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Tiivistelmä
Henri Hänninen, Markov chain backward stochastic differential equations in
modeling insurance policy, Jyväskylän yliopisto, Matematiikan ja tilastotieteen
laitos, matematiikan pro gradu -tutkielma, 48 s., heinäkuu 2022.

Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme
henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja
mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takap-
eroinen stokastinen differentiaaliyhtälö). Seuraamme ensisijaisena lähteenä
Boualem Djehichen ja Björn Löfdahlin artikkelia Nonlinear reserving in
life insurance: Aggregation and mean-field approximation. Muotoilemme ja
todistamme ensimmäisten lukujen väitteet, osittain eri oletuksin.

Markovin ketju BSDE:iden määrittelyä varten tarvitsemme sopivan yleistä
stokastisen integroinnin ja Markovin prosessien teoriaa. Annamme tarvitta-
vat esitiedot todennäköisyysteoriasta ja integroinnin teoriasta. Esittelemme
martingaalien teoriaa, jotta voimme määritellä stokastisen integraalin semi-
martingaalien suhteen.

Todistamme olemassaolon ja yksikäsitteisyyden Markovin ketju BSDE:iden
ratkaisulle. Todistus mukailee vastaavaa Brownin liikkeen tapausta. Tutkimme
myös erityistapausta, jossa Markovin ketju BSDE:iden ensimmäisen asteen
termin kerroinfunktio on deterministinen Markovin ketjun ja varannon funktio.
Osoitamme, että tällöin varanto on deterministinen Markovin ketjun funktio.
Todistamme, että tässä tapauksessa varanto toteuttaa epälineaarisen Thielen
yhtälön.



Abstract
In this thesis we introduce Markov chain backward stochastic differential
equations (BSDE), in aim to let us model insurance policies with payments
dependent on the policy reserve. We prove the existence and uniqueness of a
solution to the BSDEs. In the case of a deterministic driver for the BSDE, we
prove that the modeled reserve is a solution to a nonlinear Thiele equation.
For our main results we follow the article Nonlinear reserving in life insurance:
Aggregation and mean-field approximation by Boualem Djehiche and Björn
Löfdahl.

To define Markov chain BSDEs and prove our main results, we need
suitably general theory of stochastic integration and Markov processes. After
preliminary results, we define the stochastic integral with respect to semi-
martingales. Then we introduce Markov processes to study the model of the
insurance policy.
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1 Introduction

A life insurance contract specifies states (for example healthy, disabled and
dead), and the payments that depend on the state and transitions between
the states. We model these states and transitions using a stochastic process to
account for randomness. We make the assumption that the process is Markov.
A Markov process has versatility to represent the complexity of reality, but
also simplicity and structure to allow computations. See [13, 7.4.A] for more
discussion on the suitability of this assumption and the model.

An insurance company must provide a reserve to match liabilities. This
is modeled with the prospective reserve - the expected (current) value of
future payments. In this thesis we are interested in the case where we allow
the payment process to be dependent on the reserve. This is a natural
extension: an example of nonlinear dependence in insurance is a policy that
pays guaranteed benefits based on the maximum between the accumulated
reserve and a guaranteed amount.

However, when the payment process and the prospective reserve are
dependent on each other, a problem of recursivity arises in the definition.
This problem can be reformulated as a Markov chain backward stochastic
differential equation (BSDE). Since the nature of stochastic differentials
differs greatly from ordinary differentials we need theory on martingales,
local martingales and quadratic variation. For this and the definition of the
stochastic integral we follow [10].

Our primary source for this thesis is the article [3]. We formulate and
prove most claims of the first chapters of the article. After introducing Markov
processes, we construct the Markov chain model of the insurance policy in
line with the article. Then we prove our main theorems - in more detail and
in some cases with different assumptions.

We have two main results in this thesis. First, we prove the existence and
uniqueness of the solution to the BSDEs. The proofs are adaptations of those
of the Brownian motion case. Then we narrow our scope to the case where
the driver of the BSDEs is a deterministic function of the prospective reserve
and the Markov chain, as is natural for the application to insurance. We will
show that under this restriction the prospective reserve can be represented as
a deterministic function of the Markov chain. Our other goal is to prove that
in this case the prospective reserve fulfills a nonlinear Thiele equation.
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2 Preliminaries

We introduce the definitions and theorems that are used in this thesis. We
begin from basics of stochastic processes, but assume familiarity with measure
theory.

In this thesis we consider the time interval I = [0, T ], for some T > 0. We
will modify some definitions accordingly and note the difference.

2.1 Notation

We list some notation and terminology used in the thesis.

� For a set A we use both #A and |A| to denote its cardinality.

� A function f on a interval I is increasing, if f(x) ≥ f(y) for x ≥ y,
x, y ∈ I.

� A function is càdlàg if it is right-continuous and has left limits.

� We define the indicator function

1A(x) =

{
1, x ∈ A,

0, x ̸∈ A.

� We denote

δij(x) =

{
1, i = j,

0, i ̸= j.

� The power set of a non-empty set X

2X = {A : A ⊂ X}.

� We denote N = {1, 2, 3, . . . }.

2.2 Stochastic Processes

Stochastic processes are used to model random development. The whole of
the information in the events of the development is the filtration.

Definition 2.1 ([7, Definition 2.1.8]). Let (Ω,F ,P) be a probability space.
Let (Ft)t∈I be a family of σ-algebras of F . If Fs ⊆ Ft ⊆ F for all s, t ∈ I
such that s ≤ t, then the family (Ft)t∈I is a filtration.

We call the quadruple (Ω,F ,P, (Ft)t∈I) a stochastic basis.

3



Definition 2.2. A probability space (Ω,F ,P) is complete, if for all B ∈ F
such that P(B) = 0 and for all A ⊂ B it holds that A ∈ F .

The following condition will be required of the stochastic basis for many
results and it will be a standard assumption.

Definition 2.3 ([7, Definition 2.4.11]). A stochastic basis (Ω,F ,P, (Ft)t∈I)
satisfies the usual conditions provided that the following holds:

(i) (Ω,F ,P) is a complete probability space,

(ii) for all A ∈ F such that P(A) = 0, it holds that A ∈ Ft for all t ∈ I,

(iii) the filtration is right-continuous:

Ft = ∩s>t,s∈IFs

for all t ∈ [0, T ).

Definition 2.4. Let (Ω,F ,P) be a probability space. A map X : Ω → R is a
random variable, if X is measurable from (Ω,F) to (R,B(R)), where B(R) is
the Borel σ-algebra.

Definition 2.5 ([7, Definition 2.1.1]). Let (Ω,F ,P) be a probability space.
The family X = (Xt)t∈I is a stochastic process, if Xt : Ω → Rd is a random
variable for all t ∈ I.

We defined a stochastic process as a family of random variables, however
the stochastic process X = (Xt)t∈I also describes the functions fω = {t 7→
Xt(ω) : I → R} for all ω ∈ Ω. The function fω is called a path of X.

We will say that a process X is càdlàg, if all its paths are càdlàg.

There are different measurability concepts for stochastic processes. We
introduce here the concepts we need: adapted, measurable, progressively
measurable and predictable processes.

Definition 2.6 ([7, Definition 2.1.9]). Let (Ω,F ,P, (Ft)t∈I) be a stochastic
basis and X = (Xt)t∈I be a stochastic process.

(i) The stochastic process X is adapted with respect to the filtration (Ft)t∈I ,
if Xt is Ft-measurable for all t ∈ I.

(ii) The stochastic process X is measurable if it is F ⊗ B(I)-measurable.
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(iii) The stochastic process X is progressively measurable with respect to
the filtration (Ft)t∈I , if for all S ∈ I the restriction (ω, t) 7→ Xt(ω) :
Ω× [0, S] → R is FS ⊗ B([0, S])-measurable. Alternatively, we define
the σ-algebra

PMT = σ(At ×Bt : At ∈ B([0, t]), Bt ∈ Ft, t ∈ [0, T ])

on [0, T ] × Ω. Then X is progressively measurable, if X is PMT -
measurable.

We have the following relations between the concepts.

Theorem 2.7 ([7, Definition 2.1.10]). If a stochastic process X = (Xt)t∈I is
progressively measurable, then it is measurable and adapted.

Theorem 2.8 ([7, Definition 2.1.11]). Let X = (Xt)t∈I be a stochastic
process. If X is adapted and has right-continuous paths, then it is progressively
measurable.

Definition 2.9 ([10, Definition 3.15]). The σ-algebra P on [0, T ]× Ω, gener-
ated by adapted processes with left-continuous paths, is called the predictable
σ-algebra. We say that a process (Xt)t∈[0,T ] is predictable, if it is P-measurable.

We remark that predictable processes are progressively measurable, [10,
Theorem 3.11].

We have two concepts of equality for stochastic processes.

Definition 2.10 ([15, Definition p.3]). Let (Ω,F ,P) be a probability space.
Let X = (Xt)t∈I and Y = (Yt)t∈I be stochastic processes. We say that X and
Y are indistinguishable if

{ω ∈ Ω : Xt = Yt, t ∈ I}

is measurable and
P(Xt = Yt, t ∈ I) = 1.

Also, we say that X and Y are modifications of each other if

P(Xt = Yt) = 1.

for all t ∈ I.

For modifications the set of difference, Nt, is dependent on t, whereas
for indistinguishable it is not. Therefore, indistinguishable processes are
modifications. The converse is not true in general however, we have the next
theorem.

Theorem 2.11 ([15, Theorem I.2]). Let (Ω,F ,P) be a probability space. Let
X = (Xt)t∈I and Y = (Yt)t∈I be modifications of each other. If X and Y have
right continuous paths, then X and Y are indistinguishable.
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2.3 Integration theorems

Let us now introduce definitions and theorems regarding integrals for later
use. All results in this chapter are in [4].

First we have the monotone convergence theorem.

Theorem 2.12 ([4, Theorem 4.3.2]). Let (Ω,F , µ) be a measure space. Let
(fn)n∈N be a sequence of measurable functions fn : Ω → [−∞,∞] for all n ∈ N
such that for n ∈ N, ω ∈ Ω

fn(ω) ≤ fn+1(ω).

Assume ∫
Ω

f1 dµ > −∞.

Then f = limn→∞ fn is measurable and

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ

We introduce the spaces of functions we need, and then give some of the
essential results.

Definition 2.13 ([4, Definition p.153]). Let (Ω,F , µ) be a measure space and
1 ≤ p < ∞. We denote Lp(Ω,F , µ) the set of all measurable f : Ω → R such
that the Lp-norm is finite:

||f ||p =
(∫

Ω

|f |p dµ
) 1

p
< ∞.

A consequence of the fundamental Hölder’s inequality, the Cauchy-Schwartz
inequality.

Theorem 2.14 ([4, Theorem 5.1.4]). Let (Ω,F , µ) be a measure space, and
f, g ∈ L2(Ω,F , µ). Then fg ∈ L1(Ω,F , µ) and∣∣∣ ∫ fg dµ

∣∣∣ ≤ ||f ||2||g||2.

Next Minkowski inequality, the triangle inequality for the Lp-norm.

