polariton peaks, which
is similar to that obtained by changing the detuning between the cav-
ity and molecular frequency. However, this effect cannot be imitated
by using a Lorentzian molecular response because this asymmetry is
caused by the asymmetry of the molecular response. Second, we find

FIG. 2. Example of the polariton spectra under the coupled oscillator model
(orange dashed line) and our P(E) model (blue solid line), assuming a very high
finesse cavity tuned so that the spacing between the polariton peaks is at its small-
est. The inset shows the respective absorption profiles. Since the cavity dissipation
κc is negligible, in the Lorentzian model, we find the Lorentzian polariton peaks
whose linewidth is half of the “molecular” linewidth κm. When the vibrations and
their dissipation are taken into account, one can find the non-Lorentzian behavior,
renormalization of Rabi splitting, and changes in the linewidths.

that the polaritonic frequencies are renormalized, which affects the
observed Rabi splitting.

A. Coupled oscillators
We briefly motivate the upcoming discussion with the often-

used “coupled oscillators” model of polaritonics. It describes the
cavity and excitonic modes as effectively harmonic oscillators; the
cavity mode has the eigenfrequency ωc, while for the exciton, it is
ωm. The rotating wave approximation is often made to simplify the
coupling between these modes.13 Then, in the single-excitation sub-
space, the Hamiltonian for a single molecule in a cavity is given by
(h̵ = 1 throughout the text)

H = (
ωc g
g∗ ωm

). (1)

This is the Jaynes–Cummings Hamiltonian.14 The polariton eigen-
frequencies are then obtained by diagonalizing this matrix, which
gives

ω± =
ωc + ωm

2
±
√
∣g∣2 + (ωc − ωm)2/4. (2)

Perhaps, the most straightforward and often-used way to model dis-
sipation is to introduce an imaginary shift in the eigenfrequencies.
That is, we set ωc → ωc − iκc for the cavity and similarly ωm → ωm
− iκm for the exciton. This method leads to Lorentzian line shapes
for the cavity and the exciton alone. Consequently, if the dissipation
is inserted to the polaritonic frequencies at resonance ωc = ωm, one
finds

ω± = ωm − i
κc + κm

2
±
√
∣g∣2 − (κc − κm)2/4, (3)

from which one infers (κc + κm)/2 to be the polariton linewidth.15

However, the molecular vibrations cannot often be neglected in
molecular polaritonics. It is quite obvious that the vibrational modes
have their own complex dynamics as well as coupling to their envi-
ronment, which shape the absorption and fluorescence spectra of
molecules. We show that even in the simplest vibrational models,
the dissipative properties of the molecular vibrations, which in fact
are the main source of line broadening, have quite intricate physics
and thus effects on the polariton spectrum.

II. INPUT–OUTPUT THEORY OF MOLECULE-CAVITY
SPECTROSCOPY

In this article, we consider a simplified model of a molecule
as a two-level system with harmonic vibrations. In the language
of operators, we associate a lowering operator σ to the electronic
two-level system, while the phonons of vibrations are destroyed by
b. The Hamiltonian is then characterized by the eigenenergies, ωm
and ωv , of the two-level system and vibrations, respectively, and the
dimensionless Huang–Rhys factor S quantifying their coupling

Hmol = ωmσ†σ + ωvb†b + ωv

√
Sσ†σ(b + b†). (4)

We assume that there are N identical particles that are described by
this Hamiltonian.
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Here, we consider that these molecules are embedded in a
Fabry–Pérot cavity of eigenfrequency ωc. For instance, the cav-
ity eigenfrequency may be tuned by controlling the length of
the cavity L and the incident light angle α by the relation
ωc = πc

L /
√

1 − sin2(α)/n2
eff, where c is the speed of light and neff is the

effective refractive index inside the cavity.16 The electronic coupling
strength is described by a constant g j. When we denote the cavity
photon annihilation operator by c, the full Hamiltonian under the
rotating wave approximation is

H = ωcc†c +
N

∑
j=1
(Hmol,j + gjc†σj + g∗j σ

†
j c), (5)

which is often referred to as the Holstein–Tavis–Cummings Hamil-
tonian.17 Under the assumption of identical particles, the relevant
strong coupling constant is∑N

j=1 ∣gj∣2 ≡ g2
N .

In order to observe anything spectroscopically, the cavity must
be driven by an external light source, which we assume to have a
low power so that we can concentrate on the lowest order response.
We assume a laser drive at a driving frequency ωd. Then, some light
will leak out of the other side of the cavity. We are interested in
this transmission spectrum ST(ω; ωd), where, in general, ω is the
frequency of the transmitted light. Any observed polaritonic emis-
sion is mediated by the cavity—there is no direct emission from the
molecules. This simplifies the description of the spectrum as there
cannot be interference between the cavity and molecular emission.
In addition, the light emission should mostly be observed at the
driving frequency. In this article, we neglect all processes that could
cause inelastic behavior. This may be experimentally guaranteed by
fixing the outgoing angle to be the same as the incident angle and
measuring light power only at the frequency equal to the driving
frequency ω = ωd.

We assume that there exists an environment for each of the
vibrational, excitonic, and cavity modes; coupling to these environ-
ments leads to dissipation. Both the driving and dissipation may
be taken into account in the input–output formalism of quantum
optics.18 It describes the quantum dynamics in the Heisenberg pic-
ture and can be considered an open quantum system modification
to the Heisenberg equation. Without vibrations, this method gives
similar results to those alluded in Eq. (3). However, the vibrations
complicate finding the cavity reflection and transmission spectra
notably as the equations of motion are nonlinear. The solution is
obtained by moving into a polaron frame, i.e., finding the dynam-
ics of σS = σe

√
S(b†−b), which allows for simplifying approxima-

tions that in the end decouple the vibrational dynamics from those
of the cavity-exciton system.10,19 The cavity transmission or emis-
sion spectrum is in this model ST(ω;ωd) ∝ ∣r(ωd)∣2δ(ω − ωd)
where the physics is contained in the cavity response
function10

r(ωd) = [i(ωd − ωc) −
κc
2

+ g2
NA(ωd − ωm + Sωv)]

−1
. (6)

The molecular contribution to the polaritonic spectrum is the
absorption function

A(ω) = ∫ dE
P(E)

i(ω − E) − κm/2
. (7)

The absorption profile of the molecule without the cavity is given
by Re[−A(ω)]. Here, P(E) describes the probability to emit (E > 0)
or absorb (E < 0) energy E to/from the vibrations. It can be
expressed as

P(E) = ∫
dt
2π

eiEt⟨eφ(t)e−φ(0)⟩ = ∫
dt
2π

eiEteJ(t)−J(0), (8)

where φ(t) =
√
S[b†(t) − b(t)] is proportional to the momen-

tum operator of the vibrations in the Heisenberg picture, while
J(t) = ⟨φ(t)φ(0)⟩ is proportional to the momentum correlator.
The Fourier convention has been chosen this way to allow for a
probability interpretation: The energy integral over P(E) amounts
to unity. Furthermore, the same formalism extends to many vibra-
tional modes: The total P(E) in Eq. (7) is then a convolution of all
the single-mode P(E) functions.10

The expression of A is the convolution of the vibrational P(E)
and the electronic susceptibility. The latter alone would produce a
Lorentzian line shape with linewidth κm. This linewidth follows from
the assumption of excitonic dissipative environment, which does not
couple to the observed far-field mode. It is renormalized by the cou-
pling to vibrations as κm = κ̃ + Sγ, where κ̃ represents the dissipation
rate of the electronic transition and γ is the dissipation rate of the
vibrations.10 However, P(E) ultimately determines the line shape in
the presence of vibrations.

If there are no vibrations, S = 0 and P(E) = δ(E), the solu-
tion of 1/r(ω) = 0 gives exactly the polariton frequencies in Eq. (3).
However, in this context, the frequencies are real. When ωc, ωm,
|g|≫ κc, κm, one can first neglect the dissipation rates and minimize
the imaginary part to find the polariton frequencies in Eq. (2). It is
then straightforward to show that the behavior around these eigen-
frequencies is Lorentzian and the real part gives the dissipation rate
(κc + κm)/2. The proper way to find the polariton peaks would be to
find the extremal points of |r(ω)|2, which gives the dissipative correc-
tion. A closed form solution is possible to obtain only at resonance
ωc = ωm. It reads

ω± = ωm ±

¿
ÁÁÁÀ∣g∣2

¿
ÁÁÀ1 +

κm(κm + κc)
2∣g∣2

− κ2
m/4. (9)

The square root term may be approximated by
√
∣g∣2 + κcκm/4 when

|g| ≫ κm, κc. This result differs from the coupled oscillator model
in two ways: First, the dissipation strictly increases the spacing
between polariton frequencies, or the Rabi splitting, when the cou-
pling is large compared to the dissipation rates. This changes at
the opposite limit when the dissipation rates dominate the cou-
pling |g|2, leading eventually to the disappearance of the polari-
ton peaks. Second, the dissipation in the cavity and the molecule
are, in general, not interchangeable as in the coupled oscillator
model. This is a direct consequence of our assumptions: We only
couple the external light source to the cavity and observe only its
emission.
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III. P (E ) THEORY UNDER BROWNIAN DISSIPATION
We now derive the P(E) function assuming that the molecu-

lar vibrations are coupled to a bath of harmonic oscillators. This
means solving the correlator ⟨eφ(t)e−φ(0)⟩ and then evaluating its
Fourier transform. We note the recent similar approaches of Refs. 20
and 21 that model molecules embedded in a crystal taking into
account coupling between the lattice vibrations and molecular
vibrations.

The correlator ⟨eφ(t)e−φ(0)⟩ can be evaluated for different mod-

els,10,19,20 so let us make a general argument: Since the vibrations
are harmonic, their fluctuations follow Gaussian statistics. Fur-
thermore, we assume that these fluctuations are stationary, i.e.,
all correlators depend only on time differences and not on any
specific time. By introducing a time ordering operator T that
always orders φ(t) before φ(0), we can write the correlator as
T ⟨eφ(t)−φ(0)⟩. This may be identified as the characteristic func-
tion of the stochastic quantity φ(t) − φ(0), which has a vanishing
mean.22,23 In the case of Gaussian fluctuations, the correlator is fully
determined by the variance T ⟨[φ(t) − φ(0)]2⟩/2, which equals to
J(t) − J(0).

Because vibrational modes are often low frequency compared
to optical frequency, the quantum optical models of dissipation are
not justified. This is because in the quantum optical case, the time
scales of the system are generally assumed to be much smaller than
its relaxation time. However, this is not a typical limit for molecu-
lar vibrations. This leads to a failure of the rotating wave approx-
imation that is made to the system–environment coupling in the
quantum optical formulation.24 In the Brownian case (also called the
Caldeira–Leggett model25), the equations of motion for the position
x and momentum p are

ẋ = ωvp, ṗ = −ωv(x +
√

2Sσ†σ) − γp + ξ, (10)

where ξ is the Langevin force of thermal fluctuations obeying a noise
correlator,26

⟨ξ(ω)ξ(ω′)⟩ = γω
2πωv

[coth( ω
2kBT

) + 1]δ(ω + ω′). (11)

On average, the molecules are in their ground state since ωm ≫ kBT,
so we neglect the σ†σ-term in Eq. (10). This assumption decouples
vibrational dynamics from those of the exciton. The solution of x
and p can then be obtained in the Fourier space in terms of the
force ξ.

By using φ(t) =
√

2Sp(t) and taking a few algebraic steps, we
find an integral expression

J(t) = Sγ
πωv
∫ dω e−iωt

ω3

(ω2 − ω2
v)2 + ω2γ2 [coth( ω

2kBT
) + 1].

(12)

It should be noted that this integral does not converge when t = 0,
that is, the variance of momentum diverges. This is akin to the free
Brownian particle for which the variance of the position diverges.
We may solve the integral for t ≠ 0 and deal with this divergence at
a later point.

Whereas Ref. 10 computes P(E) in the limit γ ≪ ωv , here we
solve the problem with an arbitrary γ/ωv . We employ the method
of residues to solve the integral for t > 0 by choosing an infinite
radius semi-circle in the lower complex half-plane as the integra-
tion contour. Formally, we then set J(t) − J(0) ≡ J̃(t) to vanish
at time t = 0 and cut off the divergence. Finally, we can use the
stationarity of vibrations to expand to negative times by the rela-
tion J(−t) = J(t)∗. These steps are taken to ensure the consistency
of P(E).

The integral in Eq. (12) may be separated into two contri-
butions by the singularities of the integrand that lie inside the
integration contour (see Fig. 3). On the one hand, there is the
contribution of the singularities of the rational function g(ω)
≡ ω3/[(ω2 − ω2

v)2 + ω2γ2], which is determined by the quality
factor Q = ωv/γ of vibrations. Especially, when Q > 1/2, there
are two singularities with non-zero real frequencies, which are
associated with underdamped motion. The value Q = 1/2 repre-
sents the critical damping of harmonic motion, while Q < 1/2
corresponds to the overdamped motion with two singularities on
the imaginary axis. On the other hand, the hyperbolic cotan-
gent has an infinite series of singularities at complex frequencies,
which are related to the temperature. We term this the Matsubara
contribution.

Since we want to calculate the Fourier transform of P(t)
= exp[J̃(t)], it is useful to use the convolution theorem. It allows us
to Fourier transform the individual components (each correspond-
ing to one singularity/residue) and convolve the Fourier transforms
together only in the end.

The calculation is tractable due to a group property of
Lorentzian distributions under convolutions. We find that the
Fourier transforms may be written in terms of two functions,

fL(ω;ω0, Γ) = 1
π

Γ
(ω − ω0)2 + Γ2 , (13a)

gL(ω;ω0, Γ) = 1
π

ω − ω0

(ω − ω0)2 + Γ2 . (13b)

FIG. 3. Sketch of the singularities of g(ω) (blue circles) in the lower complex half-
plane as a function of the quality factor Q. The singularities of coth(ω/2kBT) that lie
on the imaginary axis are depicted by gray crosses. The red dotted line represents
the integration contour for t > 0. This residue structure is mirrored in the upper
complex half-plane.
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We recognize f L to be the Cauchy–Lorentz probability distribution
function and gL to be its Hilbert transform. We use these normal-
ized functions as they integrate to unity (f L) or to zero (gL) for
all parameters. In addition, these functions follow the convolution
table,

[ fL(ω1, Γ1) ∗ fL(ω2, Γ2)](ω) = fL(ω;ω1 + ω2, Γ1 + Γ2), (14a)

[gL(ω1, Γ1) ∗ fL(ω2, Γ2)](ω) = gL(ω;ω1 + ω2, Γ1 + Γ2), (14b)

[gL(ω1, Γ1) ∗ gL(ω2, Γ2)](ω) = −fL(ω;ω1 + ω2, Γ1 + Γ2). (14c)

Often, only the Lorentzian component is taken into account. How-
ever, the role of gL is to provide the emission–absorption asymmetry
to P(E). This general physical rule simply states that the temperature
(of the environment) dictates the ratio of probabilities between the
absorption and emission of energy E between the environment and
the vibrations. To be more exact, this ratio is given by P(E)/P(−E)
= e−βE. This relation follows from the definition of P(E) as a Fourier
transform of ⟨eφ(t)e−φ(0)⟩ by using the definition of Heisenberg
operators and the cyclic property of the trace when the vibration
mode is in thermal equilibrium.23

Next, we find the contributions of individual singularities to J(t)
and then calculate their Fourier transforms. The algebraic details of
the Fourier transform are given in the Appendix.

A. Residues of the rational function g (ω)
Let us consider underdamped motion with Q > 1/2. We

then find singular points at ω = ±ω̃v ± i γ2 . The frequency ω̃v

= ωv

√
1 − 1

4Q2 is the renormalized vibrational frequency. By the
method described above, we find, for all times t,

J̃±(t) = [Re(D±) + iIm(D±) sgn t](e∓iω̃v t− γ
2 ∣t∣ − 1), (15)

where sgn t is the sign function (sgn t = t/|t| for t ≠ 0 and sgn t = 0 if
t = 0) and

D− = S
i
Q −

ωv

ω̃v
( 1

2Q2 − 1)

eβ(ω̃v+i γ2 ) − 1
≡ SN[ i

Q
− ωv

ω̃v
( 1

2Q2 − 1)], (16a)

D+ = S(N∗ + 1)[− i
Q
− ωv

ω̃v
( 1

2Q2 − 1)]. (16b)

The constant N defined in D− seems to be a complexification of the
Bose function. If we set γ = 0, N would be the number nth of thermal
excitations. One can then readily associate D+ to emission and D− to
absorption.

The Fourier transform of exp[J̃±(t)] is given by the following
series representation:

P±(E) =F [exp[J̃±(t)]](E) = e−Re(D±)
∞
∑
n=0

1
n!
∣D±∣n

× [cos(ϕ±n )fL(E;±nω̃v ,n
γ
2
) + sin(ϕ±n )gL(E;±nω̃v ,n

γ
2
)],

(17)

where ϕ±n = Im(D±) − n arg(D±) is the angle that depends directly
on the complex phase of the coefficient D±. This series repre-
sents all the possible vibronic peaks: P+ describes all the processes
where a certain number of vibronic excitations are created when
the molecule is excited, while P− describes the anti-Stokes pro-
cesses of exciting the molecule from an excited vibrational state.
Since we assume harmonic vibrations, there is no limit to the num-
ber of vibrational states, but accessing higher vibrational states is
unlikely because of the dissipation. Note that without the angle
dependence, ϕ±n = 0, which happens when γ = 0 or Q → ∞, the
prefactors would follow the Poisson distribution with D+ = S(nth
+ 1) and D− = Snth. Thus, the non-zero ϕ±n can be regarded as a
sign of correlation between processes that involve multiple quanta of
vibration.

In the overdamped limit, Q < 1/2, only a few changes are
required in Eq. (17). First, there is no harmonic motion and, thus,
∓ω̃v → 0. We rather have two dissipation rates so that

γ
2
→ Γ± = ωv

¿
ÁÁÀ 1

2Q2 − 1 ± 1
Q

√
1

4Q2 − 1. (18)

In addition, the coefficients change to

D± →
S

2Q
[−i + cot( Γ±

2kBT
)]
⎛
⎝

1 ±Q
√

1 − 2Q2

1 + 2Q2

⎞
⎠

, (19)

assuming that the singularities of g(ω) do not occur at the same point
as those of the hyperbolic cotangent. Such coincidences would take
place only at numerable points of continuous variables. We hence
expect such double poles to have no observable consequences.

B. Matsubara contribution
The function coth(ω/(2kBT)) has singularities at ω = i2πkBTk

for k ∈ {1, 2, . . .}. For any k, the contribution to J̃(t) is given by

J̃k(t) = Ck(e−ωk ∣t∣ − 1),Ck =
4S
βQ

ω3
k

(ω2
k + ω2

v)2 − γ2ω2
k

. (20)

Since there is no imaginary part in J̃k(t), its Fourier transform is
simply a Lorentzian. The resulting Pk is then a series of E = 0 cen-
tered Lorentzians with a width that is multiples of the Matsubara
frequency ωk. Furthermore, it admits to a representation in terms of
the incomplete Gamma function27 as

Pk(E) = F [exp[J̃k(t)]](E)

= e−Ck
⎛
⎝
δ(E) − Re

⎡⎢⎢⎢⎢⎣

(−Ck)
i E
ωk

πωk
Γ(−i E

ωk
;−Ck, 0)

⎤⎥⎥⎥⎥⎦

⎞
⎠

. (21)

The Matsubara contribution only widens P(E).
When we consider the sum ∑k J̃k(t), we encounter a

logarithmic divergence as the sum behaves asymptotically as the
harmonic series ∑k1/k. This is a well known feature of Ohmic
dissipation,28 which is characterized by the asymptotically linear
ω dependence of the noise correlator in Eq. (11). Thus, we must
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introduce a cutoff to the integral (12), which we may consider at
the level of residues. Since the divergence is logarithmic, the results
depend only weakly on the chosen cutoff. In this context, the Mat-
subara frequency ωk is also the width parameter of Pk so that the
corresponding distribution becomes wider and wider as higher and
higher Matsubara frequencies are considered. Here, we choose the
number of Matsubara modes by first choosing some cutoff fre-
quency ωL and then calculating kmax = ⌊ωL/(2πkBT)⌋. For very
low temperatures corresponding to ωv/kBT ≫ 2π, one may also
choose to approximate the k-sum as an integral. However, this is
not the limit we consider below. We set ωv/kBT ∈ [0.5; 4] and
choose the cutoff frequency to be ωL = 25ωv in our numerical
analysis.

C. Absorption function
Using the results of Secs. III A and III B, we may now express

the absorption function as a convolution

A(ω) = [P+ ∗ P− ∗ P1 ∗⋯ ∗ Pkmax ∗ χ](ω) (22)

with the electronic susceptibility χ(ω) = [iω − κm/2]−1 defined in
Eq. (7). With the value of A, it is then straightforward to calculate the
elastic spectrum ST(ω) using the response function r(ω) of Eq. (6).

Due to the associativity of convolution, we may change
the order of convolutions in A. This is numerically useful; as
χ(ω) = −π[ f L(ω; 0, κm/2) + igL(ω; 0, κm/2)], the susceptibility χ
provides a constant to all the width parameters. By dividing the
susceptibility into parts using the convolution rules, especially all
the delta functions in Eq. (17) acquire a finite width proportional
to κm. This facilitates a numerical method for the calculation of
the convolutions, although it is possible also analytically. There
are only a few numerical issues to be aware of: One must have a
dense enough discretization of frequencies so that the peaks are
well represented and a large range of values must be included
so that there are no spurious edge effects in the calculation of
convolutions.29–31

Without numerical analysis, one can already have some insight
to P(E) and the resulting absorption function A. The effect of the
Huang–Rhys factor S is twofold: Because the prefactors in P± are
similar to those of Poisson distribution, increasing S increases the
support of the P(E) function, i.e., there are more terms in the
sum, which differ appreciably from zero. In addition, increasing
S increases the effective dissipation rate κm in the molecular sus-
ceptibility χ, which further widens the absorption function A and
increases the linewidth of individual vibronic peaks. The role of
temperature T is similar to this because it allows for thermal exci-
tations. Then, the molecular linewidth increases as the temperature
is increased since there are more processes available, which result in
the same amount of energy absorbed. The role of the Matsubara con-
tribution is essentially to be a correction to this thermal broadening.
In conjunction with S and T, the quality factor of Q then determines
whether individual vibronic peaks may be observed and what the
molecular linewidth is.

The derivation of P(E) and A is here done for a single vibra-
tional mode. As mentioned below Eq. (8), the definition of P(E)
extends to many vibrational modes through convolution. One can
then identify each element of P(E) (P±, Pk) as in the single mode case

and convolve these elements together. For instance, if we have M
identical but independent vibrational modes, the convolution over
all P±’s is straightforward to do and it only multiplies the Huang–
Rhys factor S by M, i.e., S→MS. Here, we assume this kind of case:
The Huang–Rhys factors can be large, but we want to retain the
tractability of the problem, so we use only the minimal number of
free parameters.

IV. POLARITONIC SPECTRUM
Next, we discuss different features of the polaritonic spectrum,

which change due to vibrational dissipation. The interest especially
lies in the quantities that are inferred from experimental data: Rabi
splittings, linewidths, and peak amplitudes.

Vibrations provide an asymmetry to the absorption due to the
emission–absorption asymmetry, which manifests itself as a renor-
malization of the resonance condition. In the coupled oscillator
model, there are three distinct features at resonance ωc = ωm: (1)
The difference between the upper and lower polariton frequen-
cies is at minimum, (2) the linewidths are the same and equal to
the mean of cavity and exciton linewidths, and (3) the intensities
of the peaks are equal. In the presence of vibrations, these condi-
tions bifurcate to different values of detuning. The role of Brownian
vibrational dissipation to this “bifurcation” has not been investi-
gated to our knowledge. This phenomenon is often framed con-
versely as the asymmetry of the upper and lower polariton peaks,
which has garnered both theoretical10,19,32–38 and experimental39–43

interest. The notion of asymmetry often follows in theory even
after fixing the detuning to zero by setting ωc = ωm. However, this
might not give the minimum polariton peak separation, i.e., the
Rabi splitting. This is demonstrated in Fig. 4(a) where the polari-
ton spectrum is plotted as a function of the detuning and the driving
frequency.

