¹¹³Cd:n ja ¹¹⁵In:n perustilan beetahajoaminen MQPM-mallin avulla laskettuna

Mika Mustonen

Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 18. elokuuta 2005

Kiitokset

Tahdon kiittää tämän tutkielman ohjaajaa, professori Jouni Suhosta, paitsi hyvästä ohjauksesta myös mielenkiintoisesta tutkielman aiheesta. Haluan kiittää myös Jyväskylän yliopiston fysiikan laitosta virikkeikkäästä oppimisympäristöstä viiden viime vuoden aikana ja apurahan muodossa saadusta taloudellisesta tuesta opintojen loppuvaiheissa. Amanuenssi Soili Leskisen apu käytännön asioissa oli korvaamatonta. Eero Holmlundin neuvot muutamien käytettyjen ohjelmien osalta ansaitsevat myös kiitoksen; Lisäksi hänen väitöskirjansa toimi useaan otteeseen erinomaisena inspiraation lähteenä.

Lopuksi haluan vielä muistaa kiitoksilla kaikkia tuttavia ja sukulaisia, jotka ovat kannustaneet minua opiskelujeni aikana. Heiltä on aina tarvittaessa löytynyt muutama rohkaiseva sana.

Tiivistelmä

Tässä tutkielmassa tarkastellaan kahta neljästi kiellettyä ei-uniikkia β^- -hajoamista: ¹¹³Cd:n perustilan hajoamista ¹¹³In:n perustilalle ja ¹¹⁵In:n perustilan hajoamista ¹¹⁵Sn:n perustilalle. Ytimien rakennetta kuvattiin MQPMmallin [1] avulla, jossa tilojen rakennuspalikoina toimivat referenssiydinten yksikvasihiukkastilat ja QRPA-fononit. Referenssiytimenä ensiksi mainittuun siirtymään käytettiin ¹¹²Cd:a ja jälkimmäiseen ¹¹⁶Sn:a.

Aluksi valenssiavaruudelle laskettiin Woods-Saxon-potentiaalia käyttäen yksihiukkaskanta, jonka antamia yksihiukkasenergioita säädettiin siten, että BCS-laskujen tuottama kvasihiukkasspektri vastaisi mahdollisimman hyvin tarkasteltavien parittomien ytimien kokeellisia matalaenergiaspektrejä ja alimmat kvasihiukkasenergiat kokeellisista separaatioenergioista laskettuja pariaukkoja. Näin saatuja tuloksia käytettiin referenssiydinten QRPA-spektrin laskemiseen, ja edelleen parittomien ydinten MQPM-spektrien laskemiseen. MQPM:n antamia perustilojen aaltofunktioita käytettiin yksihiukkassiirtymätiheyksien tuottamiseen β -hajoamislaskuja varten.

Tuloksina saatiin log ft-arvoiksi siirtymälle ¹¹³Cd:n perustilalta ¹¹³In:n perustilalle 23,94 ja siirtymälle ¹¹⁵In:n perustilalta ¹¹⁵Sn:n perustilalle 23,20. Vastaavat kokeelliset ([2], [3]) arvot ovat 23,20(10) ja 22,5. Molemmissa tapauksissa tulokset olivat tyydyttäviä, joskin hieman kokeellisia suurempia. ¹¹³Cd:n perustilan puoliintumisajaksi saatiin laskemalla $4,95 \cdot 10^{16}$ a (kokeellinen arvo [2]:n mukaisesti $7,7(3) \cdot 10^{15}$ a ja [4]:n mukaisesti $8,2(2) \cdot 10^{15}$ a) ja ¹¹⁵In:n perustilan puoliintumisajaksi 1,99 $\cdot 10^{15}$ a (kokeellinen arvo $4,41(25) \cdot 10^{14}$ a).

Sisältö

1	Joh	danto	1							
2	Teoriaa									
	2.1	Yksihiukkaskanta	2							
	2.2	Nukleonien pariutuminen ja BCS	3							
	2.3	Kahden ja kolmen kvasihiukkasen viritykset	5							
	2.4	Sallituista ja kielletyistä beetahajoamisista	7							
3	Las	kennalliset menetelmät	14							
	3.1	Kuorimallilaskut	14							
	3.2	Puoliintumisajan ja $\log ft$ -arvon määrittäminen $\ldots \ldots \ldots$	16							
4	Tul	okset	17							
	4.1	Yksihiukkaskanta, BCS ja QRPA	17							
	4.2	MQPM-spektrit ja yksihiukkassiirtymätiheydet	23							
	4.3	Beetahajoamislaskut	29							
5	Joh	topäätökset	31							
\mathbf{Li}	ite A	Esimerkki $\log ft$ -arvon laskemisesta	33							
\mathbf{Li}	ite B	Ohjelmalistaus: logft.f90	39							
Li	ite C	Ajo- ja lokitiedostoja	43							

1 Johdanto

Ydinmallit — kuten fysikaaliset mallit yleensäkin — perustuvat aina yksinkertaistuksiin ja approksimaatioihin. Yksinkertaistaminen on välttämätöntä edes jonkinlaisten laskennallisten ennusteiden saamiseksi. Kokeellisesti havainnoitujen beetahajoamisten, sähkömagneettisten siirtymien ja multipolimomenttien vertaaminen laskettuihin on tehokas tapa tutkia ydinmallien toimivuutta.

Ytimien mallintamista voidaan lähestyä kahdesta eri suunnasta: Makroskooppisten tai mikroskooppisten mallien avulla. Makroskooppiset mallit lähtevät kuvaamaan ydintä kokonaisuutena, ydinmateriana, kun mikroskooppiset mallit puolestaan pyrkivät käsittelemään ydintä monen nukleonin kvanttimekaanisena järjestelmänä.

Parittomien ydinten matalaenergiaspektreissä muutamien alimpien tilojen kuvaaminen onnistuu yleensä BCS-kvasihiukkasvirityksillä. Luonnollinen askel parantaa mallia on tuoda mukaan kolmen kvasihiukkasen viritykset. MQPM-mallissa kolmen kvasihiukkasen viritykset rakennetaan BCS-kvasihiukkasista ja QRPA-fononeista käyttäen koko ajan samaa kaksihiukkasvuorovaikutusta.

Tässä tutkielmassa lasketaan MQPM-mallin avulla log ft-arvot ja puoliintumisajat ¹¹³Cd:n ja ¹¹⁵In:n perustilojen β^- -hajoamisille. Tarkoituksena on nähdä, kuinka hyvin MQPM-mallin pohjalta tehty lasku kykenee toistamaan kokeelliset tulokset näissä tapauksissa. ¹¹³Cd ja ¹¹⁵In ovat varsin ihanteellisia ytimiä erittäin kiellettyjen β^- -hajoamisten tarkasteluun, sillä niiden perustilalla on vain yksi hajoamiskanava: neljästi kielletty ei-uniikki hajoaminen suoraan tytärytimen perustilalle.

2 Teoriaa

2.1 Yksihiukkaskanta

Ydin on A keskenään voimakkaasti vuorovaikuttavan nukleonin järjestelmä, ja siten toivoton ratkaista eksaktisti ainakin, jos A ei ole hyvin pieni. Keskeiskentäapproksimaation [5] ideana on käsitellä tätä järjestelmää efektiivisessä keskeiskentässä heikosti keskenään vuorovaikuttavien hiukkasten – tai kvasihiukkasten – järjestelmänä. Esittämällä nukleonin potentiaalienergia tässä keskeiskentässä operaattorilla $\hat{V}_{\rm MF}$ voidaan määritellä keskeiskentän Hamiltonin operaattori $\hat{H}_{\rm MF}$ siten, että

$$\hat{H}_{\rm MF} = \hat{T} + \hat{V}_{\rm MF} \tag{1}$$

ja jäännösvuorovaikutus

$$\hat{V}_{\text{RES}} = \hat{V} - \hat{V}_{\text{MF}}.$$
(2)

Tällöin saadaan kineettistä energiaa kuvaavasta osasta \hat{T} ja potentiaalienergiaa kuvaavasta osasta \hat{V} koostuva Hamiltonin operaattori \hat{H} muotoon

$$\hat{H} = \hat{T} + \hat{V} = \hat{T} + \hat{V}_{\rm MF} + \hat{V} - \hat{V}_{\rm MF} = \hat{H}_{\rm MF} + \hat{V}_{\rm RES}.$$
(3)

Mikäli keskeiskenttä saadaan valittua siten, että jäännösvuorovaikutus \hat{V}_{RES} on pieni, voidaan ongelmaan pureutua häiriöteorian avulla.

Mahdollisimman hyvän keskeispotentiaalin määrittäminen johtaa variaatioongelmaan, jossa tehtävänä on löytää yksihiukkastilojen joukko $\{\phi_{\alpha}(\bar{x})\}$, jolla \hat{V}_{RES} on mahdollisimman pieni. Tällainen variaatio-ongelma voidaan ratkaista Hartree-Fock-menetelmällä [5], jonka pohjana on Hartree-Fock-yhtälö

$$\left(\frac{-\hbar^2}{2M_N}\nabla^2 + \hat{V}_{\rm HF}(\{\phi_i(\bar{x})\})\right)\phi_\alpha(\bar{x}) = \varepsilon_\alpha\phi_\alpha(\bar{x}),\tag{4}$$

jossa $i = 1, 2, \ldots, A, \alpha = 1, 2, \ldots$ ja M_N on nukleonin massa (joka tässä oletetaan protoneille ja neutroneille samaksi). Yhtälössä esiintyvän Hartree-Fock-potentiaalin $\hat{V}_{\rm HF}(\{\phi_i(\bar{x})\})$ parametreina ovat kaikki yksihiukkasaalto-funktiot, mikä tekee yhtälöstä Schrödingerin yhtälöstä hyvin poikkeavan rat-kaista. Hartree-Fock-yhtälö onkin ratkaistava iteratiivisesti: Aloitetaan arvauksesta yksihiukkastilojen joukoksi, tuotetaan niiden avulla Hartree-Fock-potentiaali, josta edelleen saadaan uusi yksihiukkastilojen joukko. Potentiaalin tuottamista ja yksihiukkastilojen ratkaisemista jatketaan, kunnes peräkkäisten iteraatioiden tuottamat aaltofunktiot ja/tai yksihiukkasenergiat eivät enää poikkea merkittävästi toisistaan.

Usein Hartree-Fock-keskeispotentiaalin sijaan käytetään kuitenkin jotain muuta keskeispotentiaalia, kuten Woods-Saxon-keskeispotentiaalia [6]

$$v_{\rm WS}(r) = \frac{-V_0}{1 + e^{(r-R)/a}},\tag{5}$$

jossa parametreina voidaan käyttää esimerkiksi arvoja

$$V_0 = 51 \pm 33 \times \frac{N-Z}{A} \text{ MeV}, \tag{6}$$

jossa merkeistä valitaan + protonien ja – neutronien tapauksessa, ytimen säde $R \approx 1,27 \times A^{1/3}$ fm ja ytimen "pinnan pehmeyttä" kuvaava parametri $a \approx 0,67$ fm. Lisäksi on otettava huomioon voimakas spin-rata-vuorovaikutus, joka johtaa (n,l)-tilojen voimakkaaseen silpoutumiseen ja kuorirakenteen huomattaviin eroihin verrattuna atomin elektroniverhon kuorirakenteeseen.

2.2 Nukleonien pariutuminen ja BCS

Nukleoneilla on voimakas taipumus muodostaa pareja, joissa kaksi nukleonia on asettunut samalle tilalle spinit vastakkaisiin suuntiin [7]. Tästä ilmiöstä kenties näkyvin seuraus on kaikkien parillis-parillisten ytimien perustilan spin-pariteetti 0^+ . Eräs tapa ottaa pariutuminen huomioon kuorimallissa on BCS-malli, jonka Bardeen, Cooper ja Schrieffer kehittivät alun perin selittämään metallien suprajohtavuutta [8], mutta jota hyvin pian alettiin soveltaa myös ytimien kuvaamiseen.

BCS-tila $|BCS\rangle$ [5] voidaan määritellä

$$|BCS\rangle = \prod_{\alpha>0} (u_a - v_a c^{\dagger}_{\alpha} \tilde{c}^{\dagger}_{\alpha}) |CORE\rangle , \qquad (7)$$

jossa on käytetty Barangerin merkintätapaa [9] $\alpha = (a, m_{\alpha})$ ja $a = (n_a, l_a, j_a)$. |CORE \rangle sisältää valitun valenssiavaruuden alapuolelle jäävät tilat. Operaattorit c^{\dagger}_{α} ja $\tilde{c}^{\dagger}_{\alpha}$ ovat hiukkasten luomisoperaattoreita: Näistä c^{\dagger}_{α} luo nukleonin tilalle α ja $\tilde{c}^{\dagger}_{\alpha} = (-1)^{j_a + m_{\alpha}} c^{\dagger}_{-\alpha}$ tilalle $-\alpha = (a, -m_{\alpha})$.

BCS-tila voidaan lyhyellä laskulla manipuloida myös muotoon

$$|\text{BCS}\rangle = \left(\prod_{\alpha>0} u_a\right) \sum_{N \text{ parillinen}} \frac{1}{(N/2)!} \left(-\sum_{\alpha>0} \frac{v_a}{u_a} c_\alpha^{\dagger} \tilde{c}_\alpha^{\dagger}\right)^{N/2} |\text{CORE}\rangle, \quad (8)$$

josta nähdään, että BCS-tila koostuu komponenteista, joilla on toisistaan poikkeava (mutta parillinen) hiukkasluku. Nukleonien lukumäärä ei ole siis hyvä kvanttiluku BCS-tilalle. BCS-laskuissa vaaditaankin siksi, että *keskimääräinen* hiukkaslukumäärä (tai hiukkaslukumäärän odotusarvo) vastaa aktiivisten nukleonien¹ lukumäärää.

BCS-tila toimii tyhjiönä ns. BCS-kvasihiukkasille, joiden luomis- ja tuhoamisoperaattorit saadaan Bogolyubov-Valatin -muunnoksesta [9]

$$a_{\alpha}^{\dagger} = u_a c_{\alpha}^{\dagger} + v_a \tilde{c}_{\alpha} \text{ ja} \tag{9}$$

$$\tilde{a}_{\alpha} = u_a \tilde{c}_{\alpha} - v_a \tilde{c}_{\alpha}^{\dagger}.$$
(10)

Vaatimalla amplitudeille normitusehto

$$u^2 + v^2 = 1 \tag{11}$$

saadaan kvasihiukkasten luomis- ja tuhoamisoperaattorit toteuttamaan antikommutaatiorelaatiot

$$\left\{a_{\alpha}, a_{\beta}^{\dagger}\right\} = \delta_{\alpha\beta} \text{ ja } \left\{a_{\alpha}, a_{\beta}\right\} = \left\{a_{\alpha}^{\dagger}, a_{\beta}^{\dagger}\right\} = 0.$$
(12)

Koska BCS-kvasihiukkaset noudattavat fermionien kommutaatiosääntöjä, voidaan niitä pitää (efektiivisinä) fermioneina.