Theorem 2.15 ([4, Theorem 5.1.5]). Let (Ω,F , µ) be a measure space, 1 ≤
p < ∞ and f, g ∈ Lp(Ω,F , µ). Then f + g ∈ Lp(Ω,F , µ) and

||f + g||p ≤ ||f ||p + ||g||p.
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Now we can define the normed linear space Lp.

Definition 2.16 ([4, Definition p.158]). Let f, g ∈ Lp(Ω,F , µ). Define the
equivalence relation f ∼ g if and only if f = g µ-a.e. Now denote

Lp(Ω,F , µ) = {[f ] : f ∈ Lp(Ω,F , µ)},

where
[f ] = {g : f ∼ g}

is the equivalence class of f .

Definition 2.17 ([4, Definition p.158]). Let E be a vector space and || · || a
norm on it. We say that the pair (E, || · ||) is a normed linear space. The
normed linear space (E, || · ||) is called a Banach space, if it is complete with
the metric given by the norm.

The completeness of Lp will be used multiple times in finding solutions to
differential equations.

Theorem 2.18 ([4, Theorem 5.2.1]). Let (Ω,F , µ) be a measure space and
1 ≤ p < ∞. Then (Lp(Ω,F , µ), || · ||p) is a Banach space.

We give two version of Jensen’s inequality in the form we need. As
the (Lebesgue) measure space ([0, T ],B([0, T ]), λ) can be normalized to be a
probability space we first give Jensen’s inequality as:

Theorem 2.19 ([4, Theorem 10.2.6]). Let (Ω,F , µ) be a measure space such
that µ(Ω) < ∞. Let f ∈ L2(Ω,F , µ). Then∣∣∣ ∫

Ω

f dµ
∣∣∣2 ≤ µ(Ω)

∫
Ω

|f |2 dµ.

Another version is the conditional Jensen’s inequality.

Theorem 2.20 ([4, Theorem 10.2.7]). Let (Ω,F ,P) be a probability space.
Let G be a sub-σ-algebra, and X ∈ L2(Ω,F ,P). Then

E[X|G]2 ≤ E[|X|2|G] a.s.

We can interchange integral and conditional expectation.

Theorem 2.21 ([9]). Let (Ω,F ,P) be a probability space, and H ⊂ F a sub-
σ-algebra. Let X ∈ L1([0, T ]×Ω,B([0, T ])⊗F , λ⊗P). Then for A ∈ B([0, T ])

E[
∫
A

X(s) ds|H] =

∫
A

E[X(s)|H] ds a.s.
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2.4 Lebesgue-Stieltjes Integral

We give a primer on Lebesgue-Stieltjes integration. We will later use Lebesgue-
Stieltjes integration in defining the stochastic integral. Also for many of
our discussed processes later the stochastic integrals and Lebesgue-Stieltjes
integrals agree.

First we define the total variation of a function.

Definition 2.22 ([12, Definition 15.8]). Let f : [0, T ] → R be càdlàg. Then∫
[0,t]

| df | = sup
0=t0≤...≤tn=t

n∑
k=1

|f(tk)− f(tk−1)|

is the total variation of f on [0, t].

We will often handle functions of bounded variation.

Definition 2.23. Let f : [0, T ] → R be càdlàg. Then f is of bounded variation
(on [0, T ]), if

∫
[0,T ]

| df | < ∞.

Functions of bounded variation can be decomposed.

Theorem 2.24 ([12, Theorem 15.11]). Let f : [0, T ] → R be of bounded
variation. Then there is a pair of functions f1, f2 : [0, T ] → R such that

(i) f1, f2 are non-decreasing,

(ii) f = f1 − f2.

For formulating the definition of Lebesgue-Stieltjes integration we need
the following.

Theorem 2.25 ([5, Proposition 1.2.17]). (Carathéodory) Let Ω be non-empty
and G be an algebra such that F = σ(G). Assume µ0 : G → [0,∞) such that

(i) µ0(Ω) < ∞.

(ii) For every sequence of pair-wise disjoint An ∈ G, such that ∪n∈NAn ∈ G,
it holds that

µ0(∪n∈NAn) =
∑
n∈N

µ0(An)

Now there exists a unique measure µ : F → [0,∞) such that

µ(A) = µ0(A)

for A ∈ G.
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For defining the Lebesgue-Stieltjes integral, first assume that the càdlàg
f : [0, T ] → R is non-decreasing. Define µ0((s, t]) = f(t)−f(s) and µ0({t}) =
f(t) − f(t−). As the half open intervals generate B([0, T ]), we have by
Theorem 2.25 that there exists a unique measure µf : B([0, T ]) → [0,∞) such
that

µf ((s, t]) = µ0((s, t])

for (s, t] ⊂ [0, T ].

Definition 2.26. Let f : [0, T ] → R be of bounded variation and H : [0, T ] →
R be Borel-measurable. If∫

[0,t]

|H(s)|| df(s)| =
∫
[0,t]

|H(x)| dµf1(x) +

∫
[0,t]

|H(x)| dµf2(x) < ∞,

then we define the Lebesgue-Stieltjes integral with respect to f as∫
[0,t]

H(x) df(x) =

∫
[0,t]

H(x) dµf1(x)−
∫
[0,t]

H(x) dµf2(x),

where f1, f2 are given by Theorem 2.24, and the integrals are Lebesgue integrals.

Now we can define the Stieltjes-Lebesgue integral w.r.t. processes with
bounded variation.

Definition 2.27. Let the stochastic process H : [0, T ] × Ω → R be jointly
measurable, and let the stochastic process X have paths of bounded variation.
We define ω-by-ω, X(s, ω) = fω(s). If∫

[0,t]

|H(s)|| dX(s)| =
∫
[0,t]

|H(s, ω)|| dfω(s)| < ∞,

then we define the Lebesgue-Stieltjes integral as the random variable∫
[0,t]

H(s) dX(s)(ω) =

∫
[0,t]

H(s, ω) dfω(s).

We also very naturally define the following.

Definition 2.28 ([10, Definition 15.8]). Let X be a process with paths of
bounded variation. If ∫

[0,T ]

| dX(s)|

is an integrable random variable, we say that X is a process with integrable
variation. We denote A the set of adapted processes of integrable variation,
and A+ the set of adapted integrable processes with increasing paths.
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3 Stochastic Integration

Stochastic processes may have unbounded variation and be nowhere differ-
entiable. Due to this nature stochastic differential equations are defined via
integral equations. We follow [10] in defining the stochastic integral. Before
the main definitions we need theory on martingales, local martingales and
quadratic variation. Since we consider the finite time interval I = [0, T ],
our definitions differ accordingly from those in the literature. We assume
a stochastic basis (Ω,F ,P, (Ft)t∈I) satisfying the usual conditions for this
chapter.

3.1 Martingales

Martingales have a fundamental role in the theory of stochastic processes and
stochastic integration. We will go over the needed definitions and theorems.

Definition 3.1 ([11, Definition 7.1]). Let X = (Xt)t∈I be a (Ft)t∈I-adapted
stochastic process such that E|Xt| < ∞ for all t ∈ I. Then X is a martingale
if for s ≤ t ∈ I

E[Xt|Fs] = Xs a.s.

Martingales are special in that they have a constant expectation.

It is important to have martingales with càdlàg paths. We have the
following existence result.

Theorem 3.2 ([15, Theorem I.9]). Let X = (X)t∈I be a martingale. Then
there exists a unique modification Y of X which is càdlàg. Specifically, a
martingale with right continuous paths is càdlàg.

We give shorthands for our most used classes of martingales.

Definition 3.3. A martingale X such that E[X2
t ] < ∞, for t ∈ [0, T ], is

called a square integrable martingale.

We denote by M the space of càdlàg martingales and by M2 the space of
square integrable càdlàg martingales.

Our definition differs from [10] since we consider martingales on [0, T ].
In finite time martingales are uniformly integrable ([10, Theorem 1.8]), and
supt∈[0,T ] E[M2

t ] = E[M2
T ] < ∞.

For square integrable martingales we have Doob’s maximal quadratic
inequality.
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Theorem 3.4 ([15, Theorem I.20]). Let X be a càdlàg martingale. Then we
have

E[ sup
0≤s≤t

X2
s ] ≤ 4E[X2

t ]

for t ∈ [0, T ].

To begin the study of stochastic integration, we need key results for
martingales with integrable variation. But before that we define, for a process
X,

Xt− = X(t−) = lim
s↑t

Xs, X0− = X0,

where the limit is the left limit. Also, define the jump process

∆Xt = Xt −Xt−.

Theorem 3.5 ([10, Theorem 6.4]). Let M ∈ M be bounded with integrable
variation. Then

M2
t −

∑
s≤t

(∆M)2 ∈ M.

The class of predictable processes has a central role as the integrands.
To this end, the following result says that the Lebesgue-Stieltjes integral of
predictable processes preserves the property of being a càdlàg martingale
with integrable variation.

Theorem 3.6 ([10, Theorem 6.5]). Let M ∈ M have integrable variation.
Let H be a predictable process such that

E[
∫
[0,T ]

|Hs|| dMs|] < ∞.

Then for the Lebesgue-Stieltjes integral H · M , we have H · M ∈ M with
integrable variation.

Theorem 3.7 ([10, Theorem 6.8]). The space M2, equipped with the inner
product (M,N) = E[MTNT ], is a Hilbert space.

We also have isomorphism to L(Ω,FT ,P) via the map M 7→ MT .

The fact that M2 is a Hilbert space allows the usage of the Riesz repre-
sentation theorem in the proof of Theorem 3.23 to determine the existence of
the stochastic integral under certain assumptions. It also, together with [10,
Corollary 6.17], lets us define the following.
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Definition 3.8 ([10, Definition 6.18]). Let M2,c be the set of all continuous
M ∈ M2. Denote M2,d = (M2,c)⊥. Let M ∈ M2. Then M has a unique
decomposition:

M = M(0) +M c +Md,

where M c ∈ M2,c
0 is the continuous martingale part and Md ∈ M2,d is the

purely discontinuous martingale part.

To determine purely discontinuous martingales we have the following.

Theorem 3.9 ([10, Theorem 6.22.1]). Let M ∈ M2
0. Then

E[
∑

0≤s≤T

(∆Ms)
2] = E[M2

T ]

if and only if M ∈ M2,d.

3.2 Local martingales

The general theory of stochastic integration needs local martingales. First,
we have the concepts of a stopping time and localization.

Definition 3.10 ([15, Definition I.2]). Let (Ω,F ,P, (Ft)t∈I) be a stochastic
basis. A random variable τ : Ω → [0,∞) is stopping time if

{τ ≤ t} ∈ Ft

for all t ∈ I.

Let τ be a stopping time and X a process. We denote Xτ the stopped
process defined by Xτ

t (ω) = Xmin{t,τ(ω)}(ω).

Definition 3.11 ([10, Definition 7.1]). Let D be a class of processes. A
process X is an element of the localized class Dloc if and only if X0 ∈ F0 and
there exists a sequence (Tn) of stopping times such that Tn ↑ ∞ and for each
n the stopped process XTn −X0 ∈ D.