A. Rabi splitting
Let us first discuss in detail the renormalization of the observed

polariton frequencies ω± and especially the Rabi splitting R. Here,
we define the Rabi splitting as R = minωc−ωm(ω+ − ω−), and we
denote the value ωc − ωm at which this minimum is obtained

FIG. 4. Polaritonic spectrum ST (ω) for (a) Q = 0.9 and gN = 7ωv and (b) Q = 5
and gN = 3.5ωv . In (a), the gray dotted lines denote the position of the polariton
peaks, while the black dashed line represents the detuning δR on which the Rabi
splitting R is determined. We set S = 1, gN /κc = gN /kBT = 3.5, and the dissipation
rate of the electronic transition κ̃/gN = 0.01 in both the panels.
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by δR. To avoid ambiguities, we only look at parameter regimes
where the vibrational sub-peaks are suppressed. For instance, in
Fig. 4(b), it is unclear how the Rabi splitting should be eval-
uated. This is rarely a problem in experiments with organic
molecules.

We show in Fig. 5(a) how such an “experimentally inferred”
Rabi splitting depends on the temperature T, vibration quality factor
Q, and Huang–Rhys factor S. As in the case of the coupled oscilla-
tor model, the Rabi splitting depends on the molecular linewidth.
For example, R increases with an increasing temperature, which
may be attributed to the increase in the overall linewidth. How-
ever, the molecular line shape plays an important role. In Fig. 5,
we have chosen two pairs of values for S and Q so that there are
two different effective linewidths indicated by the solid and dashed
lines. These linewidths are determined as the full width at half max-
imum (FWHM) of the absorption profile Re(−A). We find that
the Rabi splitting is closer to the value expected from the coupled
oscillator model (2gN without any dissipation) with larger quality
factors Q.

Contrary to the coupled oscillator model, the vibrational dis-
sipation affects the relative position of the polariton frequencies to
the uncoupled eigenfrequencies ωm and ωc. It is especially evident
when the vibrations are of low quality. This follows from our def-
inition of P(E): If the vibrations are very dissipative, P(E) becomes
centered around E = 0 because a vibronic peak at E = ±nω̃v has
the width of nγ/2. Consequently, the absorption function A(ω − ωm
+ Sωv) in the response function and thus the absorption profile is
peaked at ω = ωm − Sωv. This results to a shift of Sωv of the polariton
peaks, which is most clearly seen as a shift in the local minimum
of the polaritonic spectrum (see Fig. 2). If the vibrational quality

FIG. 5. (a) Rabi splitting R and (b) the corresponding detuning δR as a function
of the temperature. The values of Q and S are chosen so that the absorption pro-
file’s linewidth at kBT = ωv is approximately equal for the circles and the crosses
(9.7ωv and 6.2ωv , respectively). The temperatures are chosen so that the
spacing between inverse temperatures is constant and each point corresponds
to a different number of Matsubara modes. Here, gN = 7ωv , κc = 2ωv ,
κ̃ = 0.01ωv .

factor is very high, Q≫ 1, then ω = ωm becomes again the absorption
maximum.

An interesting consequence of the renormalization of polariton
frequencies is that the detuning δR between the bare cavity mode
and the molecular exciton at which the Rabi splitting is determined
changes. This change is plotted in Fig. 5(b) as a function of temper-
ature. A part of the shift in the detuning by the vibrations is caused
by the renormalization of the absorption frequency described in the
previous paragraph. However, even if this renormalization is taken
into account, the effect still remains due to the change in the molec-
ular line shape. The frequency range of the change in detuning is of
the order of one vibrational frequency.

B. Linewidths
Next, we consider the issue of polaritonic linewidth. A natu-

ral point of comparison is the coupled oscillator model from which
one infers the rule that the polariton linewidth is the mean of cav-
ity and molecular linewidth, although only at resonance ωc = ωm.
However, when vibrations are present, it is unclear what should
be chosen as the molecular linewidth. One option is the full width
at half maximum (FWHM) of the molecular absorption spectrum.
Another option would be to deduce the value using a Lorentzian
fit. We choose the former method because of its simplicity. Like-
wise, we use FWHMs as polariton linewidths. To this end, we
choose larger Rabi splittings so that the polariton peaks are clearly
separated.

In Fig. 6(a), we compare the polariton linewidths in the cases
where the molecular broadening is Lorentzian (orange) or mostly
caused by vibrations (blue). We observe that the vibrations change
the detuning δΓ at which the upper and lower polaritons are of equal
width Γ+ = Γ−. Since at ωc = ωm we have Γ+ > Γ−, as is well estab-
lished, it is not surprising that δΓ > 0. The same effect may be seen
in the ratio of upper/lower polariton peak intensities in Fig. 6(b),
although to a much lesser extent. Together with the change in the

FIG. 6. (a) Estimated polariton linewidths Γ± [the solid (dashed) line represents
the lower (upper) polariton] and (b) the ratio of peak intensities of the upper and
lower polariton as a function of detuning. The insets show the polaritonic spectrum
ST (ω) corresponding to negative and positive detuning. Here, we have chosen
the effective molecular linewidth (FWHM of absorption) as the dissipation rate κm

in the coupled oscillator model S = 0 (in orange). The parameters are Q = 4,
gN = 10ωv , κc = 0.2 gN , ωv /kB T = 1, κ̃ = 0.06ωv .
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detuning δR, it appears that the ratio is below unity, i.e., the lower
polariton peak is of higher intensity than the upper polariton at
the detuning at which the Rabi splitting is determined. This is in
line with the previous experimental and theoretical analysis.10,19,32–43

We also find that the polariton linewidths Γ± under vibrational
dissipation are in general larger than those of the coupled oscilla-
tor model. In our model, this is a consequence of the absorption
function A whose real part is even more tail-heavy than Lorentzian
distributions.

C. Limits of vibrational dissipation: Overdamping
and high quality vibrations

So far, we have only considered the case in which the vibra-
tions are underdamped and there exists a well defined vibra-
tional frequency. For completeness, we briefly comment the
changes of the polaritonic spectrum induced by the overdamped
vibrations.

The effect of overdamping is that the absorption function
becomes extremely tail-heavy as all the possible vibrational tran-
sitions are fully smeared by the dissipation. Consequently, the
emission–absorption asymmetry causes a very notable asymmetry
to the absorption, which is visible in the orange dashed line of
Fig. 7. Compared to the blue curve that is closer to a Lorentzian
profile, the renormalization of the Rabi splitting becomes very large.
This is similar to what is observed in Fig. 5 for low Q values. The
change in the polariton line shape is also notable but difficult to
quantify.

FIG. 7. Three examples of different line shapes that follow from the P(E) theory to
(a) the polariton spectrum and (b) absorption profile with the change of parameters.
The blue line represents a Lorentzian-like case in which the vibrational dissipation
dominates. The orange dashed line is in the overdamped limit, while the brown
dotted line is in the opposite limit of high quality vibrations. The parameters are
chosen so that FWHMs are the same for each case, approximately 9.1ωv . The
vibrational parameters are S = {4, 1,0.51}, κ̃/ωv = {0.01, 0.01, 1.6}, ωv /kB T
= {1, 0.56, 1} for Q = {4, 0.3, 15}, respectively. The polariton spectrum is calculated
with gN = 9ωv and κc /gN ≈ 0.11 and the detuning ωc = ωm.

We have considered here mainly the cases in which the vibra-
tional dissipation is in fact the main source of dissipation. However,
it is possible that the vibrations are of very high quality, but there
is a large dissipation rate of the electronic transition. In our model
with only a single vibrational mode, this appears to be the only way,
which leads to a Gaussian-like absorption profile. It is the opposite
limit to the overdamped vibrations as the tails of absorption pro-
file become less pronounced than in Lorentzian profiles. The effect
on the results presented in Figs. 5 and 6 is that the values change,
while the trends remain the same. These changes may be inferred
by comparing the brown dotted line in Fig. 7 to the blue line that
represents a Lorentzian-like case: The Rabi splitting is larger, while
the polariton linewidths are smaller than those in the corresponding
Lorentzian case.

V. CONCLUSIONS
In summary, we have presented an analytical model on the

effect of Brownian vibrational dissipation to the polariton spec-
trum in a cavity measurement. Even though our approach is math-
ematically involved, it can provide richer physics than the cou-
pled oscillator model. For most organic molecules, it should work
as a much better approximation. The associated cost is that there
are a few parameters more regarding vibrations whose determi-
nation from experimental data requires more work. However, our
work provides some general checks to which the experimental
data may be compared, such as the different detunings, which
give the Rabi splitting, equal polariton linewidths, and equal peak
intensities.
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APPENDIX: FOURIER TRANSFORM OF exp[J̃(t)]
Formally, all the Fourier transforms in this work are of the form

1
2π ∫ dteiEt exp[(a + ib sgn t)(eiω0t−Γ∣t∣ − 1)], (A1)

where a, b,ω0, Γ ∈ R and Γ > 0. We use the convolution theorem to
separate the Fourier transform into two parts before expanding the
exponential into a Taylor series. Thus, we have

1
2π ∫ dteiEte−a−ib sgn t = e−a

∞
∑
n=0

(−ib)n
n!

1
2π ∫ dt(sgn t)neiEt

= e−a[δ(E) cos b +
sin b
πE
], (A2)

which holds true when treated as the Cauchy principal value integral.
At this point, we can recognize that formally δ(E) = f L(E; 0, 0) and
1/(πE) = gL(E; 0, 0). The second part of the transform is
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1
2π ∫ dteiEt exp[(a + ib sgn t)eiω0t−Γ∣t∣]

=
∞
∑
n=0

1
n!

n

∑
k=0
(nk)I

n
k , (A3)

where, with the help of the binomial theorem,

Ink =
an−k

2π ∫ dt(ib sgn t)k exp[i(E + nω0)t − nΓ∣t∣]. (A4)

Again, the expressions with even k differ from those of odd k. By
direct evaluation, one can confirm that

1
2π ∫ dt(sgn t)k exp[i(E + nω0)t − nΓ∣t∣]

= {fL(E;−nω0,nΓ), k even
igL(E;−nω0,nΓ), k odd.

(A5)

This result in conjunction with the convolution theorem leads
directly to the convolution rules of f L and gL in Eq. (14). Further-
more, it can be used in Ink , which allows us to write expression
(A3) as

∞
∑
n=0

1
n!
(fL

n

∑
k even

+gL
n

∑
k odd
)(nk)a

n−k(ib)k. (A6)

We omit the arguments of f L and gL for brevity. The even and odd
binomial sums may be simplified by the relation

1
2
[(a + ib)n ± (a − ib)n] =

n

∑
k even
k odd

(nk)a
n−k(ib)k, (A7)

which follows from the binomial theorem. We denote now z = a
+ ib = |z|eiθ, which simplifies expression (A6) to

∞
∑
n=0

∣z∣n

n!
[cos(nθ)fL + sin(nθ)gL]. (A8)

The last step of convolving the results together is then straight-
forward with the convolution rules and by using the sum rules of
trigonometric functions. Thus, the Fourier transform (A1) is

e−a
∞
∑
n=0

∣z∣n

n!
[cos(b − nθ)fL(E;−nω0,nΓ)

+ sin(b − nθ)gL(E;−nω0,nΓ)]. (A9)

We find Eqs. (17) and (21) of the main text by applying this result to
J̃± and J̃k.
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Cavity optomechanical systems have become a popular playground for studies of controllable nonlinear
interactions between light and motion. Owing to the large speed of light, realizing cavity optomechanics in
the microwave frequency range requires cavities up to several mm in size, hence making it hard to embed several
of them on the same chip. An alternative scheme with much smaller footprint is provided by magnomechan-
ics, where the electromagnetic cavity is replaced by a magnet undergoing ferromagnetic resonance, and the
optomechanical coupling originates from magnetic shape anisotropy. Here, we consider the magnomechanical
interaction occurring in a suspended magnetic beam, a scheme in which both magnetic and mechanical modes
physically overlap and can also be driven individually. We show that a sizable interaction can be produced
if the beam has some initial static deformation, as is often the case due to unequal strains in the constituent
materials. We also show how the magnetism affects the magnetomotive detection of the vibrations, and how the
magnomechanics interaction can be used in microwave signal amplification. Finally, we discuss experimental
progress towards realizing the scheme.

DOI: 10.1103/PhysRevB.104.214416

I. INTRODUCTION

In cavity optomechanical devices, the radiation pressure
force mediates an interaction between mechanical modes
and photons [1]. This has led to several developments, both
fundamental and applied: ground-state cooling [2,3] and en-
tanglement [4,5] of mechanical modes, quantum information
storage in the mechanical excitation and interface, e.g. be-
tween superconducting qubits and flying optical photons
[6], sensitive measurements with precision limits given by
quantum mechanics; classical signal processing with tunable
nonlinearities [7–11].

Several implementations of cavity optomechanics have
been considered: mirrors on cantilevers and beams [12,13];
membranes in cavities [14,15]; atomic clouds [16]; beams
and plate capacitors in microwave resonators [2,7,8,11,17,18];
photonic crystals patterned into beams [3].

Recently, the coupling between magnons and phonons has
been considered to obtain an interaction similar to that in
cavity optomechanics, but with the role of photons now played
by magnons [19–22]. The interaction between magnons and
phonons is mediated by the combination of the magnetic
shape anisotropy and the magnetoelastic effect which make
the frequency of the magnon, i.e., the ferromagnetic resonance
(FMR), dependent on the strain. One interesting feature is that
the speed of spin waves is substantially lower than that of elec-
tromagnetic waves, which can offer a much denser integration
of similar functionalities. Moreover, enhanced tunability and
richer interaction suggest additional possibilities for devices
for fundamental studies and applications.

We propose and theoretically describe a scheme for mag-
nomechanics that is a direct analog of a basic microwave

*kalle.s.u.kansanen@jyu.fi

optomechanical system where a suspended conducting beam
is capacitively coupled to a microwave resonator. We con-
sider a suspended ferromagnetic beam that is subjected to an
external in-plane magnetic field. This generates the FMR or
magnon mode which is affected by the vibrations of the beam.
However, as shown below, a simple doubly clamped beam
does not give rise to the desired magnomechanical coupling.
Since the FMR frequency changes as much to upward as to
downward displacements of the beam, the analog of the radi-
ation pressure force vanishes. Such symmetry may be broken
by a static deformation as in Fig. 1(a).

Following Fig. 1(a), we consider a ferromagnetic beam,
magnetized as a single domain and having a rectangular cross
section with width w and height h. We assume that the coordi-
nate system may be oriented so that the beam displacement is
in the x direction and the beam axis is in the z direction. The
clamps fix the ends of the beam to be in the xy plane parallel
to one another with distance L in the z direction. The external
and static magnetic field H0 is assumed to lay in the yz plane.
The external field H0 fixes the static magnetization M0 around
which magnons are generated.

The setup with a doubly clamped beam allows for sep-
arate driving of mechanical and ferromagnetic resonance
modes. The measurement scheme is conceptually similar
to microwave optomechanics. The mechanical mode can be
driven by driving a current Id through the beam, assuming
that the beam is conducting, which generates a Lorentz force
f on the beam due to the external field H0. Similarly, the
magnon mode can be driven by a time-dependent magnetic
field h, for instance, generated by a microwave antenna. These
schemes are commensurate with the typical reflection and
transmittance measurements performed with vector network
analyzers. Moreover, the separate control over mechanics and
magnons opens a perspective to signal transduction.

2469-9950/2021/104(21)/214416(15) 214416-1 ©2021 American Physical Society
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(a)

(b)

FIG. 1. Schematic drawings of a doubly clamped magnetic beam
with a static deformation. (a) A three-dimensional perspective draw-
ing of a static suspended beam with several useful definitions (see
main text). (b) A simplified view of the deformation of the beam
axis from the y direction. The gray dotted line represents the static
deformation u0(z) and the blue solid line the total displacement
u = u0 + u1 that includes the time-dependent vibrations u1. Here, t̂
and n̂ are tangent and normal vectors of the beam, corresponding to
the local direction of the current Id and the force f , respectively.

In contrast to recent experiments [19,22], this setup does
not require a cavity to hybridize with the magnon mode,
lessening the physical size of the magnomechanical system.
Also, it does not require any magnetic field gradients as in a
few recent theoretical works [20,21]; the fields H0 and h are
here considered to be homogeneous in space.

Magnomechanics is in many ways similar to optomechan-
ics but there are several points of distinction. In the setup of
Fig. 1, it is possible to modulate the optomechanical coupling
by tuning either the strength or the direction of the exter-
nal magnetic field H0. This in turn changes the response of
the system to driving. We also focus on a feature unique to
magnetic systems: magnetic hysteresis and its effect on the
magnomechanical coupling.

The layout of the paper is as follows. In Sec. II we derive
the magnomechanical Hamiltonian for a statically deformed
beam. In Sec. III we describe the driving of the mechanical
and ferromagnetic resonances which is used in Sec. IV to
describe possible experiments for the system. Section V dis-
cusses the first steps towards implementing a doubly clamped
magnetic beam as a platform for magnomechanics.

II. MAGNOMECHANICAL HAMILTONIAN

To motivate the upcoming discussion, let us discuss the
optomechanical Hamiltonian in detail. The simplest deriva-
tion of optomechanics follows from the assumption of a
cavity, described by a bosonic mode ĉ, whose eigenfrequency
ωc depends on the position x̂b of some mechanical mode b̂

(e.g., a mirror connected to a spring). The typical optome-
chanical Hamiltonian is then obtained by an expansion of the
cavity frequency to first order in the position x̂b:

Ĥoptm = h̄ωmb̂†b̂ + h̄ωc(x̂b)ĉ†ĉ

� h̄ωmb̂†b̂ + h̄ωcĉ†ĉ + h̄g0ĉ†ĉ(b̂† + b̂), (1)

where ωm is the eigenfrequency of the mechanical mode. The
constant g0 is called the optomechanical coupling and the
corresponding term describes the radiation pressure force.

A similar mechanism can be found in ferromagnetic
systems. Then, the cavity is replaced by a ferromagnetic reso-
nance (FMR) and ĉ corresponds to a magnon mode. There are
at least two distinct physical mechanisms that allow the FMR
frequency to depend on a mechanical mode: On one hand, it
is well known that the shape of the ferromagnet affects its
FMR frequency [23]. On the other hand, the magnetoelastic-
ity directly changes the ferromagnetic dynamics, providing
an extraneous anisotropy field [24]. Therefore, the relevant
mechanical mode b̂ is the vibration of the ferromagnet itself.

In this section, we start by describing the mechanical and
ferromagnetic dynamics of a deformed beam from which we
derive the magnomechanical coupling that corresponds to g0

in Eq. (1).

A. Mechanical dynamics

We describe the deformations of the beam in Fig. 1 within
the Euler-Bernoulli beam theory that is typically used to de-
scribe beam dynamics, even in the nanometer scale [25]. In
order to describe the large static deformation [h < max u0(z)
in Fig. 1(b)] and vibrations around it, we include in the
Euler-Bernoulli equation nonlinear terms that are typically
neglected [26,27]. We assume that the beam material is
homogeneous and isotropic. Then, vibrations in different
directions do not generally couple, and the following anal-
ysis can be done separately for vibrations in the x and
y directions. However, it turns out that the static defor-
mation is needed for a finite magnomechanical coupling.
In the following, we thus neglect the beam dynamics in
the y direction. We also neglect shear modes, that is,
modes where the displacement in the x direction depends
on y, assuming that the width w is appreciably smaller
than the length L. These assumptions are consistent with
the actuation scheme of Lorentz force in Fig. 1. Without
any external force, the beam displacement u(z, t ) in the
x direction obeys the equation [27,28]

ρA
∂2u

∂t2
+ EIx

∂4u

∂z4
=

[
T0 + EA

2L

∫ L

0
dz

(
∂u

∂z

)2]
∂2u

∂z2
, (2)

where T0 is the initial tension, ρ is the mass density, E the
Young modulus, A = wh the area of the beam with a rect-
angular cross section, and Ix = wh3/12 the corresponding
bending modulus. Here, the terms on the right provide the
nonlinear corrections related to tension whereas the usual
Euler-Bernoulli kinetic and stress terms are on the left.

In order to describe the initially buckled beam and the
flexural vibrations around it, we choose an approach similar
to Ref. [28] and discuss it briefly here. Further details can be
found in Appendix A.
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A static deformation of the beam can be caused by a com-
pressive stress that is, for instance, due to an external force
on the clamping mechanism or due to the fabrication method
of the beam. Here, we assume that this compression may be
described by a negative tension T0 < 0 in Eq. (2). We then
divide the total mechanical deformation u into a static and
dynamical part (u0 and u1, respectively) as in Fig. 1(b) and
assume that the dynamical deformation is small, that is,

u(z, t ) = u0(z) + u1(z, t ), u1 � u0. (3)

This allows for an expansion of the nonlinear Euler-Bernoulli
equation (2) in the powers of u1. Together with the boundary
conditions of a doubly clamped beam for both the static and
dynamic deformations (∂z denotes z derivative)

u0/1(0) = u0/1(L) = ∂zu0/1(0) = ∂zu0/1(L) = 0, (4)

the mechanical system is now fully described.
The static deformation u0 is solved from the zeroth-order

equation in u1. We find a particularly simple expression

u0(z) = um
1 − cos(2πz/L)

2
, (5)

where the parameter um gives the displacement at the midpoint
of the beam as u0(L/2) = um. This is also the point of the
largest displacement. There is a one-to-one correspondence
between um and the negative tension T0, which is why they
can be used interchangeably.

From the first-order equation for the dynamic deformation
u1, neglecting the terms that are of second order in u1, we can
then find the flexural eigenmodes χn and the corresponding
eigenfrequencies ωn. These do not admit to simple expres-
sions but a numerical solution is readily available [29]. We

find that the dimensionless eigenfrequencies ω̄n = L2

h

√
12ρ

E ωn

are determined by the ratio of the largest static deformation
to the height of the beam um/h. Especially, the eigenfre-
quencies of symmetric eigenmodes (n = 1, 3 . . . ) increase
with um/h while the eigenfrequencies of antisymmetric modes
(n = 2, 4 . . . ) are constant (see Fig. 7 in Appendix A).

With the assumption of small dynamical deformation, the
general solution can be expressed as a superposition

u1(z, t ) =
∑

n

xn(t )χn(z) (6)

with the dynamical amplitudes xn and eigenmodes χn normal-
ized as

∫ L
0 χnχmdz = Lδi j . This in turn gives the mechanical

energy

Hmc =
∑

n

[
p2

n

2m
+ 1

2
ω2

nx2
n

]
, (7)

where the mass is given by m = ρLA and the momentum by
pn = mẋn. Then, we can quantize the harmonic oscillators as
usual:

x̂n = xZPM
n (b̂†

n + b̂n), (8a)

b̂†
n = (

xZPM
n

)−1
(

x̂n − i

mωn
p̂n

)
, (8b)

where xZPM
n =

√
h̄

2mωn
is the zero-point motion amplitude and

b̂†
n, b̂n are boson operators for each mode n.

B. Ferromagnetic resonance

We describe the magnetization M and the magnon mode of
the beam in Fig. 1 assuming that it is magnetized as a single
domain, similar to the Stoner-Wohlfarth model [30]. The mag-
netization is driven by an effective field Heff that takes into
account the external magnetic field H , the demagnetizing field
Hdm, the magnetoelastic field Hme, and intrinsic anisotropy
field Han [31]. We consider the magnetization almost uniform,
adiabatically following the beam geometry, and that the mag-
net is in the Landau-Lifshitz-Gilbert regime where |M| = MS

with MS being the saturation magnetization. For the external
magnetic field H , we consider a strong static component
H0 and a perturbation h oscillating at a frequency close to
the ferromagnetic resonance (FMR) frequency ωK , although
the latter plays a role only in the following section. Equiva-
lently, the magnetization dynamics can be obtained from the
magnetic free-energy density within the beam

F = −μ0H · M + Fdm + Fme + Fan, (9a)

μ0Heff = − δ

δM

∫
dx3 F[M]. (9b)

To obtain the total magnetic energy, the free-energy density
F must be integrated over the beam. Next, we describe the
terms in the free-energy density in detail for the deformed
beam. We first discuss the results arising from the assumption
that there are no vibrations in y direction (meaning that the
displacement u is only in x direction and it is a function of z).
Then, we return to assess this assumption.