Eräs seuraus nukleonien pariutumisesta on pariaukon (kuva 1) esiintyminen [5]: Parittoman ytimen sidosenergia on pienempi kuin kahden naapurina olevan parillis-parillisen ytimen sidosenergian keskiarvo. Tämä selittyy, kun nukleonin ajatellaan luovuttavan pariutuessaan energian Δ : Parillisparillisten ydinten perustiloissa kaikki nukleonit ovat pariutuneet, mutta parittoman ytimen perustilassa yksi nukleoneista on jäänyt paritta, ja siten perustila on pariaukon Δ verran korkeammalla kuin parillis-parillisten naapureiden massojen keskiarvo. Toinen hyvin näkyvä seuraus on parillis-parillisten ydinten alimpien viritysten energia, joka yleensä on luokkaa 2Δ vastaten yhtä "rikkoutunutta paria"².

BCS-laskuissa alimman kvasihiukkasen
ergian tulee siten vastata pariaukkoa, ja ko. kvasihiukkasen kokonaispyörimismäärä
nj ja pariteetin $\pi = (-1)^l$ tarkasteltavan parit
toman ytimen perustilan pyörimismäärää ja pariteettia. Vas-

 $^{^1\}mathrm{Aktiiviset}$ nukleonit ovat valenssiavaruudessa olevat nukleonit tarkasteltavassa ytimessä.

 $^{^2 \}rm Joskus$ kollektiiviset rotaatiot tai vibraatiot voivat aiheuttaa parillis-parilliseen ytimeen energiatiloja, jotka ovat energialtaan alle 2 Δ .

Kuva 1: Kaaviokuva pariaukosta. $^{A-1}_{\ \ Z}$ X ja $^{A+1}_{\ \ Z}$ X ovat parillis-parillisia ytimiä. Pariaukon Δ suuruutta on kuvassa liioiteltu huomattavasti; todellisuudessa massaluvultaan yhdellä poikkeavien nukleonien massaero on noin tuhatkertainen pariaukkoon nähden.

taavuutta voidaan hienosäätää parivuorovaikutuksen voimakkuutta muuttamalla: Käytännössä siis kertomalla BCS-laskuissa esiintyvät parivuorovaikutusmatriisielementit vakiolla $g_{\rm pair}^{({\rm p})}$ protoneille ja $g_{\rm pair}^{({\rm n})}$ neutroneille. Pariaukot, joihin nämä säädetään, voidaan laskea kokeellisesta datasta esimerkiksi interpolaatiokaavoilla

$$\Delta_{\rm p}({}^{\rm A}_{\rm Z}{\rm X}) = \frac{1}{4} (-1)^{Z+1} \left[S_{\rm p}({}^{\rm A+1}_{\rm Z+1}{\rm X}{\rm x}) - 2S_{\rm p}({}^{\rm A}_{\rm Z}{\rm X}) + S_{\rm p}({}^{\rm A-1}_{\rm Z-1}{\rm X}{\rm y}) \right]$$
(13)

ja

$$\Delta_{n}({}^{A}_{Z}X) = \frac{1}{4}(-1)^{A-Z+1} \left[S_{n}({}^{A+1}_{Z}X) - 2S_{n}({}^{A}_{Z}X) + S_{n}({}^{A-1}_{Z}X) \right], \quad (14)$$

joissa $S_p(^A_Z X)$ ja $S_n(^A_Z X)$ ovat ytimen $^A_Z X$ protonien ja neutronien separaatioenergiat.

2.3 Kahden ja kolmen kvasihiukkasen viritykset

QRPA (quasiparticle random phase approximation) tarjoaa tavan käsitellä kahden kvasihiukkasen virityksiä; Sen avulla voidaan siten kuvata parillisparillisia ytimiä. QRPA:n perusvirityksenä toimii QRPA-fononi, jonka luomisoperaattori on

$$Q_{\omega}^{\dagger} = \sum_{a \le b} \left[X_{ab}^{\omega} A_{ab}^{\dagger}(JM) - Y_{ab}^{\omega} \tilde{A}_{ab}(JM) \right], \tag{15}$$

missä operaattori

$$A_{ab}^{\dagger}(JM) = \sigma_{ab}^{-1} \left[a_a^{\dagger} a_b^{\dagger} \right]_{JM}$$
(16)

ja

$$\tilde{A}_{ab}(JM) = -\sigma_{ab}^{-1} \left[\tilde{a}_a \tilde{a}_b \right]_{JM}, \qquad (17)$$

joissa on käytetty merkintää $\sigma_{ab} = \sqrt{1 + \delta_{ab}}$. Indeksi ω sisältää tässä pyörimismäärän J_{ω} ja pariteetin π_{ω} sekä kvanttiluvun k_{ω} , jolla erotetaan toisistaan QRPA-yhtälön eri ratkaisut, joilla on sama pyörimismäärä ja pariteetti.

QRPA-yhtälöt voidaan johtaa liikeyhtälömenetelmällä [10], jolloin päädytään matriisiyhtälöihin

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B}^* & -\mathbf{A}^* \end{pmatrix} \begin{pmatrix} \mathbf{X}^{\omega} \\ \mathbf{Y}^{\omega} \end{pmatrix} = E_{\omega} \begin{pmatrix} \mathbf{X}^{\omega} \\ \mathbf{Y}^{\omega} \end{pmatrix}, \qquad (18)$$

jossa alimatriisien \mathbf{A} ja \mathbf{B} elementit ovat

$$A_{ab,cd} = \langle \text{BCS} | \left[A_{ab}, \hat{H}, A_{cd}^{\dagger} \right] | \text{BCS} \rangle$$
(19)

ja

$$B_{ab,cd} = - \langle \text{BCS} | \left[A_{ab}, \hat{H}, \tilde{A}_{cd} \right] | \text{BCS} \rangle .$$
(20)

Edellisissä yhtälöissä on käytetty kaksoiskommutaattorimerkintää

$$[A, B, C] = \frac{1}{2} \left([A, [B, C]] + [[A, B], C] \right).$$
(21)

QRPA-yhtälöiden johtamisessa on käytetty nk. kvasibosoniapproksimaatiota: Tällöin QRPA-tyhjiö on korvattu BCS-tyhjiöllä ja QRPA-fononit toteuttavat kommutaatiorelaatiot

$$\left[Q_{\omega}, Q_{\omega'}^{\dagger}\right] = \delta_{\omega\omega'} \text{ ja } \left[Q_{\omega}, Q_{\omega'}\right] = \left[Q_{\omega}^{\dagger}, Q_{\omega'}^{\dagger}\right] = 0, \qquad (22)$$

eli QRPA-fononeita voidaan pitää bosoneina.

QRPA-matriisiyhtälön diagonalisointi tuottaa jokaista positiivista ominaisenergiaa E_{ω} kohden myös negatiivisen energian ratkaisun $-E_{\omega}$. Negatiivisen

energian ratkaisut ovat epäfysikaalisia, mikä nähdään esimerkiksi siitä, että ko. energioita vastaavien tilojen normit ovat imaginaarisia, joten ne jätetään huomiotta.

QRPA-spektriä voidaan säätää skaalaamalla QRPA-matriisielementeissä esiintyviä vuorovaikutusmatriisielementtejä vakioilla $g_{\rm pp}$ ja $g_{\rm ph}$ [11]: Näistä $g_{\rm pp}$:tä käytetään hiukkas-hiukkas-vuorovaikutusmatriisielementtien ja vastaavasti $g_{\rm ph}$:ta hiukkas-aukko-vuorovaikutusmatriisielementtien kertoimena.

MQPM (microscopic quasiparticle-phonon model) on malli, jossa käytetään BCS-kvasihiukkasia ja QRPA-fononeita matalaenergisten kolmen kvasihiukkasen viritysten kuvaamiseen [12]. MQPM-virityksen luomisoperaattori on muotoa

$$\Gamma_i^{\dagger}(jm) = \sum_n C_n^i a_{njm}^{\dagger} + \sum_{b,\omega} D_{b\omega}^i \left[a_b^{\dagger} Q_{\omega}^{\dagger} \right]_{jm}, \qquad (23)$$

jossa BCS-kvasihiukkasen luomisoperaattori a_b^{\dagger} ja QRPA-fononin luomisoperaattori Q_{ω}^{\dagger} ovat kuten edellä. Liikeyhtälömenetelmä [10] sopii myös MQPMyhtälöiden johtamiseen: Yhtälöksi saadaan matriisimuodossa

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{A}' \end{pmatrix} \begin{pmatrix} \mathbf{C}^i \\ \mathbf{D}^i \end{pmatrix} = \Omega_i \begin{pmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{n} \end{pmatrix} \begin{pmatrix} \mathbf{C}^i \\ \mathbf{D}^i \end{pmatrix}.$$
 (24)

Oikealla puolella esiintyvä alimatriisi **n** koostuu kolmikvasihiukkastilojen välisistä sisätuloista ja poikkeaa yleensä yksikkömatriisista; toisin sanoen kolmikvasihiukkastilat eivät ole keskenään ortogonaalisia. Lisäksi ne muodostavat ylitäydellisen kannan. Yhtälön (24) ratkaisemiseksi on muodostettava ortonormaali kanta, mitä on kuvattu tarkemmin lähteessä [1].

2.4 Sallituista ja kielletyistä beetahajoamisista

Beetahajoamiset luokitellaan sen mukaan, mikä on emittoituvan hiukkasparin ratapyörimismäärä ytimen suhteen: Jos ko. ratapyörimismäärä on l > 0, puhutaan l kertaa kielletystä siirtymästä, ja jos l = 0, puhutaan sallitusta siirtymästä [13]. Siirtymän tyyppi voidaan helposti tunnistaa vertaamalla ytimen pyörimismäärän ja pariteetin muutosta hajoamisessa valintasääntöihin K kertaa kielletylle siirtymälle:

$$|J_i - J_f| = \begin{cases} K, K+1, & \text{kun } K \ge 2\\ 0, 1, 2, & \text{kun } K = 1 \end{cases}$$
(25)

$ J_f - J_i $	$\pi_f = \pi_i$	$\pi_f = -\pi_i$
0	$\operatorname{sallittu}$	1. kielletty
1		
2	2. kielletty	
3		3. kielletty
4	4. kielletty	
5		5. kielletty
6	6. kielletty	

Taulukko 1: Beetahajoamisten luokittelu pyörimismäärän ja pariteetin muutoksen mukaan: Pyörimismäärän J ja pariteetin π alaindeksi i viittaa emoytimeen ja f tytärytimeen.

ja

$$\pi_i \pi_f = (-1)^K, \tag{26}$$

missä $J_i^{\pi_i}$ on emoytimen ja $J_f^{\pi_f}$ tytärytimen spin-pariteetti. Luokittelua on havainnollistettu taulukossa 1.

Tarkasteltaessa β^- -hajoamista ytimen todennäköisyys emittoida energialtaan välillä [E, E + dE] oleva elektroni on

$$P(E)dE = \frac{G_{\rm F}^2/(\hbar c)^6}{2\pi^3\hbar}C(E)p_e cE(E_0 - E)^2 F_0(Z, E)dE,$$
(27)

jossa $G_{\rm F}/(\hbar c)^3$ on Fermin kytkentävakio, p_e on elektronin liikemäärä, E_0 päätepiste-energia ja $F_0(Z,E)$ on Fermi-funktio, joka ottaa huomioon ytimen varauksen vaikutuksen emittoituvan elektronin aaltofunktioon. Tekijä C(E) on nk. muototekijä, joka sisältää siirtymätiheyksistä saatavat matriisielementit. Tekijät $p_e c E(E_0 - E)^2$ tulevat emittoituvien leptonien kinematiikkaa kuvaavasta faasiavaruudesta. Integroimalla tämä yli mahdollisten emittoituvan elektronin energioiden, ts. yli välin $[m_e c^2, E_0]$, saadaan siirtymätiheys

$$\lambda = \frac{G_{\rm F}^2/(\hbar c)^6}{2\pi^3\hbar} \int_{m_e c^2}^{E_0} C(E) p_e c E(E_0 - E)^2 F_0(Z, E) dE.$$
(28)

Puoliintumisaika on siten

$$t_{1/2} = \frac{2\pi^3 \hbar \ln 2}{(m_e c^2)^5 G_{\rm F}^2 / (\hbar c)^6} \frac{1}{\tilde{C}},\tag{29}$$

jossa \tilde{C} on yksiköttömäksi skaalattu integroitu muototekijä

$$\tilde{C} = \frac{1}{(m_e c^2)^5} \int_{m_e c^2}^{E_0} C(E) p_e c E(E_0 - E)^2 F_0(Z, E) dE$$

$$= \int_1^{w_0} C(w_e) p w_e (w_0 - w_e)^2 F_0(Z, w_e) dw_e,$$
(30)

jossa $w_0 = E_0/(m_ec^2)$ ja $p = \sqrt{w_e^2 - 1}$. Kertomalla yhtälö (29) yksiköttömällä integroidulla Fermi-funktiolla

$$f = \int_{1}^{w_0} pw_e (w_0 - w_e)^2 F_0(Z, w_e) dw_e$$
(31)

saadaan ft-arvo

$$ft = \frac{\kappa}{\tilde{C}/f},\tag{32}$$

missä vakiokertoimet on koottu vakioksi [14]

$$\kappa = \frac{2\pi^3 \hbar \ln 2}{(m_e c^2)^5 (G_{\rm F}^2 / (\hbar c)^3)^2} \approx 6147 \,\mathrm{s.}$$
(33)

Yleisesti käytetään ft-arvon kymmenkantaista logaritmia eli logft-arvoa.

Muototekijän $C(w_e)$ johtaminen jää tämän työn ulkopuolelle; tarvittavat kaavat ovat peräisin työn ohjaajalta, ja ne ovat johdettavissa lähteen [15] avulla. Seuraavassa tyydytään vain esittelemään $C(w_e)$:n laskemiseen käytetyt kaavat.