Definition 3.12 ([10, Definition 7.11]). We say that a process M ∈ Mloc is
a local martingale. Other localized classes of processes we consider are:

� Aloc, adapted processes with locally integrable variation, Definition 2.28,

� A+
loc, adapted locally integrable increasing processes, Definition 2.28,

� M2
loc, locally square integrable martingales,
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� M2,c
loc, continuous locally square integrable martingales,

� M2,d
loc , purely discontinuous locally square integrable martingales, Defini-

tion 3.8.

We remark that a local martingale is an adapted càdlàg process and a
càdlàg martingale is a local martingale.

We need results showing that specific local martingales are martingales.
Indeed, local martingales bounded by integrable random variables are martin-
gales:

Theorem 3.13 ([11, Theorem 7.21]). Let X be a local martingale. If there
exists a random variable Y such that E[Y ] < ∞ and |Xt| ≤ Y a.s. for all
t ∈ I, then X is a martingale.

Definition 3.14 ([10, Definition 7.21]). Let M be a local martingale. If
M0 = 0 and M has a decomposition as follows:

M = U + V

where U ∈ M2,d
loc and V ∈ Aloc is a local martingale, we say that M purely

discontinuous, and denote Md
loc.

We also have the localized class of continuous martingales Mc
loc.

We omit much of the theory developed in Chapters 6 and 7 in [10]
that lead to the previous definition and the following result. The following
decomposition relies on that of square integrable martingales, and the results
on the nature of the localization. For example, we note that Mc

loc = M2,c
loc,

since we can localize a M ∈ Mc
loc by stopping at bounds,

Tn = inf{t ≥ 0 : |Mt| ≥ n}, n ≥ 1,

to get square integrability.

Theorem 3.15 ([10, Theorem 7.25]). A local martingale M has the unique
decomposition:

M = M0 +M c +Md

where M c ∈ Mc
loc,0 is the continuous martingale part and Md ∈ Md

loc the
purely discontinuous martingale part of M respectively.
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3.3 Quadratic variation

The quadratic variation plays a key role in the difference between stochastic
calculus and standard calculus. It shows up in integration by parts, Itô’s
formula and the Burkholder-Davis-Gundy inequality. To define it for local
martingales we need the following two results.

Theorem 3.16 ([10, Lemma 7.27]). For a local martingale M ,∑
s≤T

(∆Ms)
2 < ∞ a.s.

The following result uses the Doob-Meyer decomposition theorem, [10,
Theorem 5.44], to show the existence:

Theorem 3.17 ([10, Lemma 7.28]). If M ∈ M2
loc, then there exists a unique

predictable locally integrable increasing process, ⟨M⟩ ∈ A+
loc, such that M2 −

⟨M⟩ ∈ M2
loc,0.

Define ⟨M,N⟩ = 1
2
(⟨M + N⟩ − ⟨M⟩ − ⟨N⟩). Now we can define the

quadratic (co)variation.

Definition 3.18 ([10, Definition 7.29]). Let M and N be local martingales.
We define

[M,N ] = M0N0 + ⟨M c, N c⟩+
∑
s≤·

∆Ms∆Ns.

The quadratic variation has the following properties, which we will use
without explicit mention. For local martingales M and N :

� the quadratic variation [M,N ] is symmetric and bilinear,

� we have the polarization identity [M,N ] = 1
2
([M+N,M+N ]−[M,M ]−

[N,N ]).

Quadratic variation has the fundamental property:

Theorem 3.19 ([10, Theorem 7.31]). If M and N are local martingales,
then [M,N ] is the unique adapted process of bounded variation such that
MN − [M,N ] ∈ Mloc,0 and ∆[M,N ] = ∆M∆N .

We can use the finiteness of the quadratic variation to determine whether
a local martingale is a square integrable martingale.

Theorem 3.20 ([10, Theorem 7.32]). For a local martingale M , M ∈ M2 if
and only if E[M ]T < ∞.

14



Last, we give the following definition and result:

Fτ = {A ∈ FT : for every t ∈ [0, T ], A ∩ {τ ≤ t} ∈ Ft}.

Theorem 3.21 ([10, Theorem 7.38]). Let M be a local martingale, τ a
stopping time and ξ be a Fτ -measurable random variable. Now N = ξ(M−M τ )
is a local martingale. We also have

[N,L] = ξ([M,L]− [M,L]τ ),

for every local martingale L.

3.4 The Stochastic Integral

Now we define the stochastic integral and state its basic properties. The
approach is to define the stochastic integral for elementary processes and
observe that it has a characterizing property. We then define the stochastic
integral as the process satisfying this property.

Let S, τ be stopping times such that S ≤ τ ≤ T and ξ a FS-measurable
random variable. Then H = ξI(S,τ ] is a predictable process, [10, Theorem
3.16.2]. We call a process of this form elementary predictable.

Let M be a local martingale. Define the stochastic integral H · M of
elementary predictable H w.r.t. M as the process:

(H ·M)t = ξ(Mmin{t,τ} −Mmin{t,S}), t ∈ [0, T ].

By Theorem 3.21 and the above definition w.r.t [M,N ], H ·M is a local
martingale with the following property:

[H ·M,N ] = ξ([M,N ]τ − [M,N ]S) = H · [M,N ],

for every local martingale N , where H · [M,N ] is a Lebesgue-Stieltjes integral.
The critical observation is that by Theorem 3.19 the integral H ·M is the
unique local martingale with this, now characteristic, property.

We now define the stochastic integral via this property.

Definition 3.22 ([10, Definition 9.1]). Let M be a local martingale and H a
predictable process. If H is Lebesgue-Stieltjes integrable w.r.t. [M,N ], for all
N ∈ Mloc, and there exists a local martingale L such that

[L,N ] = H · [M,N ], (1)

for all N ∈ Mloc, then H is integrable w.r.t. M . We define the unique (by
Theorem 3.19) local martingale L = H ·M the stochastic integral of H w.r.t.
M . We denote L(M) the set of predictable processes integrable w.r.t. M .

15



To see the uniqueness in the definition, let L,L′ ∈ Mloc such that for
any N ∈ Mloc, [L,N ] = H · [M,N ] and [L′, N ] = H · [M,N ]. Then we have
[(L− L′), N ] = 0, and by Theorem 3.19

(L− L′)N = (L− L′)N − [(L− L′), N ] ∈ Mloc,0.

With N = (L − L′) ∈ Mloc, we have (L − L′)2 ∈ Mloc,0, which is satisfied
only for L = L′.

The definition of the stochastic integral does not tell us when the integral
exists or how to begin computing one. For the former we have the following
characterization of L(M).

Theorem 3.23 ([10, Theorem 9.2]). A predictable process H is integrable

w.r.t. a local martingale M , H ∈ L(M), if and only if (H2 · [M ])
1
2 ∈ A+

loc.

We note for future usage that when E[(H2 · [M ]T )
1
2 ] < ∞, the above

condition is satisfied.
To help us compute stochastic integrals we state the following fundamental

properties. We may later use them liberally without referencing.

Theorem 3.24 ([10, Theorem 9.3]). Let M be a local martingale and H,K ∈
L(M).

(i) (H ·M)d = H ·Md, (H ·M)c = H ·M c and (H ·M)0 = H0M0.

(ii) ∆(H ·M) = H∆M .

(iii) (H +K) ∈ L(M) and (H +K) ·M = H ·M +K ·M .

(iv) Let G be a predictable process. Then G ∈ L(H · M) if and only if
(HG) ∈ L(M). In this case, we have

G · (H ·M) = (GH) ·M.

We denote

(H ·M)t =

∫
[0,t]

H(s) dM(s).

And when M0 = 0, we have∫
[0,t]

H(s) dM(s) =

∫
(0,t]

H(s) dM(s).

Under certain restrictions on the variation the stochastic integral agrees
with the Lebesgue-Stieltjes integral.
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Theorem 3.25 ([10, Theorem 9.5]). Let M ∈ Aloc be a local martingale and
H a predictable process. If

∑
|H∆M | ∈ A+

loc, then H ∈ L(M) and H ·M
agrees with the Lebesgue-Stieltjes integral.

Let us extend the stochastic integral to semimartingales.

Definition 3.26 ([10, Definition 8.1]). We say that the process X is a
semimartingale if it has a decomposition:

X = M + A,

where M is a local martingale and A is an adapted process of bounded variation.

Let X be a semimartingale and X = M + A a decomposition as above.
Let us further decompose X = M c + Md + A by Theorem 3.15. By [10,
Theorem 7.19.] a local martingale of bounded variation is purely discontinuous.
Therefore, M c is uniquely determined by X, and we define Xc = M c the
continuous part of X.

We will define the stochastic integral w.r.t. a semimartingale as the sum
of integrals w.r.t. the parts of the decomposition. This requires that the sum
of the integrals is independent of the decomposition of the semimartingale.

Theorem 3.27 ([10, Lemma 9.12]). Let X be a semimartingale and H a
predictable process. Let X = M + A and X = N + B be decompositions
of X, where M,N ∈ Mloc and A,B adapted of bounded variation. If H ∈
L(M) ∩ L(N) and the Lebesgue-Stieltjes integrals H · A,H ·B exist, then

H ·M +H · A = H ·N +H ·B.

Definition 3.28 ([10, Definition 9.13]). Let X be a semimartingale and H
a predictable process. Suppose X = M + A is a decomposition of X, where
M ∈ Mloc and A adapted and of bounded variation, such that H ∈ L(M) and
the Lebesgue-Stieltjes integral H ·A exists. Then H is integrable w.r.t. X and

H ·X = H ·M +H · A.

3.5 Itô’s formula and BDG

We present two important results in this section. First we have Itô’s formula,
which is a change of variables formula for stochastic integrals. We will use
it later to compute integrals. We present it in the multidimensional case for
semimartingales.
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Theorem 3.29 ([10, Theorem 9.35]). Let X = (X1, . . . , Xn) be an n-tuple of
semimartingales and f : Rn → R be twice continuously differentiable. Then
f(X) is a semimartingale and

f(XT )− f(Xt) =
n∑

i=1

∫
(t,T ]

∂

∂xi

f(Xs−) dX
i
s

+
∑

1≤i,j≤n

1

2

∫
(t,T ]

∂2

∂xi∂xj

f(Xs−) d⟨(X i)c, (Xj)c⟩s

+
∑

t<s≤T

(∆f(Xs)−
∂

∂xi

f(Xs−)∆X i
s).

The next result is the Burkholder-Davis-Gundy inequality. It lets us
bound the maximum by the quadratic variation, linking them. Indeed, we
will later use this to show that a specific integral is a martingale.

Theorem 3.30 (Burkholder-Davis-Gundy inequality, [10, Theorem 10.36]).
Let X be a local martingale. Let p ≥ 1. There exists cp, Cp > 0 such that for
any X

cpE([X]
p
2
t ) ≤ E( sup

0≤s≤t
|Xs|p) ≤ CpE([X]

p
2
t )

for all t ∈ [0, T ].
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4 The Markov chain model

4.1 Markov processes

Since the processs modeling the insurance policy is driven by a Markov
chain, we state the needed definitions and results in this section. We begin
by following [8]. Then, as the Markov chains we use are allowed to be
inhomogenous, we will state the fundamental Dynkin’s formula in the required
generality. For this we follow [2], as well as for the definitions of the Feller
evolution and infinitesimal generator.