We calculate the demagnetizing field Hdm in the thin
plate limit h � w � L, which allows us to neglect the size-
dependent terms in the demagnetizing field. It is obtained
by requiring the continuity of the H-field components par-
allel to the beam, that is, Hy and the tangent field Ht =
[Hx∂zu(z) + Hz]/

√
1 + (∂zu(z))2, and the continuity of the B-

field component normal to the beam, that is Bn = [−Bx +
Bz∂zu(z)]/

√
1 + [∂zu(z)]2 (see Fig. 1), where B = μ0 Hout

outside the beam and B = μ0 (H in + M) inside. The demag-
netizing field Hdm is within the beam and, thus, we set Hout =
H and H in = H + Hdm. Then, up to the second order in ∂zu,
we find its components

Hdm
x = −Mx[1 − (∂zu(z))2] + Mz∂zu(z), (10a)

Hdm
y = 0, (10b)

Hdm
z = Mx∂zu(z) − Mz(∂zu(z))2 (10c)

from the continuity conditions. The corresponding free-
energy density is given by

Fdm

μ0
= M2

x

2
− MxMz∂zu(z) + 1

2

(
M2

z − M2
x

)
(∂zu(z))2. (11)

It describes a hard axis parallel to n̂, the (position-dependent)
surface normal to the beam. Since we have to integrate the
free-energy density due to the demagnetizing field over the
beam volume, the component proportional to ∂zu(z) disap-
pears in the case of a doubly clamped beam due to the
boundary conditions u(0) = u(L) = 0 [32]. Moreover, for a
small deformation the averaged surface normal aligns with the
x direction, which is why the x axis is a hard axis for a uniform
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magnetization. This means that for an in-plane magnetic field
considered below, the magnetization also lies in the yz plane.
On the other hand, deformations provide a position-dependent
correction to this hard axis. These corrections are sensitive to
vibrations and thus provide one contribution to the magnome-
chanical coupling.

In general, the magnetoelastic free-energy density is given
by [24,33]

Fme = B1

M2
S

(
M2

x εxx + M2
y εyy + M2

z εzz
)

+ 2B2

M2
S

(MxMyεxy + MxMzεxz + MyMzεyz ), (12)

where B1 and B2 are the magnetoelastic coupling constants,
and the strains εi j are given in the nonlinear Euler-Bernoulli
theory by [26,34]

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi
+

∑
k

∂uk

∂xi

∂uk

∂x j

)
. (13)

Here, ui are the components of the general displacement vec-
tor at a given point. The last term in εi j is neglected in the
linear elasticity theory but is here of importance.

Let us then consider, for convenience, the average of Fme

over the beam volume and denote it by F̄me. Since ux ≡ u
and uy = uz = 0, only the derivatives ∂zu and ∂yu are finite.
Moreover, setting ∂yu = 0 for now, only εzz and εxz are finite.
However, in the process of averaging over the beam volume,
we encounter the same situation as in the demagnetizing
energy: first-order terms ∂zu average out due to boundary
conditions. Thus, we find

F̄me =
∫

dx3

LA
Fme = B1

M2
S

M2
z ε̄zz (14)

with the definition of averaged strain

ε̄zz = 1

L

∫
dz εzz = 1

2L

∫
dz(∂zu)2. (15)

Note that the total demagnetizing energy is also proportional
to ε̄zz due to the last term in Eq. (11). Moreover, by using the
expansion (3) of the displacement u into a static deformation
and dynamical vibrations, the average strain can be expanded
to first order by ε̄zz � ε̄ (0)

zz + ε̄ (1)
zz with

ε̄ (0)
zz = 1

2L

∫ L

0
dz (∂zu0)2, (16a)

ε̄ (1)
zz = 1

L

∫ L

0
dz (∂zu0)(∂zu1). (16b)

Using the solution of the static deformation in Eq. (5),
we obtain ε̄ (0)

zz = π2

4 (um/L)2. Here, we expect that um � L,
meaning that ε̄ (0)

zz � 1.
Finally, we assume that the magnetoelastic and demagne-

tizing fields dominate over the intrinsic (crystal) anisotropies,
that is, the total free energy of the intrinsic anisotropies is
small compared to the described free energies and may be
neglected. At least, such an assumption is valid in the case
of a polycrystalline magnet. This assumption may be lifted
straightforwardly in favor of a specific crystal anisotropy

model; however, difficulties may arise when trying to take into
account the possible direct effect of elasticity on the intrinsic
anisotropies.

The average magnetic free-energy density, with the as-
sumption of the displacements only in the x direction, is

F̄ = −μ0H · M + B1

M2
S

M2
z ε̄zz

+μ0M2
x /2 + μ0

(
M2

z − M2
x

)
ε̄zz. (17)

The addition of beam vibrations in the y direction only pro-
vides an additional term to ε̄zz that is proportional to (∂zuy)2.
However, such term does not provide the correct form of
optomechanical coupling as in Eq. (1): it is second order in the
position operator. In contrast, the contribution of vibrations
in the x direction around the static deformation u0 is linear
in position because of the expansion in Eq. (16) and ε̄ (1)

zz .
Finally, we note that if ∂yu �= 0, both εyz and εyy are also
finite. Without a static deformation in the y direction, ε̄yy

does not provide magnomechanical coupling but ε̄yz will via
the nonlinear term (∂yu)(∂zu0). Similar terms would appear
from the demagnetizing field. Typically, such shear terms
are neglected in optomechanics: this is justified if the beam
width is much smaller than its length, or that only modes
without shear are actuated. We follow the same assumption in
this work.

We treat both cases of the metallic and insulator ferromag-
nets (e.g., a two-layer beam with a ferromagnetic insulating
layer and a metal layer). To do so, we can observe that the
current induced by a static field H0 and the flexural dynamics
gives rise to a negligible screening effect for a thin film.
Furthermore, the wavelength of the driving field h, corre-
sponding to a frequency close to the ferromagnetic resonance
c/ω ∼ 10−1 m, is much larger than the characteristic dimen-
sion of the typical micrometer-scale beam and, since we do no
make particular assumptions on h, we can write the quasistatic
approximation

∇ × H0 ∼ 0 ∼ ∇ × h, (18)

provided that we consider the screened h in the conducting
case.

Next, we derive the quantum mechanical Hamiltonian for
the magnon mode assuming a static deformation of the beam.
We express the magnetization as M = M0 + m, where M0

provides the direction of the static magnetization in the pres-
ence of a static external magnetic field H0 and m is the
deviation to be quantized. By using the assumptions of a
single domain magnet and the external field in the yz plane,
we have the situation depicted in Fig. 1:

H0 = H0(cos φ ẑ + sin φ ŷ), M0 = MS (cos θ ẑ + sin θ ŷ).

(19)

That is, the magnetization M0 is also in the yz plane, mean-
ing that the static deformation of the beam does not remove
the hard axis in the x direction. The magnetization angle θ

depends on the direction and size of the field H0. This depen-
dence results from the competition between the external, the
magnetoelastic, and the demagnetizing fields, as the angle θ is
determined by the free-energy minimum from Eq. (17). Aside
from the global free-energy minimum, there can exist a local
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minimum corresponding to a metastable magnetization con-
figuration. This describes magnetic hysteresis. Furthermore,
the ferromagnetic resonance frequency depends on the effec-
tive field and, then, on ε̄zz, giving rise to an optomechanicslike
coupling. The magnetic anisotropy related with the strain also
provides a coercive field which in the case of a magnetic field
perpendicular to the beam is Hc = 2|B1/(μ0M2

S ) + 1|ε̄ (0)
zz MS .

For further details, see Appendix B 1.
We assume a Kittel-type magnon mode m that is spa-

tially uniform in the ferromagnetic beam and neglect the
dynamics of finite momentum magnons. This follows from
the magnon driving setup: we assume that the magnetic field
h is homogeneous in space and, thus, the spatially uniform
mode is dominantly excited. In practice, however, the finite
momentum magnons provide an effective thermal bath for
the vibrations and the spatially uniform magnon mode. The
spectrum of such a bath would then depend on the external
magnetic field.

The quantum magnetization Hamiltonian can be obtained
by substituting the Holstein-Primakoff relations in the total
magnetic energy Hmg = ∫

dx3F = LAF̄ (see Appendix B 2).
Choosing the reference direction ẑ′ along the static magneti-
zation M0 (ẑ′ = cos θ ẑ + sin θ ŷ), we can expand and get

Mz′ = MS − h̄γ

LA
m̂†m̂, (20a)

M+′ = mZPQm̂, M−′ = mZPQm̂†, (20b)

where mZPQ =
√

2h̄γ MS

LA and γ is the gyromagnetic ratio.
The quantized magnetization components Mz′ and My′ =
1
2i (M+′ − M−′ ) are related to those in the free-energy den-
sity F̄ in Eq. (17) by a rotation of the angle θ about the
x axis which leaves the x component invariant, Mx = Mx′ =
1
2 (M+′ + M−′ ).

Without considering the driving terms h and the coupling
with the flexural dynamics ε (1)

zz , the magnetic Hamiltonian
reads as, to the leading order in 1/MS ,

Ĥm

h̄
= ω1m̂†m̂ + ω2

2
[m̂2 + (m̂†)2] + ω3 i

m̂† − m̂√
2

, (21)

where

ω1 = γμ0

[
H0 cos(φ − θ ) + MS

2

]
− 3ε̄ (0)

zz γμ0MS cos2 θ,

− ε̄ (0)
zz

γ B1

MS

(
3 cos2 θ − 1

)
, (22a)

ω2 = γμ0
MS

2
− ε̄ (0)

zz

γ B1

MS
sin2 θ

− ε̄ (0)
zz γμ0MS

(
sin2 θ + 1

)
, (22b)

ω3 = −
√

2γ MS

mZPQ

[
ε̄ (0)

zz

(
B1

MS
+ μ0MS

)
sin 2θ

+μ0H0 sin(φ − θ )

]
. (22c)

The term proportional to m̂† m̂ is the sum of four com-
ponents: one coming from the external magnetic field H0,
the second and third from the hard axis, and the last from

the magnetoelastic coupling. On the other hand, ω2 does not
depend on the external magnetic field. This is a consequence
of the assumption that H0 is parallel to the yz plane. Finally,
the linear term ω3 does not depend on the x-hard axis strength
which is quadratic in Mx in Eq. (17).

Ĥm is a highly tunable quadratic Hamiltonian which could
be relevant in the continuous-variable quantum information
processing [35]: the hard and easy axes produce a controlled
squeezing. This leads to entanglement between the spins in the
magnetic material [36]. Recently, it has been suggested that by
tuning the frequency ω1 close to ω2 and coupling the magnon
system to a microwave cavity, a magnon Schrödinger cat state
(superposition of two coherent states) could be observed [37].
The fact that the magnon Hamiltonian is often not diagonal
(i.e., Ĥm = h̄ωK m̂†m̂) should also have other signatures, e.g.,
in the shot noise of ferromagnet-conductor systems [38].

Let us diagonalize the Hamiltonian (21). For this task,
it is useful to introduce dimensionless quadrature operators
x̂m = (m̂† + m̂)/

√
2 and p̂m = i(m̂† − m̂)/

√
2 (the subscript

indicates the corresponding bosonic mode). The Hamiltonian
(21) may be expressed as

Ĥm

h̄
= ω1 + ω2

2
x̂2

m + ω1 − ω2

2
p̂2

m + ω3 p̂m. (23)

The diagonalization is achieved by first displacing p̂m and
then scaling both x̂m and p̂m properly. That is, we define
a new bosonic operator l̂ so that it has the quadrature
operators p̂l = √

c( p̂m + d ) and x̂l = x̂m/
√

c where c =√
(ω1 − ω2)/(ω1 + ω2) and d = ω3/(ω1 − ω2). In the valid-

ity range of the Euler-Bernoulli theory ε̄ (0)
zz � 1, we generally

find that c < 1. Thus, we call c the squeezing factor. The
variance of p̂l is smaller than the variance of p̂m by a factor
of c; the corresponding factor is 1/c > 1 for the variances
of x̂l and x̂m. The diagonalized Hamiltonian is then given
by Ĥm = h̄ωK l̂† l̂ where the FMR frequency ωK =

√
ω2

1 − ω2
2

may be expressed as

ωK = γμ0[H0 cos(θ − φ) + Mε cos(2θ )]
1
2

× [
H0 cos(θ − φ) + (

1 − 2ε̄ (0)
zz

)
MS + Mε cos2(θ )

]1
2 .

(24)

Here, Mε = −2ε̄ (0)
zz ( B1

μ0M2
S

+ 1)MS = ±Hc describes the
anisotropy energy due to magnetoelastic and demagnetizing
field terms. The sign of this term depends on the relative
magnitude of the two effects in the typical situation with
B1 < 0. The corresponding bosonic transformation is
given by

l̂ = ζ+ m̂ + ζ− m̂† + i
(ζ+ + ζ−) ω3√

2ωK

, (25a)

ζ± =
√

1

2

(
ω1

ωK
± 1

)
. (25b)

Note that without strain, i.e., ε̄ (0)
zz = 0, we obtain ωK =

γμ0
√

H0(H0 + MS ) as expected while c = √
H0/(H0 + MS )

and d = 0. Therefore, the squeezing is inherent to the magnon
system and produced by the out-of-plane hard axis while the
displacement is due to the static deformation.
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FIG. 2. The mechanical mode parameter β̄n as a function of the
static bending parameter um divided by the height h of the beam for
the three first n = odd modes.

C. Magnomechanical coupling

By introducing the flexural component of the strain ε̄ (1)
zz via

Eqs. (6) and (16) and replacing ε̄ (0)
zz in Eq. (22) by the full ε̄zz,

we have both a magnomechanical and linear coupling.
The magnomechanical interaction Hamiltonian reads as

Ĥmm = h̄
∑

n

(gme
n − gdm

n )(b̂†
n + b̂n)

[
m̂†m̂(3 cos2 θ − 1)

+ (m̂†)2 + m̂2

2
sin2 θ − MSLA

h̄γ
cos2 θ − sin2 θ

2

]

− h̄
∑

n

gdm
n (b̂†

n + b̂n)

[
m̂†m̂ + (m̂†)2 + m̂2

2
+ 1

]
,

(26a)

gme
n = −β̄n

hxZPM
n

L2

γ B1

MS
, (26b)

gdm
n = β̄n

hxZPM
n

L2
γμ0MS, (26c)

β̄n = L

h

∫ L

0
dz(∂zu0)(∂zχn), (26d)

where gme
n and gdm

n refer to magnetoelastic and demagne-
tizing coupling, respectively. From the dimensionless mode
parameters β̄n we get a selection rule: only the modes with
odd n = 1, 3, . . . corresponding to even mode functions give
rise to a coupling. In Fig. 2, we plot β̄n for the three lowest
even modes as a function of the static bending parameter um.
We note that the change in the eigenmode shape χn is as a
function of um so drastic that, at certain points, χn becomes
orthogonal to the static deformation u0 (for further details, see
Appendix A). At these points, the magnomechanical coupling
vanishes. Also, rather surprisingly, there is no clear hierarchy
of the parameters β̄n but rather, they depend strongly on the
static deformation. It may hence be that a higher-frequency
mode couples stronger to the magnetization dynamics.

There is also a linear coupling

Ĥl = h̄
∑

n

g(l )
n i

m̂† − m̂√
2

b̂†
n + b̂n√

2
sin 2θ, (27a)

g(l )
n = β̄n

hxZPQ√
12L2

MS

mZPQ
γμ0Mε . (27b)

FIG. 3. Magnomechanical coupling constant gm,n as a function of
the external field direction φ. The different curves represent different
magnetic field strengths H0, characterized by the coercive field Hc at
φ = 90◦: the dotted lines correspond to the metastable magnetization
configuration when H0 < Hc. Note that this metastable state does
not necessarily exist for all φ. Here, we set um/L = 0.1 and B1 =
−0.6μ0M2

S so that 50Hc ≈ MS . The inset shows the corresponding
hysteresis curve for φ = 90◦.

It also depends on the mechanical mode parameter β̄n and
is directly proportional to the coercive field Hc = |Mε | mea-
sured perpendicular to the beam. In this work, however, we
concentrate on a situation in which the FMR and mechanical
frequencies are strongly detuned and the linear coupling will
therefore play no further role.

Note that the interaction terms in Eqs. (26) and (27) are
written in the original nondiagonalized basis, and therefore are
not yet the relevant ones for magnomechanical measurements.
Using the transformation (25) allows us to write this in the
diagonal basis. Neglecting doubly rotating terms, the result
for the magnomechanical coupling Hamiltonian is Ĥmm =
h̄

∑
n gm,n(b̂†

n + b̂n)l̂† l̂ with

gm,n = 2
(
gme

n − gdm
n

)(
c cos2 θ + 1

c
cos 2θ

)
− 2cgdm

n . (28)

The squeezing factor

c =
√

H0 cos(θ − φ) + Mε cos(2θ )

H0 cos(θ − φ) + (
1 − 2ε̄

(0)
zz

)
MS + Mε cos2(θ )

depends on the direction of the magnetic field in a nontrivial
way which is why the magnomechanical coupling depends
not only on the direction of the field, but also its precise
magnitude setting the direction of the magnetization. More-
over, the magnitude is different for the stable and metastable
magnetizations for fields below the coercive field.

We illustrate the dependence of the magnomechanical cou-
pling on the magnetic field direction in Fig. 3, assuming that
the z axis is a hard axis (|B1| < μ0M2

S ). We observe that, in
general, as the magnitude of the external field H0 is increased,
the magnomechanical coupling decreases. Focusing on the
angle φ = 90◦, the magnomechanical coupling changes sign
as a function of the external magnetic field strength H0 and ap-
proaches the value gm,n → −2gme

n as MS/H0 → 0. Lastly, we
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FIG. 4. Magnomechanical coupling constant gm,n as a function
of the external field direction φ that is otherwise identical to Fig. 3
except we set B1 = −1.4μ0M2

S . With this value, the coercive field at
90◦ remains the same but the z axis becomes an easy axis, changing
both the hysteresis curve as well as the magnomechanical coupling.

find that H0 = Hc/2 represents the point where the metastable
magnetization ceases to exist for some values of φ. For ex-
ternal fields H0 that are between Hc/2 and Hc, this shows up
in the magnomechanical coupling as divergences; it should be
noted, however, that the free-energy barrier is very small at
these points.

An interesting consequence of our choices for the magneti-
zation free energy is that there are always two values of B1 that
correspond to a given coercive field Hc. This changes the mag-
nomechanical coupling constant as shown in Fig. 4. There,
the magnetoelastic energy is negative (B1 < 0) and dominates,
that is, |B1| > μ0M2

S . At the same time, the z axis becomes an
easy axis. Thus, a hysteresis measurement separates these two
situations with the same coercive field; see the insets of both
Figs. 3 and 4 which describe the hysteresis curves obtained for
an external magnetic field pointing perpendicular to the beam
at φ = 90◦.

Finally, we note that interesting physics remains even if the
magnomechanical coupling vanishes, gm,n = 0. In such a case,
a second-order cross-Kerr-type term, i.e., a term quadratic in
the deformation, may remain finite. The situation is analogous
to the “membrane in the middle” optomechanics setup with a
vibrating semitransparent mirror in the center of the cavity
which is proposed as a way of measuring the phonon number
in the mechanical mode [14]. In the doubly clamped mag-
netic beam, such terms are always present as discussed below
Eq. (17). Interestingly, they can be finite without (u0 = 0) and
with the static deformation. The strength of the cross-Kerr
terms may also depend on the external field H0. Especially in
the beam with a static deformation, there are multiple values
for H0 and φ which give gm,n = 0 as shown in Figs. 3 and 4.
However, the analysis of the cross-Kerr terms is beyond the
scope of this work.

III. DRIVING INDIVIDUAL RESONANCES

In order to experimentally see the magnomechanical cou-
pling and its effects, it is necessary to consider the ways the

magnomechanical system may be driven. At the same time,
dissipation to the environment is still to be taken into account.
Here, we discuss some general features of the driving while
showing an example of a possible scheme together with a
model for its description using the input-output formalism
[39]. For brevity, we focus only on reflection measurements.

The driving of the magnon mode m̂ is achieved by applying
an alternating magnetic field h that is perpendicular to the
static field H0. Here, it is convenient to choose h in the
direction of the displacement u, i.e., in the x direction. Then,
h is independent of the direction φ of the static field H0.
This produces an extra term in the Hamiltonian, proportional
to μ0|h|Mx or |h|(m̂ + m̂†). The coupling rate of a similar
drive is described and measured in Ref. [40]; importantly, it
is directly proportional to the spatial overlap of the magnon
mode and the driving field.

Within the input-output formalism, we do not include such
driving to the closed-system Hamiltonian, but rather assume
that there exists a bath of free electromagnetic modes to which
the magnon mode m̂ is coupled. Integrating out these free
modes gives rise to dissipation and the possibility of the bath
exciting the system, either via thermal noise or an external
drive. In the diagonalized frame, the squeezing factor c is
introduced to the coupling between the bath and the magnon
which modifies the dissipation rate.

Since the alternating magnetic field can be produced by
an alternating current, we can readily associate the input and
output fields of the magnon mode to ingoing and outgoing
voltage signals on a transmission line. If we now denote the
driving field by l̂in, we have the input-output relation l̂out −
l̂in = √

κel̂ in the diagonalized frame. The dynamics is then
determined by

˙̂l = i

h̄
[ĤS, l̂] − κ

2
l̂ − √

κel̂in, (29)

where ĤS = Ĥm + Ĥmm + Ĥmc is the system Hamiltonian, κ

the total effective magnon linewidth, and κe the dissipation
rate related to external driving. In the proposed setup, we
expect that κe/κ � 1 due to only a small proportion of the
external field residing within the beam.

Similar to traditional optomechanics, the mechanical mode
does not necessarily need to be actuated. However, it may still
be driven and characterized, for instance, within the magne-
tomotive scheme [41–43] by utilizing the static field H0. If
an alternating current Id goes through the beam, a Lorentz
force of magnitude f = Idμ0(H0 sin φ + MS sin θ ) per unit
length acts on the beam to the direction n̂(z) that is locally
perpendicular to the beam as in Fig. 1(b). We may neglect
the dynamical magnetization in this force as we assume
its characteristic frequency to be much larger than those of
the vibrational eigenmodes. Likewise, the flexural (dynamic
vibrational) modes should have a negligible effect on the
direction n̂(z) and, thus, we can consider only the normal
of the static deformation u0 here. It is possible to find the x
component of the force fx(z), which in turn must be projected
to the eigenmodes χn to determine its effect on the amplitude
xn. The effective force per unit length on xn is

feff =
∫ L

0

dz

L
χn fx = f

∫ L

0

dz

L

χn√
1 + (∂zu0)2

. (30)
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It is possible redefine the mass m in Eq. (7) to contain the
integral term; this gives the so-called effective mass [1]. Due
to the mirror symmetry of the static beam, only the symmet-
ric vibrational eigenmodes couple to this force. Note that a
similar analysis holds for the force in the z direction: such
force fz is negligible when ∂zu0 � 1 and it only couples to
the antisymmetric vibrational eigenmodes. By changing the
frequency of the drive Id , we may then drive individual flexu-
ral modes on resonance if the vibrations are of high quality.

What is then observed is the induced voltage, as the beam
vibrates and thus changes a magnetic flux through a circuit in
the xz plane. This induced voltage is

Vemf = μ0H0 sin(φ)
∫ L

0
dz

∂u(z)

∂t
= μ0H0 sin(φ)L

∑
n

ẋn.

(31)

That is, all flexural modes contribute to the voltage. The static
magnetization M0 may be neglected as it does not provide
a change in the magnetic flux in the first order while the
dynamical magnetization changes at much higher frequency
than the vibrations.