Yleisesti K kertaa kielletylle siirtymälle $C(w_e)$ voidaan esittää muodossa

$$C(w_{e}) = (6,706 \times 10^{-6})^{K} \\ \times \left\{ \sum_{k_{e}+k_{\nu}=K+1} \lambda_{k_{e}} (w_{e}^{2}-1)^{k_{e}-1} (w_{0}-w_{e})^{2(k_{\nu}-1)} g_{V}^{2} D_{Kk_{e}k_{\nu}}^{2} \tilde{\mathcal{A}}_{K} \right.$$

$$\left. + \sum_{k_{e}+k_{\nu}=K+2} \lambda_{k_{e}} (w_{e}^{2}-1)^{k_{e}-1} (w_{0}-w_{e})^{2(k_{\nu}-1)} g_{V}^{2} \tilde{D}_{Kk_{e}k_{\nu}}^{2} \mathcal{B}_{K} \right\},$$

$$(34)$$

jossa

$$\tilde{\mathcal{A}}_{K} = \frac{2K+1}{K}\tilde{M}_{1}^{2} + \frac{1}{(2k_{e}+1)^{2}} \left[(\tilde{\alpha}Z)^{2} \left(M_{-}^{(k_{e})} \right)^{2} + 2(\tilde{\alpha}Z)w_{e}M_{-}M_{-}^{(k_{e})} \right. \\ \left. + (1+w_{e}^{2})M_{-}^{2} \right] - \frac{2\gamma_{k_{e}}}{k_{e}w_{e}(2k_{e}+1)^{2}} \left((\tilde{\alpha}Z)M_{-}M_{-}^{(k_{e})} + w_{e}M_{-}^{2} \right) \\ \left. + \frac{1}{(2k_{\nu}+1)^{2}}(w_{0}-w_{e})^{2}M_{+}^{2} - \frac{2}{2k_{e}+1}\sqrt{\frac{2K+1}{K}} \left((\tilde{\alpha}Z)\tilde{M}_{1}M_{-}^{(k_{e})} \right. \\ \left. + w_{e}\tilde{M}_{1}M_{-} \right) + \frac{2}{2k_{e}+1}\sqrt{\frac{2K+1}{K}}\frac{\gamma_{k_{e}}}{k_{e}w_{e}}\tilde{M}_{1}M_{-} - \frac{2}{2k_{\nu}+1} \\ \left. \times \sqrt{\frac{2K+1}{K}}(w_{0}-w_{e})\tilde{M}_{1}M_{+} + \frac{2}{(2k_{e}+1)(2k_{\nu}+1)}(w_{0}-w_{e}) \right. \\ \left. \times \left((\tilde{\alpha}Z)M_{-}^{(k_{e})} + w_{e}M_{-} \right)M_{+} - \frac{2}{(2k_{e}+1)(2k_{\nu}+1)}\frac{\gamma_{k_{e}}}{k_{e}w_{e}} \\ \left. \times (w_{0}-w_{e})M_{-}M_{+} \right. \end{aligned}$$

$$(35)$$

ja

$$\mathcal{B}_{K} = \frac{K+1}{(2k_{e}-1)(2k_{\nu}-1)} \left(M_{2}^{2} + 2\frac{g_{A}}{g_{V}} \frac{k_{e}-k_{\nu}}{\sqrt{K(K+1)}} M_{2}M_{3} + \frac{(k_{e}-k_{\nu})^{2}}{K(K+1)} \left(\frac{g_{A}}{g_{V}}\right)^{2} M_{3}^{2} \right) + \left(\frac{g_{A}}{g_{V}}\right)^{2} M_{4}^{2}.$$
(36)

Kaavassa (35) esiintyvät tekijät

$$D_{Kk_ek_\nu} = \frac{1}{\sqrt{2}} \sqrt{\frac{(2K)!!}{(2K+1)!!}} \frac{1}{\sqrt{(2k_e-1)!(2k_\nu-1)!}},$$
(37)

$$\tilde{D}_{Kk_ek_\nu} = \sqrt{\frac{(2K)!!}{(2K+1)!!}} \frac{1}{\sqrt{(2k_e-1)!(2k_\nu-1)!}}$$
(38)

ja

$$\lambda_{k_e} = \frac{F_{k_e-1}(Z, w_e)}{F_0(Z, w_e)},$$
(39)

jossa ${\cal F}_{k_e-1}(Z,w_e)$ on yleistetty Fermi-funktio

$$F_{k_{e}-1}(Z, w_{e}) = 4^{k_{e}-1} (2k_{e})(k_{e} + \gamma_{k_{e}})((2k_{e} - 1)!!)^{2} e^{\pi y} \left(\frac{2p_{e}R}{\hbar}\right)^{2(\gamma_{k_{e}} - k_{e})} \times \left(\frac{|\Gamma(\gamma_{k_{e}} + iy)|}{\Gamma(1 + 2\gamma_{k_{e}})}\right)^{2},$$
(40)

jossa puolestaan $y = (\alpha Z w_e)/p_e$ ja R on ytimen säde.

Kerran kielletyn siirtymän tapauksessa, jossa $\Delta J = 0$, kaavaan (35) täytyy lisätä vielä termit

$$C^{(1)}(w_e) = g_A^2 \left(M_5 + \frac{W_0}{3} M_6 + \frac{\tilde{\alpha}Z}{3} M_6^{(1)} \right)^2 + g_A^2 \left(\frac{M_6}{3} \right)^2 - g_A^2 \frac{2\gamma_1}{w_e} \left(M_5 + \frac{W_0}{3} M_6 + \frac{\tilde{\alpha}Z}{3} M_6^{(1)} \right) \frac{M_6}{3}.$$
(41)

Kaavoissa (35) ja (41) esiintyvät dimensiottomat tekijät γ_{k_e} ja $\tilde{\alpha}$ määritellään

$$\gamma_{k_e} = \sqrt{k_e^2 - (\alpha Z)^2} \tag{42}$$

ja

$$\tilde{\alpha} = \frac{\alpha \hbar}{Rm_e c},\tag{43}$$

jossa R on jälleen ytimen säde ja m_e on elektronin massa.

Kaavoissa (35), (36) ja (41) tarvittavat matriisielementit saadaan yksihiukkassiirtymätiheyksistä kaavojen

$$M_1 = \hat{J}_i^{-1} \sum_{pn} m_{K,K-1}^{(\mathrm{VR})}(pn) \left(\xi_f J_f \left| \left| \left[c_p^{\dagger} \tilde{c}_n \right]_K \right| \left| \xi_i J_i \right), \right.$$
(44)

$$M_2 = \hat{J}_i^{-1} \sum_{pn} m_{0K}^{(\mathrm{V})}(pn) \left(\xi_f J_f \left| \left| \left[c_p^{\dagger} \tilde{c}_n \right]_K \right| \left| \xi_i J_i \right) \right. \right.$$
(45)

$$M_3 = \hat{J}_i^{-1} \sum_{pn} m_{KK}^{(A)}(pn) \left(\xi_f J_f \left| \left| \left[c_p^{\dagger} \tilde{c}_n \right]_K \right| \left| \xi_i J_i \right), \right.$$
(46)

$$M_{4} = \hat{J}_{i}^{-1} \sum_{pn} m_{K+1,K}^{(A)}(pn) \left(\xi_{f} J_{f} \Big| \Big| \Big[c_{p}^{\dagger} \tilde{c}_{n} \Big]_{K+1} \Big| \Big| \xi_{i} J_{i} \Big), \qquad (47)$$

$$M_5 = \hat{J}_i^{-1} \sum_{pn} m_{00}^{(\mathrm{AR})}(pn) \left(\xi_f J_f \Big| \Big| \left[c_p^{\dagger} \tilde{c}_n \right]_0 \Big| \Big| \xi_i J_i \right)$$
(48)

ja

$$M_6 = \hat{J}_i^{-1} \sum_{pn} m_{01}^{(A)}(pn) \left(\xi_f J_f \Big| \Big| \Big[c_p^{\dagger} \tilde{c}_n \Big]_0 \Big| \Big| \xi_i J_i \right)$$
(49)

avulla. Näistä nähdään suoraan kolmiosäännön avulla, että mikäli $J_f \neq J_i$, matriisielementit M_5 ja M_6 ovat nollia, ja toisaalta mikäli $|J_f - J_i| = K + 1$ eli kyseessä on uniikki siirtymä, vain matriisielementti M_4 voi poiketa nollasta.

Kaavoissa (44)-(49) esiintyvät yksihiukkasmatriisielementit saadaan puolestaan kaavoista

$$m_{KL}^{(\mathrm{VR})}(pn) = i^{l_{p}+l_{n}+L+1} \frac{1+(-1)^{l_{p}+l_{n}+L+1}}{2} \frac{\hat{L}\hat{j}_{p}\hat{j}_{n}}{\hat{K}} \left(j_{p} \frac{1}{2} j_{n} - \frac{1}{2} \middle| K 0\right) \\ \times \left[\left(\mathcal{A}_{KL}(pn) + \mathcal{B}_{KL}(pn)\right)(-1)^{K+l_{n}+j_{n}+1/2} \left\langle r^{L} \right\rangle_{p\bar{n}} \Delta(l_{p}\tilde{l}_{n}L) \right] \right]$$
(50)
$$+ \left(\mathcal{A}_{KL}(pn) - \mathcal{B}_{KL}(pn)\right)(-1)^{K+l_{p}+j_{p}+1/2} \left\langle r^{L} \right\rangle_{p\bar{n}} \Delta(\tilde{l}_{p}l_{n}L) \right] ,$$
$$m_{0L}^{(\mathrm{V})}(pn) = i^{l_{p}+l_{n}+L} \frac{1+(-1)^{l_{p}+l_{n}+L}}{2} (-1)^{j_{p}+j_{n}+1} \frac{\hat{j}_{p}\hat{j}_{n}}{\hat{L}} \left(j_{p} \frac{1}{2} j_{n} - \frac{1}{2} \middle| L 0\right) \\ \times \left[(-1)^{l_{n}+j_{n}-1/2} \left\langle r^{L} \right\rangle_{pn} \Delta(l_{p}l_{n}L) + (-1)^{l_{p}+j_{p}-1/2} \left\langle r^{L} \right\rangle_{p\bar{n}} \Delta(\tilde{l}_{p}\tilde{l}_{n}L) \right] ,$$
$$m_{KL}^{(\mathrm{A})}(pn) = i^{l_{p}+l_{n}+L} (-1)^{K+1} \frac{\hat{L}\hat{j}_{p}\hat{j}_{n}}{\hat{K}} \cdot \frac{1+(-1)^{l_{p}+l_{n}+L}}{2} \left(j_{p} \frac{1}{2} j_{n} - \frac{1}{2} \middle| K 0\right) \\ \times \left[\left(\mathcal{A}_{KL}(pn) + \mathcal{B}_{KL}(pn)\right) \left\langle r^{L} \right\rangle_{pn} \Delta(l_{p}l_{n}L) \right]$$
(52)
$$+ \left(-1\right)^{l_{p}+l_{n}+j_{p}+j_{n}} \left(\mathcal{A}_{KL}(pn) - \mathcal{B}_{KL}(pn)\right) \left\langle r^{L} \right\rangle_{p\bar{n}} \Delta(\tilde{l}_{p}\tilde{l}_{n}L) \right]$$

ja

$$m_{0L}^{(AR)}(pn) = i^{l_p + l_n + L + 1} (-1)^{j_p + j_n} \frac{\hat{j}_p \hat{j}_n}{\hat{L}} \frac{1 + (-1)^{l_p + l_n + L + 1}}{2} \left(j_p \frac{1}{2} j_n - \frac{1}{2} \big| L 0 \right) \\ \times \left[\left\langle r^L \right\rangle_{p\tilde{n}} \Delta(l_p \tilde{l}_n L) + (-1)^{j_p + j_n + L + 1} \left\langle r^L \right\rangle_{\tilde{p}n} \Delta(\tilde{l}_p l_n L) \right],$$
(53)

joissa edelleen

$$\mathcal{A}_{KL}(pn) = \frac{\hat{j}_p^2 + (-1)^{j_p + j_n + K} \hat{j}_n^2}{\sqrt{2K(K+1)(2L+1)}} (-1)^{K+1} \left(K \ 1 \ 1 \ -1 | L \ 0\right) (1 - \delta_{K0}), \quad (54)$$

$$\mathcal{B}_{KL}(pn) = (-1)^{l_p + j_p - 1/2 + K} \hat{L}^{-1} \left(K \ 0 \ 1 \ 0 | L \ 0 \right), \tag{55}$$

$$\tilde{l} = \begin{cases} l+1, & \text{kun } j = l + \frac{1}{2} \\ l-1, & \text{kun } j = l - \frac{1}{2} \end{cases}$$
(56)

ja radiaalinen integraali

$$\left\langle r^L \right\rangle_{pn} = \int_0^\infty g_{n_p l_p}(r) r^L g_{n_n l_n} r^2 dr, \qquad (57)$$

jossa $g_{nl}(r)$ on radiaalinen harmonisen oskillaattorin aaltofunktio. Kvanttiluvusta k_e riippuvat matriisielementit $M_2^{(k_e)}$ ja $M_3^{(k_e)}$ saadaan edellisistä kaavoista lisäämällä radiaalisen integraalin (57) integrandiin Coulombin funktio

$$I(k_e, 1, 1, 1; r) = \begin{cases} \frac{3}{2} - \frac{2k_e + 1}{2(2k_e + 3)} \left(\frac{r}{R}\right)^2, & \text{kun } 0 \le r \le R, \\ \frac{2k_e + 1}{2k_e} \frac{R}{r} - \frac{3}{2k_e(2k_e + 3)} \left(\frac{R}{r}\right)^{2k_e + 1}, & \text{kun } r > R. \end{cases}$$
(58)

Lisäksi kaavassa (35) tarvitaan apusuureita

$$M_{\pm} = M_2 \pm \sqrt{\frac{K+1}{K}} \frac{g_A}{g_V} M_3, \tag{59}$$

$$M_{-}^{(k_e)} = M_2^{(k_e)} - \sqrt{\frac{K+1}{K}} \frac{g_A}{g_V} M_3^{(k_e)}$$
(60)

ja

$$\tilde{M}_1 = 386.2 \cdot M_1. \tag{61}$$

Yksihiukkassiirtymätiheydet β^- -siirtymille MQPM-teoriaa käytettäessä saadaan julkaisusta [12]. Esimerkiksi tarvittavat yksihiukkassiirtymätiheydet yksikvasihiukkastilojen välillä ovat

$$\left(p\left|\left|\left[c_{p'}^{\dagger}\tilde{c}_{n'}\right]_{L}\right|\right|n\right) = \hat{L}u_{p}u_{n}\delta_{pp'}\delta_{nn'}$$

$$(62)$$

ja

$$\left(n \left| \left| \left[c_{p'}^{\dagger} \tilde{c}_{n'} \right]_{L} \right| \right| p \right) = \hat{L} v_{n} v_{p} \delta_{nn'} \delta_{pp'} (-1)^{j_{p'} + j_{n'} - L}.$$
(63)

3 Laskennalliset menetelmät

3.1 Kuorimallilaskut

Tarkasteltaviin beetahajoamisiin luonnolliset valinnat referenssiytimiksi olivat $^{112}_{48}$ Cd ja $^{116}_{50}$ Sn. Käytetty valenssiavaruus koostui sekä protoneille että neutroneille harmonisen oskillaattorin $3\hbar\omega$ - ja $4\hbar\omega$ -pääkuoresta sekä Ohtiloista $5\hbar\omega$ -pääkuorelta (kuva 2). Yksihiukkaskanta muodostettiin lähtien Woods-Saxon-potentiaalista parametreina kirjan [15] arvot.