For this section let (Ω,F ,P) be a complete probability space and (E, E)
be a measure space, where E is a complete separable metric space.

Definition 4.1 ([8, Definition 2.1]). Let X be a stochastic process. If X is
adapted to the filtration F = (Ft)t∈[0,T ] and if for all t ∈ [0, T ]

P(A ∩B|Xt) = P(A|Xt)P(B|Xt)

almost surely for A ∈ Ft and B ∈ σ(Xs; s ≥ t), then X is a Markov process.
The conditional probability is given by P(C|Xt) := P(C|σ(Xt)) = E[1C |σ(Xt)].

A Markov process has the following characteristic properties.

Theorem 4.2 ([8, Theorem 2.3]). Let X be a stochastic process adapted to
the filtration F = (Ft)t∈[0,T ]. Then the following assertions are equivalent:

(i) X is a Markov process.

(ii) For s ∈ I and bounded σ(Xt;T ≥ t ≥ s)-measurable Y it holds

E[Y |Fs] = E[Y |σ(Xs)] a.s.

(iii) For 0 ≤ s ≤ t ≤ T and all bounded f : (E, E) → (R,B(R))

E[f(Xt)|Fs] = E[f(Xt)|σ(Xs)] a.s.

To define our model we need the transition function.

Definition 4.3 ([8, Definition 3.1]). We say that the map (s, t, x, A) 7→
P (s, t, x, A), where 0 ≤ s ≤ t ≤ T, x ∈ E,A ∈ E is a Markov transition
function if:

(i) A 7→ P (s, t, x, A) is a probability measure on (E, E) for 0 ≤ s ≤ t ≤
T, x ∈ E,
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(ii) x 7→ P (s, t, x, A) is E-measurable for 0 ≤ s ≤ t ≤ T,A ∈ E,

(iii) P (t, t, x, A) = δx(A) for t ∈ [0, T ], x ∈ E,A ∈ E,

(iv) (Chapman-Kolmogorov) P (s, u, x, A) =
∫
E
P (t, u, y, A)P (s, t, x, dy)

for 0 ≤ s ≤ t ≤ u ≤ T, x ∈ E,A ∈ E.

Now, let (x,A) 7→ P (s, t, x, A), where 0 ≤ s ≤ t ≤ T, x ∈ E,A ∈ E, be a
Markov transition function. A stochastic process X adapted to F is a Markov
process (with respect to F) having P (t, s, x, A) as a transition function if

E[f(Xt)|Fs] =

∫
E

f(y)P (s, t,Xs, dy) a.s.

for 0 ≤ s ≤ t ≤ T and bounded f : (E, E) → (R,B(R)).
A probability measure µ on (E, E) is called the initial distribution of X if

µ(A) = P(X(0) ∈ A).

To continue, we briefly note the following.

Definition 4.4. We denote C(E) the space of continuous functions f : E → R
with the uniform norm ||f || = supx∈E |f(x)|.

Compared with [2, Definition 2.4] our definition of Feller evolution has
stricter assumptions and simpler form. This is done according to [2, Remark
2.5] and [2, Proposition 2.6].

Definition 4.5 ([2, Definition 2.4]). A family {P (s, t) : 0 ≤ s ≤ t ≤ T} of
bounded linear operators P (s, t) : C(E) → C(E) is called a Feller evolution
on C(E) if the following conditions hold:

(i) P (t, t) = Id for t ∈ [0, T ],

(ii) P (τ, t) = P (τ, s) ◦ P (s, t) for all 0 ≤ τ ≤ s ≤ t ≤ T ,

(iii) 0 ≤ P (s, t)f ≤ 1 for f ∈ C(E) with f(E) ⊂ [0, 1],

(iv) For every f ∈ C(E) and t ∈ [0, T ] the function (s, x) 7→ P (s, t)f(x) is
continuous,

(v) limt↓s,y→x P (s, t)f(y) = f(x).

Definition 4.6 ([2, Definition 2.7]). Let us define

G(s)f = lim
t↓s

P (s, t)f − f

t− s
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for every s ∈ [0, T ] and f ∈ C(E) such that the limit, say g, exists in C(E):

||P (s, t)f − f

t− s
− g|| → 0,

as t ↓ s.
The limit may not always exist, so we define the domain D(G(s)) = {f ∈

C(E) : G(s)f exists}, s ∈ [0, T ], giving us the operator G(s) : D(G(s)) →
C(E).

Then the family of operators G(s), s ∈ [0, T ], is said to be the (infinites-
imal) generator of the Feller evolution {P (s, t) : 0 ≤ s ≤ t ≤ T}. We also
write G(s)f(s, x) for (s, x) 7→ G(s)f(s, ·)(x).

A Feller evolution gives rise to a Markov process with desirable properties.

Theorem 4.7 ([2, Theorem 2.9]). Let E be a complete metric space, {P (s, t) :
0 ≤ s ≤ t ≤ T} be a Feller evolution on C(E), and µ an initial distribution on
(E, E). Now there exists a complete probability space (Ω,F ,P) and a Markov
process (Xt)t∈[0,T ] w.r.t F = (Ft)t∈[0,T ] such that

� P (s, t)f(X(s)) = E[f(X(t))|X(s)] for 0 ≤ s ≤ t ≤ T and bounded
f ∈ C(E),

� F is the completion of the natural filtration of X,
Ft = σ({X(s) : 0 ≤ s ≤ t} ∪ {A ∈ F : P(A) = 0})

� F is right-continuous,

� X is càdlàg.

Next we have Dynkin’s formula, which plays a key role in identifying
martingales for the rest of the thesis.

Theorem 4.8 ([2, Theorem 2.11]). Let {P (s, t) : 0 ≤ s ≤ t ≤ T} be a Feller
evolution on C(E), and µ an initial distribution on (E, E). Let (Ω,F ,P,F)
be the stochastic basis and X the Markov process given by Theorem 4.7.

Let the family of operators (G(s))s∈[0,T ] be the generator of the Feller
evolution {P (s, t) : 0 ≤ s ≤ t ≤ T}. Let f ∈ C([0, T ] × E) be such that
f(s, ·) ∈ D(G(s)) for s ∈ [0, T ], (s, x) 7→ G(s)f(s, x) is continuous, and
s 7→ f(s, k) is continuously differentiable. Now the process

Mt = f(t,Xt)− f(0, X0)−
∫ t

0

G(s)f(s,Xs) +
∂

∂s
f(s,Xs) ds

is an F-martingale.
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4.2 The model

In this section we introduce the Markov chain model and study its properties.
Then we define the payment process and the prospective reserve. We follow
[3], but give proofs.

A probability transition function specifies the Markov process and the
probability space. So, for the model we assume the probability transition
function and transition intensities as given. We make smoothness assumptions
that might not exactly reflect reality, but let us use the transition intensities.
The transition intensities help us in computations and in interpreting the
Markov process.

For the model we consider finite state space E = S = {1, . . . , S}, so that
|S| = S. Let pij(s, t), 0 ≤ s ≤ t ≤ T , i, j ∈ S, be probability transition
functions such that the following conditions hold:

� s 7→ pij(s, t) for s ∈ [0, t], is continuously differentiable for all i, j ∈ S,

� the transition intensities µij defined by

µij(s) = lim
t↓s

pij(s, t)− δij(s)

t− s

for s ∈ [0, T ], i, j ∈ S are continuous.

Since S is finite we can define a family of linear operators,
{P (s, t) : 0 ≤ s ≤ t ≤ T}, by

P (s, t)f(i) =

∫
S
f(j)p(s, t, i, dj) =

∑
j∈S

f(j)pij(s, t).

In matrix form
P (s, t)f = [pij(s, t)]i,j∈S(f(j))j∈S .

We will show that P (s, t) defines a Feller evolution. The condition (i)
follows from the definition of transition probability functions. In matrix form
the Chapman-Kolmogorov equation gives the evolution condition, (ii),

pij(t, τ) =
∑
k

pik(t, s)pkj(s, τ),

entry-by-entry. The calculation

P (s, t)f(i) =
∑
j∈S

f(j)pij(s, t) ≤
∑
j∈S

pii(s, t) = 1.
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gives us (iii). (iv) follows from the continuity of s 7→ pij(s, t). Last, from the
existence of µij we get that limt↓s pij(s, t) = δij and (v) follows.

We have that {P (s, t) : 0 ≤ s ≤ t ≤ T} is a Feller evolution. Then
by Theorem 4.7 we have a stochastic basis (Ω,F ,P,F) satisfying the usual
conditions, and a càdlàg Markov process X having pij(s, t) as transition
functions such that F is the completion of the natural filtration of X.

We show that the probability transition function satisfies the Kolmogorov
backward equation. Since∑

j

µij(t) =
∑
j

lim
t↓s

pij(s, t)− δij(s)

t− s
= 0

we get the identity

G(t)f(t, i) =
∑
j

µij(t)f(t, j) =
∑
j,j ̸=i

µij(t)(f(t, j)− f(t, i)). (2)

Using the evolution property (ii) we have

P (t, τ)− P (s, τ)

t− s
=

P (t, t)− P (s, t)

t− s
P (t, τ),

where letting t ↓ s, we have

∂P

∂s
(s, t) = −G(s)P (s, t),

which, entry-by-entry, is the Kolmogorov backward equation

∂pij
∂s

(s, t) +
∑
k

µik(s)pkj(s, t) = 0. (3)

We need processes expressing the stay at states and those counting the
jumps between states. For the former denote 1{X(t)=i} = Ii(t). And for the
latter define the counting processes,

Nij(t) = #{s ∈ (0, t] : X(s−) = i,X(s) = j}, Nij(0) = 0, for i ̸= j.

We note that both of these processes are càdlàg.

Theorem 4.9. For i ̸= j the compensated process,

Mij(t) = Nij(t)−
∫
(0,t]

Ii(s−)µij(s) ds,Mij(0) = 0,
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is a square integrable càdlàg martingale. We also have for the quadratic
variation

[Mij](t) = Nij(t),

and for the predictable quadratic variation

⟨Mij⟩(t) =
∫
(0,t]

Ii(s−)µij(s) ds,

Proof. By Theorem 4.8 for f(t, k) = 1{k=j}, we get that the process,

M j(t) = Ij(t)−Ij(0)−
∫ t

0

G(s)Ij(s) ds = Ij(t)−Ij(0)−
∫ t

0

∑
k∈S

µkj(s)Ik(s) ds,

is a martingale. As Ij(t) is càdlàg, so is M j. Because the intensities µij(t)
are uniformly bounded, M j(t) is also square integrable. Now by Theorem 3.5
and Theorem 3.19

[M j](t) =
∑
s≤t

(∆M j)2 =
∑
s≤t

∆Ij(s).