The modeling of the magnetomotive scheme can be done
within the input-output formalism. First, we define formally
the input and output fields for each vibration mode b̂n by the
usual relation b̂n,out − b̂n,in = √

γn,eb̂n where γn refers to the
total dissipation rate of the vibration mode n whereas γn,e

refers to external losses. One may then transform this formal
input-output relation to match the induced voltage in Eq. (31)
by multiplying by H0L sin φ, using x̂n ∝ (b̂n + b̂†

n), and taking
the time derivative. These transformations also define new
input and output fields. However, in the Fourier space, these
are linear transformations so we may equally well consider the
original input-output relation, as long as we remember that all
the fields are in fact proportional to sin φ and that γn,e depends
on the force projection on the eigenmodes. The dynamics of
the flexural modes is obtained by

˙̂bn = i

h̄
[ĤS, b̂n] − γn

2
b̂n − √

γn,eb̂n,in (32)

from which it is straightforward to obtain the output b̂n,out.
Lastly, it should be noted that there is “cross driving,”

i.e., the different drives exemplified here interact if they are
applied simultaneously. The alternating current Id through the
beam causes a force proportional to μ0|h|Id to the beam. Like-
wise, it causes an extraneous magnetic flux which generates
induced voltage proportional to the magnitude of current Id .
These effects are negligible in most cases with a frequency
mismatch of the magnon and flexural modes.

IV. MAGNOMECHANICS

With the magnomechanical Hamiltonian and the scheme to
drive and observe such a system, we may describe an exam-
ple magnomechanics experiment. The wealth of literature on
optomechanical systems can be used straightforwardly due to
the similar form of the Hamiltonian. However, there are a few
issues that are important for magnomechanics specifically.

The relevant magnitude of the eigenfrequencies and dis-
sipation rates of the magnon and mechanical system affect
the possible measurements. As mentioned in the derivation of
the magnomechanical Hamiltonian, we assume that the me-
chanical frequency is much smaller than the FMR frequency
ωm � ωK . These systems are also assumed underdamped,
meaning that for each system the eigenfrequency is larger than
the dissipation rate ωm > γ and ωK > κ . The only question
left is thus whether the mechanical eigenfrequency ωm is
larger than the FMR linewidth κ or not. The case ωm > κ is
called the resolved sideband regime which, in optomechan-
ics, has allowed for ground-state cooling of the mechanical
oscillator [2,3,44] and amplification of microwave signals at
the quantum limit [45]. This is also the regime of experiments
in Refs. [19,22] performed with microwave cavities and YIG
spheres. However, for many other ferromagnetic materials, it
may be expected that ωm < κ . Although the analysis could
proceed either way, we focus on results in this nonresolved
sideband regime where the FMR linewidth κ dominates.

Next, we describe in detail an amplification scheme for
microwave signals in the nonresolved sideband regime which
is both theoretically known [46] and experimentally observed
[47] in optomechanical systems. Especially, we focus on the
aspect that is not present in optomechanics: the tunability of
the magnomechanical coupling as well as the magnon eigen-
frequency with respect to the external static field H0.

The derivation of the reflection coefficient, often called
S11, follows the lines of Ref. [46]. First, we assume a strong
drive on the magnon system at a frequency ωd and focus on
the deviations around the driven system. That is, we replace
l̂ → (

√
n + l̂ )e−iωd t , where we identify n as the number of

magnons, in the Hamiltonians of Eqs. (21), (26), and (27),
using the transformation in Eq. (25). Note that the Holstein-
Primakoff transformation gives an upper limit to the strength
of the drive, given by MS  h̄γ n/(LA). Then, we may neglect
the second-order terms of the deviations as well as the terms
that rotate at frequency ωd or faster. The dynamical part of the
Hamiltonian then reads as in the diagonalized frame

ĤS/h̄ = ωK l̂† l̂ +
∑

j

ω j b̂
†
j b̂ j +

∑
j

G j x̂l x̂b, j, (33)

where x̂b, j = (b̂ j + b̂†
j )/

√
2 and the effective coupling con-

stant follows from Eq. (28) by Gj = 2
√

ngm, j , that is,

Gj = 4
√

n

[(
gme

j − gdm
j

)(
c cos2 θ + 1

c
cos 2θ

)
− cgdm

j

]
.

(34)

The effective magnomechanical coupling is thus enhanced by
the number n of magnons and is tunable by the external field
H0, as it determines the direction of the magnetization θ and
the squeezing factor c.

The response matrix of the magnomechanical system is
obtained by utilizing the input-output equations in the Fourier
space and the transformation between the bosonic operators l̂
and b̂ j and their respective quadratures. For simplicity, let us
focus on a single flexural mode j and denote ω j = ωm while
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dropping the other subscripts. We find now the linear response⎛
⎜⎜⎝

l̂ (ω)
l̂†(ω)
b̂(ω)
b̂†(ω)

⎞
⎟⎟⎠ = T

⎛
⎜⎜⎜⎝

l̂in(ω)

l̂†
in(ω)

b̂in(ω)

b̂†
in(ω)

⎞
⎟⎟⎟⎠, (35)

where all elements of the matrix T may be nonzero (further
details given in Appendix C). Here, it should be noted that
l̂ is now defined in a frame that corotates with the drive so
the frequencies are defined with respect to the drive frequency
ωd . For example, l̂in(ωp) corresponds to an input at frequency
ωd + ωp whereas l̂†

in(ωp) corresponds to ωd − ωp.
The output fields are readily obtained from the rela-

tions l̂out = l̂in + √
κel̂ and b̂out = b̂in + √

γeb̂. Especially, we
can define now the reflection coefficients for the magnon
and mechanical systems as Sl

11 = 1 + √
κeT11 and Sb

11 = 1 +√
γeT33. Likewise, the transduction coefficients may be de-

fined as Slb = √
κeT13 (from mechanics to magnons) and

Sbl = √
γeT31 (vice versa).

The amplification of the probe signals may be observed
by calculating the reflection coefficient. Assuming that the
magnon dissipation rate κ is large compared to ωm and γ , we
obtain for ωd = ωK and ω = ±ωm

Sl
11 = 1 − 2

κe

κ

(
1 ± G2

κγ

)
(36)

for high-quality vibrations ωm  γ . Thus, if the coupling
G is large enough, we find |Sl

11|  1. At the same time,
the mechanical response is sharply peaked at approximately
ω̃m ≈ ωm − Re � where

� = iωm�G2[
i(ω̃m + ωm) − γ

2

][
�2 + (

iω̃m − κ
2

)2] (37)

and � = ωK − ωd . This change in the resonant frequency
corresponds to the optical spring effect of optomechanics. At
this frequency, the reflection coefficient for the force driving
the mechanics is given by Sb

11 = 1 − γe/( γ

2 + Im �). Thus,
the current through the beam may be modified by the mag-
nomechanical coupling.

The reflection coefficients for different angles φ of the
external field H0 are graphed in Fig. 5. With the chosen
parameters, the effective coupling constant (34) vanishes at
φ ≈ 43◦ (see also the orange line in Fig. 3) and, thus, the
responses match those of the uncoupled systems (blue line).
It would be possible to obtain larger values of the coupling
constant with values φ ≈ 0 but, as discussed in Sec. III, this
would not be commensurate with the magnetomotive scheme
for which the input and output amplitudes depend on sin φ.

V. EXPERIMENT ON A MAGNETIC BEAM

Already in some experiments, magnetic beams and can-
tilevers have been considered [48–50]. Here we demonstrate
successful fabrication and characterization of a magnetic
beam made out of CoFeB, which exhibits a large magne-
tostriction, and is promising for the upcoming magnomechan-
ics experiments. The beam is a bilayer system, consisting
of nonmagnetic aluminum and the CoFeB layer. Using a

(a)

(b)

FIG. 5. Reflection coefficients of the magnon (a) and flexural
(b) systems for three different angles φ while the magnitude of
the external field H0 = 5Hc ≈ 0.1MS is fixed. In (a), we set � = 0
whereas in (b) � = −ωm for all angles. The magnitude of the effec-
tive coupling rate is given by 2

√
ngdm

j = 0.8ωm, and the dissipation
rates are κ = 15ωm, γ = 0.1ωm, κe/κ = 0.1, and γe/γ = 0.01. We
choose here relatively low-quality vibrations for visual clarity. Oth-
erwise, the parameters match those of Fig. 3 so that the orange line
there characterizes the angular dependence of the magnomechanical
coupling constant.

combination of electron-beam lithography, evaporation, dc
sputtering, and a lift-off-based process, we first fabricated
the beam structures over a silicon substrate. Subsequently,
using reactive ion etching, we created the suspended bridge
structures. The final fabricated bridges had a length of 50 μm
and a width of 10 μm. The aluminum layer had a thickness
of 100 nm while the CoFeB layer was 50 nm thick (with
a Ta capping layer of 3 nm). Consequent to the fabrication
steps, an asymmetric deformation is observed in the bridge
at room temperature as seen in Fig. 6. This deformation may
be attributed to a compressive stress owing to a mismatch of
the elastic constants in the different layers. Since the thermal
expansion coefficients of these layers are also different, it
is expected that the compressive stresses observed at room
temperature may be changed at cryogenic temperatures. Nev-
ertheless, as pointed out in the above sections, the presence
of the asymmetric deformation is necessary for providing a
sizable magnomechanical coupling.

We also characterized the magnetic hysteresis of the
suspended beam and found the low-temperature switch-
ing field Hsw = 30 mT in the presence of a field in the
y direction, i.e., perpendicular to the wire. This hence corre-
sponds to the case considered in Fig. 3. Using the saturation
magnetization of CoFeB, MS ≈ 1200 emu/cm3 correspond-
ing to μ0MS ≈ 1.5 T or γμ0MS ≈ 42 GHz, this Hsw would
be obtained with ε̄ (0)

zz [1 + B1/(μ0M2
S )] = 0.01 assuming that

|B1| � μ0M2
S . This corresponds to the maximum deformation

um ≈ 0.06L, quite well in line with what is seen in Fig. 6. It
should, however, be noted that the magnetoelastic constant B1
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FIG. 6. Scanning electron micrograph of a doubly clamped beam
fabricated in our laboratory (see main text for further details). A close
inspection of the beam or bridge segment reveals that the beam is
deformed but its structure differs slightly from the idealized beam
in Fig. 1. The process of reactive ion etching during the fabrication
also leads to the formation of an undercut, further contributing to the
asymmetry.

does not only depend on the material but also on the details of
fabrication [33,51]. To our knowledge, there are no accurate
estimates available in the literature that would correspond to
our system.

The mechanical eigenfrequency may be estimated by us-
ing the solved dimensionless eigenfrequencies in Fig. 7 (see
Appendix A) and, for simplicity, by using the characteristic
values for a beam fully made of aluminum, ρ = 2.7 g/cm3

and E = 70 GPa. Since um/h ≈ 20 according to the analysis
based on the switching field, we find that the eigenfrequency
of the first mode is ω1/(2π ) ≈ 1 MHz. This corresponds
to the zero-point motion amplitude xZPM

1 ≈ 6 × 10−15 m. In
contrast, if um/h = 10, we would find the eigenfrequency
0.5 MHz as the conversion from Fig. 7 is given by ωn ≈
(88 kHz) × ω̄n.

Finally, let us estimate the expected size of the magnome-
chanical coupling for this setup. Using um/h ≈ 20, which
gives the mechanical mode parameter β̄1 ≈ 3, we get gdm

1 ≈
50 mHz. This is the scale used in Figs. 3 and 4 and depending

FIG. 7. The dimensionless eigenfrequencies of the dynamical
mode ū1.

on the precise magnetic field the actual magnomechanical
coupling may be somewhat larger. Due to the nonlinear nature
of the Euler-Bernoulli equation used, if the static deformation
was half as large, um/h = 10, we would find gdm

1 ≈ 0.15 Hz.
These couplings are comparable to what was found for the
magnomechanical coupling in [19,22] for YIG spheres and
somewhat smaller than the optomechanical coupling in our
setups (e.g., g ∼ 100 Hz in [8]).

Experimental preparations on realizing the magnomechan-
ical physics are currently ongoing in our laboratory.

VI. CONCLUSIONS

We present a detailed analysis of magnetoelastic inter-
actions in suspended micromechanical beams made out of
ferromagnetic materials. We find the mechanical vibrations
of the beam, and its ferromagnetic resonance, exhibit non-
linear interactions reminiscent of radiation-pressure coupling
in cavity optomechanics or in microwave optomechanics.
The interaction, however, is more versatile and easily con-
figurable. Part of the interaction arises via magnetoelasticity,
where the vibrations modulate the frequency of the magnetic
resonance. The dominant coupling under typical conditions,
however, is due to demagnetizing field of the beam, which
is affected by the instantaneous shape of the vibrating beam.
The predicted radiation-pressure coupling rates are smaller
than in microwave optomechanics, but still sizable enough
that optomechanical physics such as cooling, amplification,
and lasing are within experimental reach. In comparison to
optomechanics, our system has the assets of a small footprint,
a reconfigurable interaction, and a high-power tolerance of the
magnon resonance.
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APPENDIX A: BEAM DYNAMICS

From the nonlinear Euler-Bernoulli equation (2) one can
find a beam configuration that has a static deformation as well
as the eigenmodes in which the beam vibrates [28]. These
eigenmodes depend directly on the static deformation which
is caused in our description by a negative tension T0. That
is, there is a constant compressive stress or “load” which we
denote by P = −T0 > 0.
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For the following analysis, it is useful to make Eq. (2)
dimensionless by introducing the relations

ū =
√

A

Ix
u, z̄ = z

L
, t̄ =

√
EIx

ρAL4
t, (A1a)

T̄0 = L2

EIx
T0, f̄ = A1/2L4

EI3/2
x

f , (A1b)

where f = f (z) is the external force per unit length on the
beam. The dimensionless nonlinear Euler-Bernoulli equation
reads as (P̄ = −T̄0)

∂2ū

∂ t̄2
+ ∂4ū

∂ z̄4
+

[
P̄ − 1

2

∫ 1

0
dz̄

(
∂ ū

∂ z̄

)2]
∂2ū

∂ z̄2
= f̄ . (A2)

We set the force to vanish, f̄ = 0, as we are interested in the
static deformation and the eigenmodes of vibrations around it.

Let us now assume ū(z̄, t̄ ) = ū0(z̄) + ū1(z̄, t̄ ) where ū0 
ū1 as in the main text. Using this assumption, we may insert
the relation for ū(z̄, t̄ ) to Eq. (A2) and separate the resulting
equation into two by considering the zeroth and first power of
ū1. We find that the static deformation ū0 is determined by the
zeroth-order equation which reads as

∂z̄z̄z̄z̄ ū0 + ᾱ2 ∂z̄z̄ ū0 = 0, ᾱ2 = P̄ − 1

2

∫ 1

0
dz̄(∂z̄ ū0)2. (A3)

A static deformation is possible only if ᾱ2 > 0; otherwise,
ū0 = 0 is the only solution. This is known as the buckling
transition.

We may begin solving Eq. (A3) by assuming that ᾱ2 is
independent of u0. If indeed ᾱ2 > 0, one can provide a general
solution of the differential equation in terms of trigonometric
and linear functions. However, the boundary conditions (4) fix
ᾱ = 2π for a single antinode solution which reads as

ū0(z̄) = ūm
1 − cos(ᾱz̄)

2
. (A4)

Here, the parameter ūm = ±4
√

P̄
ᾱ2 − 1 is fixed self-

consistently by inserting the solution to the definition of
ᾱ2. It also describes the value ū0 of deformation in the middle
of the beam z̄ = 1

2 . Note that P̄ may be removed in favor of
ūm if the condition for buckling P̄ > ᾱ2 = 4π2 holds true.

In the first order of ū1, its dynamics is described by

∂t̄ t̄ u1 + ∂z̄z̄z̄z̄ ū1 + ᾱ2 ∂z̄z̄ ū1 − β̄ ∂z̄z̄ ū0 = 0, (A5a)

β̄ =
∫ 1

0
dz̄(∂z̄ ū0)(∂z̄ ū1). (A5b)

We can now find the flexural eigenmodes by Fourier trans-
forming ū1(z̄, t̄ ) = ū1(z̄) e−i ω̄ t̄ which gives

∂z̄z̄z̄z̄ ū1 + ᾱ2∂z̄z̄ ū1 − ω̄2 ū1 = β̄ ∂z̄z̄ ū0. (A6)

Here, the dimensionless frequency ω̄ is related to the physi-

cal one with ω =
√

E Ix
ρ A L4 ω̄. The differential equation (A6) is

written so that the left-hand side is the homogeneous equa-
tion while the right-hand side provides the nonhomogeneous
term. It is straightforward to check that setting ū1 ∝ ∂z̄z̄ ū0

gives a particular solution. Thus, the general solution may be

written as

ū1(z̄) = C1 cos(δ+z̄) + C2 sin(δ+z̄) + C3 cosh(δ−z̄)

+ C4 sinh(δ−z̄) + C5
ᾱ2ūm

2
cos ᾱz̄, (A7)

where

δ± =
√√

ᾱ4 + 4ω̄2 ± ᾱ2

√
2

. (A8)

Here, the terms with C1 . . .C4 specify the solution of the
homogeneous equation.

The constants C = (C1,C2,C3,C4,C5) may be fixed in the
following manner: The boundary conditions for ū1 give in
total four equations. The last equation is obtained by inserting
the full general solution into Eq. (A6) where we use the defini-
tion (A5b) for β̄. This set of equations can be rearranged into
a linear equation MnlC = 0, where the matrix Mnl depends
on frequency ω̄. One can then solve the equation numerically
in many ways: we use the singular value decomposition to
minimize the smallest singular value and use the correspond-
ing vector C belonging into the null space of Mnl. We then
normalize the found solution for ū1 so that it corresponds to
the eigenmode χn, that is,

∫ 1
0 dz̄ χ2

n = 1.
We note that it would be possible to remove C5 by set-

ting C5 = −β̄/ω̄2 which gives the correct particular solution
and, then, self-consistently solve for β̄. However, the divi-
sion by the unknown frequency is numerically problematic
since values ω̄ ≈ 0 are needed. Even with finite frequencies,
this method did not produce orthogonal modes. With the
method described above, we find the eigenmodes χn to be
orthonormal to a reasonable numerical accuracy, meaning that∫ 1

0 dz̄ χnχm ≈ δnm.
In Fig. 7 we have plotted the five first eigenfrequencies.

The structure of eigenfrequencies as a function of the static
deformation um is that of crossings and avoided crossings.
We find, as in Ref. [28], that the antisymmetric modes with
n = 2, 4 . . . do not depend on the static deformation. This
is because the static deformation is symmetric and, thus,
β̄ = 0 for these modes. As um increases, there is a crossing
in eigenfrequencies between the symmetric and antisymmet-
ric mode, followed by an avoided crossing with the next
symmetric mode.

A few examples of the eigenmodes χn for different static
deformations um are plotted in Fig. 8. In general, we note
that the eigenmodes χn with odd n are changed by the static
deformation while χn with even n remain the same. More
specifically, the first mode χ1 is plotted in Fig. 8(a). After
the crossing in eigenfrequencies ω1 and ω2 around um/h ≈ 14
the eigenmode χ1 starts to resemble the third mode at small
um: it has three antinodes. The same can be observed for
χ3 in Fig. 8(c) where the eigenmodes have either three or
five antinodes. On the other hand, the eigenmode χ2 remains
independent of um/h as can be seen in Fig. 8(b).

APPENDIX B: MAGNETIC DYNAMICS

1. Magnetic hysteresis

The static component of the magnetization M0 can be de-
termined for a given external field H0, knowing the saturation
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(a) (b)

(c) (d)

FIG. 8. Eigenmodes χn for (a) n = 1, (b) n = 2, (c) n = 3,
and (d) n = 5. Here, um/h are chosen from approximately
{0.5, 19, 37, 55, 73, 91}.

magnetization MS , the magnetoelastic constant B1, and the
static strain ε̄ (0)

zz .
For simplicity, we assume that the static component of the

magnetic field is parallel to the yz plane: H0 = H0(cos φ ẑ +
sin φ ŷ) with H0 > 0. In this case, the static magnetization M0

is obtained by minimizing the magnetic free energy, propor-
tional to Eq. (17) with H = H0 and M = M0, which is up to
a constant

F0 = −μ0H0 · M0 + μ0

(
1

2
− ε̄ (0)

zz

)
M2

x

+μ0

(
B1

μ0M2
S

+ 1

)
ε̄ (0)

zz M2
z . (B1)

In the validity range of the Euler-Bernoulli theory ∂zu(z) �
1 and ε̄ (0)

zz � 1, we must have M0x = 0. Thus, we can make
the ansatz M0 = MS (cos θ ẑ + sin θ ŷ) where the angle θ is
obtained by minimizing

F0

μ0MSH0
= − cos(θ − φ) +

(
B1

μ0M2
S

+ 1

)
MS

H0
ε̄ (0)

zz cos2 θ.

(B2)

Since, in general, the magnetoelastic constant B1 can be pos-
itive or negative, the solution of θ depends on this choice.
More precisely, the sign of B1/(μ0M2

S ) + 1 determines the
behavior of the magnetic free energy F0 when H0 and ε̄ (0)

zz
are fixed and nonzero. In either case, the competition between
the external magnetic field, the demagnetizing field, and the
magnetoelastic field gives rise to hysteresis that is similar to
the Stoner-Wohlfarth hysteresis [30,52].

FIG. 9. The static magnetic free energy derived in Eq. (B2) for
B1 > −μ0M2

S (corresponding to a hard z axis) as a function of the
angle θ , as the magnitude H0 of the external field pointing at φ = 45◦

is increased (orange arrows). The blue line corresponds to H0 = 0.
As H0 is increased, the metastable local minimum of F0 disappears
and the global minimum approaches φ.

If B1 > −μ0M2
S , the prefactor of cos2 θ term in Eq. (B2)

is positive and, therefore, the z axis is a hard axis of the
magnetic system. The magnetic free energy in this situation
is depicted in Fig. 9 as a function of θ . Without any external
field (blue line), the minima are found at θ = ±90◦. When
the external field magnitude H0 is increased, at first, one of
the minima becomes a global minimum and, eventually, the
second metastable local minimum disappears. At the same
time, the magnetization angle θ corresponding to a global
minimum approaches φ = 45◦.

The case with B1 < −μ0M2
S corresponds to an easy z axis,

as the sign of B1/(μ0M2
S ) + 1 is negative. Mathematically,

this case can be mapped exactly to the previous hard z axis
case with the transformations θ → θ + 180◦ and F0 → −F0.
Thus, comparing to Fig. 9, the maxima correspond to the
minima after a shift in θ in this case.

For φ = 90◦, i.e., magnetic field perpendicular to the beam,
the problem can be solved analytically. For low fields, the
(meta)stable magnetization directions depend on the sign of
the anisotropy term, i.e., the sign of B1/(μ0M2

S ) + 1, because
when this term is positive, the beam axis is a hard axis and
the magnetization prefers to lie along the magnetic field. For
the opposite sign of the anisotropy, the static magnetization
is along the beam for low fields and along the field for high
fields. The coercive field, i.e., the size of the magnetic field
where the second relative minimum disappears is, however, in
both cases

Hc = 2

∣∣∣∣ B1

μ0M2
S

+ 1

∣∣∣∣ε̄ (0)
zz MS. (B3)

This field can be accessed in magnetic hysteresis mea-
surements, but it is also related with the size of the
magnomechanical coupling.

In Fig. 10 we show the solution of θ as a function of φ

for different external field magnitudes H0. The magnetization
angle θ is fully characterized by φ and H0/Hc if the z axis
being a hard or easy axis is given [the sign of B1/(μ0M2

S ) + 1].
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(a)

(b)

FIG. 10. The magnetization angle θ as a function of φ. In
(a) B1 < −μ0M2

S and in (b) B1 > −μ0M2
S corresponding to the z axis

being a hard and easy axis, respectively. The dotted lines represent
the metastable free-energy minimum. For H0 > Hc, the metastable
minimum disappears, and for large H0 we find θ ≈ φ as expected.

2. Magnetic Hamiltonian

The magnetization dynamics is given by the Landau-
Lifshitz equation that can be written in the Hamiltonian
formalism [53]

ȧ = i
∂Hmg

∂a∗ , ȧ∗ = −i
∂Hmg

∂a
, (B4)

where

Mz′ = MS − γ

LA
a∗a, (B5a)

M+′ =
√

2γ MS

LA

√
1 − γ

2MSLA
a∗a a, (B5b)

M−′ =
√

2γ MS

LA
a∗

√
1 − γ

2MSLA
a∗a, (B5c)

Hmg = LAF , M±′ = Mx′ ± i My′ (B5d)

and the conjugate variables are a = (q + ip)/
√

2, a = (q −
ip)/

√
2. The quantization can be achieved with [â, â†] =

i h̄ {a, a∗} = h̄, where the braces represent the Poisson brack-
ets. This corresponds to the Holstein-Primakoff bosonization,
where m̂† =: â†/

√
h̄ creates a boson.