Referenssiydinten BCS-kvasihiukkasspektrit säädettiin vastaamaan tarkasteltaviin hajoamisiin osallistuvien ydinten matalaenergiaspektrien tiloja, joita todennäköisimmin saattoi pitää suurimmaksi osaksi yksihiukkastiloina. Säätäminen tapahtui manipuloimalla yritys-erehdys-menetelmällä Woods-Saxon-potentiaalista saatuja yksihiukkasenergioita. Tässä vaiheessa katsottiin kuitenkin, ettei spin-rata-parien³ yksihiukkasenergioiden järjestys päässyt muuttumaan. Lisäksi kytkentävakioita $g_{\text{pair}}^{(n)}$ ja $g_{\text{pair}}^{(p)}$ säädettiin siten, että alimmat kvasihiukkasenergiat vastasivat kolmipistekaavoilla 13 ja 14 saatuja pariaukkoja.

¹¹⁶Sn:n protonikvasihiukkasspektri tuotti ongelmia johtuen siitä, että tinaydinten protonien lukumäärä 50 sattuu olemaan maaginen luku: Siksi kvasihiukkasspektissä nähtiin jyrkkä fermipinta, jonka yläpuolelle uusien kvasihiukkasten oli paljon helpompaa asettua kuin alapuolelle. Tilanne kuvasi hyvin ¹¹⁷Sn:n matalaenergiaspektriä, mutta halutun ¹¹⁵Sn:n spektrin toistamiseksi pelkkä yksihiukkasenergioiden säätö ei riittänyt. Näin ollen jouduttiin turvautumaan pieneen "huijaukseen": BCS-laskussa otettiin pois kaksi aktiivista protonia, jolloin matalaenergiaspektrin toistaminen alkoi onnistua.

Seuraavaksi säädetiin referenssiydinten QRPA-spektrit vastaamaan mahdollisimman hyvin referenssiydinten kokeellisia spektrejä. Kunkin spinpariteetin J^{π} alin energiatila pyrittiin saamaan mahdollisimman lähelle kokeellisen spektrin alinta saman spin-pariteetin tilaa muuttamalla vastaavaa $g_{\rm ph}$ -parametria, kuitenkin siten, että parametrin arvo pyrittiin pitämään kohtalaisen järkevänä (ts. mielellään välillä 0,7-1,3, joskaan näitä ei pidetty ehdottomina rajoina). ¹¹⁶Sn:n tapauksessa parametrin annettiin vaeltaa kauem-

³Spin-rata-pari on tilapari $(n, l, j = l \pm \frac{1}{2})$ (esimerkiksi $1d_{3/2}$ ja $1d_{5/2}$). Spin-ratavuorovaikutus silpoo nämä tilat aina siten, että suuremman kokonaispyörimismäärän jtila on energialtaan matalammalla, ts. energeettisesti edullisempi [5].

Kuva 2: Tässä työssä käytetty valenssiavaruus koostui sekä protoneilla että neutroneilla harmonisen oskillaattorin $3\hbar\omega - 4\hbar\omega$ -pääkuorista ja 0h-tiloista.

maksi ykkösestä, koska protonikvasihiukkasspektrin säätämisessä oli jo turvauduttu hieman kyseenalaiseen manipulointiin. ¹¹²Cd:n tapauksessa huomioitiin myös, ettei QRPA-malli kuvaa kaksifononivirityksiä, joten tunnetut $[2_1^+ \otimes 2_1^+]_{0^+,2^+,4^+}$ -tilat [16] jätettiin kokeellisesta spektristä huomiotta.

Kun QRPA-spektrit oli saatu tyydyttäviksi, päästiin säätämään tarkasteltavien hajoamisten emo- ja tytärydinten MQPM-spektrejä. Tässä vaiheessa käytettiin QRPA-fononeina aluksi kahta fononia kustakin multipolista 2^+ , 3^- , 4^+ ja 6^+ ja fononien määrää lisättiin, kunnes lisäämisen ei enää havaittu vaikuttavan spektriin (ts. spektrin havaittiin konvergoituvan). Tässä vaiheessa ei käytössä ollut enää mitään hienosäätöparametreja, joilla laskennallisen spektrin olisi saanut lähemmäksi kokeellista, vaan mikäli tulos ei ollut tyydyttävä, täytyi palata säätämään yksihiukkasenergioita paremman BCS-kvasihiukkasspektrin aikaansaamiseksi ja edettävä MQPM-spektrin laskemiseen kaikkien em. välivaiheiden kautta.

Kaikki tähän asti käytetyt ohjelmat olivat työn ohjaajan valmiina tarjoamia.

3.2 Puoliintumisajan ja $\log ft$ -arvon määrittäminen

Yksihiukkassiirtymätiheyksien laskemiseksi täytyi muokata Jussi Toivasen kirjoittamaa ohjelmaa sallittujen beetahajoamisten laskemiseen. Käytännössä tämä tarkoitti yksihiukkassiirtymätiheyksiä laskevien ohjelman osien tunnistamista FORTRAN-lähdekoodista ja muiden osien korvaamista siirtymätiheydet tiedostoon sopivassa muodossa tulostavalla osalla. Tiedostoon tulostettiin vain siirtymätiheydet, joiden itseisarvo oli yli ajotiedostossa annetun minimin. Ko. minimiä kokeiltiin myöhemmin muuttaa, jotta saatiin varmuus siitä, ettei suurempi määrä siirtymätiheyksiä vaikuttanut enää tuloksiin.

Siirtymätiheyksistä matriisielementit laskeva ohjelma matel.for oli jälleen työn ohjaajan valmiiksi tarjoama. Sen sijaan matriisielementeistä log ftarvojen ja puoliintumisaikojen laskemiseen ei valmista ohjelmaa ollut, vaan tutkielman tekijä pääsi kirjoittamaan tarkoitukseen sopivan ohjelman logft.f90 aivan alusta. Tämän ohjelman listaus on esitetty liitteessä B. Ohjelma käyttää numeeriseen integrointiin Gaussin ja Legendren kvadratuuria [17], jossa tarvittavat abskissat ja painokertoimet saatiin näppärästi NAG-aliohjelmakirjaston ko. tarkoitukseen tehdyllä funktiolla käyttäen 2-6 pistettä. Ohjelman antamien tulosten varmistamiseksi laskettiin kynän, paperin ja laskimen avulla log ft-arvo ja puoliintumisaika ¹¹³Cd:n tapauksessa käyttäen kahden pisteen Gaussin ja Legendren kvadratuuria. Lasku on käyty läpi liitteessä A, jossa on myös käsitelty tarkemmin Gaussin ja Legendren kvadratuurin soveltamisessa tarvittua muuttujanvaihtoa.

Käytettyjen pisteiden riittävyys Gaussin ja Legendren kvadratuurissa voitiin tarkistaa ohjelman tulosteesta vertaamalla saatuja likiarvoja eri pisteiden määrillä.

4 Tulokset

4.1 Yksihiukkaskanta, BCS ja QRPA

¹¹²Cd:n protonikvasihiukkasspektriä ja ¹¹³In:n kokeellista spektriä [2] on verrattu keskenään kuvassa 3. Säätämällä $\pi 0g_{9/2}$ -kuoren yksihiukkasenergiaksi -9,4 MeV ja $\pi 1p_{3/2}$ -kuoren yksihiukkasenergiaksi -10,0 MeV on saatu kvasihiukkasspektri ja kokeellinen spektri vastaamaan varsin hyvin toisiaan alle 1 MeV alueella. Vastaavasti kuvassa 4 vertailtavina ovat ¹¹²Cd:n neutronikvasihiukkasspektri ja ¹¹³Cd:n kokeellinen spektri [2]; Tässä säädetyt yksihiukkasenergiat ovat $E(\nu 0g_{7/2}) = -9,5$ MeV ja $E(\nu 0h_{11/2}) = -7,1$ MeV. Kokeellisen ja kvasihiukkasspektrin matalaenergiaosan vastaavuus ei tässä ole kuitenkaan aivan yhtä hyvä kuin edellisessä tapauksessa: Vaikka energiat ovat lähellä toisiaan, tilojen järjestystä ei saatu kohtuullisin muutoksin samaksi.

Kuvassa 5 on edelleen esitetty ¹¹⁶Sn:n neutronikvasihiukkasspektri, kun yksihiukkasenergioissa on tehty säädöt $E(\nu 0h_{11/2}) = -7.2$ MeV ja $E(\nu 1d_{3/2}) =$ -7.4 MeV, verrattuna ¹¹⁵Sn:n kokeelliseen spektriin [3]. Vastaavuus spektrien välillä on varsin hyvä, joskin $\pi 0h_{11/2}$:n kvasihiukkasenergian paikka on toivottua alempana. ¹¹⁵In:n tapauksessa 1p-tilojen yksihiukkasenergioita jouduttiin tuomaan varsin lähelle toisiaan kohtuullisen vastaavuuden saavuttamiseksi ¹¹⁶Sn:n protonikvasihiukkasspektrin kanssa.

Separaatioenergioista lasketut pariaukot ja parivuorovaikutuksen skaalauskertoimet (joilla siis säädettiin alin kvasihiukkasenergia pariaukon suuruiseksi) on koottu taulukkoon 2. Skaalauskertoimien arvot ovat hyvin lähellä ykköstä, mikä käytännössä tarkoittaa, että käytetty parivuorovaikutus kykeni toistamaan pariaukon hyvin. Taulukossa 3 on esitetty Woods-Saxonpotentiaalin pohjalta lasketut yksihiukkasenergiat ja niihin tehdyt korjaukset.

¹¹²Cd:n QRPA-spektri ja kokeellinen spektri on esitetty kuvassa 7. Huomattavaa on, että kokeellisen spektrin tunnetut kaksifononitilat [16] $[2_1^+ \otimes 2_1^+]_{0^+,2^+,4^+}$ on jätetty QRPA-spektrin säätämisessä huomiotta. Matalaenergiaspektrien vastaavuus saatiin säädettyä varsin hyväksi niiden kokeellisen spektrin tilojen osalta, jotka QRPA näyttäisi kuvaavan. Käytetyt g_{pp} - ja g_{ph} parametrit on esitetty taulukossa 4.

Kuvassa 8 on puolestaan vertailtavina $^{116}{\rm Sn:n}$ QRPA-spektri kokeelliseen

Kuva 3: 112 Cd:n protonikvasihiukkas
spektrin alimmat tilat verrattuna 113 In:n kokeelliseen matala
energiaspektriin. Alimpien kvasihiukkasen
ergioiden säätäminen lähelle vastaavan spin-pariteetin kokeellisia tiloja on
nistui erinomaisesti.

	$^{112}\mathrm{Cd}$	^{116}Sn
$g_{ m pair}^{ m (p)}$	$1,\!02$	$1,\!13$
$g_{ m pair}^{(m n)}$	$0,\!93$	$0,\!94$
$\Delta_{\rm p}$	$1,519~{ m MeV}$	$1,\!836{ m MeV}$
Δ_{n}	$1,\!320~{ m MeV}$	$1,\!159{ m MeV}$

Taulukko 2: Kaavoilla (13) ja (14) lähteistä [18], [19], [2], [3], [20] ja [21] poimituilla separaatioenergioilla lasketut pariaukot ja käytetyt parivuorovaikutusvoimakkuudet BCS-laskuissa.

Kuva 4: ¹¹²Cd:n neutronikvasihiukkasspektrin alimmat tilat verrattuna ¹¹³Cd:n kokeelliseen matalaenergiaspektriin. Tilojen järjestystä ei onnistuttu saamaan vastaamaan kokeellista.

	112C	Cd	116	Sn
$_{\rm tila}$	protonit	neutronit	$\operatorname{protonit}$	neutronit
$1p_{1/2}$	-9,57	-16,06	-8,8 (-9,58)	-16,71
$1p_{3/2}$	-10,0 (-11,14)	$-17,\!39$	-9,4 $(-11,10)$	-18,01
$0f_{5/2}$	-11,85	$-17,\!90$	-11,92	$-18,\!61$
$0f_{7/2}$	-15,92	$-21,\!30$	$-15,\!85$	$-21,\!90$
$2s_{1/2}$	-0,81	-7,59	-0,86	-8,22
$1d_{3/2}$	-0,27	-7,04	-0,40	-7,4 $(-7,74)$
$1d_{5/2}$	-3,08	-9,44	-3,15	$-10,\!11$
$0g_{7/2}$	-2,37	-9,5(-8,66)	-2,62	-9,50
$0g_{9/2}$	-9,4 $(-8,57)$	$-13,\!87$	-8,63	-14,56
$0h_{9/2}$	7,72	$1,\!05$	7,32	-0,00
$0h_{11/2}$	-0,77	-7,1 $(-6,04)$	-0,94	-7,2 (-6,83)

Taulukko 3: Käytetyt yksihiukkasenergiat BCS-laskuissa. Säädettyjen energioiden kohdalla alkuperäinen Woods-Saxon-potentiaalin pohjalta laskettu yksihiukkasenergia on esitetty suluissa. Kaikki energiat ovat MeV:inä

Kuva 5: ¹¹⁶Sn:n neutronikvasihiukkasspektrin alimmat tilat verrattuna ¹¹⁵Sn:n kokeelliseen matalaenergiaspektriin. Vastaavuus saatiin säädettyä varsin hyväksi.

Kuva 6: 116 Sn:n protonikvasihiukkasspektrin alimmat tilat verrattuna 115 In:n kokeelliseen matalaenergiaspektriin. Vastaavuus saatiin säädettyä melko hyväksi, joskin 1p-tiloja jouduttiin yksihiukkaskannassa tuomaan huolestuttavan lähelle toisiaan.

Kuva 7: ¹¹²Cd:n QRPA-spektri verrattuna kokeelliseen spektriin [19]. Kuvaan merkityt kokeelliset kaksifononitilat $2^+ \otimes 2^+$ on jätetty QRPA:n säätämisessä huomiotta.