Since [M j ] is finite Ii(s−) ∈ L(M j) by Theorem 3.23 and the integral Ii(s−) ·
M j ∈ M2 by Theorem 3.20. Because Ik(s) = Ik(s−) a.s. we have for i ̸= j

Mij(t) =

∫
(0,t]

Ii(s−) dM j(s)

=
∑
0<s≤t

Ii(s−)Ij(s)−
∫
(0,t]

∑
k

µkj(s)Ii(s−)Ik(s) ds

=
∑
0<s≤t

Ii(s−)Ij(s)−
∫
(0,t]

∑
k

µkj(s)Ii(s−)Ik(s−) ds

= Nij(t)−
∫
(0,t]

µij(s)Ii(s−) ds.

By the characteristic property of the integral, (1),

[Mij](t) =

∫
(0,t]

Ii(s−) d[M j]

=
∑
s∈(0,t]

Ii(s−)Ij(s)

= Nij(t).

The predictable quadratic variation follows from theorems Theorem 3.17 and
Theorem 3.19.
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Let us denote M = {Mij : i ̸= j} for the martingales accompanying the
Markov process X.

Theorem 4.10. Let Z = (Zij)i ̸=j be a family of predictable processes Zij ∈ P.
Define (the random variable)

||Z(s)||2µ =
∑
i,j:i ̸=j

Z2
ij(s)Ii(s−)µij(s). (4)

Now, if

E[
∫
(0,T ]

||Z(s)||2µ ds] < ∞,

then

U(t) =

∫
(0,t]

Z(s) dM(s) =
∑
i,j:i ̸=j

∫
(0,t]

Zij(s) dMij(s),

is a square integrable càdlàg martingale . We also have

[U ](t) =
∑
0<s≤t

∑
i,j:i ̸=j

|Zij(s)∆Mij(s)|2,

and

E[[U ](t)] = E[
∑
0<s≤t

∑
i,j;i ̸=j

|Zij(s)∆Mij(s)|2] = E[
∫
(0,t]

||Z(s)||2µ ds]. (5)

Proof. First let Hn
ij(s) = min{Z2

ij(s), n}, n ∈ N, so that Hn
ij is a bounded

predictable process. By Theorem 4.9 Ms = ([Mij]s − ⟨Mij⟩s) is a martingale
with integrable variation, therefore Hn

ij ·M is a martingale by Theorem 3.6.
Now

E
∫
(0,T ]

Hn(s) d([Mij]s − ⟨Mij⟩s) = 0.

Since

⟨Mij⟩(t) =
∫
(0,t]

Ii(s−)µij(s) ds,

we have∑
i,j;i ̸=j

E
∫
(0,T ]

Hn
ij(s) d[Mij]s =

∑
i,j;i ̸=j

E
∫
(0,T ]

Hn
ij(s) d⟨Mij⟩s

≤
∑
i,j;i ̸=j

E
∫
(0,T ]

Z2
ij(s) d⟨Mij⟩s

=
∑
i,j;i ̸=j

E
∫
(0,T ]

Z2
ij(s)Ii(s−)µij(s) ds

= E[
∫
(0,T ]

||Z(t)||2µ ds] < ∞.
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We can use the monotone convergence Theorem 2.12 on the Lebesgue-Stieltjes
integrals to get∑

i,j;i ̸=j

E
∫
(0,T ]

Z2
ij(s) d[Mij]s = lim

n→∞

∑
i,j;i ̸=j

E
∫
(0,T ]

Hn
ij(s) d[Mij]s

= lim
n→∞

∑
i,j;i ̸=j

E
∫
(0,T ]

Hn
ij(s) d⟨Mij⟩s

=
∑
i,j;i ̸=j

E
∫
(0,T ]

Z2
ij(s) d⟨Mij⟩s

= E[
∫
(0,T ]

||Z(t)||2µ ds] < ∞.

Now by Theorem 3.23 Zij ∈ L(Mij), and by (1)

[U ](t) =
∑
i,j:i ̸=j

∫
(0,t]

Z2
ij(s) d[Mij](s).

It follows from Theorem 3.20 that

U(t) =

∫
(0,t]

Z(s) dM(s) =
∑
i,j:i ̸=j

∫
(0,t]

Zij(s) dMij(s)

is a square integrable càdlàg martingale .
By Theorem 3.9 and Theorem 4.9 Mij, i ̸= j, are purely discontinuous.

Using Theorem 3.24, Z ·M is also purely discontinuous. It follows from the
Definition 3.18 with Theorem 3.24, we get

[U ](t) =
∑
i,j;i ̸=j

∑
0<s≤t

|Zij(s)∆Mij(s)|2.

Last, we have

E[
∑
0<s≤t

∑
i,j;i ̸=j

|Zij(s)∆Mij(s)|2] = E[
∫
(0,t]

||Z(s)||2µ ds].

4.2.1 Modeling the prospective reserve with a BSDE

To define the prospective reserve, we first define the payment process to
express income and outgoes:

A(t) =
∑
i∈S

∫
(0,t]

Ii(s) dAi(s) +
∑
i,j:i ̸=j

∫
(0,t]

aij(s−) dNij(s),
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where aij is an adapted càdlàg process expressing payments upon transitions
between states and Ai is an adapted process of bounded variation describing
payments accumulated during a stay at state i. In addition we assume that
Ai has the following decomposition:

Ai(t) =

∫
(0,t]

ai(s) ds+
∑
0<s≤t

∆Ai(t),

where ai is a progressively measurable process.
Now, we define the prospective reserve as

Y (t) = E[
∫
(t,T ]

e−
∫ s
t δ(u) du dA(s)|Ft],

for the payment process A, a (deterministic) discount rate δ and the Markov
process X.

To begin studying the reserve we use the martingales, M , associated with
the Markov process X. But first as in [3], for the sake of simplicity we make
the additional assumptions for the rest of the thesis:

� E[
∫
(0,t]

|ai(s)|2 ds] < ∞ and E[
∫
(0,t]

||(aij)i ̸=j(s)||2µ ds] < ∞,

� t 7→ ai(t, ω) and t 7→ aij(t, ω), for ω ∈ Ω, are continuous,

� The process Ai is continuous, that is ∆Ai = 0.

Because X is càdlàg, it follows that X(s−) = X(s) ds-a.e. and so Ii(s−) =
Ii(s) ds-a.e. Now setting

b(s, ω, i) =
∑
j:j ̸=i

aij(s, ω)µij(s), a(s, i) = ai(s),

and using the continuity of aij and the fact that Ii(s−) = Ii(s) ds-a.e. it
follows that the payment process has the form

A(t) =
∑
i∈S

∫
(0,t]

Ii(s)a(s, i) ds+
∑
i∈S

∫
(0,t]

Ii(s)b(s, i)) ds

+
∑
i,j:i ̸=j

∫
(0,t]

aij(s) dMij(s)

=

∫
(0,t]

a(s,X(s)) ds+

∫
(0,t]

b(s,X(s)) ds

+
∑
i,j:i ̸=j

∫
(0,t]

aij(s) dMij(s).
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Since, by Theorem 4.10, ∑
i,j:i ̸=j

∫
(0,t]

aij(s)) dMij(s)

is a martingale, we get

E[
∑
i,j:i ̸=j

∫
(t,T ]

aij(s) dMij(s)|Ft] = 0.

With the above, and setting g(s, ω) = e−
∫ s
t δ(u) du(a(s, ω,X(s))+b(s, ω,X(s)),

we can formulate the prospective reserve as

Y (t) = E[
∫
(t,T ]

g(s) ds|Ft],

for the process g specified by the payment process A and the discount rate δ.
We are interested in the case where g is dependent on the reserve. However,

due to the recursivity of the definition, it is not a given that there exists a
process, Y , such that

Y (t) = E[
∫
(t,T ]

g(s, Y (s)) ds|Ft].

This problem can be framed as a backward stochastic differential equation
as follows. Suppose we have adapted processes Y and Z = (Zij)i ̸=j , satisfying
appropriate measurability and integrability conditions later specified, such
that

Y (t) =

∫
(t,T ]

g(s, Y (s)) ds−
∑
i,j:i ̸=j

∫
(t,T ]

Zij(s) dMij(s).

Let us take the conditional expectation. As Y is Ft-adapted, we have

Y (t) = E[
∫
(t,T ]

g(s, Y (s)) ds|Ft]− E[
∑
i,j:i ̸=j

∫
(t,T ]

Zij(s) dMij(s)|Ft].

By the martingale property we have

E[
∑
i,j:i ̸=j

∫
(t,T ]

Zij(s) dMij(s)|Ft] = 0.

Now

Y (t) = E[
∫
(t,T ]

g(s, Y (s)) ds|Ft]. (6)

This formulation is yet informal, but in the next chapter we introduce Markov
chain BSDEs and lay out conditions under which there exists a solution. Then
by the above argument, under these conditions (6) is defined.

28



5 Markov chain BSDEs

For this chapter we consider a stochastic basis (Ω,FT ,P, (Ft)t∈I) satisfying
the usual conditions and a Markov process X given by the model assumptions
and Theorem 4.7.

Before we define the BSDEs, we give some notation and state the martin-
gale representation theorem. Denote J = {(i, j) : i ̸= j, i, j ∈ S}. We use
the following notation for the needed spaces of stochastic processes:

� L2
FT

(R) = {ξ : Ω → R, (FT ,B(R))− random variable with E|ξ|2 < ∞},

� L2
PMT

([0, T ],R) = {Y : Ω× [0, T ] → R, progressively measurable,
E[
∫
(0,T ]

|Y (s)|2 ds] < ∞},

� G2 = {Y : Ω× [0, T ] → R,F− adapted and càdlàg,
||Y ||2G2 = E[supt∈[0,T ] |Y (t)|2] < ∞},

� H2
µ = {(Z = (Zij)i ̸=j;Zij : Ω× [0, T ] → R, predictable,

E[
∫
(0,T ]

||Z(s)||2µ ds] < ∞}, where || · ||µ is defined in (4).

Denote Ω̂ = Ω× [0, T ]× J . Define the measure ν : P ⊗ 2J → R by

dν(ω, t, (k, l)) =
∑

(i,j)∈J

Ii(t−)µij(t) dt dP(ω)δ(i,j)(k, l).

Then, we have

||Z||2H2
µ
= E

∫
(0,T ]

∑
(i,j)∈J

Z2
ij(t)Ii(t−)µij(t) dt =

∫
Ω̂

|Z(ω̂)|2 dν(ω̂).

By Theorem 2.18, H2
µ = L2(Ω̂,P ⊗ 2J , ν) is a Banach space. Here we made

the convention that an element is unique in H2
µ if it is Ii(t−)µij(t) dt dP-a.e.

unique.
Also L2

PMT
([0, T ],R) = L2([0, T ] × Ω,PMT , λ ⊗ P)), where λ is the

Lebesgue measure on [0, T ], is complete.
We need the following martingale representation theorem to find processes

in the proof for the existence of a solution to the BSDE. Since {Nij : i ̸= j}
and X generate the same filtration we can state it in the following form.

Theorem 5.1 ([1, T11]). Let L be a càdlàg square integrable F-martingale.
Then there exists a unique family of predictable processes (Zij)i ̸=j ∈ H2

µ, i.e.
with

E[
∫
(0,T ]

||Z(t)||2µ ds] < ∞,

29



such that

L(t) = L(0) +
∑
i,j:i ̸=j

∫
(0,t]

Zij(s) dMij(s), dM(s), for t ∈ [0, T ], a.s.