If we assume M0 = MS ẑ′ and H0  h, we can obtain
the linearized Landau-Lifshitz equation by retaining only the
quadratic terms in a, a∗ in Eq. (B5). After a linear trans-
formation a → ã, having the same form as Eq. (25), the
Hamiltonian reads as Hmg = ωK ã∗ã − (h̃∗ã + h̃ã∗), where

h̃ = μ0

√
γ MSLA

2
[hx′ (ζ+ − ζ−) + ihy′ (ζ+ + ζ−)] (B6)

and ωK , ζ± are defined in the main text in Eqs. (24) and
(25). Then, by Fourier transforming ã → e−iωt ã, hx′,y′ →
e−iωt hx′,y′ , the dynamic equations for the magnetization
(B4) are (

h̃∗

h̃

)
=

(
ωK − ω 0

0 ωK − ω

)(
ã∗
ã

)
(B7)

from which we can see that ωK is the FMR resonance fre-
quency.

APPENDIX C: DERIVATION OF THE LINEAR RESPONSE

As in the main text, let us focus on the case of a single flex-
ural mode. Using the input-output equations given in Eqs. (29)
and (32) with the Hamiltonian (33), we obtain a system of
equations ⎛

⎜⎜⎝
˙̂xl
˙̂pl
˙̂xb
˙̂pb

⎞
⎟⎟⎠ = M

⎛
⎜⎝

x̂l

p̂l

x̂b

p̂b

⎞
⎟⎠ − C

⎛
⎜⎝

x̂l,in

p̂l,in

x̂b,in

p̂b,in

⎞
⎟⎠, (C1)

where C = diag(
√

κe,
√

κe,
√

γe,
√

γe) is a diagonal matrix
containing the external coupling rates and

M =

⎛
⎜⎝

−κ/2 � 0 0
−� −κ/2 G 0

0 0 −γ /2 ωm

G 0 −ωm −γ /2

⎞
⎟⎠, (C2)

where � = ωK − ωd . The quadrature operators are connected
to their bosonic counterparts by a unitary transformation. Let
us now denote this transformation by U and define it such that⎛

⎜⎝
x̂l

p̂l

x̂b

p̂b

⎞
⎟⎠ = U

⎛
⎜⎜⎝

l̂
l̂†

b̂
b̂†

⎞
⎟⎟⎠, U = 1√

2

⎛
⎜⎝

1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

⎞
⎟⎠. (C3)

The same relation holds for the input operators. Now, we can
apply the Fourier transformation x̂(†)(ω) = ∫

x̂(†)(t )eiωt dt to
Eq. (C1) and use the transformation (C3) to express the linear
response matrix T as

T (ω) = U −1(iωI + M )−1CU, (C4)

where I is the 4×4 identity matrix. Due to the complex struc-
ture of the response matrix T , there are only six independent
components which read as

T11 = − i
√

κe

D

[
ωm

2
G2 + iχγ (−ωm)χγ (ωm)χκ (−�)

]
, (C5a)

T12 = − i
√

κe

D

ωm

2
G2, (C5b)

T13 = − i
√

γe

D

G

2
χγ (−ωm)χκ (−�), (C5c)

T14 = − i
√

γe

D

G

2
χγ (ωm)χκ (−�), (C5d)

T33 = − i
√

γe

D

[
�

2
G2 + iχγ (−ωm)χκ (�)χκ (−�)

]
, (C5e)

T34 = − i
√

γe

D

�

2
G2, (C5f)
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where χη(ω0) = i(ω − ω0) − η/2 and

D = χγ (ωm)χγ (−ωm)χκ (�)χκ (−�) − �ωmG2 (C6)

is the determinant of the matrix iωI + M. The full linear response matrix T may now be written as

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

T11(ω) T12(ω) T13(ω) T14(ω)

T ∗
12(ω) T ∗

11(−ω) T ∗
14(ω) T ∗

13(−ω)√
κe
γe

T13(ω)
√

κe
γe

T14(ω) T33(ω) T34(ω)√
κe
γe

T ∗
14(ω)

√
κe
γe

T ∗
13(−ω) T ∗

34(ω) T ∗
33(−ω)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C7)

That is, the other elements are obtained by conjugation, multiplying by a prefactor
√

κe
γe

, and setting ω → −ω.
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We show how coupling an ensemble of bistable systems to a common cavity field affects the
collective stochastic behavior of this ensemble. In particular, the cavity provides an effective inter-
action between the systems, and parametrically modifies the transition rates between the metastable
states. We predict that for a coupling strength exceeding a certain threshold, the cavity induces
a spontaneous symmetry breaking where the stationary states of the bistable system bifurcate and
the systems coalesce preferentially in one of the states. The effect crucially depends on the distri-
bution of system–cavity coupling strengths. In the case of alternating signs of the couplings, the
bifurcation shows up as a phase separation. Our results are of particular relevance in polaritonic
chemistry where the presence of a cavity has been suggested to affect chemical reactions.

Classical rate theory provides a stochastic framework
for investigations in natural and social sciences [1–6]. It
has been used to describe a wide variety of phenomena
in different fields: the spreading of diseases in epidemi-
ology [7, 8], the growth and decline of companies in eco-
nomics [9] and of populations in ecology [10], and disinte-
gration of radioactive nuclei in atomic physics, to name a
few. In chemistry, rate equations provide a quantitative
way of understanding chemical reactions [11].

There have been several recent indications of chemical
reactions being altered by the formation of vibrational
polaritons, hybrid excitations formed by the coupling of
molecular vibrations to vacuum electromagnetic field of
an optical cavity [12–14]. The vacuum field has been
reported to work both as a catalyst [15, 16] and an in-
hibitor [17–19] in different reactions. However, the cur-
rent theoretical understanding seems to contradict these
experimental results. The conventional approach that
concentrates on the cavity-induced modification of the
individual reaction rates within the transition state the-
ory finds that all the polaritonic effects should disappear
when the number of molecules forming the polariton in-
creases [20–23]. Furthermore, very recently, there have
been reports of failed replication experiments [24, 25],
adding to the confusion.

The cavity effect on the chemistry poses an interesting
stochastic problem, regardless of the current experimen-
tal knowledge on the subject. Its fundamental notion is
that of collectivity: a large number of molecules partic-
ipate in the polaritons. At the same time, the strength
of the light-matter coupling may vary from molecule to
molecule.

In this Letter, we concentrate on the effect of the in-
direct interactions between molecules mediated by the
cavity field in the classical limit. We show that such
an interaction can be taken into account in the classical
rate theory as transition rates that depend parametri-
cally on the state of the molecules. The rate equation
describing the macroscopic state of the many molecule
system is consequently non-linear. We find an order pa-

FIG. 1. Interactions between a harmonic cavity mode x
and N identical modes qi, described by a bistable potential
V (q). In the harmonic approximation, ∂2

qV (a/2) = ω2
R and

∂2
qV (−a/2) = ω2

L define the relevant frequencies.

rameter for the polaritonic system and show that, in an
attainable parameter regime, it bifurcates so that it can
have multiple solutions in the stationary state. Further-
more, we show that the distribution of the light-matter
couplings dictates whether this bifurcation may be seen
in the macroscopic state or whether it corresponds to a
“hidden” order; a phase separation. Even before the bi-
furcation, the cavity-mediated interaction may slow down
the effective transition rates, suggesting that the collec-
tivity of the many molecule system must be considered
on the level of the rate equations, not only on the level
of the rates themselves.
Rate theory. Let us first consider a one-dimensional

and bistable system described by a potential V (q) as in
Fig. 1. Here, q is a position quadrature which can de-
scribe, e.g., a vibrational mode of the molecule. Clas-
sical rate theory then relates the probability p to find
the system in one of the wells to the transition rates Γµν

between the wells. We adopt a terminology of left and
right wells corresponding to the minima of V (q) at q < 0
and q > 0, respectively. Thus, if pj is the probability to
find the jth system in the left well, its rate equation [26]
reads as

d

dt
pj = −Γj

LRpj + Γj
RL[1− pj ]. (1)

The macroscopic behaviour is obtained from Eq. (1) by
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noting that the expectation value of the number of sys-
tems in the left well is given by NL =

∑
j pj . If the

transition rates are independent of the system j, we find

d

dt

NL

N
= −ΓLR

NL

N
+ ΓRL

[
1− NL

N

]
. (2)

In the following, we show that this approach has to be
extended when the molecules have varying couplings to
the cavity.

Often, the transition rates are assumed to be inde-
pendent of pj and time, i.e., constants. In such a case,
to comply with thermodynamics, the rates must obey
the detailed balance ΓLR/ΓRL = eβσ where β = 1/kBT
is the inverse temperature and σ = V (−a/2) − V (a/2)
corresponds to the potential bias between the different
states (Fig. 1). The rate equation then describes ther-
malization to the Boltzmann distribution.

The coupling of the molecules to the vacuum field leads
to a state-dependent modification of the rates in Eq. (1).
This is caused by the effective interaction between the
different molecules mediated by the cavity. Before deriv-
ing the modification explicitly, we write this statement
formally as Γµν = Γ0

µνrµν(NL) where rµν(NL) represents
the rate modification caused by the vacuum field which
may be expected to be a function of NL and not of the
individual pj ’s. The subsequent solution of the rate mod-
ifications rµν is the main result of this work from which
the polaritonic effects follow.

State-dependent rate modification. Consider N sys-
tems with coordinates qj coupled to an external collective
mode as in Fig. 1. In what follows, we call those N sys-
tems “molecules” and the collective mode is a “cavity”,
in analogy to the systems studied in polaritonic chem-
istry. However, this approach works also for example in
the case of a large number of superconducting flux qubits
coupled to a single microwave cavity, or bistable atoms
in a cold-atom arrangement, coupled to a common cavity
mode [27].

We derive the state-dependent transition rates from
the detailed balance. That is, if the stationary state of
the total system thermalizes in the presence of the cavity,
the rates for the molecule j obey

Γj
LR

Γj
RL

= exp{β[Vtot(qj < 0)− Vtot(qj > 0)]}, (3)

when Vtot is the potential energy for a polaritonic state
and the notation is understood so that all the other
modes qk ̸=j are fixed.

Motivated by quantum electrodynamics (QED), we in-
troduce a single cavity mode of frequency ωc and its po-
sition quadrature x and choose the classical potential en-
ergy of a polaritonic system [28] as

Vtot =
N∑
i=1

V (qi) +
1

2
ω2
cx

2 +
N∑
i=1

di(qi)x, (4)

where di represents the molecular dipole moment com-
ponent in the direction of the cavity mode’s polarization
vector.
We focus on a linear dipole moment dj(qj) =√
ωcωmgjqj to gain insight on the effect of the cavity

on the transition rates. Here, ω2
m = (ω2

L + ω2
R)/2 repre-

sents the mean frequency of the potential V (q), and the
square root term normalizes the light-matter coupling
constant gj . These choices allow mapping this model po-
tential to the Dicke Hamiltonian in which case gj follows
directly from the QED derivation [29]. However, our ap-
proach works for an arbitrary dipole function di(qi).

The light-matter coupling gj typically depends on both
the position of the molecule within the cavity and the
alignment of its dipole moment [29–31]. Importantly, gj
can be either positive or negative which has physical con-
sequences. The strength of the collective coupling is in-

dicated by the Rabi splitting frequency Ω ∝
√∑

j g
2
j ,

defined as the difference of the eigenfrequencies of the
total potential on resonance ωL = ωR = ωc [32, 33]. We
assume that gj ≪ ωc, ωm while Ω is a small fraction of
ωc and ωm due to N ≫ 1.
The effective interaction mediated by the cavity can be

understood by a force analysis. For a system in a station-
ary state, displacing the mode qj by δqj causes a force
proportional to −gjδqj to the cavity mode x. This leads
to a displacement δx proportional to the force to the cav-
ity mode. The force applied on another mode qk is then
proportional to −gkδx which reads as gkgjδqj in terms
of the original displacement on mode qj . Whenever the
coupling constants of two different molecules share the
same sign, the force between them is attractive and for
opposite signs repulsive. The cavity-induced interaction
resembles the phonon-mediated interaction between elec-
trons in superconductivity [34].
We solve the stationary states of Vtot within the har-

monic approximation which holds when gj ≪ ωc, ωm

and, thus, the cavity-induced change to the local min-
imum points of V (qj) is small. Technically, we first solve
the values of qj ’s and x from the conditions ∂xVtot =
∂qjVtot = 0 by treating the signs of qj as variables, repre-
senting whether the molecule j is in the left or the right
well. We find that all the stationary points may be ex-
pressed by using the collective order parameter

∆ =
1

N

N∑
i=1

gi√
⟨g2⟩

sign(qi), (5)

where
〈
g2
〉
=
∑

i g
2
i /N represents the average over the

molecules and sign(qi) is the sign function. If there is
no variation in the coupling constants gi, ∆ becomes the
normalized difference between the number of molecules in
the right and the left well, ∆ → δN/N = (NR −NL)/N .
Finally, we calculate the value of Vtot using Eq. (4) at
these stationary points. The details of this algebraic cal-
culation are relegated to the Supplemental Material [27].
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We find that the stationary states of the full N
molecule system have the potential energy

Vtot

N
= −EbP∆2 − σ

2

δN

N
. (6)

The first term is caused by the effective interaction via
the cavity mode while the second term describes the po-
tential bias of V (q). The magnitude of the interaction is
determined by the product of an effective potential bar-
rier Eb =

1
2ω

2
m(a/2)2 [35] and a polaritonic coefficient

P =
N
〈
g2
〉

ωcωm −
∑

i(
ωm

ωi
gi)2

. (7)

Here, ωi equals ωL for qi < 0 and ωR for qi > 0. The
coefficient P can be related to the Rabi splitting Ω using
N
〈
g2
〉
∝ Ω2. We assume that Ω is a small fraction of√

ωcωm and P ≪ 1. Consequently, P may be treated as
a state-independent constant since its variation is pro-
portional to P 2 [27].

Using the detailed balance (3) and Eq. (6), we find in
the lowest order of P that

Γj
LR

Γj
RL

=
Γ0
LR

Γ0
RL

rjLR

rjRL

= exp

(
βσ + 2α

gj√
⟨g2⟩

∆

)
, (8)

where α = 2PβEb plays the role of a control parameter.
It should be noted that, even though P ≪ 1, the effec-
tive potential barrier Eb can be much larger than the
temperature so that α can be of the order of unity.

Equation (8) expresses the relative change of the rates
due to the change of the number of molecules in the left
and right wells. To find the individual rates, we use the
fact that reversing all coordinates also interchanges the
rates. That is, we impose that rRL must be equal to rLR

if we at the same time transform qi → −qi, σ → −σ, and
ωL/R → ωR/L. The control parameter α retains its value
in this parity transformation. By using this equality in
Eq. (8) and expanding the exponent of rLR in the powers
of ∆, we find that

rjLR = C exp

(
α

gj√
⟨g2⟩

∆+ f

)
, (9)

where f is a function of ∆ that stays invariant in the
parity transformation. A few examples of such functions
are ∆2 and σ∆. C is a constant that describes a state-
independent cavity-induced modification that may be ac-
quired in, e.g., the transition state theory. Here, we as-
sume that such modifications are small and C = 1. The
function f , although not forbidden by the symmetry, we
neglect as there is no clear physical origin for such terms.
That is, we set f = 0. In this case, rjRL = 1/rjLR.

Next, we use Eq. (8) to evaluate the stationary state
of the macroscopic system. The separate rate modifica-
tions (9) allow for a continuous-time Markov chain simu-
lation of Eq. (1) from which dynamics can also be inves-
tigated and compared to an analytical approach [27, 36].

FIG. 2. (a) Steady state solutions of Eq. (2) exhibiting bi-
furcation for equal couplings. The dotted line represents an
unstable solution whereas the solid lines are stable; the av-
erage tends to one of the stable solutions after a long time.
(b) Phase separation of a system that is divided into two
equally large partitions (N1 = N2 = N/2) with couplings re-
lated by g1 = −2g2. The solid lines represent the dynamics
of the partitions alone whereas the dashed line describes the
dynamics of the full system. Here, Γ0

LR = Γ0
RL, α = 1.3 and

σ = 0.

Equal coupling strengths. We illustrate some qualita-
tive consequences of the parametric rate modifications by
taking a simplifying limit of identical couplings as in [32];
we set gj = g0 for all j. In this case, the transition rates
become independent of the molecule in question. The set
of rate equations can be mapped to a master equation
describing the probability to find exactly NL molecules
in the left well. Interestingly, a similar state-dependent
master equation has been used to model the formation of
time crystals in magneto-optical traps [37]. We confirm
numerically that such a master equation and the macro-
scopic rate equation (2) produce the same results as long
as N ≫ 1 [27].

We find the stationary state of the full N molecule
system by inserting Eq. (8) into the macroscopic rate
equation (2) together with d

dtNL = 0. It gives

δN

N
= tanh

(
β
σ

2
+ α

δN

N

)
. (10)

The solutions for δN determine the long-time behaviour
of the macroscopic system.
First, let us consider σ = 0. If there is no coupling to

light, the only stationary state is NL = NR = N/2 due to
the left/right symmetry. For small values of α = 2PβEb

there is no change to this stationary state. However, as
soon as α > 1, we find two new stationary states while
the state NL = NR becomes unstable. The stationary
states are represented in Fig. 2(a) as a function of the
control parameter α. As this configuration is possible
only if the coupling is large enough, we call it the cavity-
induced bifurcation of the stationary state.
The cavity-induced bifurcation remains in the presence

of a finite bias σ. However, the critical value of α in-
creases as σ increases. For a very large bias βσ ≫ α, all
the systems eventually end up in the right well which is
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lower in energy. This is expected, as biasing the poten-
tial pushes the molecules towards the right well whereas
the attractive interaction tries to keep the molecules in
the same well. Before the bifurcation, one can also see
the effect of the cavity-mediated attraction in that more
molecules can be found in the right well than without the
cavity. This seems as if the cavity increased the potential
bias.

The mere state-dependent light-matter coupling —
caused by a nonlinear di(qi) — may bias the polaritonic
system. Similar to a potential bias, the molecules prefer
the state with the larger coupling strength even with a
single stationary state, and the larger the coupling dif-
ference, the larger the critical value of α [27].

Effect of coupling strength distribution. If there is only
a partial control of the coupling constants as in polari-
tonic chemistry, one must include the variation of the
couplings. We argue that this can but does not neces-
sarily remove the cavity induced effects. Especially, the
role of the average ⟨g⟩ is important. This average is inde-
pendent of the optically observed Rabi splitting which is
proportional to

√
N ⟨g2⟩ [12–14, 38, 39] and hence does

not depend on the sign of the individual gj ’s.
The order parameter ∆ determines the individual rates

in Eq. (8). If we consider a partition of the N molecules
such that all molecules within the partition share the
same coupling constant gj , they also share the same tran-
sition rates Γj

µν . Macroscopic rate equations similar to
Eq. (2) can be derived for each partition but deriving
a closed-form differential equation for ∆ is impossible.
Consequently, the full macroscopic rate equation cannot
be evaluated. However, the stationary states of the par-
titions can be solved in terms of ∆. This leads to a
self-consistency equation [27]

∆ =

〈
g√
⟨g2⟩

tanh

(
β
σ

2
+ α

g√
⟨g2⟩

∆

)〉
(11)

whose solution can be used to find

δN

N
=

〈
tanh

(
β
σ

2
+ α

g√
⟨g2⟩

∆

)〉
(12)

given a distribution of coupling constants g.
We specifically discuss the case σ = 0. By expanding

Eq. (11) to the third order in ∆, one finds the solutions
∆ ∝ ±

√
α− 1 and ∆ = 0. Thus, α = 1 is the criti-

cal value for the bifurcation of the order parameter ∆.
This agrees with Fig. 2 in which ∆ = δN/N . At the
same time, Eq. (12) may be linearized giving δN ∝ ⟨g⟩∆.
Whenever ⟨g⟩ = 0, we find δN = 0 or NL = NR. Thus,
even if ∆ bifurcates, it is possible that no change in the
macroscopic state is seen.

The bifurcation of ∆ indicates formation of a new po-
laritonic phase; the coupling constants gj and the corre-
sponding modes qj become strongly correlated. This is

FIG. 3. Kinematics for different Gaussian distributions of
coupling constants gj . The other parameters are as in
Fig. 2(b). The solid lines are obtained by the Markov chain
simulation of 1000 molecules averaged over 100 realizations,
the dashed line by evaluating Eq. (2), while the dotted black
lines represent both the stationary state [Eqs. (11)–(12)] and
the initial behaviour [Eq. (13)]. Inset: The rate modification
in the initial state NL = N [Eq. (13)] as a function of α.
From bottom to top, the different lines are obtained by set-
ting ⟨g⟩2 = c

〈
g2
〉
with c = 1, 0.75, 0.5, 0.25, 0.

exemplified in Fig. 2(b) in a simple case of two equally
large partitions with two different couplings. The parti-
tions have distinctly different dynamical behaviors and,
in the stationary state, the molecules are found mostly
in the right well for one partition and in the left well for
the other. Such a correlation may be observed even if all
the couplings are different [27].
Finally, let us consider the dynamics of thermalization,

i.e., reaction kinematics. To this end, consider an exper-
iment where every molecule is initialized in the left well
(“reactant”) and, at a time t later, the percentage of the
molecules in the right well (“product”) is measured. The
thermalization (or reaction) rate is initially controlled by
ΓLR alone. Averaging over Eq. (9), this initial rate is
modified from Γ0

LR by a factor

⟨rLR⟩ ≈ exp

(
−α

⟨g⟩2

⟨g2⟩
+

α2

2

⟨g⟩2

⟨g2⟩

[
1− ⟨g⟩2

⟨g2⟩

])
(13)

in the leading order of 1/N and to the second order in
the cumulant expansion [27]. This result is independent
of the bias σ. In the inset of Fig. 3, we show the effect
of α and the variance of the coupling distribution. The
effective transition rate becomes always slower due to the
presence of the cavity — the cavity is an inhibitor — and
the effect is stronger the less varied the couplings are.
The agreement between our theoretical approach and

the Markov chain simulation is shown in Fig. 3. For
equal couplings, Var(g) = 0, we use the macroscopic rate
equation (2) directly and the results are nearly indistin-
guishable. Our solutions for the stationary and transient
behavior also agree well with the simulation.
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To summarize, we have shown how a cavity-mediated
interaction between molecules can cause a collective
change in their stochastic behavior. The cavity may
cause a slowdown of the thermalization rate of the full
system and a bifurcation in the stationary state. The po-
laritonic effect depends on the number of molecules and
the distribution of the light-matter couplings. The bifur-
cation can even show up as a phase separation without
altering the macroscopic state. In polaritonic chemistry,
our approach is straightforward to extend to studies of
multiple cavity modes, molecular symmetries [40], and
cavity-induced reaction selectivity [19]. Due to the ubiq-
uitous nature of polaritonics, our results can be used to
describe other systems such as electric circuits and cold
atoms in optical traps.

We thank Mark Dykman, Jussi Toppari, and Gerrit
Groenhof for the insightful discussions. This project
was supported by the Magnus Ehrnrooth foundation and
the Academy of Finland (project numbers 317118 and
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This supplement is organized as follows: First, we calculate the stationary states of a polaritonic potential in
Section I. Then, we use these results to obtain the transition rates using the detailed balance in Section II. In this
section, the cumulant expansion of the transition rates is also presented. In Section III, we derive the self-consistency
equation for the order parameter ∆ of the polaritonic system. Section IV discusses a special case of the polaritonic
model, that of equal couplings. In this case, the rate equation approach presented in the main text can be mapped to
a master equation. The continuous-time Markov chain simulation method is presented in Section V. We then show
some consequences of state-dependent light-matter coupling, caused by a nonlinear dipole moment, in Section VI
using a numerical example. Finally, in Section VII, we discuss possible realizations of the cavity-induced bifurcation.
We discuss the specific experimental details of polaritonic chemistry in a detailed manner, present an electric circuit
model using flux qubits, and briefly discuss the possibilities of cold atoms.