Kuva 8: ¹¹⁶Sn:n QRPA-spektri verrattuna kokeelliseen spektriin. Vastaavuus laskennallisen ja kokeellisen spektrin välillä on melko hyvä.

spektriin. Vastaavuus on saatu melko hyväksi, joskin tällä kertaa $g_{\rm ph}$ parametreja on säädetty varsin rajusti (taulukko 4). Tätä voi puolustella jälleen protonikvasihiukkasspektrin laskemisessa tehdyn tempun, aktiivisten protonien määrän vähentämisen, vaikutusten kompensointina.

4.2 MQPM-spektrit ja yksihiukkassiirtymätiheydet

Kuvissa 9 ja 10 on esitetty $^{113}\rm{Cd:n}$ ja $^{113}\rm{In:n}$ MQPM-spektrit vertailtuna kokeellisiin spektreihin. Kuviin on merkitty myös MQPM-tilojen merkittä-

	112	Cd	116 Sn		
J^{π}	$g_{ m ph}$	$g_{ m pp}$	$g_{ m ph}$	$g_{ m pp}$	
0^{+}	1,07	$0,\!87$	0,78	$0,\!86$	
1^{-}	0,52		$0,\!48$		
2^{+}	0,71		$0,\!62$		
3^{-}	0,72		0,75		
4^{+}	0,89		$0,\!66$		
5^{-}	0,82		$0,\!56$		
6^{+}	1,39				
7^{-}	1,05				

Taulukko 4: QRPA-laskuissa kokeellisen spektrin toistamiseksi säädetyt $g_{\rm ph}$ ja $g_{\rm pp}$ -parametrit. Taulukossa mainitsemattomat arvot jätettiin ykkösiksi, koska niiden kohtuullisella säätämisellä ei ollut merkittävää vaikutusta spektriin.

vin komponentti silloin, kun se on selvästi muita voimakkaampi. ¹¹³Cd:n tapauksessa nähdään, että kokeelliset tilat ovat levittäytyneet tasaisemmin kuin MQPM ennustaa, mutta vastaavuutta MQPM:n ja kokeellisen spektrin välillä voidaan silti pitää hyvänä. Alle 0,5 MeV tilat ovat suurimmaksi osaksi yksikvasihiukkastiloja. ¹¹³In:n tapaus ei ole yhtä kaunista katsottavaa: MQPM-spektrissä on monia hyvin alas työntyneitä $2^+_1 \otimes 0g_{9/2}$ -tiloja, joita ei kokeellisessa spektrissä ole nähtävissä.

¹¹³Cd:n ja ¹¹³In:n tapauksessa käytettiin neljää 2⁺-fononia, kahta 4⁺-, 6⁺- ja 5⁻-fononia sekä yhtä 1⁻-, 3⁻- ja 7⁻-fononia. Tässä vaiheessa QRPA-fononien lisäämisellä ei enää tuntunut olevan merkittävää vaikutusta MQPM-spektriin. Vastaavasti ¹¹⁵In:n ja ¹¹⁵Sn:n MQPM-spektrissä päädyttiin käyttämään kuutta 2⁺, 3⁻, 4⁺ ja 5⁻-fononia ja neljää 1⁻-fononia.

 115 Sn:n MQPM-spektriä on verrattu kokeelliseen kuvassa 11. Kuten jo BCSkvasihiukkasspektristä (kuva 5) oli odotettavissa, $11/2_1^-$ ja $7/2_1^+$ -tilojen järjestys on väärä. Muuten matalaenergiaspektrien vastaavuus on melko hyvä. 115 In:n MQPM-spektri (kuva 12) on vielä mukavampaa katsottavaa: Vastaavuus kokeellisten ja MQPM-tilojen välillä on alle 1 MeV alueella varsin hyvä, joskin asiaa auttaa se, että Woods-Saxon-laskuista saatuja yksihiukkasenergioita on säädetty muita tapauksia enemmän, ja säädöt on tehty MQPMspektrin pohjalta — ei siis BCS-kvasihiukkasspektrin, kuten muissa tapauksissa.

Kuva 9: ¹¹³Cd:n MQPM-spektri verrattuna kokeelliseen spektriin. Kuten BCS-kvasihiukkasspektristä oli jo odotettavissa, alimpien tilojen järjestys ei aivan vastaa kokeellista.

Kuva 10: ¹¹³In:n MQPM-spektri verrattuna kokeelliseen spektriin. Laskennallisessa spektrissä on monia $2^+_1 \otimes 0g_{9/2}$ -tiloja, joita ei onnistuttu säätämään korkeammalle.

Kuva 11: ¹¹⁵Sn:n MQPM-spektri verrattuna kokeelliseen spektriin. Yritykset saada tilat $11/2_1^-$ ja $7/2_1^+$ oikeaan järjestykseen johtivat vain huonompaan vastaavuuteen laskennallisen ja kokeellisen spektrin välillä.

Kuva 12: $^{115}{\rm In:n}$ MQPM-spektri verrattuna kokeelliseen spektriin. Tässä spektrin säätäminen on onnistunut kohtalaisen hyvin.

Yksihiukkassiirtymätiheyksistä ¹¹³Cd:n perustilan hajoamisessa selkeästi dominoivat olivat

$$\binom{^{113}\text{In}; \frac{9}{2}_{\text{g.s.}}^{+}}{\left[c_{\pi^{0}\text{g}_{9/2}}^{\dagger}\tilde{c}_{\nu^{2}\text{s}_{1/2}}\right]_{4}} \|^{113}\text{Cd}; \frac{1}{2}_{\text{g.s.}}^{+} \approx 0,985$$

ja

$$\binom{113}{113}$$
In; $\frac{9^+}{2_{g.s.}} \| [c^{\dagger}_{\pi^0 g_{9/2}} \tilde{c}_{\nu^2 s_{1/2}}]_5 \|^{113}$ Cd; $\frac{1^+}{2_{g.s.}} \approx 1,088.$

Tämä ei ole yllättävää ottaen huomioon, että perustilat ovat hyvin pitkälti yksikvasihiukkastiloja: On luonnollista, että siirtymä on tällöin kuvattavissa $2s_{1/2}$ -neutronikvasihiukkasen tuhoamisena ja $0g_{9/2}$ -neutronikvasihiukkasen luomisena. Aivan vastaavasti ¹¹⁵In:n perustilan hajoamisessa dominoivat siirtymätiheydet olivat

$$(^{115}\text{Sn}; \frac{1}{2}^{+}_{\text{g.s.}} \| [c^{\dagger}_{\pi^{2}\text{s}_{1/2}} \tilde{c}_{\nu^{0}\text{g}_{9/2}}]_{4} \|^{115}\text{In}; \frac{9}{2}^{+}_{\text{g.s.}}) \approx -1,932$$

ja

$$\left({}^{115}\text{Sn}; \frac{1}{2}{}^{+}_{\text{g.s.}}\right\| \left[c^{\dagger}_{\pi^{2}\text{s}_{1/2}}\tilde{c}_{\nu^{0}\text{g}_{9/2}}\right]_{5} \|{}^{115}\text{In}; \frac{9}{2}{}^{+}_{\text{g.s.}}\right) \approx 2,136.$$

4.3 Beetahajoamislaskut

Siirtymätiheyksistä lasketut matriisielementit on esitetty taulukossa 5. Koska siirtymä on neljästi kielletty, on k_e :stä riipuvat matriisielementit $M_2^{(k_e)}$ ja $M_3^{(k_e)}$ laskettu k_e :n arvoille 1,...,4. Matriisielementit M_5 ja M_6 ovat luonnollisesti nollia, joten niitä ei ole taulukoitu.

¹¹³Cd:n perustilan hajoamisen (kuva 13) log ft-arvoksi saatiin 23,94 ja puoliintumisajaksi 4,95 \cdot 10¹⁶ a. Verrattuna kokeelliseen arvoon [2] 23,20(10) on log ft-arvo hieman liian suuri, mutta kuitenkin varsin lähellä. Kokeellinen puoliintumisaika on lähteen [2] mukaan 7,7(3) \cdot 10¹⁵ a ja lähteen [4] mukaan 8,2(2) \cdot 10¹⁵ a. ¹¹⁵In perustilan hajoamisessa (kuva 14) log ft-arvoksi tuli laskemalla 23,20 ja puoliintumisajaksi 1,99 \cdot 10¹⁵ a; Vastaavat kokeelliset [3] arvot ovat 22,5 ja 4,41(25) \cdot 10¹⁴ a. Tässäkin tapauksessa laskettu log ft-arvo on melko lähellä kokeellista, joskin hieman liian suuri. Molemmissa tapauksissa lasketut puoliintumisajat ovat suurinpiirtein oikeaa kertaluokkaa.

	$^{113}\mathrm{Cd}$	115 In
M_1	0,0068132	$0,\!015083$
M_2	$596,\!61$	-554,77
M_3	$532,\!99$	-477,23
M_4	$876,\!49$	$832,\!43$
$M_2^{(1)}$	$655,\!96$	-612,25
$M_{2}^{(2)}$	612,71	-572,37
$M_2^{(3)}$	589,52	-550,97
$M_2^{(4)}$	$575,\!23$	-537,77
$M_{3}^{(1)}$	$586,\!88$	-527, 15
$M_{3}^{(2)}$	$548,\!36$	$-492,\!92$
$M_{3}^{(3)}$	527,70	-474,53
$M_{3}^{(4)}$	$514,\!96$	-463, 19

Taulukko 5: Siirtymätiheyksistä lasketut matriisielementit: Sarakkeet on otsikoitu emoytimen mukaan.

Kuva 13: ¹¹³Cd:n perustila hajoaa neljästi kielletyllä ei-uniikilla β^- hajoamisella suoraan ¹¹³In:n perustilalle.

Kuva 14: ¹¹⁵In:n perustilan ainoa hajoamiskanava on neljästi kielletty eiuniikki β^- -hajoaminen ¹¹⁵Sn:n perustilalle.

5 Johtopäätökset

 112 Cd:n BCS- ja QRPA-laskut onnistuivat hyvin. Tarvittavat parametrien säädöt kokeellisen spektrin kohtuulliseksi toistamiseksi olivat melko pieniä ja siten fysikaalisesti uskottavia. 116 Sn:lle QRPA:n $g_{\rm pp}$ - ja $g_{\rm ph}$ -parametrien mielekkyyden arviointi on vaikeampaa johtuen tarvitusta tempusta BCS-laskuissa edes jonkinlaisen mielekkään kvasihiukkasspektrin aikaansaamiseksi 115 In:n kuvaamiseksi, mutta tilanteen huomioon ottaen voinee niitäkin pitää tyydyttävinä. Kvasihiukkasspektrien säätämisessä tehdyt muutokset yksihiukkasenergioihin olivat enimmäkseen hienovaraisia.

MQPM-spektrien ja kokeellisten spektrien vastaavuuden säätäminen onnistui melko hyvin, poikkeuksena kenties ¹¹³In, jossa MQPM-spektrissä näkyi useita rakenteeltaan enimmäkseen $2_1^+ \otimes 0g_{9/2}$ -tiloja, joita ei kokeellisessa spektrissä näy. On periaatteessa silti mahdollista, että kyseiset tilat ovat olemassa: Yksi- ja kolmikvasihiukkastilojen väliset siirtymät ovat tyypillisesti heikompia kuin yksikvasihiukkastilojen ja tunnetut betasiirtymät naapuriytimistä johtavat ¹¹³In:ssa enimmäkseen perustilalle ja $1/2_1^-$ - sekä $3/2_1^-$ -viritystilalle. Siten voi olla, että siirtymät MQPM:n $2_1^+ \otimes 0g_{9/2}$ -tiloille eivät vain ole riittävän voimakkaita, että ne olisivat tulleet kokeissa esille. MQPM-laskujen tuloksista havaittiin, että tarkasteltavien emo- ja tytärydinten perustilat vaikuttavat enimmäkseen yksikvasihiukkastiloilta.

Lasketut log ft-arvot ovat riittävän lähellä kokeellisia arvoja, jotta laskuja voi pitää onnistuneina. Lasketut arvot ovat molemmissa tapauksissa hieman suurempia kuin kokeelliset; Kenties perustilat ovat luonteeltaan voimakkaammin yksihiukkastiloja kuin tehtyjen MQPM-laskujen tuloksissa. Olisi mielenkiintoista kokeilla, auttaisiko valenssiavaruuden kasvattaminen tuomaan laskennallisia arvoja lähemmäs kokeellisia.

Viitteet

- [1] J. Suhonen et al.: Nucl. Phys. A **628**, 41 (1998)
- [2] J. Blachot: Nuclear Data Sheets **104**, 791 (2005)
- [3] J. Blachot: Nuclear Data Sheets **104**, 967 (2005)
- [4] C. Goeßling et al.: Preprint http://arXiv.org/abs/nucl-ex/0508016
- [5] K. L. G. Heyde: *The Nuclear Shell Model* (Springer-Verlag, Berlin, 1994), 2nd ed.
- [6] A. Bohr and B. R. Mottelson: Nuclear Structure, vol. I (W. A. Benjamin, New York, 1969)
- [7] M. G. Mayer: Phys. Rev. 78, 16 (1950)
- [8] A. Bohr, B. R. Mottelson and D. Pines: Phys. Rev. **110**, 936 (1958)
- [9] M. Baranger: Phys. Rev. **120**, 957 (1960)
- [10] D. J. Rowe: Rev. Mod. Phys. 40, 153 (1968)
- [11] J. Suhonen: Nucl. Phys. A 563, 205 (1993)
- [12] J. Toivanen and J. Suhonen: Phys. Rev. C 57, 1237 (1998)
- [13] J. M. Blatt and V. F. Weisskopf: *Theoretical Nuclear Physics* (Springer-Verlag, New York, 1979)
- [14] J. Hardy et al.: Nucl. Phys. A **509**, 429 (1990)
- [15] H. Behrens and W. Bühring: Electron Radial Wave Functions and Nuclear Beta Decay (Clarendon, Oxford, 1982)
- [16] J. Kotila, J. Suhonen and D. S. Delion: Phys. Rev. C 68, 014307 (2003)
- [17] J. Haataja et al.: Numeeriset menetelmät käytännössä (Picaset, Helsinki, 2002)
- [18] J. Blachot: Nuclear Data Sheets **100**, 179 (2003)
- [19] D. De Frenne and E. Jacobs: Nuclear Data Sheets **79**, 639 (1996)
- [20] J. Blachot: Nuclear Data Sheets **92**, 455 (2001)
- [21] J. Blachot: Nuclear Data Sheets **95**, 679 (2002)

Liite A Esimerkki $\log ft$ -arvon laskemisesta

Ohjelman logft.f90 antamien tulosten tarkistamiseksi laskettiin käsin log ft-arvo kahden pisteen Gaussin ja Legendren kvadratuurilla ¹¹³Cd:n perustilan hajoamiselle. Tässä tapauksessa siis tytärytimen järjestysluku Z =49, massaluku A = 113 ja säde $R = 1,2 \times 113^{1/3}$ fm $\approx 5,8015$ fm. Kyseessä on neljästi kielletty siirtymä (ts. K = 4), jonka Q-arvo $Q_{\beta^-} = 0,320(3)$ MeV [2]. Päätepiste-energia elektronin massoina on siten

$$w_0 = \frac{m_e c^2 + Q_{\beta^-}}{m_e c^2} = \frac{0.511 \,\mathrm{MeV} + 0.320 \,\mathrm{MeV}}{0.511 \,\mathrm{MeV}} \approx 1.6262.$$
(64)

Muototekijää laskettaessa usein esiintyvä suure $\tilde{\alpha}Z$ on tälle ytimelle kaavan (43) mukaisesti

$$\tilde{\alpha}Z = \frac{\alpha \cdot \hbar c \cdot Z}{R \cdot m_e c^2} = \frac{\frac{1}{137} \cdot 197,33 \,\mathrm{MeV fm} \cdot 49}{5,8015 \,\mathrm{fm} \cdot 0,511 \,\mathrm{MeV}} \approx 23,8072.$$

Gaussin ja Legendren kvadratuurissa funktion f(x) integraalin välillä [-1, 1] likiarvo on

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} f(x_i)\tilde{w}_i,$$
(65)

missä n on käytettävien pisteiden määrä. Pisteet x_i , joissa funktion f arvo täytyy laskea, ja vaadittavat painokertoimet \tilde{w}_i löytyvät taulukoituina pienille n:n arvoille, esimerkiksi lähteestä [17] arvoille n = 1, 2, ..., 6. Kahden pisteen tapauksessa ne ovat $x_1 = \frac{1}{\sqrt{3}}, x_2 = -\frac{1}{\sqrt{3}}$ ja $\tilde{w}_1 = \tilde{w}_2 = 1$.