While this theorem is not constructive, the uniqueness makes it so that
we can later use the following corollary to make Z explicit.

Corollary 5.2. Let L ∈ M2
0. If Z∆M = ∆L, then

L(t) =

∫
(0,t]

Z(s) dM(s), for t ∈ [0, T ], a.s.

Proof. Let Z ′ ∈ H2
µ such that

∫
(0,t]

Z ′(s) dM(s) = L(t), for t ∈ [0, T ], a.s.

Then Z ′∆M = ∆L, and
(Z − Z ′)∆M = 0.

Now, by (5)

E[
∫
(0,T ]

||(Z − Z ′)(s)||2µ ds] = E[
∑

0<s≤T

|(Z − Z ′)(s)∆M(s)|2] = 0.

Therefore, Z ′ = Z in H2
µ, and the claim follows.

We make formal the definition of the Markov chain backward stochastic
differential equations.

Definition 5.3. Let ξ ∈ L2
FT

(R). Assume a map g : [0, T ]×Ω×R×RJ → R
that is PMT ⊗ B(R)⊗ B(RJ)-measurable.

A pair (Y, Z) ∈ G2×H2
µ is a solution of the backward stochastic differential

equation,

− dY (t) = g(t, Y (t), Z(t)) dt− Z(t) dM(t), Y (T ) = ξ,

if the following conditions hold:

(i) YT = ξ

(ii)

Yt = ξ +

∫
(t,T ]

g(s, Y (s), Z(s)) ds−
∫
(t,T ]

Zs dMs, for all t ∈ [0, T ), a.s.

We call g the driver and the pair (ξ, g) the data of the BSDE.
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5.1 Existence and uniqueness theorem for BSDEs

Let us define the following norms, in preparation for the proof on the existence
of a solution to the BSDE. For β ≥ 0 and Z ∈ H2

µ

||Z||2H2
µ,β

= E[
∫
(0,T ]

eβs||Z(s)||2µ ds],

and for β ≥ 0 and Y ∈ L2
F([0, T ],R)

||Y ||22,β = E[
∫
(0,T ]

eβsY 2
s ds].

Also, we make the following assumptions, usual for differential equations.

(H1) There exists C ≥ 0 such that for all s ∈ [0, T ], y1, y2 ∈ R, z1 = (z1ij),
z2 = (z2ij), z

2
ij, z

1
ij ∈ R

|g(s, ω, y1, z1)− g(s, ω, y2, z2)| ≤ C(|y1 − y2|+ ||z1 − z2||µ(s, ω))

(H2)

E[
∫
(0,T ]

|g(t, ω, 0, 0)|2 dt] < ∞

First we prove the following estimate. The proof is a close adaptation of [7,
Proposition 5.3.1].

Theorem 5.4. Let (Y, Z), (Ŷ , Ẑ) ∈ G2 ×H2
µ be solutions to

Yt = ξ +

∫
(t,T ]

g(s, Ys−, Zs) ds−
∫
(t,T ]

Zs dMs,

for t ∈ [0, T ], and

Ŷt = ξ̂ +

∫
(t,T ]

ĝ(s, Ŷs−, Ẑs) ds−
∫
(t,T ]

Ẑs dMs,

for t ∈ [0, T ], with data (ξ, g), (ξ̂, ĝ) respectively. Assume that (H1-2) hold
for both data. Let A > 0. Then for β ≥ A+ 2C + 2C2 − 1

2
we have

||Y − Ŷ ||22,β + ||Z − Ẑ||2H2
µ,β

≤ 2eβTE|YT − ŶT |2

+
2

A
||g(·, Y (·), Z(·))− ĝ(·, Y (·), Z(·))||22,β.
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Proof. Assume β > 0. Consider Xt = Yt − Ŷt and f(t,Xt) = eβtX2
t for

Itô’s formula, Theorem 3.29. As shown in Theorem 4.10 Z · M is purely
discontinuous, therefore Xc = 0 and the second order term of the Itô’s formula
vanishes. Because Ys− = Ys ds-almost everywhere, we have

eβT (YT − ŶT )
2 = eβt(Yt − Ŷt)

2

+

∫
(t,T ]

βeβs(Ys − Ŷs)
2 ds

−
∫
(t,T ]

2eβs(Ys − Ŷs)(g(s, Ys, Zs)− ĝ(s, Ŷs, Ẑs)) ds

+

∫
(t,T ]

2eβs(Ys− − Ŷs−) dUs

+
∑

t<s≤T

(∆(eβs(Ys − Ŷs)
2)− 2eβs(Ys− − Ŷs−)∆(Ys − Ŷs)),

where

Ut =

∫
(0,t]

(Zs − Ẑs) dMs.

First, we have the computation∑
t<s≤T

∆(eβs(Xs)
2)− 2eβsXs−∆Xs

=
∑

t<s≤T

eβs(X2
s −X2

s− − 2Xs−(Xs −Xs−))

=
∑

t<s≤T

eβs(X2
s − 2Xs−Xs +X2

s−)

=
∑

t<s≤T

eβs(Xs −Xs−)
2

=
∑

t<s≤T

eβs(∆Xs)
2

=
∑

t<s≤T

eβs|(Zs − Ẑs)∆Ms|2,

where the last line is by Theorem 3.24. Now, since

E
∫
(t,T ]

||e
1
2
βs(Zs − Ẑs)||2µ ds ≤ eβTE

∫
(0,T ]

||Zs − Ẑs||2µ ds < ∞,

it follows from Theorem 4.10 that

E
∑

t<s≤T

eβs|(Zs − Ẑs)∆Ms|2 = E
∫
(t,T ]

eβs||Zs − Ẑs||2µ ds.
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Next, estimating e2βs(Ys − Ŷs)
2, using the Cauchy-Schwarz inequality Theo-

rem 2.14 and then Theorem 4.10 we get

E[
(∫

(0,T ]

e2βs(Ys− − Ŷs−)
2 d[Us]

) 1
2
]

≤ e2βTE[( sup
s∈[0,T ]

(Ys− − Ŷs−)
2)

1
2 (

∫
(0,T ]

d[Us])
1
2 ]

= e2βTE[( sup
s∈[0,T ]

(Ys− − Ŷs−)
2)

1
2 ([U ](T ))

1
2 ]

≤ e2βT
(
E[( sup

s∈[0,T ]

(Ys− − Ŷs−)
2]E[[U ](T )]

) 1
2

≤ e2βT ||Ys − Ŷs||G2||Z − Ẑ||H2
µ
< ∞.

By Theorem 3.23 the following integral is defined, and therefore is a local
martingale: ∫

(0,t]

eβs(Ys− − Ŷs−) dUs. (7)

Now, using the Burkholder-Davis-Gundy inequality Theorem 3.30 and the
characteristic property of the stochastic integral, (1), we have

E[ sup
t∈[0,T ]

|
∫
(0,t]

eβs(Ys− − Ŷs−) dUs|]

≤ CE[[
∫
(0,T ]

eβs(Ys− − Ŷs−) dUs]
1
2 ]

= CE[(
∫
(0,T ]

e2βs(Ys− − Ŷs−)
2 d[Us])

1
2 ] < ∞,

for some constant C > 0. By Theorem 3.13 the integral (7) is a martingale,
and so we get

E
∫
(t,T ]

2eβs(Ys− − Ŷs−) dUs = 0.

Now we have

EeβT (YT − ŶT )
2 = Eeβt(Yt − Ŷt)

2

+ E
∫
(t,T ]

βeβs(Ys − Ŷs)
2 ds

− E
∫
(t,T ]

2eβs(Ys − Ŷs)(g(s, Ys, Zs)− ĝ(s, Ŷs, Ẑs)) ds

+ E
∫
(t,T ]

eβs||Zs − Ẑs||2µ ds.
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We estimate,

2eβs|Ys − Ŷs||g(s, Ys, Zs)− ĝ(s, Ŷs, Ẑs)|
≤ 2eβs|Ys − Ŷs||g(s, Ys, Zs)− ĝ(s, Ys, Zs)|
+ 2eβs|Ys − Ŷs||ĝ(s, Ys, Zs)− ĝ(s, Ŷs, Ẑs)|.

Using Young’s inequality, for A > 0,

2ab ≤ Aa2 +
1

A
b2,

with a = |Ys − Ŷs| and b = |g(s, Ys, Zs)− ĝ(s, Ys, Zs)|, we get

2eβs|Ys − Ŷs||g(s, Ys, Zs)− ĝ(s, Ys, Zs)|

≤ Aeβs|Ys − Ŷs|2 +
1

A
eβs|g(s, Ys, Zs)− ĝ(s, Ys, Zs)|2.

With the Lipschitz condition (H1),

|ĝ(s, ω, Ys, Zs)− ĝ(s, ω, Ŷs, Ẑs)| ≤ C(|Ys − Ŷs|+ ||Zs − Ẑs||µ(ω)),

we have

2eβs|Ys − Ŷs||ĝ(s, Ys, Zs)− ĝ(s, Ŷs, Ẑs)|
≤ 2Ceβs|Ys − Ŷs|2 + 2Ceβs|Ys − Ŷs|||Zs − Ẑs||µ).

Using Young’s equality with a = 2
1
2C|Ys− Ŷs|, b = (1

2
)
1
2 ||Zs− Ẑs||, and A = 1,

we get

2Ceβs|Ys − Ŷs|||Zs − Ẑs||µ ≤ 2C2eβs|Ys − Ŷs|2 +
1

2
eβs||Zs − Ẑs||2µ.

Combining the above estimates, we have the inequality

2eβs|Ys − Ŷs||g(s, Ys, Zs)− ĝ(s, Ŷs, Ẑs)|

≤ Aeβs|Ys − Ŷs|2 +
1

A
eβs|g(s, Ys, Zs)− ĝ(s, Ys, Zs)|2

+ 2Ceβs|Ys − Ŷs|2 + 2C2eβs|Ys − Ŷs|2 +
1

2
eβs||Zs − Ẑs||2µ.
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Using the above inequality, we have

Eeβt|Yt − Ŷt|2

+ E
∫
(t,T ]

eβs||Zs − Ẑs||2µ ds

≤ EeβT |YT − ŶT |2

+ (A+ 2C + 2C2 − β)E
∫
(t,T ]

eβs(Ys − Ŷs)
2 ds

+
1

A
E
∫
(t,T ]

eβs|g(s, Ys, Zs)− ĝ(s, Ys, Zs)|2 ds

+
1

2
E
∫
(t,T ]

eβs||Zs − Ẑs||2µ ds.

Now for β ≥ A+ 2C + 2C2 + 1
2
we have

Eeβt|Yt − Ŷt|2

+
1

2
E
∫
(t,T ]

eβs||Zs − Ẑs||2µ ds

≤ EeβT |YT − ŶT |2

− 1

2
E
∫
(t,T ]

eβs(Ys − Ŷs)
2 ds

+
1

A
E
∫
(t,T ]

eβs|g(s, Ys, Zs)− ĝ(s, Ys, Zs)|2 ds.