I. CALCULATION OF THE STATE-DEPENDENT POTENTIAL ENERGY

Here, we present how we calculate the potential energies of the classical states, starting from the total potential

Vtot =
N∑
i=1

V (qi) +
1

2
ω2
cx

2 +
N∑
i=1

di(qi)x, (S1)

where V (qi) is a bistable potential and di(qi) characterizes the dipole moment of the molecule j projected on the
polarization vector of the cavity mode. We point out that the following calculation is very similar to the Caldeira–
Leggett model except that the typical bath of harmonic oscillators is replaced by a single mode. Consequently, instead
of dissipation, integration over the cavity mode x leads to effective interaction between the molecular coordinates qi.

First, we solve the stationary points dictated by the conditions ∂xVtot = 0 = ∂qiVtot. We work here in the harmonic
approximation, assuming that the coupling to the cavity quadrature x induces a small change in the positions of the
stationary points q∗i which fulfill ∂qiV (qi)

∣∣
qi=q∗i

= 0. We choose the coordinate system so that q∗i = ±a/2 without

the presence of the cavity field. Thus, a is the distance between the (local) minimum points. To characterize the
displacement of the minimum points, we introduce a variable δqi = qi − a

2 sign(qi). We can now write the potential in
the harmonic approximation as

V (qi) ≈ −σ

2
sign(qi) +

1

2
ω2
i δq

2
i , (S2)

where σ represents the energy difference between the left and right well and ω2
i is a shorthand notation for

ω2(qi) =
ω2
R + ω2

L

2
+

ω2
R − ω2

L

2
sign(qi), (S3)

which alternates between ω2
L and ω2

R depending on the sign of qi. Similarly, we assume that the dipole moment can
be linearized near q = ±a/2

di(qi) ≈ λ2
i

[
δqi +

q0
2
sign(qi)

]
, (S4)

where λ2
i ≡ λ2

i [sign(qi)] describes the strength of the light-matter coupling and q0 additionally characterizes the
difference in the dipole moment between right and left well. The coupling constants λ2

i can generally vary both due
to the state, similar to the frequencies ω2

i , and due to disorder in the polarization vectors and positions. The results
of the main paper are obtained by replacing q0 = a and λ2

i → √
ωmωcgi where gi is independent of the molecular

state. The presence of the square root term is due to the choice of coordinates qi and x so that, for a harmonic

potential V (qi), we retain the light-matter interaction with constants gi as gi(a
† + a)(b†i + bi) after quantization as in

the Dicke model.



2

As the derivative of the sign function sign(qi) vanishes everywhere except at qi = 0, and qi obtains values only near
±a/2 by assumption, we find

0 =
∂Vtot

∂x
= ω2

cx+
∑
i

λ2
i

[
δqi +

q0
2
sign(qi)

]
, (S5a)

0 =
∂Vtot

∂qi
= ω2

i δqi + λ2
ix. (S5b)

This set of equations can be solved by noting that Eq. (S5a) depends on Q =
∑

i λ
2
i δqi and, at the same time, we can

derive from Eq. (S5b) an equation

0 = Q+
∑
i

λ4
i

ω2
i

x (S6)

for the collective variable Q. Inserting the solution of Q in terms of x to Eq. (S5a) gives

x = −
q0
2

∑
i λ

2
i sign(qi)

ω2
c −

∑
i
λ4
i

ω2
i

= − ω2
m√
⟨λ4⟩

P∆
q0
2
. (S7)

In the latter equality, we introduce the useful notations from the main text — which we gather here for convenience

ω2
m =

ω2
R + ω2

L

2
,
〈
λ4
〉
=

1

N

∑
i

λ4
i , P =

N
〈
λ4
〉

ω2
cω

2
m −

∑
i
ω2

m

ω2
i
λ4
i

, ∆ =
1

N

∑
i

λ2
i√
⟨λ4⟩

sign(qi). (S8)

Though, here, the coupling λ2
i still depends on the state of the molecule i. The solution of x allows for the solutions

of individual δqi which are simply δqi = − λ2
i

ω2
i
x. Note that the solution is consistent with the harmonic approximation

as long as the dimensionless constant P is well below unity and
∣∣ω2

L − ω2
R

∣∣≪ (1− P )(ω2
L + ω2

R).
Finding the potential minima is now straightforward. We insert the obtained local minimum points into the

expression of total potential Vtot. The potential energies found in this way still depend on the state of the system in
the sense that the variables sign(qi) are not fixed. Within the harmonic approximation it holds that |δqi| < a/2 and
it is clear that the signs of qi indicate whether the system is in the left (qi < 0) or right (qi > 0) well. We find

Vtot = −σ

2
δN +

N∑
i=1

1

2
ω2
i δq

2
i +

1

2
ω2
cx

2 +

N∑
i=1

λ2
ix
[
δqi +

q0
2
sign(qi)

]
= −σ

2
δN +

1

2

(
ω2
c −

∑
i

λ4
i

ω2
i

)
x2 +

q0
2
x

N∑
i=1

λ2
i sign(qi)

= −σ

2
δN − N

2
ω2
m

(q0
2

)2
P∆2,

(S9)

which matches with the result of the main text when Eb = 1
2ω

2
m

(
q0
2

)2
is identified in the latter term. Since Eb has

the dimension of energy, we call it the effective potential barrier.
In the main text and the remainder of this supplement, we assume, for simplicity, that the dipole moment func-

tion di(qi) can be written as a linear function over the whole range of qi. Physically, this assumption means that
both states are equally coupled to the cavity. The condition is easily relaxed to investigate a multitude of possible
polaritonic systems — we briefly discuss one example in Sec. VI. In terms of the model at hand, it means that
di(qi) = λ2

i qi where λ2
i is a constant for each molecule i. Thus, the average

〈
λ4
〉
is state independent and, as seen

in the next section, P can be regarded as a constant in the lowest order of the light–matter coupling. In addition, if
also ωL = ωR, Eb simply describes the potential energy V (q = 0) within the harmonic approximation since q0 = a.

II. DETAILED BALANCE AND CUMULANT EXPANSION

The detailed balance states that the transition rates must obey

Γj
LR

Γj
RL

= exp{β[Vtot(qj < 0)− Vtot(qj > 0)]} = exp(βδVtot) (S10)
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in order for the system to thermalize to the Boltzmann distribution. The above notation refers to the other systems
being fixed while jth system moves from one well to another. We assume here that the light-matter coupling is state
independent.

First, we calculate the difference in P due to one system moving. It is useful to denote K = 1
N

∑
i

λ4
i

⟨λ4⟩
ω2

m

ωi
. Note

that K = 1 if ωL = ωR. Thus, we formally can expand P around K = 1 which leads to

P =

∞∑
n=0

(
N
〈
λ4
〉

ω2
cω

2
m −N ⟨λ4⟩

)n+1

(K − 1)n ≡
∞∑

n=0

Pn+1
0 (K − 1)n. (S11)

Since we assume that N
〈
λ4
〉
/(ω2

cω
2
m) is small and P0 ≪ 1, P ≈ P0+P 2

0 (K−1) to a good approximation. The higher
powers of K also scale in the powers of 1/N . Finding the difference due to moving one system is now straightforward
and results in

δP ≈ 1

N
P 2

λ4
j

⟨λ4⟩

(
ω2
m

ω2
L

− ω2
m

ω2
R

)
+O

(
P 3/N2

)
. (S12)

In the main text, we neglect the second order contribution of P and, thus, the state dependency of P .
Since P can be regarded as a constant in the calculation of the difference in potential energies, the calculation

simplifies greatly and we obtain

δVtot = σ −NEbP


− λ2

j√
⟨λ4⟩

+
∑

i ̸=j
λ2
i√

⟨λ4⟩
sign(qi)

N


2

−


λ2
j√

⟨λ4⟩
+
∑

i ̸=j
λ2
i√

⟨λ4⟩
sign(qi)

N


2
 (S13)

= σ + 4PEb

λ2
j√
⟨λ4⟩

∑
i ̸=j

λ2
i√

⟨λ4⟩
sign(qi)

N
. (S14)

However, we still have to connect this to what would be observed in experiments which deal with macroscopic numbers
of N .

With the value of δVtot, the detailed balance states that

Γj
LR

Γj
RL

=
Γ0
LR

Γ0
RL

rjLR

rjRL

= eβσ exp

4PβEb

λ2
j√
⟨λ4⟩

∑
i̸=j

λ2
i√

⟨λ4⟩
sign(qi)

N

. (S15)

Here, one can readily identify the ratio of the rate modification factors which is the latter exponent.
Now, we can appeal to symmetry: if we interchange left and right everywhere in the potential V (q), the rate

modifications should remain the same. Thus,

rjLR({qi};σ, ω
2
L, ω

2
R) = rjRL({−qi};−σ, ω2

R, ω
2
L). (S16)

where {qi} refers to the set of all qi’s. One can confirm that P remains invariant in this transformation (the relevant

quantity in P is
∑

i λ
4
i
ω2

m

ω2
i
=
∑

i
λ4
i

1+(ω2
R−ω2

L)sign(qi)/(ω2
R+ω2

L)
). Following the line of deduction as in the main text, we

can thus write

rjLR = exp

2PβEb

λ2
j√
⟨λ4⟩

∑
i ̸=j

λ2
i√

⟨λ4⟩
sign(qi)

N

 (S17)

and rjRL = 1/rjLR. We may also replace the sum in this expression with ∆ as the error made is of the order of 1/N .
Next, we treat the coupling constants λ2

j as independent random variables — instead of considering them to have
some fixed values — and average the detailed balance relation over all realizations. Furthermore, we assume that the
sign of qj is independent of λ2

j which does not necessarily hold for a dynamical system but may be assumed to hold
for the initial state, for instance. The average of the exponent gives rise to the cumulant expansion. To calculate the
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cumulants, we first calculate the raw moments of the term in the exponent. Taking only the leading order in 1/N , we
find 〈 λ2

j√
⟨λ4⟩

∑
i ̸=j

λ2
i√

⟨λ4⟩
sign(qi)

N


n〉

≈

〈(
λ2√
⟨λ4⟩

)n〉[ 〈
λ2
〉√

⟨λ4⟩
δN

N

]n
. (S18)

Since all cumulants may be expressed using only raw moments in a specific polynomial manner [1], we can deduce

from this result that the nth cumulant Kn of the term in the exponent of rjLR is

Kn =

[
2PβEb

〈
λ2
〉√

⟨λ4⟩
δN

N

]n
Kn

(
λ2/
√
⟨λ4⟩

)
. (S19)

That is, we have related the cumulants of the sum to the cumulant of its individual elements. Using the cumulant
expansion to second order, we have that

ln ⟨rLR⟩ ≈ 2PβEb

〈
λ2
〉2

⟨λ4⟩
δN

N
+

1

2
(2PβEb)

2

〈
λ2
〉2

⟨λ4⟩

[
1−

〈
λ2
〉2

⟨λ4⟩

](
δN

N

)2

. (S20)

Here, the first term follow from the average and the second from the variance. We emphasize that the approximation
is valid when N ≫ 1. The cumulant expansion is otherwise exact if the distribution of λ2

j ’s is Gaussian; only the first
two cumulants may be finite for a Gaussian distribution.

III. DERIVATION OF THE SELF-CONSISTENCY EQUATION

One can derive a self-consistency equation for ∆ in the stationary state. Let us assume that, even though there are

N systems, there are M < N different values for the coupling constants λ2
j . Let us denote cj =

λ2
j√

⟨λ4⟩
and α = 2PβEb

here, for brevity. Then, if there are N j , j ∈ {1, 2, . . .M} subsystems (N =
∑

j N
j) with the constant cj , we can write

∆ = 1
N

∑
j cj(N

j − 2N j
L) where N

j
L is the number of systems in the left well having a coupling constant cj . Following

the main text, we assume that we can write for each subsystem j the macroscopic equation

d

dt
N j

L = −Γj
LRN

j
L + Γj

RL(N
j −N j

L). (S21)

We assume that each subsystem has a stationary value. We may then solve, using Eq. (S15),

N j
L

N j
=

1

1 + exp(βσ + 2αcj∆)
. (S22)

Inserting this solution to the definition of ∆ and δN leads to

δN

N
= 1− 2

∑
j N

j
L

N
=
∑
j

N j

N
tanh

(
β
σ

2
+ αcj∆

)
≡
〈
tanh

(
β
σ

2
+ αc∆

)〉
, (S23)

∆ =
∑
j

cj
N

(N j − 2N j
L) =

∑
j

N j

N
cj tanh

(
β
σ

2
+ αcj∆

)
≡
〈
c tanh

(
β
σ

2
+ αc∆

)〉
. (S24)

In both equations, we identified the structure of
∑

j(N
j/N)f(cj) as an average over the distribution of c’s which

follows from the fact that there are exactly N j values of cj . In the limit N → ∞, we may construct a continuous
distribution of the coupling constants which we use here as an approximation for systems of finite size.

It should be noted that we treat ∆ and δN as numbers, not stochastic variables, even though the underlying
stochastic processes determine their realizations and the possible values of ∆ are constrained by the distribution of
the coupling constants.

Here, we have neglected the possible variation of α with the macroscopic state. This arises from the variation of P ,
as discussed in Section II. In principle, this is remedied by including an equation for α = α(∆) and solving all three
equations self consistently. It should be noted that the variation of P with the macroscopic state is a second order
effect in P and, thus, one should also calculate δVtot to the same order.
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FIG. S1. Comparison of the macroscopic rate equation (solid lines) and master equation (crosses). Here, Γ0
LR = Γ0

RL = Γ0 and
N = 1000.

IV. RELATION TO THE FULL MASTER EQUATION OF THE N MOLECULE SYSTEM

If all the coupling constants gj are equal, the potential difference δVtot is independent of the system index j. In
this case, the full N molecule system is readily described by the probability P (NL) to find NL systems in the left
well. The master equation for these probabilities reads as

d

dt
P (NL) = µNL+1P (NL + 1) + νNL−1P (NL − 1)− (µNL

+ νNL
)P (NL), (S25)

where µM = MΓ0
LRrLR(M) describes the removal rate of particles from the left well to the right well and νM =

(N − M)Γ0
RLrRL(M) the inverse process. Now, the expectation value of NL is given by ⟨NL⟩ =

∑
NL

NLP (NL).
Using this definition, one can derive from the master equation an equation for the average as

d

dt
⟨NL⟩ = −Γ0

LR ⟨rLRNL⟩+ Γ0
RL ⟨rRL(N −NL)⟩ . (S26)

This matches exactly to the macroscopic rate equation presented in the main text if ⟨rLRNL⟩ = ⟨rLR⟩ ⟨NL⟩ and
⟨rRL(N −NL)⟩ = ⟨rRL⟩ (N − ⟨NL⟩), and the resulting rate modification factors may be understood as a function of
the mean value ofNL only. Due to the non-linearity of the rate modifications, this can be used as a valid approximation
only when the fluctuations of NL are small compared to some characteristic scale given by the rate modifications.

This assumption can be checked numerically. First, we note that the transition rates are independent of time. The

master equation (S25) can thus be written in a matrix form as ∂tP⃗ = WP⃗ where W is independent of time. Given an

initial state P⃗ (t = 0), we formally have P⃗ (t) = eWtP⃗ (t = 0). The numerical problem is then to calculate the matrix
exponential eWt. Fig. S1 shows that the macroscopic rate equation and the master equation produces the same mean
behavior for NL as N is large enough.

We note that even though the rate equations are state dependent and consequently non-linear, the macroscopic
behaviour fits well to the typical exponential behaviour NL(t) = NL(∞)+[NL(0)−NL(∞)]e−γt with a suitable fitting
constant γ. This observation seems to hold even when the variation of couplings is included which is possible by the
numerical method presented in the next section.

V. NUMERICAL METHOD

Here, we shortly describe the Markov chain algorithm we use in this work. The main motivation is to simulate a
set of rate equations

d

dt
pj = −Γj

LRpj + Γj
RL(1− pj) (S27)

where Γj
µν depend on the state of the system. In our formulation, these states are sj = sign(qj) ∈ {−1,+1}. The

rate equation describes that in a small time step ∆t, the probability to change the system from sj = −1 to sj = +1

is given by Γj
LR∆t while the converse process has the probability Γj

RL∆t. The algorithm is as follows:



6

a) b)

FIG. S2. A single realization of the Markov chain simulation for N = 1000 systems and 1000 time steps (Γ0∆t = 0.01). Other
parameters are α = 1.3, σ = 0, and Γ0

LR = Γ0
RL = Γ0. Here, the coupling constants are sampled from a Gaussian distribution

with zero mean. a) The time evolution of the quantities δN and ∆. As mentioned in the main text, ∆ has a solution other
than zero when α > 1 while δN fluctuates around zero. b) As a visual representation, the states ”left” and ”right” are here
represented by blue and orange, respectively, for each time step. Here, the different systems are indexed in the ascending order
in the coupling constant (i.e. g1 ≤ gj ≤ gN ). The correlation becomes visible; the systems with largest values of coupling are
predominantly found in the left well after a transient period.

1. Initialize the states {sj} at time t if necessary.

2. Draw N random numbers uj ∼ Uniform(0, 1).

3. For each j ∈ {1, 2, . . . N} calculate Aj = Γj
LR∆t if sj = −1 and Aj = Γj

RL∆t if sj = +1 using the system state
at time t.

4. For each j ∈ {1, 2, . . . N} compare uj and Aj . If uj < Aj , set the system state at time t+∆t to be sj(t+∆t) =
−sj(t). Otherwise, set sj(t+∆t) = sj(t).

5. Return to step 1 with t → t+∆t.

Thus, when an appropriate amount of time steps is taken, we have a list of system states sj(t) at the chosen time
points. These states can be used to calculate e.g. ∆ or δN . This is exemplified in Fig. S2.

Practically, we choose N to be large enough so that there are no spurious 1/N effects and correspondence with the
master equation approach holds. The time step we choose so that Γ0

µν∆t is below or of the order of 1 percent. The
initial state is chosen according to how many systems are wanted to be found in the left well and then the states are
shuffled.

VI. EFFECT OF NONLINEAR DIPOLE MOMENT IN A SYMMETRIC POTENTIAL

We shortly describe how the physics changes when the assumption of equal light-matter coupling strength in both
wells is lifted. Now, we have to specify two coupling constants λ2

iL and λ2
iR for each molecule in Eq. (S4) based on

its state [sign(qi) = ±1]. Furthermore, the average coupling on different states may differ, that is
〈
λ2
L

〉
̸=
〈
λ2
R

〉
. For

simplicity, we assume here a symmetric potential with ωL = ωR and σ = 0.
Physically, breaking the (anti)symmetry of the dipole moment leads to a preference or a lower energy on the state

that is coupled more strongly to light. This is relevant for engineering state or reaction selectivity by vacuum fields.
The bifurcation behavior presented in the main text also changes. Here, we investigate this numerically with the help
of the Monte Carlo algorithm presented in the previous section.

The main mathematical difficulty in the case of a state-dependent light-matter coupling is that the quantity P is
no longer a constant. For a linear dipole moment, this dimensionless parameter effectively describes the strength of
the Rabi splitting. Now, assuming relatively small couplings and thus taking only the lowest order in

√
⟨λ4⟩/(ωcωm),

it is useful to write P in terms of an auxiliary constant λ̃4

P =
N
〈
λ4
〉

ω2
cω

2
m −

∑
i
ω2

m

ω2
i
λ4
i

≈
N
〈
λ4
〉

ω2
cω

2
m

=

〈
λ4
〉

λ̃4

Nλ̃4

ω2
cω

2
m

≡
〈
λ4
〉

λ̃4
P̃ . (S28)
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FIG. S3. Monte Carlo simulation of a polaritonic system with nonlinear dipole moments, schematized on the right side of
the figure. The transition dipole moment vanishes on the right state in the blue line and on the left state in the brown line.
The orange line from Fig. 3 is the dashed line here for reference. The simulation uses N = 1000 molecules averaged over 100
realizations, and Γ0

LR = Γ0
RL = Γ0.

Recall that
〈
λ4
〉
depends on the state of the molecules as well. Now, P̃ can characterize the total coupling strength

if we choose, for instance, λ̃4 = (
〈
λ4
R

〉
+
〈
λ4
L

〉
)/2 or simply λ̃4 =

〈
λ4
L/R

〉
.

The calculation of the energy difference between left and right states δVtot follows as in Sec. II. In the lowest order
of 1/N , we find

Γj
LR

Γj
RL

= eβδVtot = exp

[
2α̃

〈
λ4
〉

λ̃4

λ2
jL + λ2

jR

2
√
⟨λ4⟩

(
∆−

λ2
jL − λ2

jR

2
√

⟨λ4⟩
∆2

)]
, (S29)

where α̃ = 2P̃ βEb now functions as a control parameter. It is noteworthy that the nonlinearity of the dipole moment is
connected with a ∆2-term in the energy difference. This term shows that the different light-matter coupling constants
generate an effective energy gradient to the molecular states. Furthermore, the collective coupling always vanishes if
the dipole moment is fully symmetric so that λ2

jR = −λ2
jL.

Here, we concentrate on a numerical example, even though one could proceed with a similar kind of argumentation
as in Sec. II. Let us choose a light-matter coupling that vanishes on one state and is finite on the other. How does
the polaritonic system relax, if all the molecules are initially in the left state, and what is the stationary state? To

further connect this setup to Fig. 3 in the main text, we choose λ̃4 so that it is the larger one of
〈
λ4
R

〉
and

〈
λ4
L

〉
,

choose the couplings from a normal distribution with Var(g) = 0.25 ⟨g⟩2 (in the description λ2
i =

√
ωmωcgi), and set

α̃ = 1.3. That is, in the case in which only the molecules on the left state couple to light, the situation is initially the
same as in Fig. 3 (orange line).

The result of the numerical simulation is plotted in Fig. S3. As expected, the initial evolution of the macroscopic
state is very similar in the case where the left state couples to light as to when both states are coupled to light. The
stationary state changes only in a minor way.

Much more interesting is the case where the coupling to light is on the right state only. Initially, there is no light-
matter coupling and the polaritonic system starts to thermalize towards an even split between the states. This initial
rate is similar to that without any coupling. The stationary state however changes notably as more of the molecules
prefer the right state. This again shows the effective attractive interaction mediated by the cavity. Finally, because
of symmetry in the potential and the mirror symmetry of the nonlinear dipole moment, the stationary states of these
two plotted scenarios are related. One gets from one to the other by simply interchanging the labels for left and right.

Finally, we note that Eq. (S29) allows solving the stationary states analytically. This is the most straightforward
in the case in which there is no variation in the left and right coupling constants, that is, λ2

iL = λ2
L and λ2

iR = λ2
R.

Focusing still on the symmetric potential, the relevant parameter is the ratio λ2
R/λ

2
L = gR/gL. The effect on the

bifurcation diagram, comparing to Fig. 2(a) in the main text, is similar to having a bias in the potential as shown in
Fig. S4. That is, the critical value of α̃ at which the bifurcation happens increases as the ratio gR/gL deviates from
unity. Similar to the effect of bias, there is a measurable effect before the critical value as more molecules are found
in the state with the larger coupling.
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FIG. S4. Bifurcation diagram for a symmetric potential without any variation in the left and right light-matter couplings.
Here, we fix λ̃4 = λ4

L within α̃ and the different curves represent different values of λ2
R.

VII. REALIZATIONS OF CAVITY-INDUCED BIFURCATION

A. Polaritonic chemistry

Let us discuss the validity range of the approach in the main text in the context of polaritonic chemistry. As
we derive the rate constant modification from detailed balance, our results disregard quantum effects. That is, the
temperature must be above a certain threshold frequency that is related to ωc, ωL, ωR [2]. This limits the systems
mostly to vibrational strong coupling where these frequencies are typically of the order of 100meV and not in the
range of several eV as in electronic strong coupling (at room temperature kBT ∼ 25meV). More notably, we treat the
molecules as one-dimensional systems and assume a constant bilinear coupling to the (single mode) cavity. We believe
that even though this choice neglects many details of molecules used in recent experiments, it gives an important
analytical insight which can be improved upon with specific molecular models.