Jotta Gaussin ja Legendren kvadratuuria voidaan soveltaa integraalin

$$\int_{1}^{w_0} C(w_e) p w_e (w_0 - w_e)^2 F_0(Z, w_e) dw_e$$
(66)

laskemiseen, täytyy integrointivälin muuttamiseksi suorittaa muuttujanvaihto

$$x = \frac{2(w_e - 1)}{w_0 - 1} - 1,$$
(67)

jolloin

$$\int_{1}^{w_{0}} g(w_{e})dw_{e} = \int_{-1}^{1} g(w_{e}(x))\frac{dw_{e}}{dx}dx = \frac{w_{0}-1}{2}\int_{-1}^{1} g(w_{e}(x))dx$$

$$\approx \frac{w_{0}-1}{2}\sum_{i=1}^{n} g(w_{e}(x_{i}))\tilde{w}_{i},$$
(68)

	$w_e = 1,1$	3234	$w_e = 1,49389$		
k_e	$F_{k_e-1}(Z, w_e)$	λ_{k_e}	$F_{k_e-1}(Z, w_e)$	λ_{k_e}	
1	10,76842	1	$6,\!647629$	1	
2	$7,\!980137$	0,74107	$3,\!916229$	0,58912	
3	$0,\!3768276$	0,034994	$0,\!1730631$	0,026034	
4	13,26139	1,23151	$5,\!911090$	0,88920	
5	$11,\!01902$	1,02327	$4,\!829822$	0,72655	

Taulukko 6: Tarvittavat Fermi-funktioiden ja $\lambda\text{-tekijöiden arvot esimerkkilaskussa.}$

missä siis

$$w_e(x) = \frac{w_0 - 1}{2}(x + 1) + 1.$$
(69)

Pisteet, joissa funktion $g(w_e) = C(w_e)pw_e(w_0 - w_e)^2 F_0(Z, w_e)$ arvo on siis laskettava, ovat

$$w_e(x_1) = \frac{1,6262 - 1}{2} \left(\frac{1}{\sqrt{3}} + 1\right) + 1 \approx 1,49389$$
(70)

ja

$$w_e(x_2) = \frac{1,6262 - 1}{2} \left(-\frac{1}{\sqrt{3}} + 1 \right) + 1 \approx 1,13234.$$
 (71)

Tarvittavat Fermi-funktioiden $F_{k_e-1}(Z, w_e)$ arvot saadaan kätevästi laskettua Jouni Suhosen fermifn.for-ohjelmalla. Nämä ja näistä lasketut λ -tekijät

$$\lambda_{k_e} = \frac{F_{k_e-1}(Z, w_e)}{F_0(Z, w_e)}$$
(72)

on koottu taulukoksi 6.

Muototekijän laskemiseen tarvittavat matriisielementit M_1 , M_2 , M_3 ja M_4 sekä $M_2^{(k_e)}$ ja $M_3^{(k_e)}$ ($k_e = 1, 2, ..., K$) saadaan luettua taulukosta 5. Näistä voidaan laskea joukko apusuureita:

$$M_{+} = M_{2} + \sqrt{\frac{K+1}{K}} \frac{g_{A}}{g_{V}} M_{3} = 596,61 + \sqrt{\frac{4+1}{4}} \cdot \frac{1,25}{1,0} \cdot 532,99$$

$$\approx 1341,49$$
(73)

k_e	$M_{-}^{(k_e)}$	γ_{k_e}
1	-164,232	$0,\!93385$
2	$-153,\!652$	1,96776
3	-147,963	$2,\!97860$
4	-144,448	$3,\!98398$

Taulukko 7: Kvanttiluvusta k_e riippuvia apusuureita.

ja

$$M_{-} = M_{2} - \sqrt{\frac{K+1}{K}} \frac{g_{A}}{g_{V}} M_{3} = 596,61 - \sqrt{\frac{4+1}{4}} \cdot \frac{1,25}{1,0} \cdot 532,99 \qquad (74)$$

 $\approx -148,266.$

Lisäksi

$$\tilde{M}_1 = 386.2 \cdot M_1 = 386.2 \cdot (-6.81317 \times 10^{-3}) \approx -2.631246.$$
 (75)

Kvanttiluvusta k_e riippuvat apusuureet

$$M_{-}^{(k_e)} = M_2^{(k_e)} - \sqrt{\frac{K+1}{K}} \frac{g_A}{g_V} M_3^{(k_e)}$$
(76)

ja

$$\gamma_{k_e} = \sqrt{k_e^2 - (\alpha Z)^2},\tag{77}$$

missä α on hienorakennevakio, on laskettu taulukkoon 7.

Käsin laskemisen helpottamiseksi voidaan vielä määritellä näppärät apusuureet

$$\mathcal{P} = \tilde{M}_1 \sqrt{\frac{2K+1}{K}} - \frac{w_0 - w_e}{2k_\nu + 1} M_+, \tag{78}$$

$$Q = \left(\frac{\gamma_{k_e}}{k_e w_e} - w_e\right) M_- - \tilde{\alpha} Z M_-^{(k_e)} \tag{79}$$

ja

$$\mathcal{R} = \mathcal{Q}^2 + \left(1 - \frac{\gamma_{k_e}^2}{k_e^2 w_e^2}\right) M_-^2,\tag{80}$$

jolloin

$$\tilde{\mathcal{A}}_K = \mathcal{P}^2 + \frac{2\mathcal{P}\mathcal{Q}}{2k_e + 1} + \frac{\mathcal{R}}{(2k_e + 1)^2}.$$
(81)

Kaavoja (78)-(81) on paljon miellyttävämpää ja vähemmän virhealtista käsitellä kynän, paperin ja laskimen kanssa kuin kaavaa (35). Sijoittamalla lausekkeet (78)-(80) kaavaan (81) saadaan kuitenkin tulokseksi kaava (35).

Esimerkiksi, kun $w_e = 1,49389$ ja $k_e = 1$, on

$$\mathcal{P} = -2,631246 \cdot \sqrt{\frac{2 \cdot 4 + 1}{4}} - \frac{1,6262 - 1,49389}{2 \cdot 4 + 1} \cdot 1341,49 \approx -23,6683,$$
$$\mathcal{Q} = \left(\frac{0,93385}{1 \cdot 1,49389} - 1,49389\right) \cdot (-148,266) - 23,8072 \cdot (-164,232)$$
$$\approx 4038,71$$

ja

$$\mathcal{R} = 4038,71^2 + \left(1 - \frac{0,93385^2}{1^2 \cdot 1,49389^2}\right) \cdot (-148,266) \approx 16311237.$$

Nyt

$$\tilde{\mathcal{A}}_K = (-23,6683)^2 + \frac{2 \cdot (-23,6683) \cdot 4038,71}{2 \cdot 1 + 1} + \frac{16311237}{(2 \cdot 1 + 1)^2} \approx 1749194$$

ja

$$\mathcal{B}_{K} = \frac{4+1}{(2\cdot 1-1)(2\cdot 5-1)} \left(596,61^{2} + 2 \cdot \frac{1,25}{1,0} \frac{1-5}{\sqrt{4\cdot (4+1)}} \cdot 596,61 \cdot 532,99 + \frac{(1-5)^{2}}{4\cdot (4+1)} \left(\frac{1,25}{1,0}\right)^{2} \cdot 532,99^{2} \right) + \left(\frac{1,25}{1,0}\right)^{2} \cdot 876,49^{2} \approx 1200367.$$

Vastaavasti lasketut välitulokset muilla tarvittavilla w_e :n ja k_e :n arvoilla on koottu taulukkoon 8.

Taulukoitujen välitulosten avulla on helppoa laskea $C(w_e)$:n arvo tarvittavissa kahdessa pisteessä käyttäen kaavaa (34), johon sijoittamalla kaavat (37) ja (38) ja ottamalla summista eteen yhteisiä tekijöitä saadaan

$$C(w_e) = (6,706 \times 10^{-6})^K \cdot g_V^2 \cdot \frac{(2K)!!}{(2K+1)!!}$$
$$\times \left[\sum_{k_e+k_\nu=K+1} \lambda_{k_e} (w_e^2 - 1)^{k_e-1} (w_0 - w_e)^{2(k_\nu - 1)} \frac{\tilde{\mathcal{A}}_K}{2(2k_e - 1)!(2k_\nu - 1)!} + \sum_{k_e+k_\nu=K+2} \lambda_{k_e} (w_e^2 - 1)^{k_e-1} (w_0 - w_e)^{2(k_\nu - 1)} \frac{\mathcal{B}_K}{(2k_e - 1)!(2k_\nu - 1)!}, \right]$$

w_e	= 1,49389				
k_e	${\mathcal P}$	$\mathcal Q$	${\cal R}$	$ ilde{\mathcal{A}}_K$	\mathcal{B}_K
1	$-23,\!6683$	4038,71	16311237	1749194	1200367
2	-29,3032	$3560,\!38$	12688753	466677	1221604
3	-39,4456	$3424,\!04$	11736323	202483	1271555
4	-63,1113	$3340,\!05$	11168145	95018	1390300
5	-	-	-	-	1990412
w_e	= 1,13234				
k_e	${\mathcal P}$	$\mathcal Q$	${\cal R}$	$ ilde{\mathcal{A}}_K$	\mathcal{B}_K
1	-77,5592	$3955,\!52$	15646086	1539945	1200367
2	-98,5912	$3697,\!08$	13668363	410655	1221604
3	-136,4488	$3560,\!47$	12676912	138525	1271555
4	-224,7832	$3476,\!38$	12085185	26076	1390300
_5	-	-	-	-	1990412

Taulukko 8: Välituloksia muototekijän ${\cal C}(w_e)$ arvojen laskemisessa.

ja kun tähän edelleen sijoitetaan välitulokset taulukosta 8 päädytään lukuihin

$$\begin{split} C(1,13234) &= (6,706 \times 10^{-6})^{K} \cdot (1,0)^{2} \cdot \frac{8!!}{9!!} \\ & \cdot \left[\sum_{k_{e}+k_{\nu}=5} \frac{\lambda_{k_{e}}(1,13234^{2}-1)^{k_{e}-1}(1,6262-1,13234)^{2(k_{\nu}-1)}\tilde{\mathcal{A}}_{K}}{2(2k_{e}-1)!(2k_{\nu}-1)!} \right] \\ & + \sum_{k_{e}+k_{\nu}=6} \frac{\lambda_{k_{e}}(1,13234^{2}-1)^{k_{e}-1}(1,6262-1,13234)^{2(k_{\nu}-1)}\mathcal{B}_{K}}{(2k_{e}-1)!(2k_{\nu}-1)!} \right] \\ &= 8,21776 \cdot 10^{-22} \cdot \left[1 \cdot 0,28219^{0} \cdot 0,49389^{6} \cdot \frac{1539945}{2 \cdot 1! \cdot 7!} + 0,74107 \cdot 0,28219^{1} \cdot 0,49389^{4} \cdot \frac{410655}{2 \cdot 3! \cdot 5!} + 0,034994 \cdot 0,28219^{2} \cdot 0,49389^{2} \right] \\ & \cdot \frac{138525}{2 \cdot 5! \cdot 3!} + 1,23151 \cdot 0,28219^{3} \cdot 0,49389^{0} \cdot \frac{26076}{2 \cdot 7! \cdot 1!} + 1 \cdot 0,28219^{0} \\ & \cdot 0,49389^{8} \cdot \frac{1200367}{1! \cdot 9!} + 0,74107 \cdot 0,28219^{1} \cdot 0,49389^{6} \cdot \frac{1221604}{3! \cdot 7!} \\ & + 0,034994 \cdot 0,28219^{2} \cdot 0,49389^{4} \cdot \frac{1271555}{5! \cdot 5!} + 1,23151 \cdot 0,28219^{3} \\ & \cdot 0,49389^{2} \cdot \frac{1390300}{7! \cdot 3!} + 1,02327 \cdot 0,28219^{4} \cdot 0,49389^{0} \cdot \frac{1990412}{9! \cdot 1!} \right] \\ &\approx 5,25741 \cdot 10^{-21} \end{split}$$

ja $C(1,49389) \approx 2,181749 \cdot 10^{-20}$.