Where letting t = 0 we get

||Y − Ŷ ||22,β + ||Z − Ẑ||2H2
µ,β

≤ 2eβTE|YT − ŶT |2

+
2

A
||g(·, Y (·), Z(·))− ĝ(·, Y (·), Z(·))||22,β

We establish the existence and uniqueness of the solution to the BSDE,
again closely adapting [7, Theorem 5.3.2].

Theorem 5.5. Let the driver g be such that the conditions (H1-2) are satisfied.
Then for any ξ ∈ L2

FT
(R), for t ∈ [0, T ],

Yt = ξ +

∫
(t,T ]

g(s, Ys, Zs) ds−
∫
(t,T ]

Zs dMs,

has a solution (Y, Z) ∈ G2 ×H2
µ. The solution (Y, Z) is unique in G2 ×H2

µ.
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Proof. Let (Y ,Z) ∈ L2
PMT

([0, T ],R)×H2
µ. We construct a map

F : L2
PMT

([0, T ],R) × H2
µ → L2

PMT
([0, T ],R) × H2

µ, F (Y ,Z) = (Y, Z) such
that

Yt = ξ +

∫
(t,T ]

g(s,Ys,Zs) ds−
∫
(t,T ]

Zs dMs. (8)

To begin, set

Nt = E[ξ +
∫
(0,T ]

g(s,Ys,Zs) ds|Ft].

Using Theorem 2.20 and Theorem 2.19 we have

E[E[ξ +
∫
(0,T ]

g(s,Ys,Zs) ds|Ft]
2]

≤ E[E[|ξ +
∫
(0,T ]

g(s,Ys,Zs) ds|2|Ft]]

= E[|ξ +
∫
(0,T ]

g(s,Ys,Zs) ds|2]

≤ 2E[|ξ|2] + 2E[|
∫
(0,T ]

g(s,Ys,Zs) ds|2]

≤ 2E[|ξ|2] + 2TE[
∫
(0,T ]

|g(s,Ys,Zs)− g(s, 0, 0) + g(s, 0, 0)|2 ds]

≤ 2E[|ξ|2] + 2TE[
∫
(0,T ]

2C2(|Ys|2 + ||Zs||2µ) + 2(g(s, 0, 0))2 ds]

< ∞,

where we used the conditions (H1-2) and Eξ2 < ∞.
SinceNt is adapted it is a square integrable martingale, and by Theorem 3.2

we can choose a càdlàg version.
By Theorem 5.1 there exists a unique Z ∈ H2

µ such that

Nt = N0 +

∫
(0,t]

Zs dMs

for t ∈ [0, T ]. Now set

Yt = E[ξ +
∫
(t,T ]

g(s,Ys,Zs) ds|Ft].

By Fubini’s theorem [5, Proposition 3.5.5] progressive measurability gives
Ft-measurability of

ω 7→
∫
(0,t]

g(s, ω, Ys(ω), Zs(ω)) ds.
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Therefore, we can calculate

Yt = Nt −
∫
(0,t]

g(s,Ys,Zs) ds

= N0 +

∫
(0,t]

Zs dMs −
∫
(0,t]

g(s,Ys,Zs) ds

= N0 +

∫
(0,T ]

Zs dMs −
∫
(0,T ]

g(s,Ys,Zs) ds

+

∫
(t,T ]

g(s,Ys,Zs) ds−
∫
(t,T ]

Zs dMs

= ξ +

∫
(t,T ]

g(s,Ys,Zs) ds−
∫
(t,T ]

Zs dMs,

which is (8).

Now let Y ∈ L2
PMT

([0, T ],R). From the construction of F we have that

Yt = Nt −
∫
(0,t]

g(s,Ys,Zs) ds.

Since Nt is càdlàg, Yt is also.

We have to show that the map is well defined. Let Z ′ ∈ H2
µ such that

Z = Z ′ Ii(t−)µij(t) dt dP-a.e. and Y ′ ∈ L2
PMT

([0, T ],R) such that Y = Y ′

ds dP-a.e. Then

E[|Nt −N ′
t|] = E[|E[

∫
(0,T ]

g(s,Ys,Zs) ds−
∫
(0,T ]

g(s,Y ′
s,Z ′

s) ds|Ft]|]

≤ E[
∫
(0,T ]

C(|Ys − Y ′
s|+ ||Zs −Z ′

s||µ) ds] = 0

for all t ∈ [0, T ]. We have Nt = N ′
t a.s. for all t ∈ [0, T ]. Since N and N ′

t

are càdlàg modifications of each other, they are equal. Then by construction
Z = Z ′. Similarly

E[|Yt − Y ′
t |] = E[|E[

∫
(0,T ]

g(s,Ys,Zs) ds−
∫
(0,T ]

g(s,Y ′
s,Z ′

s) ds|Ft]|]

≤ E[
∫
(t,T ]

C(|Ys − Y ′
s|+ ||Zs −Z ′

s||µ) ds] = 0,

for all t ∈ [0, T ], gives Y = Y ′. We have shown that (Y, Z) exists and is
unique.
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As Y is càdlàg, we have by Doob’s maximal inequality Theorem 3.4

||Y ||2G2 = E sup
t

|Yt|2

≤ 2E sup
t

|Nt|2 + 2E|
∫
(0,T ]

|g(s,Ys,Zs)| ds|2

≤ 8E|NT |2 + 2E|
∫
(0,T ]

|g(s,Ys,Zs)| ds|2

≤ 16E|YT |2 + 18E|
∫
(0,T ]

|g(s,Ys,Zs)| ds|2

< ∞.

Now we have that Y ∈ G2. We have shown F (L2
PMT

([0, T ],R) × H2
µ) ⊂

G2 ×H2
µ.

Next we will show that the map F is a contraction. Let (Y ,Z), (Ŷ , Ẑ) ∈
L2
PMT

([0, T ],R)×H2
µ. Define

f(s, ω) = g(s, ω,Ys(ω),Zs(ω))

for (Y, Z) = F (Y ,Z) and

f̂(s, ω) = g(s, ω, Ŷs(ω), Ẑs(ω))

for (Ŷ , Ẑ) = F (Ŷ , Ẑ). Set ξ = ξ̂, then by the construction of F, (Y, Z) and
(Ŷ , Ẑ) solve

Yt = ξ +

∫
(t,T ]

f(s) ds−
∫
(t,T ]

Zs dMs,

for t ∈ [0, T ], and

Ŷt = ξ +

∫
(t,T ]

f̂(s) ds−
∫
(t,T ]

Ẑs dMs,

for t ∈ [0, T ], respectively. For these equations the assumptions of Theorem 5.4
are satisfied and therefore

||Y − Ŷ ||22,β + ||Z − Ẑ||2H2
µ,β

≤ 2

A
||f(·, ·)− f̂(·, ·)||22,β

≤ 2

A
||g(·, ·,Y(·),Z(·))− g(·, ·, Ŷ(·), Ẑ(·))||22,β

≤ 4C2

A
(||Y − Ŷ||22,β + ||Z − Ẑ||2H2

µ,β
).
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By taking A such that A > 4C2, and β according to Theorem 5.4 we have
that F is a contraction.

Since 1 ≤ eβt ≤ eβT , we have that the norms || · ||H2
µ
, || · ||H2

µ,β
induce

equivalent metrics. It follows that the space L2
PMT

([0, T ],R)×H2
µ is a complete

space with the β-metric.
Because F is a contraction, there exists a fixed point, F (Y, Z) = (Y, Z),

by the Banach fixed point theorem, [16, Theorem 12.8].
Since F (L2

PMT
([0, T ],R)×H2

µ) ⊂ G2 ×H2
µ, we have (Y, Z) ∈ G2 ×H2

µ.

Last, for ξ = ξ̂ and g = ĝ by Theorem 5.4

||Y − Ŷ ||22,β + ||Z − Ẑ||2H2
µ,β

≤ 2eβTE|ξ − ξ̂|2

+
2

A
||g(·, Y (·), Z(·))− ĝ(·, Y (·), Z(·))||22,β

= 0,

giving us the uniqueness.

5.2 Markovian BSDEs

In this section we introduce Markovian BSDEs and prove a nonlinear Thiele
equation for the prospective reserve, when the driver is a deterministic function
of the Markov process. We primarily follow [3] for this section, but we have
altered the assumptions for the proofs. Also, the proof for the existence of
the solution to the Thiele equation adapts that of [14, Theorem 5.1].

We say that the BSDE{
− dY (t) = g(t, ·, Y (t), Z(t)) dt− Z(t) dM(t),

Y (T ) = ξ,

where ξ = ϕ(X(T )), for a given (deterministic) ϕ : S → R, is Markovian if
Y (t) = V (t,X(t)) for a deterministic function V : [0, T ]× S → R.

As mentioned, we assume that the driver g specifying the payment process
is a deterministic function of (t,X(t), Y (t), Z(t)), now defined as a function
g : [0, T ]× S × R× RJ → R that is PMT ⊗ B(R)⊗ B(RJ)-measurable.

Instead of (H1-2) we have:

(G1) There exists C ≥ 0 such that for all s ∈ [0, T ], i ∈ S, y1, y2 ∈ R,
z1 = (z1ij), z2 = (z2ij), z

2
ij, z

1
ij ∈ R

|g(s, i, y1, z1)− g(s, i, y2, z2)| ≤ C(|y1 − y2|+ ||z1 − z2||µ(s, ω)).
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(G2) For all j ∈ S ∫ T

0

|g(s, j, 0, 0)| ds < ∞.

Theorem 5.6. Let g : [0, T ]× S × R× RJ → R be such that G1-2 hold and
t 7→ g(t, x, y, z) is continuous for x ∈ R, y ∈ R, z ∈ RJ , and ϕ : S → R. Then
there exists a solution V : [0, T ] × S → R, t 7→ V (t, i) differentiable, to the
nonlinear Thiele equation:

∂V

∂t
(t, i) + g(t, i, V (t, i), (V (t, k)− V (t, j))jk)

+
∑
j:j ̸=i

µij(t)(V (t, j)− V (t, i)) = 0,

V (T, i) = ϕ(i), i ∈ S.

Proof. We endow S with the discrete topology. First we assume that there
exists V ∈ C([0, T ]× S,R) such that

V (t, i) =
∑
j∈S

pij(t, T )ϕ(j)

+

∫ T

t

∑
j∈S

pij(t, s)g(s, j, V (s, j), (V (s, k)− V (s, j))jk) ds. (9)

Since (G1) holds and V and g are continuous in their first arguments we have
the continuity of s 7→ g(s, j, V (s, j), (V (s, k) − V (s, j))jk). Because pij(t, s)
is continuously differentiable in t, we can use the Leibniz integral rule to get

∂V

∂t
(t, i) =

∑
j∈S

∂pij
∂t

(t, T )ϕ(j)

−
∑
j∈S

pij(t, t)g(t, j, V (t, j), (V (t, k)− V (t, j))jk)

+

∫ T

t

∑
j∈S

∂pij
∂t

(t, s)g(s, j, V (s, j), (V (s, k)− V (s, j))jk) ds. (10)

By the Kolmogorov backward equation, (3), we get

∂V

∂t
(t, i) = −

∑
j∈S

∑
k

µik(t)pkj(t, T )ϕ(j)

− g(t, i, V (t, i)), (V (t, k)− V (t, j))jk)

−
∫ T

t

∑
j∈S

∑
k

µik(t)pkj(t, s)g(s, j, V (s, j)), (V (s, k)− V (s, j))jk) ds.
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Using (9), we have

∂V

∂t
(t, i) = −g(t, i, V (t, i)), (V (t, k)− V (t, j))jk)

−
∑
k

µik(t)V (t, k).