We note that the potential V (q) with σ = 0 and ωL = ωR is similar to the ground state potential of the Shin-
Metiu model describing proton-coupled electron transfer [3]. Recently, it has been used in other works in polaritonic
chemistry [4, 5]. In these works, the typical barrier energy is of the order of 1 eV; although it depends on the exact
choice of model parameters. Since the effective potential barrier Eb is typically larger than the barrier energy, our
order of magnitude estimate is that Eb/(kBT ) may range from tens to hundreds.

To identify the strong coupling, the Rabi splitting Ω must be large enough to be observed. This means that
Ω ≳ (κ + γ)/2 where κ and γ refer to the dissipation rates of the cavity and the molecular mode, respectively. We
have assumed the collective strong coupling regime where Ω/ωm ∼ 0.1 leading to P ∼ 0.01. Thus, all the results are
given in the first order of P and higher order corrections are yet to be found. Experimentally, it has been shown that
it is possible to reach the so-called ultrastrong coupling regime in vibrational strong coupling; Ω/ωm ≈ 0.24 in Ref. 6.

Therefore, the control parameter α = 2PβEb can be of the order of unity in experiments of polaritonic chemistry.
For example, if P = 0.01 and βEb = 100, we have α = 2. In the main text, we find that cavity induced bifurcation is
possible only if α > 1.

We emphasize the fact that the coupling constants can differ from molecule to molecule which, somewhat surpris-
ingly, is often neglected in the seminal theoretical works [7]. To further complicate the picture, the couplings may
truly be time dependent if the molecules can diffuse within the cavity. However, such time dependent variation is
much faster than the typical reaction rates, and thus, we can deal with only the averages of coupling constants. There
are at least two types of randomness in the couplings: 1) ”orientation disorder” due to the varying directions of tran-
sition dipole moments with respect to the cavity polarization vector(s), and 2) ”position disorder” due to the varying
positions of the molecules within the cavity. These disorders have been shown and studied in several experiments,
for instance, in plasmonic picocavities [8] and in optical cavities [9]. In the main text, we find that the average of
the coupling constants determines the macroscopic properties of the N molecule polaritonic system, for instance the
stationary state and the rate modification. The detailed understanding of these disorders is thus important.

It is speculated in Ref. 10 that the orientation disorder must be negligible in order to see polaritonic chemistry. This
indeed corresponds to the rate modification analysis in the main text, as assuming that the transition dipole moments
are distributed isotropically would lead to the average of the coupling constants being zero and leaving the rate
unchanged. However, it is not clear to us what processes would cause the alignment of molecules in the experiments.
There are fabrication techniques to construct such aligned molecular assemblies [11, 12] but they represent a departure
from the microfluidistic cavity approach detailed in Ref. 10. We hope that our work could motivate theoretical and
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FIG. S5. Electronic circuit model of an LC oscillator coupled to a set of flux qubits, where the Josephson junctions are marked
with the triangle. There is a flux Φ = h/(2e) + δΦ applied across each loop.

experimental inquiries into this kind of disorder.
The effect of the positions of the molecules within the cavity has been investigated experimentally [9]. The experi-

mental findings agree well with the current theoretical understanding presented here and in the main text. That is,
local variations in the cavity field strength affect the couplings. We also know from Maxwell’s equations that such
vacuum electromagnetic fields may change sign as a function of position within the cavity. This is often neglected
since observables such as the energy and the absorption/fluorescence spectrum are independent of the sign. Also, for
a single molecule, the sign is always an irrelevant phase factor of the cavity field. The phase difference between differ-
ent positions is important for the chemistry because one would expect that the molecules are distributed somewhat
uniformly within the cavity. The average of the coupling constants should be zero for antisymmetric cavity modes
and decreases as the order of the cavity mode is increased for symmetric modes. Thus, it would seem beneficial to
limit the variation in the molecule positions by cavity design and/or using the lowest order cavity mode. The reader
should be aware that this message is in contradiction with the published experiments in polaritonic chemistry (see
main text for references); for instance, the second-order cavity mode was put in resonance with a vibrational mode
in Ref. 13 and the tenth-order mode was used in Ref. 14. It is an intriguing possibility that some effects would be, in
fact, caused by coupling to the highly detuned first cavity mode and, consequently, the interpretation of polaritonic
chemistry as a resonant effect would be challenged.

In the presence of great position and orientation disorder, we expect no change in the rates. Nevertheless, if Rabi
splitting is large enough and α > 1, a phase separation based on the value of coupling constants is possible. If we
imagine a case where we have somehow aligned the transition dipole moments and the relevant cavity mode is the
second lowest order mode, the phase separation would manifest as a physical separation. The molecules on one side
of the cavity would then go to another state than those on the other side. This could be achieved, alternatively, with
two films of oriented dipole moments using the same measurement setup as in Ref. 9 so that the films are at the
opposite sides of the cavity (that is, mirror-film-spacer-film-mirror).

B. Coupled anharmonic LC oscillators

Although our work was initially motivated by polaritonic chemistry, our generic stochastic model is applicable to a
large variety of systems. Here we illustrate how similar physics could be studied in an ensemble of superconducting
flux qubits all coupled to the same cavity. We also show how in this setup one can in principle realize the alternating
sign of the couplings.

Consider the electronic circuit drawn in Fig. S5. It describes an LC circuit coupled via mutual inductance with
N (ideally identical) flux qubits [15]. The figure depicts a simplified version of the flux qubit, but the idea can be
generalized to the usually used configurations where the inductance Lq is replaced by several Josephson junctions. Such
systems have two macroscopic quantum states corresponding to clockwise and counterclockwise persistent currents,
used as the logical qubit states. When the flux Φ ≈ h/2e[1 + f/(2π)], the flux qubit Hamiltonian is

H =
Q̂2

q

2Cq
+ EJ

[
bϕ2 + cos(ϕ− f)

]︸ ︷︷ ︸
V (ϕ)

. (S30)

Here Q̂q is the displacement charge operator of the capacitor with capacitance Cq. Q̂q is canonically conjugate with
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the phase difference ϕ across the junction. They thus take the roles of canonical momentum and position in the
electronic circuit. EJ is the Josephson energy of the junction and b = 2π2h2/(2eLEJ) is a dimensionless parameter
characterizing the inductor with inductance L. For f ≪ π and b < 0.5, the effective potential V (ϕ) has two minima
corresponding to the two directions of the persistent current. The relative bias between the minima can be controlled
with f such that the two minima are degenerate for f = 0. For small b and f , the minima are around ϕ± ≡ ±π

1+2b + f ,

and both have eigenfrequencies ωL = ωR ≈ ωp

√
(1 + 2b), where ωp = 2e

√
EJ/Cq/ℏ is the Josephson plasma frequency.

Then, the effective barrier height is Eb =
1
2EJ(1 + 2b)[(ϕ+ − ϕ−)/2]

2 = π2

2
Ej

1+2b .
Flux qubits operate in the regime where the potential barrier between the states is low, Eb ∼ ℏωL/R, and thereby

the tunnel coupling is large, providing coherent oscillations of the quantum state between the two minima. This limit
is reached when the charging energy EC = e2/(2Cq) is not much smaller than the Josephson energy EJ . On the
contrary, we assume EJ ≫ EC and thereby a high barrier, such that the transitions between the minima are rare and
mostly driven by thermal noise in the environment of the system.

In such systems, the mutual inductance coupling of the individual qubits to a common LC circuit has been used as
a means to realize controllable coupling between the qubits, as they are tuned on and off resonance with each other
[15]. However, there the resonance condition derives from the resonance of the qubit energy splitting, whereas we
assume that the resonance is between the bistable energy minima. Let us then consider a mutual inductance coupling
of the flux qubits to a common LC circuit. We model this coupling in the limit where the qubits are in one of their
minima, in which case we describe them as LC oscillators. The Lagrangian of the system is thus

L =
1

2
LQ̇2

c +
1

2
Lp

N∑
j=1

Q̇2
j +

N∑
j=1

MjQ̇jQ̇c −
1

2C
Q2

c −
1

2Cp

N∑
j=1

Q2
j

≡ 1

2
˙⃗
QTL

˙⃗
Q− 1

2
Q⃗TC−1Q⃗,

(S31)

where we have introduced capacitance Cp and inductance Lp such that ωp = 1/
√

LpCp for the flux qubits. Note that
this form of expression is possible because ωL = ωR = ωp; otherwise the state of the flux qubits affects the capacitance
and inductance. The mutual inductance Mj can be characterized by a dimensionless parameter kj ∈ [−1, 1] so that

Mj = kj
√
LLp. Here, one can understand the possibility of a negative kj as a phase shift of the induced current; the

sign depends on the details of the inductive coupling.
We define the conjugate momentum using the notation of the flux quantum Φ0 = h/2e as

Φ0

2π
φi =

∂L
∂Q̇i

=

{
LQ̇c +

∑
j MjQ̇j ,

LpQ̇i +MiQ̇c,
(S32)

which can be also formally written as φ⃗ ∝ L
˙⃗
Q. With this definition, the left hand side represents magnetic flux. The

Hamiltonian of the full systems is obtained by the Legendre transform. We find

Htot =
1

2

(
Φ0

2π

)2

φ⃗TL−1φ⃗+
1

2
Q⃗TC−1Q⃗. (S33)

The inversion of the inductance matrix L presents a difficult analytical problem. If the mutual inductances Mj are
large, that is |kj | ≈ 1, every element of the matrix L−1 is generally non-zero. However, we assume that they are
small. To first order, the solution is obtained by noting that we can obtain the conjugate relation for φ only in the
zeroth order of M ’s and substitute the result in the original Lagrangian L in Eq. (S31) as it is first order in M ’s. We

find for an LC circuit of resonant frequency ωc = 1/
√
LC

Htot ≈
Q2

c

2C
+
∑
j

Q2
j

2Cp
+

(
Φ0

2π

)2
1
2

φ2
c

L
+

1

2

∑
j

φ2
j

Lp
+
∑
j

kj√
LLp

φcφj


≡ P 2

c

2
+
∑
j

P 2
j

2
+

1

2
ω2
cX

2
c +

1

2

∑
j

ω2
pXj + ωcωp

∑
j

kjXcXj ,

(S34)

where, in the last step, we denoted Pj = Qj/
√
Cp and Pc = Qc/

√
C and correspondingly Xc = Φ0

2π

√
Cφc and

Xj =
Φ0

2π

√
Cpφj . Thus, in the lowest order approximation, the Hamiltonian corresponds to the potential we chose to

describe in Eq. (S1) with λ2
j = kjωcωp. Note that both of these models are within the harmonic approximation, as

we expanded the flux qubit Hamiltonian around a minimum point.
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In other words, the cavity induced bifurcation could be observed in flux qubits by studying their collective evolution
towards a state where even in the absence of a bias f , a majority of the qubits would be in the state with, say, clockwise
circulating persistent current.

C. Cold atoms

Recently, there has notable progress in the field of cold polar molecules [16]. Following the long tradition of optical
trapping of cold molecules, this field provides an interesting opportunity to realize a controllable polaritonic system.
This is because the many internal degrees of freedom in molecules allow for metastability in the energy, as described
in this supplement and in the main text. Thus, in the future, it would seem possible to manufacture a system that
is topologically the same as in polaritonics but with controllable coupling constants, and then investigate the noise
activated processes or even quantum tunneling between the possible molecular states.
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(Dated: April 28, 2022)

I investigate the tunneling decay rate of a polaritonic system formed by a strong coupling between a
vacuum cavity mode and N metastable systems. Using a simple model potential, I find the instanton
solutions controlling the low-temperature tunneling rate. The resulting rate modification due to the
cavity is proportional to the mean of the second power of the light-matter coupling. No collective
effect that would enhance the rates by a factor of

√
N is present, which is in line with the results in

the thermal activation regime.

I. INTRODUCTION

Tunneling is a manifestation of quantum coherence:
quantum systems are able to surmount barriers they
energetically should not due to their wave-like proper-
ties [1]. The range of tunneling systems is broad: ele-
mentary particles in nuclear matter [2], electrons in con-
ductors [3, 4], magnetization in nanomagnets [5], and
superconducting phase in superconducting circuits [6].
Theoretically, tunneling can be understood as the quan-
tum mechanical counterpart to classical thermal activa-
tion describing, for instance, chemical reactions [7–9].

Another type of quantum coherence can be seen when
a coherent exchange of energy between two quantum me-
chanical systems happens. A prime example of such co-
herent systems is polaritons which are the hybrid excita-
tions of the vacuum electromagnetic field and molecular
degrees of freedom. Recently, it has been suggested that
the formation of such coherent systems could affect chem-
istry which is still poorly understood [10–13]. In fact, a
transition state theory calculation shows that all the po-
laritonic enhancements to the reaction rate scale as 1/N
where N is the number of molecules participating in the
polariton [14–16]. This is often attributed to the fact
that the coupling to light induces only two energetically
different polaritonic states, separated in energy by the
Rabi splitting proportional to

√
N , while N − 1 molecu-

lar states, the so-called dark states, remain energetically
the same.

Motivated by the idea of polaritonic chemistry, I focus
on a related question whether there can be a genuine po-
laritonic quantum tunneling effect. This question arises
naturally as the light-matter coupling changes the coher-
ence properties of the system at hand. It also induces
collective behavior through the formation of polaritons.
In fact, the N − 1 dark states are superpositions over
the molecular states even though their energy does not
change.

In this article, I present a model of N metastable sys-
tems coupled to a cavity mode and investigate the ef-
fect of the common cavity mode on the low-temperature

∗ kalle.kansanen@gmail.com

tunneling decay rate. For a simple model potential, I
analytically solve the polaritonic rate modification using
path integral techniques in the semiclassical approxima-
tion. Such solvable models are rare; there are only a few
truly multidimensional problems in quantum tunneling
that have been solved analytically [1, 17].

In the low-temperature regime, the tunneling decay
rate is dominated by instantons. I find the instanton so-
lutions for the polaritonic system without friction. As the
main result, I find the polaritonic rate modification as a
function of the number N of metastable systems. The
tunneling decay rate is modified by a factor proportional
to the single-molecule coupling constant and not by the
Rabi splitting. This shows that the cavity indeed induces
a coherence effect but it is not a collective effect. Similar
to the transition state theory calculation [14, 15], the po-
laritonic enhancements scale as 1/N if the Rabi splitting
is fixed. Therefore, the practical route to realizing the
cavity-induced coherence is not in the collective strong
coupling regime with large number of systems but rather
in single systems with large couplings to the cavity.

II. SEMICLASSICAL APPROXIMATION TO
TUNNELING

Consider a metastable system described by a potential

V (q) =

{
1
2ω

2
0q

2, q ≤ a,

−∞, q > a,
(1)

where a determines the energy of the potential barrier
Eb =

1
2ω

2
0a

2 as in Fig. 1(a). The quadrature q is defined
here so that the conjugate momentum quadrature p is
given simply by p = q̇. Although this potential has been
used before [18, 19], it lacks a name and, so, I call it the
ski-jumping potential. I set h̄ = 1 everywhere.

Next, consider N identical metastable systems coupled
to a single harmonic cavity mode whose position quadra-
ture is x, normalized similarly to q. I assume that this
coupling is directly between the quadratures x and q.
The total Hamiltonian of this polaritonic system is given
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by

H =
1

2
ẋ2 +

N∑
i=1

1

2
q̇2i + Vtot, (2)

where

Vtot =

N∑
i=1

V (qi) +
1

2
ω2
cx

2 +

N∑
i=1

λ2
ixqi. (3)

Here, the apparent eigenfrequency of the cavity mode
is ωc while the light-matter coupling is encoded within
λ2
i . It can be related to the coupling constant gi obtained

from a quantum electrodynamics calculation [20] by λ2
i =√

ωcω0gi. If one considers the ski-jumping potential to
be a simplistic model of a potential energy surface of
a molecule, the exact value of each coupling constant
depends on the orientation and position of the molecule
within the cavity [20].

There are several methods to calculate the tunneling
decay rate of a metastable system. Here, I use the so-
called ImF method [21] as it can straightforwardly be
used for multidimensional systems and provides the pos-
sibility to extend the theory to include dissipation [1, 19].
Physically, the idea is simple: the metastability of the
ski-jumping potential means that there are no stationary
states. This may be represented by the eigenenergies ob-
taining a finite imaginary part which is associated to a
tunneling decay rate. Likewise, the partition function Z
defined in terms of the states within the ski-jumping po-
tential obtains an imaginary part. Then, the tunneling
decay rate k at low temperature may be expressed as

k =
2

β
Im lnZ, (4)

where β = 1/kBT is the inverse temperature [1, 22]. The
partition function Z can be represented by an Euclidean
path integral

Z =

∫
D(ϕ) exp{−SE [ϕ(τ)]} (5)

over β-periodic paths in imaginary time τ = it. Here,
ϕ = (x, q1, . . . , qN )T represents a column vector of all the
dynamical degrees of freedom and the Euclidean action
is given by

SE =

∫ β/2

−β/2

dτ

[
1

2
ϕ̇T ϕ̇+ Vtot(ϕ)

]
. (6)

One can associate this Euclidean action to the classical
action of systems moving in the inverted potential −Vtot.

For independent systems, the total potential energy
can be written as a sum of system’s potential energies.
Thus, the partition function factorizes as Z = ZN

1 for
identical systems. Whatever the single-system tunneling
decay rate k1 is, the total rate is then k = Nk1.

In general, solving the path integral exactly to obtain
the partition function is difficult. Thus, I resort to the

(a) (b)

FIG. 1. (a) Ski-jumping potential of Eq. (1). It is obtained by
a limiting process from a potential Eb

[
(q/a)2 − θ(q)(q/a)n

]
with θ being the Heaviside step function and n → ∞. The
dotted line represents n = 4. (b) Inverted potential −V (q).
The arrow indicates the instanton solution in which the sys-
tem moves from q = 0 to q = a and back.

semiclassical approximation which is valid when the bar-
rier energy Eb is large compared to the real part of the
ground state energy (which is of the order of ω0) [22]. I
expand the path integral around the classical solutions
and take into account only the quadratic fluctuations

Z ≈
∑
µ

Iµe
−SE(ϕµ), (7a)

Iµ =

∫
D(rµ) exp

{
−1

2
rTµ
[
∂2
τ + V(ϕµ)

]
rµ

}
. (7b)

Here, ϕµ represents one possible classical β-periodic path
and Iµ the contribution of quadratic fluctuations which
may be expressed using a second derivative matrix Vij =
∂2Vtot/∂ϕi∂ϕj evaluated at the corresponding classical
solution ϕµ. The integration variable rµ is the deviation
from ϕµ with the boundary conditions rµ(±β/2) = 0. As
the action SE is a real variable, the imaginary part of the
partition function must be in fluctuations Iµ.
The ski-jumping potential allows for the solution of

classical paths in a general case but it complicates the
evaluation of the fluctuations as the potential is discon-
tinuous at qi = a. These problems can mostly be avoided
since the quadratic fluctuations can be expressed in terms
of the classical solutions exactly in the case of a closed
system [23, 24].

A. Solution of the Euclidean action

First, I solve the classical periodic paths in imaginary
time. The problem is the same as solving classical mo-
tion in real time but in the inverted potential. Note that
qi = a represents a wall in the inverted potential as in
Fig. 1(b). Thus, at this point, the velocity q̇i is discon-
tinuous. Rather than trying to piece together solutions
before and after hitting the wall, I expand the mathe-
matical trick presented in Ref. 18 for a polaritonic sys-
tem and take this discontinuity into account at the level
of the equations of motion. If a single quadrature q1 hits
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the wall at time τ1, that is, q1(τ = τ1) = a, the dynamics
in the inverted potential is determined by

−ẍ+ ω2
cx+

N∑
i=1

λ2
i qi = 0, (8a)

−q̈1 + ω2
0q1 + λ2

1x = Aδ(τ − τ1), (8b)

−q̈i + ω2
0qi + λ2

ix = 0, i = 2, 3, . . . N . (8c)

The unknown constant A is determined from the condi-
tion q1(τ = τ1) = a.

Since I am searching for periodic solutions, the way to
proceed is to write all dynamical quantities as Fourier se-
ries. Here, I choose the convention f(τ) =

∑
m fmeiωmτ

with ωm = 2πm/β being the bosonic Matsubara fre-
quency. The inverse transformation is then fm =
1
β

∫
dτ f(τ)e−iωmτ . By applying the latter definition to

Eqs. (8), I find

(ω2
c + ω2

m)xm +
N∑
i=1

λ2
i qi,m = 0, (9a)

(ω2
0 + ω2

m)q1,m + λ2
1xm =

A

β
e−iωmτ1 , (9b)

(ω2
0 + ω2

m)qi,m + λ2
ixm = 0. (9c)

This set of linear equations can be solved. The idea is
first to find the dynamics of the cavity mode x which
then gives the solutions of the individual quadratures qi.
This is achieved by defining a collective variable Qm =∑N

i=1
λ2
i

⟨λ2⟩qi,m with
〈
λ2
〉
=
∑

i λ
2
i /N representing the av-

erage over the couplings. The dynamics of Q can be de-
termined from Eqs. (9b)–(9c), which allows for solving
the dynamics of x. After a short calculation I find the
solutions in Fourier space to be

xm = −A

β
λ2
1χP (ωm)e−iωmτ1 , (10a)

qi,m =
A

β

λ2
1λ

2
i

ω2
m + ω2

0

χP (ωm)e−iωmτ1 , (10b)

q1,m =
A

β

1

ω2
m + ω2

0

[
1 + λ4

1χP (ωm)
]
e−iωmτ1 , (10c)

where I defined a short-hand notation describing the po-
laritonic response

χP (ωm) =
[
(ω2

m + ω2
0)(ω

2
m + ω2

c )−N
〈
λ4
〉]−1

. (11)

The cavity-mediated interaction can be seen in the fact
that the dynamics of all the quadratures qi depend on
the coupling λ2

1 of the first quadrature.

The abstract Fourier space solutions become clearer in
the zero-temperature limit β → ∞. Then, the Fourier
series can be transformed to an integral which I evaluate
using the residue theorem. Setting τ1 = 0 for brevity,

this results in the imaginary-time paths

x(τ) = A
λ2
1√
⟨λ4⟩

√
1− δ2

4N

(
e−ω+|τ |

ω+
− e−ω−|τ |

ω−

)
, (12a)

qi(τ) = A
λ2
1λ

2
i

⟨λ4⟩
f(τ)

N
, (12b)

q1(τ) = A
e−ω0|τ |

2ω0
+A

λ4
1

⟨λ4⟩
f(τ)

N
, (12c)

f(τ) =
1 + δ

2

e−ω+|τ |

2ω+
+

1− δ

2

e−ω−|τ |

2ω−
− e−ω0|τ |

2ω0
(12d)

with further definitions of the polariton eigenfrequen-
cies ω± without the rotating wave approximation and
a detuning parameter δ ∈ [−1, 1] given by

ω± =

√
ω2
0 + ω2

c

2
± 1

2

√
4N ⟨λ4⟩+ (ω2

0 − ω2
c )

2, (13a)

δ =
ω2
0 − ω2

c

ω2
+ − ω2

−
. (13b)

The Rabi splitting is typically defined as ω+ − ω− when
the cavity is on resonance ωc = ω0. Finally, A resolves
by demanding that q1(τ = τ1 = 0) = a. It gives rise to a
weighted harmonic average

A = 2a
N
〈
λ4
〉

N⟨λ4⟩−λ4
1

ω0
+ λ4

1

(
1+δ
2

1
ω+

+ 1−δ
2

1
ω−

) ≡ 2aωH,1.