 $Nyt\ Gaussin\ ja\ Legendren\ kvadratuurin\ avulla\ saadaan\ integraaleille\ likiarvot$

$$f \approx \frac{1,6262 - 1}{2} \cdot \left(\sqrt{1,13234^2 - 1} \cdot 1,13234 \cdot (1,6262 - 1,13234)^2 \cdot 10,76842 + \sqrt{1,49389^2 - 1} \cdot 1,49389 \cdot (1,6262 - 1,49389)^2 \cdot 6,647629\right) \approx 0,55505$$

ja

$$\tilde{C} \approx \frac{1,6262 - 1}{2} \cdot \left(5,25741 \cdot 10^{-21} \cdot \sqrt{1,13234^2 - 1} \cdot 1,13234\right) \\ \cdot (1,6262 - 1,13234)^2 \cdot 10,76842 + 2,181749 \cdot 10^{-20} \cdot \sqrt{1,49389^2 - 1} \\ \cdot 1,49389 \cdot (1,6262 - 1,49389)^2 \cdot 6,647629) \approx 3,91854 \cdot 10^{-21}.$$

Lopputulokseksi saadaan $\log ft\text{-}\mathrm{arvo}$

$$\log ft = \log \frac{\kappa}{\tilde{C}/f} = \log \frac{6147}{3,91854 \cdot 10^{-21}/0,55505} \approx 23,94.$$

Tulokset vastaavat — pyöristyksistä aiheutuvaa pientä eroa lukuunottamatta — ohjelman logft.f90 laskemia arvoja kahdella pisteellä. Näillä laskuilla tarkistettiinkin ohjelman oikea toiminta.

Liite B Ohjelmalistaus: logft.f90

Ainoa kokonaisuudessaan alusta loppuun työn tekijän kirjoittama ohjelma oli Fortran 90 -kielinen logft.f90. Ohjelma laskee matel.exe:n tuottamista matriisielementeistä log ft-arvon ja puoliintumisajan. Malli vaaditusta ajotiedostosta, jossa tarvittavat tiedot syötetään, löytyy liitteestä C. Liitteessä C on esitetty myös ohjelman esimerkkitulostus.

Ohjelma tarvitsee NAG-aliohjelmakirjastoa Gaussin ja Legendren kvadratuurin laskemisessa käytettävien vakioiden hakemiseen. Lisäksi ohjelma hyödyntää työn ohjaajan tarjoamia FORTRAN 77 -kielisiä koodeja fermi.for ja gamma.for yleistetyn Fermi-funktion laskemiseen.

```
_ logft.f90 .
   1
  ! LOGFT.F90
\mathbf{2}
3
  1
           Integroidun muototekijan ja integroidun Fermi-funktion laskeminen
           matriisielementeista M_1...M_6 ja edelleen log ft:n laskeminen
4
   1
  11
           Integrointiin kaytetaan Gaussin ja Legendren kvadratuuria (GLQ).
5
6
  1
           Fermifunktion laskemiseen kaytetaan J.Suhosen F77-koodia
7
   1
           FERMIFN.FOR. Gaussin ja Legendren kvadratuurin abskissat ja
           painokertoimet saadaan katevasti NAG-aliohjelmakirjastosta.
  1
8
9
  1
           M.M. Jun-2005
10
           Kaantaminen ja linkitys komennoilla:
11
  1
12 !
           f77 -c fermifn.for gamma.for
           f90 -o logft.exe logft.f90 fermifn.o gamma.o -lnag
13
   1
  14
15
  PROGRAM logft
16
    IMPLICIT NONE
17
    INTEGER, PARAMETER :: MAX_K = 4
                                                ! maksimikielteisyys
18
    INTEGER, PARAMETER :: MAX_N = 6
                                                ! maksimi-n GLO:ssa
19
20
    REAL, EXTERNAL :: FERMIFN
                                                   ! Ulkoinen F77-funktio
    EXTERNAL d01baz
                                                 ! NAG-kirjaston GLQ-fktio
21
22
    REAL, PARAMETER :: me = 0.5109989
                                                  ! m_e [MeV]
23
    REAL, PARAMETER :: ga = 1.25
                                                     ! g_a
24
    REAL, PARAMETER :: gv = 1.0
25
                                                    ! g_v
    REAL, PARAMETER :: alfa = 0.007297352533
26
                                                 ! hienorakennevakio
    REAL, PARAMETER :: mefm = 2.59E-3
27
                                                  ! (m_e c^2)/(hbar c)
    REAL, PARAMETER :: kappa = 6147
                                                 ! log ft -arvoa varten
28
    REAL, PARAMETER :: pii = 3.14159265359
29
30
    INTEGER :: K,Z,A,ifail,i,n,nmax,ke,knu
31
    REAL :: E0,M1,M2,M3,M4
32
    REAL, DIMENSION(MAX_K) :: M2ke,M3ke,Mminuske,gammake
33
    DOUBLE PRECISION, DIMENSION(MAX_N) :: xi,weight
34
    REAL :: fermi_int,tulo,w0,we,deltaw,radius,shape_int,shfactor
35
36
    REAL :: Mplus, Mminus, Mtilde1, apu, termi, lambdake, halflife
37
    REAL :: P,Q,R,alfaZ,lgft
38
     ! Luetaan tarvittava data ajotiedostosta
39
    READ(5,*) K,Z,A,EO
                                   ! kielteisyys, Z_i, A ja paatepiste-energia
40
```

```
READ(5,*) M1,M2,M3,M4
41
                                      ! k_e-riippumattomat m.e.:t
42
     DO i=1,K
 43
      READ(5,*) M2ke(i)
                                      ! M2(k_e):t (K kpl)
     END DO
44
 45
     DO i=1.K
      READ(5,*) M3ke(i)
46
                                      ! M3(k_e):t (K kpl)
     END DO
47
 48
     READ(5,*) nmax
                                ! GLQ lasketaan kertaluvuille 2...nmax
49
     radius = 1.2*REAL(A)**.3333333
50
     Mtilde1 = M1*386.2
51
     alfaZ = alfa/radius/mefm*Z
52
     apu = SQRT((K+1.0)/REAL(K))*ga/gv
53
     Mplus = M2 + apu*M3
54
     Mminus = M2 - apu*M3
55
56
     DO i=1,K
57
      Mminuske(i) = M2ke(i) - apu*M3ke(i)
58
       gammake(i) = SQRT(i*i-alfa*alfa*Z*Z)
59
     END DO
60
61
     ! Kirjoitetaan hieman tulostetta, jotta arvot ovat tarkistettavissa
62
     WRITE(6, (/, A, I3, A, I3)), Z = ', Z, A = ', A
     WRITE(6, '(A, I1)') ' FORBIDDENESS: ',K
63
     WRITE(6, '(A, F7.4, A)') ' E_0 = ', E0, ' MeV'
64
     WRITE(6, '(A, F7.5, A)') ' RADIUS = ', radius,' fm'
65
     WRITE(6, '(/, A)') ' THE MATRIX ELEMENTS M_1 TO M_4:'
66
     WRITE(6,'(4F8.3)') M1,M2,M3,M4
67
     WRITE(6, '(/, A)') ' THE MATRIX ELEMENTS M_minus AND M_plus:'
68
     WRITE(6,'(2F10.3)') Mminus,Mplus
69
     WRITE(6, '(/, A)') ' THE k_e DEPENDENT MATRIX ELEMENTS:'
70
     WRITE(6,'(A)') ' k_e M_2(k_e) M_3(k_e) M- (k_e)'
71
72
     WRITE(6,'(A)') ' -----'
73
     DO i=1,K
       WRITE(6,'(I4,3F11.3)') i,M2ke(i),M3ke(i),Mminuske(i)
74
75
     END DO
     WRITE(6,*) ''
76
     WRITE(6,'(A)') ' n C-tilde f
77
                                             log ft'
     WRITE(6,'(A)') ' -----',
78
79
80
     ! Integroidaan C ja f
81
     DO n=2,nmax
      ! Haetaan NAG:sta tarvittavat abskissat ja painot
82
       CALL d01bbf(d01baz,-1.0D0,1.0D0,0,n,weight,xi,ifail)
83
       IF (ifail/=0) THEN
84
         WRITE(6,*) 'NAG d01bbf error nr ', ifail
85
         WRITE(6,*) 'Calculation aborted'
86
         STOP
87
88
       END IF
89
       w0 = E0 / me
90
91
       fermi_int = 0.0
       shape_int = 0.0
92
93
94
       DO i=1,n
        we = 0.5*(w0-1.0)*(xi(i)+1.0)+1.0
95
96
         deltaw = w0-we
         tulo = FERMIFN(0,we,Z,radius)
97
         98
99
         fermi_int = fermi_int + tulo*weight(i)
100
101
         ! Lasketaan muototekija C(w_e)
```

```
102 shfactor = 0.0
```

```
103
          ! Ensin A-tilde_K-termit
104
          DO ke=1,K
105
            knu = K+1-ke
            P = SQRT((2.0*K+1.0)/K)*Mtilde1 - deltaw/(2.0*knu+1.0)*Mplus
106
107
            Q = (gammake(ke)/(ke*we)-we)*Mminus - alfaZ*Mminuske(ke)
            R = (alfaZ*Mminuske(ke))**2 + (1+we*we-2*gammake(ke)/ke)*Mminus*Mminus
108
            R = R + 2*alfaZ*Mminuske(ke)*Mminus*(we-gammake(ke)/(ke*we))
109
110
            termi = P*P + 2*P*Q/(2.0*ke+1.0) + R/((2.0*ke+1.0)**2)
111
            lambdake = FERMIFN(ke-1,we,Z,radius)/FERMIFN(0,we,Z,radius)
112
            termi = termi*lambdake*((we*we-1.0)**(ke-1))*(deltaw**(2*(knu-1)))
113
            termi = termi*0.5/REAL(kertoma(2*ke-1))/REAL(kertoma(2*knu-1))
114
115
116
            shfactor = shfactor + termi
117
118
          END DO
          ! Sitten B_K-termit
119
120
          DO ke=1,K+1
            knu = K+2-ke
121
            termi = M2*M2 + 2*ga/gv*(ke-knu)/SQRT(K*(K+1.0))*M2*M3
122
            termi = termi + (ke-knu)*(ke-knu)/(K*(K+1.0))*ga*ga/gv/gv*M3*M3
123
124
            termi = termi * (K+1.0)/(2.0*ke-1.0)/(2.0*knu-1.0)
            termi = termi + ga*ga/gv/gv*M4*M4
125
126
127
            lambdake = FERMIFN(ke-1,we,Z,radius)/FERMIFN(0,we,Z,radius)
128
            termi = termi*lambdake*((we*we-1.0)**(ke-1))*(deltaw**(2*(knu-1)))
            termi = termi/kertoma(2*ke-1)/kertoma(2*knu-1)
129
130
            shfactor = shfactor + termi
131
132
          END DO
133
134
          ! ja lopuksi skaalaus
135
          shfactor = (6.706E-6)**K*gv*gv*shfactor*kaksoiskertoma(2*K)
136
          shfactor = shfactor/kaksoiskertoma(2*K+1)
137
          shape_int = shape_int + tulo*weight(i)*shfactor
        END DO
138
139
        shape_int = (w0-1.0)/2.0 * shape_int
        fermi_i = (w0-1.0)/2.0*fermi_int
140
        lgft = LOG10(kappa/(shape_int/fermi_int))
141
142
        WRITE(6, '(I2, 3G12.5)') n, shape_int, fermi_int, lgft
143
      END DO
144
      halflife = kappa/shape_int
      WRITE(6,'(/,A,G12.5,A)') ' HALF-LIFE ',halflife,' s'
145
      WRITE(6,'(A,G12.5,A,/)') '
                                         = ',(halflife/60.0/60.0/24.0/365.0),' y'
146
147
148 CONTAINS
149
150 ! Kertoma- ja kaksoiskertomafunktiot
151
152 RECURSIVE FUNCTION kertoma(a) RESULT(tulos)
153
      IMPLICIT NONE
      INTEGER, INTENT(IN) :: a
154
      INTEGER :: tulos
155
     IF (a < 2) THEN
156
       tulos = 1
157
158
     ELSE
159
        tulos = a * kertoma(a-1)
     END IF
160
161 END FUNCTION kertoma
162
163 RECURSIVE FUNCTION kaksoiskertoma(a) RESULT(tulos)
164 IMPLICIT NONE
```

```
      165
      INTEGER, INTENT(IN) :: a

      166
      INTEGER :: tulos

      167
      IF (a < 2) THEN</td>

      168
      tulos = 1

      169
      ELSE

      170
      tulos = a * kaksoiskertoma(a-2)

      171
      END IF

      172
      END FUNCTION kaksoiskertoma

      173
      174

      174
      END PROGRAM logft
```

Liite C Ajo- ja lokitiedostoja

Tässä liitteessä esitellään esimerkkejä laskuissa käytettyjen ohjelmien ajoja lokitiedostoista. Samalla käydään läpi käytetyt ohjelmat ja niiden roolit laskennassa.

Yksihiukkasenergiat laskettiin ohjelmalla wsbasis.exe, jonka eräs ajotiedosto ws112cd.com on listattu alla. Nimensä mukaisesti ko. ajotiedostolla laskettiin yksihiukkaskanta Woods-Saxon-potentiaalin pohjalta ¹¹²Cd:lle. Tulokset kirjoitettiin ohjelmallista jatkokäsittelyä varten tiedostoon ws112cd.f03 ja silmämääräistä arvioimista varten yksihiukkasenergiat lueteltiin myös lokitiedostossa ws.log (listaus alla toisena).

```
__ws112cd.com
   #!/usr/local/bin/tcsh
 1
 \mathbf{2}
   #
 3 ./wsbasis.exe << EXIT > ./ws.log
 4 112Cd
  112,48
 5
               ! A,Z
 6 11,11,0
               ! NNL,NZL,NDEL
 7 1,1.0,1.0 ! IPARAM, VOSCALE, WSOSCALE (IPARAM=1 <-> B&M, 2<-> BERTCH, 0 <-> OWN SCALING)
  1,1,1,.0
                 ! NEUTRON ORBITALS
 8
 q
  1,1,3,.0
10 0,3,5,.0
11 0,3,7,.0
12 2,0,1,.0
13 1,2,3,.0
14 1,2,5,.0
15
   0,4,7,.0
16 0,4,9,.0
17 0,5,9,.2
   0,5,11,.0
18
19 1,1,1,.0
                 ! PROTON ORBITALS
20 1,1,3,.0
21
   0,3,5,.0
22 0,3,7,.0
23 2,0,1,.0
24
  1,2,3,.0
25 1,2,5,.0
26 0,4,7,.0
27
   0,4,9,.0
28 0,5,9,.2
29 0,5,11,.0
30 EXIT
   mv -f ./fort.3 ./ws112cd.f03
31
```