We reformulate this using (2),

∂V

∂t
(t, i) + g(t, i, V (t, i)), (V (t, k)− V (t, j))jk) +G(t)V (t, i)

=
∂V

∂t
(t, i) + g(t, i, V (t, i)), (V (t, k)− V (t, j))jk)

+
∑
j:j ̸=i

µij(t)(V (t, j)− V (t, i))

= 0.

Now we prove that such V exists. Let V ∈ C([0, T ] × S,R). Define
H(V) = V by

V (t, i) =
∑
j∈S

pij(t, T )ϕ(j)

+

∫ T

t

∑
j∈S

pij(t, s)g(s, j,V(s, j)), (V(s, k)− V(s, j))jk) ds.

Similarly as in (10), we get the differentiability of t 7→ V (t, i). Therefore
V ∈ C([0, T ] × S,R) and H : C([0, T ] × S,R) → C([0, T ] × S,R) is well
defined.

Let V1,V2 ∈ C([0, T ]× S,R). Define Zr = (Zr
jk)(j,k)∈J , for r = 1, 2, by

Zr
jk(s) = Vr(s, k)− Vr(s, j), for t ∈ [0, T ], j, k ∈ S.

Since µjk are uniformly bounded on [0, T ], we can define

µ∗ = sup
j,k:j ̸=k

sup
s∈[0,T ]

µjk(s).

Now we can estimate

||Z1(s)−Z2(s)||2µ =
∑
j ̸=k

|V1(s, k)− V2(s, k)− (V1(s, j)− V2(s, j))|2Ij(s−)µjk(s)

≤ µ∗
∑
j ̸=k

2|V1(s, k)− V2(s, k)|2 + 2|V1(s, j)− V2(s, j)|2

≤ 4µ∗|J | sup
k∈S

sup
r∈[0,s]

|V1(r, k)− V2(r, k)|2,
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and, for some L > 0,

||Z1(s)−Z2(s)||µ ≤ L sup
k∈S

sup
s∈[0,s]

|V1(s, k)− V2(s, k)|.

Now we can compute, for H(V1) = V1 and H(V2) = V2,

|V1(t, i)− V2(t, i)|

≤
∫ T

t

∑
j∈S

pij(t, s)|g(s, j,V1(s, j),Z1(s))− g(s, j,V2(s, j),Z2(s))| ds

≤
∫ T

t

∑
j∈S

|g(s, j,V1(s, j),Z1(s))− g(s, j,V2(s, j),Z2(s))| ds

≤
∫ T

t

∑
j∈S

C(|V1(s, j)− V2(s, j)|+ ||Z1(s)−Z2(s)||µ) ds

≤
∫ T

t

∑
j∈S

C(sup
k∈S

sup
s∈[0,s]

|V1(s, k)− V2(s, k)|+ L sup
k∈S

sup
s∈[0,s]

|V1(s, k)− V2(s, k)|) ds

≤ CS(1 + L)

∫ T

t

sup
k∈S

sup
s∈[0,s]

|V1(s, k)− V2(s, k)| ds

= M1

∫ T

t

sup
k∈S

sup
s∈[0,s]

|V1(s, k)− V2(s, k)| ds,

where M1 = CS(1 + L). This implies

sup
k∈S

sup
s∈[0,T ]

|V1(t, k)− V2(t, k)| ≤ M1

∫ T

0

sup
k∈S

sup
s∈[0,s]

|V1(s, k)− V2(s, k)| ds. (11)

First we get the continuity of H:

sup
k∈S

sup
s∈[0,T ]

|V1(t, k)− V2(t, k)| ≤ M1

∫ T

0

sup
k∈S

sup
s∈[0,s]

|V1(s, k)− V2(s, k)| ds

≤ M1T sup
k∈S

sup
s∈[0,T ]

|V1(s, k)− V2(s, k)|.

Then define a sequence V n by V 0(t, i) =
∑

j∈S pij(t, T )ϕ(j) and V n+1 =
H(V n). By the above inequality (11),

sup
i∈S

sup
t∈[0,T ]

|V n+1(t, i)− V n(t, i)|

≤ M1

∫ T

0

(sup
k∈S

sup
u∈[0,s]

|V n(u, k)− V n−1(u, k)|) ds.
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Similarly as before, now also using (G2) and the definition of V 0

|V 1(t, i)− V 0(t, i)|

≤
∫ T

t

∑
j∈S

pij(t, s)|g(s, j, V 0(s, j),Z0(s))| ds

≤
∫ T

t

∑
j∈S

|g(s, j, V 0(s, j), Z0(s))− g(s, j, 0, 0) + g(s, j, 0, 0)| ds

≤
∫ T

t

(∑
j∈S

C(|V 0(s, j)|+ ||Z0(s)||µ) +
∑
j∈S

|g(s, j, 0, 0)|
)
ds

≤ CS(1 + L)

∫ T

0

sup
k∈S

sup
u∈[0,T ]

|V 0(u, k)| ds+
∑
j∈S

∫ T

0

|g(s, j, 0, 0)| ds

≤ CS(1 + L)T
∑
j∈S

ϕ(j) +
∑
j∈S

∫ T

0

|g(s, j, 0, 0)| ds

≤ M2T,

for some M2 > 0. Giving us

sup
i∈S

sup
t∈[0,T ]

|V 1(t, i)− V 0(t, i)| ≤ M2T.

Now we get recursively

sup
k∈S

sup
s∈[0,T ]

|V n+1(t, i)− V n(t, i)|

≤ M1

∫ T

0

(sup
k∈S

sup
u∈[0,sn−1]

|V n(u, k)− V n−1(u, k)|) dsn−1

≤ M2
1

∫ T

0

∫ sn−1

0

(sup
k∈S

sup
u∈[0,sn−2]

|V n−1(u, k)− V n−2(u, k)|) dsn−2 dsn−1

. . .

≤ Mn
1

∫ T

0

· · ·
∫ s1

0

M2T ds0 . . . dsn−1

=
Mn

1 M2T
n+1

n!
.
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And finally,

sup
k∈S

sup
s∈[0,T ]

|V m(t, i)− V n(t, i)|

≤
m−1∑
i=n

sup
k∈S

sup
s∈[0,T ]

|V i+1(t, i)− V i(t, i)|

≤
m−1∑
i=n

M i
1M2T

i+1

i!
,

which goes to 0 as n → ∞. We have shown that (V n) is Cauchy in C([0, T ]×
S,R), and therefore we have V ∈ C([0, T ] × S,R) V n → V . Because H is
continuous we also have H(V n) → V , and so H(V ) = V .

Theorem 5.7. Let the driver g be such that (G1-2) hold and t 7→ g(t, x, y, z) is
continuous for x ∈ R, y ∈ R, z ∈ RJ , and ϕ : S → R. Let V : [0, T ]× S → R,
t 7→ V (t, i) be differentiable, and solve the nonlinear Thiele equation

∂V

∂t
(t, i) + g(t, i, V (t, i), (V (t, k)− V (t, j))jk)

+
∑
j:j ̸=i

µij(t)(V (t, j)− V (t, i)) = 0,

V (T, i) = ϕ(i), i ∈ S.

Now the pair (Y, Z) where Y (t) = V (t,X(t)) and Zjk(t) = V (t, k)−V (t, j)
for t ∈ [0, T ], j, k ∈ S, solves the BSDE{

− dY (t) = g(t,X(t), Y (t), Z(t)) dt− Z(t) dM(t)

Y (T ) = ϕ(X(T )).

Then, we have the following representation for the prospective reserve as a
deterministic function of t and X(t):

V (t,X(t)) = E[ϕ(X(T )) +

∫
(t,T ]

g(s,X(s), Y (s), Z(s)) ds|X(t)],

for t ∈ [0, T ].

Proof. The proof follows [3, Theorem 3.4.2].
By Dynkin’s formula Theorem 4.8

MV (t) = V (t,X(t))− V (0, X(0))

−
∫ t

0

(
G(s)V (s,X(s)) +

∂V

∂s
(s,X(s))

)
ds (12)
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is a martingale, for which we have the jump process

∆MV (t) = ∆V (t,X(t)) =
∑
j:i ̸=j

(V (t, j)− V (t, i))Ii(t−)Ij(t)

=
∑
j:i ̸=j

(V (t, j)− V (t, i))∆Mij(t).

Define Z = (Zij), Zij(t) = V (t, j)− V (t, i). Using Corollary 5.2 we get

MV (t) =

∫
(0,t]

Z(s) dM(s) =
∑
j:i ̸=j

∫
(0,t]

(V (t, j)− V (t, i)) dM(s).

Now by (12) we get∫
(t,T ]

Z(s) dM(s) = V (T,X(T ))− V (t,X(t))

−
∫
(t,T ]

G(s)V (s,X(s)) +
∂V

∂s
(s,X(s)) ds.

Using the Thiele equation in the form

∂V

∂t
(t, i) + g(t, i, V (t, i), (V (t, k)− V (t, j))jk) +G(t)V (t, i) = 0,

and rearranging we get

V (t,X(t)) = V (T,X(T )) +

∫
(t,T ]

g(t,X(t), V (t,X(t)), (V (t, k)− V (t, j))jk) ds

−
∫
(t,T ]

Z(s) dM(s),

which is the BSDE for (Y, Z), where Y (t) = V (t,X(t)).

Taking conditional expectation with respect to Ft,

Y (t) = E[ϕ(X(T )) +

∫
(t,T ]

g(s,X(s), Y (s), Z(s)) ds|Ft]. (13)

Because X, Y and Z are uniformly bounded on Ω× [0, T ] we can use (G1)
and the continuity of t 7→ g(t, i, y, z) to get that
(ω, t) 7→ g(t,X(ω, t), Y (ω, t), Z(ω, t)) is uniformly bounded on Ω× [0, T ]. We
also have σ(X(t))-measurability of ω 7→ g(t,X(t, ω), Y (t, ω), Z(t, ω)). Now
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we can interchange the integral and conditional expectation by Theorem 2.21
and use the Markov property Theorem 4.2 to get

E[
∫
(t,T ]

g(s,X(s), Y (s), Z(s)) ds|Ft]

=

∫
(t,T ]

E[g(s,X(s), Y (s), Z(s))|Ft] ds

=

∫
(t,T ]

E[g(s,X(s), Y (s), Z(s))|X(t)] ds

= E[
∫
(t,T ]

g(s,X(s), Y (s), Z(s)) ds|X(t)].

Finally, with the above and (13) we have

Y (t) = E[ϕ(X(T )) +

∫
(t,T ]

g(s,X(s), Y (s), Z(s)) ds)|X(t)].
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