(14)

Here, the weights are the second-order coupling constants
λ4
i and detuning factors (1 ± δ)/2. This expression al-

ready shows that, similarly to the discussion about dark
states, the bare frequencies ω0 are weighted with a fac-
tor proportional to N − 1 whereas the polariton frequen-
cies ω± have a weight close to unity, independently of N .
Thus, in general, ωH,1 ≈ ω0 for N ≫ 1. If λ2

1 = 0, then
ωH,1 = ω0.
An example of the polaritonic instanton solution is

shown in Fig. 2. Initially, τ → −∞, all the quadratures
are at zero. Very slowly, the first quadrature starts to
evolve, pulling all the other systems with it. The exact
direction the other systems are pulled towards depends
on the relative signs of the coupling constants λ2

i . At time
τ = 0, the first quadrature is at the wall and bounces
back. From this hitting time to τ → ∞, the inverse hap-
pens. The first quadrature starts to slow down and all
the quadratures creep towards their initial position.
The Euclidean action follows directly from the instan-

ton solutions at any temperature. I obtain

SE,1 =
1

2
a2

[
1

β

∑
m

1 + λ4
1χP (ωm)

ω2
0 + ω2

m

]−1

(15a)

→ 2
Eb

ω0

ωH,1

ω0
≡ S0

ωH,1

ω0
, when β → ∞. (15b)

In the low-temperature limit, the action is determined
by two ratios: First, the barrier energy Eb is compared
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FIG. 2. Polaritonic instanton solution for N = 6 on resonance
ωc = ω0. The coupling constants are chosen so that λ2

1/ω
2
0 =

0.1 and λ2
i̸=1/ω

2
0 ∈ {0,±0.1,±0.2}. The dashed orange line in

the middle graph also represents the second term in Eq. (12c)
that describes the modification to the bounce due to the light-
matter coupling.

to the pseudo-eigenenergy ω0. This is in contrast to the
high-temperature result with SE = βEb. Second, the
polaritonic effect is contained within the ratio of the har-
monic mean frequency ωH,1 and the bare frequency ω0.
This ratio is unity when there is no coupling, λ2

1 = 0,
and the action is just the bare action, SE,1 = S0. A fully
uncoupled system does not know about the polaritons,
as expected.

There are also configurations in which multiple quadra-
tures hit the wall. Finding such solutions is a well-defined
classical problem which can be tackled similarly to the
case of one-bounce instanton and is shortly discussed in
Appendix A. However, these multi-bounce paths do not
contribute to the tunneling rate. I argue this in sim-
ple terms: Consider only two systems coupled to a cav-
ity with equal coupling strengths λ2

i = λ2. Then, it is
clear that the two systems obey the same imaginary-time
equations of motion, except when they bounce off the
wall. Consequently, one of the possible multi-bounce so-
lutions is that the two quadratures are exactly the same,
q1(τ) = q2(τ) for all τ ’s. However, this solution is not a
saddle point of the Euclidean action. If you increase the
temperature, the instanton path shrinks to a point that
is near the maximum of the total potential Vtot, around
q1 = q2 ≈ a. This point is not a saddle point of the po-
tential Vtot but the maximum — the Hessian matrix of
the potential has two negative eigenvalues. In the limit
of no coupling, λ2 → 0, we arrive at a contradiction with
the case of independent systems; only the saddle points
contribute to the imaginary part of Z in the semiclassical
approximation. It is thus hard to see how the “coherent
transition state theory picture” of Ref. 25 can be mapped

to this low-temperature calculation.

B. Polaritonic tunneling rate modification

To get from the instanton solution (12) to the polari-
tonic tunneling decay rate, one needs to calculate the
fluctuation factor Iµ. The program is somewhat cum-
bersome even in the one-dimensional case [22]. The first
derivative of the instanton solution happens to be a zero
eigenvalue mode for the fluctations and Iµ formally di-
verges. The existence of the zero mode also implies that
there exists a negative eigenvalue mode which makes Iµ
imaginary. A further complication is that one should
include multiple sequential bounces. Such paths are ob-
tained by essentially glueing instanton solutions together:
The imaginary-time axis can be separated into n parti-
tions of length β/n. Since the instanton paths change
appreciably only for the imaginary time 2/ω0, using the
instanton solution (12) for each partition of length β/n
gives a path with n bounces. The error of this process is
exponentially small in β when 2/ω0 ≪ β. In these steps,
I follow closely the one-dimensional treatment of Ref. 24.
I do this as the relatively recent literature [26, 27] can-
not be applied since the instanton solution (12) is not
differentiable at the hitting time.
The fluctuation factor of a single bounce can be ob-

tained from a version of the Gelfand–Yaglom formula [22]

In=1
1 ∝ −iβ

√
SE,1

√
ϵ1(β)

D1
, (16)

where D1 =
∣∣∣det( ∂ϕj(β/2)

∂ϕ̇i(−β/2)

)∣∣∣ is the fluctuation determi-

nant evaluated in the β → ∞ limit and ϵ1(β) provides
a finite temperature correction to it. In these and the
following expressions, I denote the number of bounces as
a superscript whereas the subscript refers to the quadra-
ture that hits the wall. I also choose not to keep track of
the powers of 2π; in the end, they are fixed by comparing
to the non-interacting result. By expanding the method
in Ref. 28 to the multidimensional system at hand, I find

ϵ1(β) ≈ 2
ϕ̇T (−β/2)ϕ̈(−β/2)− ϕ̇T (β/2)ϕ̈(β/2)∫∞

−∞ ϕ̇T (τ)ϕ̇(τ) dτ
, (17)

where ϕ refers to the vectorized form of the instanton
solution (12). The derivation of this result can be found
in Appendix B. The factor −i is the Maslov–Morse in-
dex, which takes into account the one negative eigenvalue
mode. Mathematically, it follows from the singularity
of the fluctuation determinant at the turning point of
the classical solution (see e.g. Ref. 22). Lastly, β

√
SE,1

follows from the Faddeev–Popov method as the hitting
time τ1 is in fact a free parameter. By a change of inte-
gration variables from the zero mode proportional to the
first derivative of the instanton solution to τ1 in Iµ, one
integrates τ1 over the whole range [−β/2, β/2] while the
Jacobian of the transformation is

√
SE,1 [19, 22, 29].
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To connect two bounces, in principle, one needs to cal-
culate the action with variable ending points. This is not
feasible in practice. However, since the instanton paths
reside mostly near ϕ = 0, it is justified to expand the
action. Thus, from the initial ϕ(−β/2) = ϕ− = 0 to an

arbitrary point ϕ̃, the action can be expressed in terms
of the final point ϕ(β/2) = ϕ+ = 0 as

SE [ϕ−, ϕ̃] ≈ SE,1[ϕ−, ϕ+] (18)

+
1

2

(
ϕ+ − ϕ̃

)T[ ∂2SE

∂ϕi∂ϕj

](
ϕ+ − ϕ̃

)
.

The Hessian matrix on the second row is calculated along
the classical instanton path. The same structure is also
obtained from a variable initial point and a fixed final
point. Thus, the paths are connected by first dividing
the path integral into two parts with a variable mid-
point ϕ̃ and then integrating over it. These two parts
are assumed to obey the instanton solutions individually.

At this point, the multidimensional nature of the prob-
lem becomes relevant. To connect two bounces, I should
take into account that the two bounces correspond to dif-
ferent quadratures. In the case of equal couplings, they
are exactly the same. Thus, the integration over the mid-
point ϕ̃ is a Gaussian integral and the Hessian matrices
in Eq. (18) are the same. In this case, the determinant
rising from integration is equal to the inverse of the fluc-
tuation determinant D1 [23]. I assume here that this
relation holds, at least to an approximation, also in the
case of variable coupling constants.

The extension from two to n bounces does not require
considerably more effort. One should note that there are
now n hitting times, which are all free parameters and
for which the Faddeev-Popov method gives an extraneous
factor of 1/n!. Otherwise, the fluctuation factor is similar
to Eq. (16) for each bounce. Thus, the general n bounce
contribution to the partition function is

IneS
n
E ∝

√
1

D

∑
{k}

(−iβ)n

n!

n∏
i=1

√
SE,ki

ϵki
(β/n)e−SE,ki .

(19)

The vector k enumerates which quadrature hits the wall
in each bounce and the sum is taken over all the possible
n-bounce configurations (ki ∈ {1, . . . N}). There are n
independent sums and, thus, in total Nn configurations.
These sums can be alternatively written as

IneS
n
E ∝ (−iβ)n

n!
Nn

〈√
SEϵ(β/n)e

−SE

〉n
. (20)

Here, ⟨·⟩ denotes the ensemble average over the coupling
constants λ2

i .
The remaining problem is to calculate the finite tem-

perature correction ϵ(β) and evaluate the sum over all
bounces to arrive at the partition function Z. The strat-
egy I use is to approximate ϵ(β/n)n ≈ C(β)ϵ(0)n with
a prefactor C(β). This approximation renders the parti-
tion function Z to an exponential form which gives the

leading order contribution in temperature to the tunnel-
ing rate. The function C(β) plays no role in the rate
as it becomes a real prefactor of the imaginary part in
the partition function Z. This approximation is further
discussed in Appendix B. Effectively, it leads in Eq. (20)
to

ϵ1(β/n) → ϵ1(0) = 4ωA,1ωH,1. (21)

where I need to define the weighted arithmetic average

ωA,1 =
(N
〈
λ4
〉
− λ4

1)ω0 + λ4
1

(
1+δ
2 ω+ + 1−δ

2 ω−
)

N ⟨λ4⟩
(22)

with the same weights as in the harmonic average ωH,1.
Whenever the total coupling N

〈
λ4
〉
is small compared

to ω2
cω

2
0 (i.e., the rotating wave approximation is appli-

cable), always ωA,1 ≈ ω0. In the limit λ2
1 → 0, one finds

ϵ1(β/n)
n = (2ω0)

2n without any approximations.
Finally, the sum over all classical solutions and their

quadratic fluctuations can be evaluated to arrive at the
partition function Z. The important quantity here is the
average modification r of the tunneling rate, defined as
the ratio of the total tunneling rates with and without
the coupling to the cavity, r = k/k(λ = 0). I find

r =

〈
ωH

ω0

√
ωA

ω0
exp

[
−S0

(
ωH

ω0
− 1

)]〉
. (23)

This analytical result is for an arbitrary distribution of
couplings. It directly shows that the most important
polaritonic effects are contained in the harmonic fre-
quency ωH defined in Eq. (14) while the arithmetic mean
frequency ωA of Eq. (22) provides a small correction rel-
evant only in the ultra-strong coupling regime.
The rate modification r describes the total tunneling

rate modification of an N -body polaritonic system. The
light-matter coupling modifies the tunneling for each sys-
tem and, thus, there must be an ensemble average over
the coupling constants. To be more precise, the aver-
age is over the second-order couplings λ4

i which are the
weighing factors in the harmonic average ωH . Using the
expression λ2

i =
√
ωcω0gi it is instructive to write

ωH

ω0
=

1

1 + g2

N⟨g2⟩

(
1+δ
2

ω0

ω+
+ 1−δ

2
ω0

ω−
− 1
) (24)

in terms of the true coupling constants g. Thus, the rele-
vant distribution is that of g2. This is in contrast to our
recent work focusing on bistable potentials in the thermal
activation regime where we found that the distribution
of g plays an important role [30].

III. ANALYSIS OF THE POLARITONIC RATE
MODIFICATION

Let us consider the consequences of the rate modifica-
tion (23). In the following, I assume that the rotating
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FIG. 3. Polaritonic tunneling rate modifications of a single
system with different tunneling barriers Eb/ω0 = S0/2.

wave approximation holds and that ωc ≈ ω0. The polari-
ton frequencies are effectively redefined as

ω± =
ωc + ω0

2
±
√

N ⟨g2⟩+ (ωc − ω0)2/4 (25)

and ωA/ω0 = 1. The harmonic average simplifies as the
relation

1 + δ

2

1

ω+
+

1− δ

2

1

ω−
=

ωc

ω0ωc −N ⟨g2⟩
(26)

removes the need for the detuning parameter δ.
N = 1: For a single metastable system, the analysis is

straightforward. The harmonic average is then over the
polariton states which favors the lower polariton state.
By employing the rotating wave approximation, I have
ωH/ω0 = 1− g2/ω0ωc. Inserting this relation to Eq. (23)
gives

r =

(
1− g2

ωcω0

)
exp

(
S0

g2

ωcω0

)
. (27)

Whether the tunneling rate is increased or decreased de-
pends on the bare action S0 = 2Eb/ω0. Expanding to the

lowest order in the coupling gives r ≈ 1+(S0−1) g2

ωcω0
. A

high tunneling barrier is represented by S0 > 1 in which
case the rate always increases due to the presence of the
cavity. Higher the barrier, stronger the effect for a fixed
coupling g. This is visualized in Fig. 3. It should be
noted that S0 < 1 is at odds with the semiclassical ap-
proximation and, thus, the result might not be accurate
in such case.

The case of a single tunneling system coupled to a har-
monic oscillator is relevant for experiments conducted in
superconducting circuits [1]. The metastable quadrature
could be, for instance, the superconducting phase dif-
ference of a Josephson junction in an electrical circuit.
Then, Eq. (27) predicts the tunneling rate change if this
circuit is connected to an external resonator.

N ≫ 1 but N
〈
g2
〉
< ω0ωc: The case of macroscopi-

cally large N is the typical regime of polaritonic chem-
istry. The ensemble average in Eq. (23) could be cal-
culated numerically for some model distribution of cou-
plings but, rather, I calculate it with the cumulant ex-

pansion to the second order. This gives

r ≈
[〈

ωH

ω0

〉
− S0Var

(
ωH

ω0

)]
(28)

× exp

[
S0 − S0

〈
ωH

ω0

〉
+

1

2
S2
0Var

(
ωH

ω0

)]
,

where Var(·) refers to ensemble variance defined as

Var(x) =
〈
x2
〉
− ⟨x⟩2. Thus, in principle, the variance

of the coupling constants can modify the observed rate
modification. However, for N ≫ 1, the variance is well-
approximated by

Var

(
ωH

ω0

)
=

〈
ωH

ω0

〉4 Var
(
g2
)

(ω0ωc −N ⟨g2⟩)2
, (29)

because the fluctuation of couplings is also suppressed
by the factor 1/N in the harmonic mean. Now, if
g2i /ωcω0 ≪ 1 for all i, which is a typical assumption in the
collective coupling regime, the variance can be neglected
as Var

(
g2/ωcω0

)
≪ 1. Consequently, the expectation

value of ωH/ω0 is given by〈
ωH

ω0

〉
=

ω0ωc −N
〈
g2
〉

ω0ωc − (N − 1) ⟨g2⟩
≈ 1− 1

N

N
〈
g2
〉

ωcω0
. (30)

Here, it appears that ωH/ω0 is determined as a ratio of
polariton frequencies (ω+ω−)

2 so that the polaritons in
the denominator consist of N−1 systems and in the nom-
inator of N systems. The latter equation is an expansion
in the leading order of

〈
g2
〉
/ω0ωc. Using this expanded

form I find

r ≈

(
1−

〈
g2
〉

ωcω0

)
exp

(
S0

〈
g2
〉

ωcω0

)
, (31)

which generalizes the single-system polaritonic rate mod-
ification of Eq. (27). In conclusion, there is no consid-
erable collective tunneling effect, even if the collective
coupling

√
N ⟨g2⟩ is a considerable fraction of

√
ωcω0.

A. Comparison to high-temperature escape rate

Thermal activation is the main mechanism in the es-
cape from a metastable potential whenever the temper-
ature is above a threshold temperature proportional to
ω0 [8, 31]. The instanton path shrinks to a single point in
the limit of high temperature, β → 0. This follows from
Matsubara frequency ωm ̸=0 → ∞. Thus, only m = 0
contributes in the Fourier series expressions. The action
is in this case

SE,i = βEb

ω0ωc −N
〈
g2
〉

ω0ωc − (N ⟨g2⟩ − g2i )
. (32)

The similarity to the low-temperature action in Eq. (15)
is evident: the bare action has changed from S0 =
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2Eb/ω0 to βEb while the polaritonic modification is ex-
pressed in a form similar to Eq. (30) instead of ωH,i/ω0.
However, I have not used the rotating wave approxima-
tion here as in Eq. (30).

In the high-temperature regime, one can also calculate
the rate using the classical transition state theory. This
approach gives the same exponent but it allows for a
straightforward solution of the prefactor (also called the
attempt frequency). The prefactor is proportional to

ω0

√
ω0ωc −N ⟨g2⟩

ω0ωc − (N ⟨g2⟩ − g2i )
. (33)

The structure of the classical escape rate is therefore dif-
ferent from the low-temperature one. Besides the change
of the harmonic frequency ωH to the ratio of polariton
frequencies (which coincide in the rotating wave approxi-
mation), the modification of the action and prefactor are
in different powers.

With both the low- and high-temperature limits of the
rate modification at hand, one can imagine the follow-
ing set of experiments (see e.g. Ref. 6): One varies
the temperature of the polaritonic system and measures
the escape rate. Starting from a high temperature and
lowering it, the rate drops and eventually saturates to
the quantum tunneling rate. By repeating this measure-
ment without the cavity, the polaritonic coherence effect
should become visible. The results I obtained imply, how-
ever, that this is likely only in single systems with sizable
light–matter coupling because there is no collective en-
hancement of the rates.

IV. CONCLUSION

The work presented here is rather technical and, in
many ways, cumbersome. Next, I try to clarify what I
think are the main ideas and results of the work.

I show a simple, analytically solvable, toy model for po-
laritonic tunneling. In principle, there are numerous cal-
culation techniques in the literature but the multidimen-
sionality of the polaritonic system and the ski-jumping
potential require some adaptation. These techniques
might prove useful, for instance, in the investigations of
macroscopic tunneling in superconducting circuit arrays
or other interacting ensembles of metastable systems.

Even if the main result, the polaritonic tunneling rate
modification (23), is obtained in a ski-jumping potential
that does not directly correspond to any potential seen
in nature, it has value. As a first guess, the structure
of the solution is likely similar for a different potential:
the modification is determined by the bare action and
the harmonic frequency ωH . The formation of polaritons
affects the coherence properties in such a way that the
tunneling rate may be increased. At the same time, if
N ≫ 1, the dark states spoil the effect of the polaritons to
the tunneling decay rate out of any metastable potential.
Of course, I would prefer to be proven wrong.

My work in the low-temperature regime coupled with
the transition state results in Refs. 14 and 15 indicate
that there is no collective polaritonic effect in the escape
rate in the case of a large number N of molecules. Thus,
it seems that one should take into account the possibility
of systems returning back to the metastable state, or that
there is no effect to be found in the first place.
This article considers only a truly metastable poten-

tial. An alternative system would be a bistable potential
which we considered in the thermal activation limit [30].
For the low-temperature limit, the approach would have
to be different than what I present here because there are
no similar instantons. This is because these imaginary-
time paths are at zero energy while the cavity changes the
energies of the stationary states. Tunneling in bistable
systems therefore requires another approach.
I did not take into account the friction or dissipation

the systems realistically have. On the level of the action
this would be, in principle, a straightforward extension [1,
19, 32, 33]. I expect dissipation to modify the tunneling
rate modification: the modification should be larger for
a nearly dissipationless cavity than for a bad cavity with
a large dissipation rate. However, it cannot change, for
instance, the N -scaling of the action.
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Appendix A: An approach to classical multi-bounce
solutions

For completeness, I show how the method presented in
the main text can be expanded to instanton configura-
tions where multiple quadratures visit the point qi = a.
It requires modification.
One has to introduce a matrix-like structure to the

delta functions in the equations of motion. From the
viewpoint of Lagrangian mechanics, the delta function
can be seen as a constraint force following from the con-
dition q1(τ1) = a. If there is another constraint, say,
q2(τ2) = a, the constraint on quadrature 1 affects also
quadrature 2 due to the coupling via the cavity. The
equations of motion to be solved are in general

−q̈i + ω2
0qi + λ2

ix =
∑
j

Aijδ(τ − τj) (A1)

for all quadratures that hit the wall, qi(τi) = a.
If one assumes that all the off-diagonal elements of

Aij are zero, the delta functions do not conserve en-

ergy E(τ) = 1
2 ϕ̇

T ϕ̇ − Vtot(ϕ). (The energy is zero for
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instanton solutions in the limit β → ∞.) That is, the so-
lution is only correct in a piecewise manner with abrupt
changes in energy at hitting times τi. The energy is con-
served for a single bounce.

One can fix the unknown parameters Aij not only from
the conditions qi(τi) = a but also from the energy conser-
vation and symmetry considerations. This seems clear for
two bouncing quadratures, because the constraint forces
between the two systems should be similar and, conse-
quently, A12 = A21. Whether or not it works in the
solution of the general many-bounce dynamics, I do not
know.

If there is a solution of the action in terms of the many
hitting times, it is not evident what it means. Presum-
ably, in the spirit of the least action, the classical path
should be that of minimal action. I conjecture that this
path is always for a polaritonic system such that the dif-
ference between hitting times is zero.

Appendix B: Finite temperature correction

For large but finite β, an exponentially small correc-
tion to the zero eigenvalue mode should be included. This
section generalizes the discussion in Ref. 28 to multidi-
mensional systems. Since the eigenvalues of the fluctua-
tion determinant can be mapped to the eigenvalues in the
time-independent Schrödinger equation, the question is,
how do the energies change when a system is put into an
infinite potential well. That is, there are two equations

(∂2
τ + V)f(τ) = 0, (B1a)

(∂2
τ + V)g(τ) = −ϵg(τ) (B1b)

with boundary conditions f(τ → ±∞) → 0 and g(τ =
±β/2) = 0. It can be shown that the solution of
the former equation is related to the classical instanton
path ϕ(τ) by f(τ) = ϕ̇(τ). By multiplying Eq. (B1a)
by gT from the right and similarly Eq. (B1b) by fT ,
integrating over [−β/2, β/2], and then subtracting the
equations, I find

fT (−β/2)ġ(−β/2)−fT (β/2)ġ(β/2)

= ϵ

∫ β/2

−β/2

fT (τ)g(τ) dτ . (B2)

Since the correction must be small for large β, the in-
tegral on the right hand side can be approximated by
replacing g by f and extending the integration limits
to ±∞. Consequently, ϵ can be solved in terms of f
and g. The question is then about the relation between
the derivative of g and f at the boundaries ±β/2.

For real-valued functions, the WKB approximation
gives ġ(±β/2) ≈ 2ḟ(±β/2). Alternatively, one can set
g(τ) = c(τ)f(τ) and find c to first order in ϵ which results

in ġ(±β/2) ≈ 2
√
3ḟ(±β/2) for the ski-jumping potential.

However, in this article, the exact proportionality con-
stant is not of great importance as such factors cancel

FIG. 4. The values of [ϵ(β/n)/ϵ(0)]n for N = 1, βω = 5 and
(1± δ)ω±/ω0 = 1± 0.1.

out when determining the cavity-induced modifications
to the tunneling rate.
For vector-valued f and g, the argument is similar but

less rigorous. It is possible that putting the system into
a box changes both the magnitude of the derivative and
its direction. However, the change of direction can be
neglected in the ski-jumping potential: The potential
matrix V is close to a constant near the boundaries so
one can diagonalize it by an orthogonal matrix. For the
ski-jumpinging potential especially, V is constant for all
values of τ except the hitting time τ = τ1. The argument
for real-valued functions holds then for each component
of the transformed vectors. Since the transformation is
the same for both f and g, the result is also the same.
Inserting the relations ġ(±β/2) ≈ 2ḟ(±β/2) and f = ϕ̇
into Eq. (B2), I get Eq. (17). It should be noted, however,
that this result will likely not hold for more complicated
potentials but, in general, ġ(±β/2) = Cḟ(±β/2) where
C is a matrix.

1. Correction for ski-jumping potential

The finite temperature correction (17) is readily ob-
tained by using the instanton solutions (12). It should
be noted that the denominator in the correction ϵ1(β)
is the action SE,1 and that the instanton solutions are
symmetric with respect to the hitting time τ1 = 0. I find

ϵ1(β) = 4ωH,1
1

N ⟨λ4⟩

[
(N
〈
λ4
〉
− λ4

1)ω0e
−βω0 (B3)

+ λ4
1

(
1 + δ

2
ω+e

−βω+ +
1− δ

2
ω−e

−βω−

)]
.

As implied in the main text, this expression is not partic-
ularly helpful because the partition function Z depends
on ϵ(β/n) so that n is summed over. A reasonable ap-
proximation is to replace ϵ(β/n) by ϵ(0) because it rep-
resents the n → ∞ limit. Furthermore, it can be shown
that, for a constant β, the value of ϵ(β/n) can be limited
by ϵ(0) in the sense that A ≤ [ϵ(β/n)/ϵ(0)]n ≤ B for all n
with suitable constants A and B. This is exemplified in
Fig. 4. The prefactor in the approximation ϵ(β/n) ∝ ϵ(0)
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does not contribute to the imaginary part of the partition function Z and is thus unimportant.
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