6	46.28	57142	9	8.211	96514	0.0000	0000			
7	0.01	50000	0	6.121	76125	9.4717	6125 631	1		
8	1									
9										
10	1	1.	1.	0.5	46.2857	71429	8.211965	514	0.0000000	-16.05751801
11	2	1.	1.	1.5	46.2857	71429	8.211965	514	0.0000000	-17.39275360
12	3	0.	3.	2.5	46.285	71429	8.211965	514	0.00000000	-17.89927292
13	4	0	२. २	3 5	46 285	71429	8 211965	514	0 00000000	_21 20034311
14	5	ວ. ວ	٥. ٥	0.5	46 285	71490	8 211965	514	0.00000000	7 58504009
1.4	6	2. 1	0. 0	1 5	10.200	71400	0.211000	517 517	0.00000000	7 04107250
10	7	1.	2.	1.5	40.200	71429	0.211905	514	0.00000000	-1.04121359
10	1	1.	∠.	2.5	40.200	71429	8.211965	514 - 4 4	0.00000000	-9.44169617
-17	8	0.	4.	3.5	40.285	1429	8.211965	514	0.00000000	-8.66149807
18	9	0.	4.	4.5	46.285	(1429	8.211965	514	0.00000000	-13.86760330
19	10	0.	5.	4.5	46.285	71429	8.211965	514	0.0000000	1.05130458
20	11	0.	5.	5.5	46.285	71429	8.211965	514	0.00000000	-6.04762840
21	1.0) 112	.0	112.0	112.0	48.0	64.0	48.	0	
22	1.27	00000	0	1.270	00000	0.6700	0000			
23	55.71	42857	1	9.884	77286	48.0000	0000			
24	0.01	50000	0	6.121	76125	9.4717	6125 631	1		
25	1									
26										
27	1	1.	1.	0.5	55.7142	28571	9.884772	286	48.00000000	-9.57427406
28	2	1.	1	1.5	55,714	28571	9,884772	286	48.00000000	-11,14028549
29	3	0.	3	2.5	55.714	28571	9.884772	286	48.00000000	-11.85278988
30	4	0	२. २	3 5	55 714	28571	9 884772	286	48 00000000	-15 91616058
91	5	0. 0	0.	0.5	55 71/	20071	0 994772	200	48.00000000	0 80044440
31	0	∠.	0.	0.5	55.7142	20071	9.004//2	200	48.00000000	-0.00944449
32	0	1.	2.	1.5	55.7144	20071	9.004772	200	48.00000000	-0.269/4654
33	1	1.	2.	2.5	55.7142	28571	9.884772	280	48.00000000	-3.08453560
34	8	0.	4.	3.5	55.7142	28571	9.884772	286	48.00000000	-2.3/1139/6
35	9	0.	4.	4.5	55.7142	28571	9.884772	286	48.00000000	-8.57384109
36	10	0.	5.	4.5	55.7142	28571	9.884772	286	48.00000000	7.72392559
37	11	0.	5.	5.5	55.7142	28571	9.884772	286	48.00000000	-0.76507938
38										
39	112	48								
40										
41	11	11								
42	NUC	LEON	LEVI	ELS						
43										
44	1	1	1	-16.0	5752					
45	1	1	3	-17.3	9275					
46	0	3	5	-17.8	9927					
47	0	3	7	-21.2	9934					
48	2	0	1	-7.5	8504					
49	- 1	2	3	-7 0	4127					
50	1	2	5	_9.4	4170					
51	0	4	7	-8.6	6150					
51 80	۰ ۱	1	0	_13 0	6760					
52	0		9	-13.0	6700 E120					
53	0	5	9	1.0	4760					
54	0	5	11	-6.0	4/63					
55										
56	1	1	1	-9.5	7427					
57	1	1	3	-11.1	4029					
58	0	3	5	-11.8	5279					
59	0	3	7	-15.9	1616					
60	2	0	1	-0.8	0944					
61	1	2	3	-0.2	6975					
62	1	2	5	-3.0	8454					
63	0	4	7	-2.3	7114					
64	0	4	9	-8.5	7384					
65	0	5	9	7.7	2393					
66	0	5	11	-0.7	6508					
67										

```
68 NO DELTA ORBITALS
69
70
71 0
```

Saatuihin yksihiukkasenergioihin tehtiin säätöjä ohjelman wscure.for avulla. Muista käytetyistä ohjelmista poiketen ko. ohjelma vaati jokaista käyttökertaa varten lähdekoodin editointia ja uudelleenkääntämisen. Ohjelma teki muutokset suoraan tiedostoon ws112cd.f03 (tai ¹¹⁶Sn:n tapauksessa ws116sn.f03). Seuraavaksi laskettiin parivuorovaikutusmatriisielementit käyttäen ohjelmaa snglodd.exe ajotiedostolla tbdt114.com. ¹¹²Cd:n tapauksessa ohjelma tuotti jatkokäyttöön tiedostot int112.f04 ja int112.f09.

Tämän jälkeen päästiin tekemään BCS- ja QRPA-laskuja ohjelman qrpat.exe avulla. Esimerkki käytetystä ajotiedostosta, qrpat112cd.com, löytyy alta. Ohjelma laski samalla sekä BCS- että QRPA-laskut, mikä ei kuitenkaan ollut ongelma, koska ajoaika ohjelmalla oli käytetyllä laitteistolla pisimmilläänkin vain muutamia sekunteja. Tulokset oli nähtävissä lokitie-dostossa qrpat.log (esimerkki alla toisena) ja jatkokäsittelyä varten kompaktimmassa muodossa tiedostossa qrpat112cd.out (tai ¹¹⁶Sn:n tapauksessa qrpat116sn.out). Alla olevassa esimerkissä lokitiedostosta on listattu vain ensimmäiset 102 riviä; loppuosa tiedostosta sisältää qrpa-laskun tulokset multipoleille 0^+ , 1^- , 1^+ , 2^- , ..., 10^+ samassa muodossa kuin tiedoston listatussa osassa 0^- -multipolille. Loppulistaus olisi vienyt noin 20 sivua listauksissa käytetyllä fontilla.

_ grpat112cd.com

```
1
   #!/usr/local/bin/tcsh
2
3
   cp ./ws112cd.f03 ./fort.3
4
   cp ./int112.f04 ./fort.4
5
                              # pairing me:s
   cp ./int112.f09 ./fort.9
6
                             # residual me:s
7
   ./qrpat.exe << loppu > ./qrpat.log
8
  0,0
                               # IWRIT, ITDARPA (0 - QRPA, 1 - TDA, 2 - BCS)
9
  112,64,48,44,28
                            # MA, NN, NZ, NACTN, NACTZ
10
11 1.00, 1.00, 0.93, 1.02
                              # GPH. GPP. GPATRN. GPATRZ
12 500, 1.0e-3,-3.0,-3.0
                               # LMAX, EPSY, RLAMBN, RLAMBZ
  22
                               # NMULTI
13
  0, -1, 1.00, 1.00
                              # J, PI, GPH, GPP
14
15 0, 1, 1.07, 0.87
                                 GPH = 0.0 <=> GPH = GPH given above
                               #
                                 GPP = 0.0 <=> GPP = GPP given above
16 1, -1, 0.52, 1.00
                              #
  1, 1, 1.00, 1.00
17
18 2, -1, 1.00, 1.00
19 2, 1, 0.71, 1.00
20 3, -1, 0.72, 1.00
21 3, 1, 1.00, 1.00
```

22	4, -1, 1.00, 1.00		
23	4, 1, 0.89, 1.00		
24	5, -1, 0.82, 1.00		
25	5, 1, 1.00, 1.00		
26	6, -1, 1.00, 1.00		
27	6, 1, 1.39, 1.00		
28	7, -1, 1.05, 1.00		
29	7, 1, 1.00, 1.00		
30	8, -1, 1.00, 1.00		
31	8, 1, 1.00, 1.00		
32	9, -1, 1.00, 1.00		
33	9, 1, 1.00, 1.00		
34	10, -1, 1.00, 1.00		
35	10, 1, 1.00, 1.00		
36	loppu		
37	mv -f ./fort.21 ./qrp	at112cd.out	
38	rm ./fort.*		
39			
40			
41	# MA	= MASS	
42	# NN	= NEUTRON NUMBER	
43	# NZ	= PROTON NUMBER	
44	# NACTN	= NUMBER OF ACTIVE NEUTRONS (FOR THE BCS CALCULATION)	
45	# NACTZ	= NUMBER OF ACTIVE PROTONS(FOR THE BCS CALCULATION)	
46	# GPH,GPP,GPAIR	= COUPLING CONSTANTS FOR THE PH, PP AND PAIRING	
47	#	TERMS OF THE TWO BODY INTERACTIONS	
48	# LMAX,EPSY	= MAXIMUM NUMBER OF ITERACTIONS FOR THE BCS	
49	#	PROCEDURE AND ALLOWED ERROR IN THE PARTICLE	
50	#	NUMBER CONVERGENCE PROCEDURE	
51	<pre># RLAMBN(RLAMBZ)</pre>	= INITIAL VALUES OF THE NEUTRON(PROTON)	
52	#	FERMI LEVELS	

Г				(qrpat.log			
1	CDATEN-	0.03	800001					
2	GFAIRN-	0.90	5000001					
4		BCS (NUTPUT FOR NEU	ITRONS	NACT = 44			
5		205 0		1110110				
6		1	0.09048	0.99590	7.85667	1.41584	0.00000	
7		2	0.07693	0.99704	9.17184	1.40700	0.00000	
8		3	0.06941	0.99759	9.66291	1.33824	0.00000	
9		4	0.05308	0.99859	13.04337	1.38281	0.00000	
10		5	0.88399	0.46750	1.32255	1.09314	0.00000	
11		6	0.93263	0.36083	1.74176	1.17228	0.00000	
12		7	0.39024	0.92071	1.59933	1.14927	0.00000	
13		8	0.40287	0.91526	1.73308	1.27807	0.00000	
14		9	0.11223	0.99368	5.68125	1.26719	0.00000	
15		10	0.99825	0.05915	9.44689	1.11560	0.00000	
16		11	0.93824	0.34597	1.61645	1.04942	0.00000	
17								
18			RL	M= -8.32948	B DIF= 0.00	00313 ILOOP=	20	
19								
20	GPAIRZ=	1.01	1999998					
21								
22		BCS (DUTPUT FOR PRO	TONS	NACT= 28			
23								
24		1	0.38431	0.92320	1.86375	1.32251	0.00000	
25		2	0.31447	0.94927	2.16767	1.29417	0.00000	
26		3	0.17953	0.98375	3.83922	1.35612	0.00000	
27		4	0.07560	0.99714	7.74361	1.16743	0.00000	
28		5	0.99939	0.03506	7.46997	0.52347	0.00000	

20			6	0	99872	c	05065	8 032	53	08	1979	0 000	00
30			7 0.99733 0.07298			5 23225 0 76166				0.000	00		
21			8	0.	99477	c c	10210	6 015	6 01533 1 22193			0.000	00
20			9	0.	35185	с С	03606	1 513	1 51375 0 99712			0.000	00
22			10	0.	00054	с С	03024	16 014	1.51375 0.99712			0.00000	
22			11	0.	00973	с С	05024	7 534	20 20	0.9	5 9 9 <i>1</i>	0.000	00
34 25			11	0.	99013	U	0.05042	1.554	29	0.7	0004	0.000	00
36					R	LAM=	-8.26105	DIF=	0.000	340	ILOOP=	35	
37							0.20100				12001		
38	pp-nr	ı QR	PA: J=	0	PARITY	= -1							
39													
40			NNNME,I	NCONI	F=	5	10						
41													
42													
43													
14			DATA										
15													
16	MA	A NN	NZ NA	CTN :	NACTZ	112	64	48	44		28		
17													
48	LN	1AX	EPSY RI	LAMB	N RLAM	BZ	500 0	.00100		-3.0	0000	-3.	00000
49													
50	GI	PH G	PP GPA.	IRN	GPAIRZ		1.0000	00	1.000	00	0.93	000	1.02000
51			NEUTOO	мат		DTTAT	E DACTO						
52			NEUIRUI	N SI	GLE PA	RIICL	E BASIS						
53			4		4	4	4	10	05750				
54			1		1	1	1	-10	.05/52				
55			2		1	1	3	-1/	. 39275				
56			3		0	3	5	-1/	.89927				
57			4		0	3	1	-21	. 29934				
58			5		2	0	1	-1	.58504	:			
59			ь 7		1	2	3 F	-1	.04127				
50			,		1	2	5	-9	.44170				
20			0		0	4	1	-9	.50000				
62			10		0	4	9	-13	. 00/00				
24			10		0	5	9	1 7	10000				
25			11		0	5	11	- 1	. 10000				
20			DDOTON	CTM		סידמו	E DACTC						
00 67			FRUIUN	SIN	GLE PA	n I I C L	E DADID						
69			1		1	1	1	٩	57497				
89			2		1	1	3	_10	00000				
70			2		0	ঽ	5	_11	85279				
70			4		0	3	7	_15	91616				
79			5		2	0	1	_0	80944				
73			6		1	2	3	-0	.26975				
74			7		1	2	5	-3	.08454				
75			8		0	4	7	-2	37114				
76			9		õ	4	9	-9	. 40000				
77			10		0	5	9	7	72393				
78			11		0	5	11	-0	.76508				
79													
80			NN-CONH	FIGUI	RATION	S							
81													
82	1	1	5	1	1 1		7.8566	7 2	0	1	1.32	255	9.17922
83	2	2	6	1	1 3		9.17184	4 1	2	3	1.74	176	10.91359
84	3	3	7	0	3 5		9.6629:	1 1	2	5	1.59	933	11.26224
85	4	4	8	0	37		13.0433	7 0	4	7	1.73	308	14.77645
86	5	9	10	0	49		5.6812	5 0	5	9	9.44	689	15.12814
87													
88			PP-CONE	FIGUI	RATION	S							
89													
90	6	1	5	1	1 1		1.86375	52	0	1	7.46	997	9.33373

917 2 6 3 2.16767 1 2 3 8.03253 10.20020 1 1 7 928 3 0 3 5 3.83922 1 2 5 5.23225 9.07147 93 9 4 8 0 3 7 7.74361 0 4 7 6.01533 13.75894 0 5 9 94 10 9 10 0 4 9 1.51375 16.01426 17.52802 95 LAMDANZ = 0.000000E+00 96 1.00000000 GPP= 1.00000000 97 GPH= 98 RPA ENERGIES 99 100 8.518559 8.931186 9.501222 9.603054 10.740623 11.135614 12.602319 14.257449 10115.659311 19.592648 102

Pitkällisten säätöjen jälkeen, kun QRPA-spektrit oli saatu tyydyttäviksi, päästiin MQPM-laskuihin ohjelman pqstate.exe avulla. Esimerkki ohjelman vaatimasta ajotiedostosta, levels113cd.com, on jälleen listattu alla. Ohjelma tulosti lokitiedoston levels.log (listaus alla toisena) ja kirjoitti jo tutuksi tulleeseen tapaan tulokset jatkokäsittelyä varten tiedostoon levels113cd.out.

_ levels113cd.com

```
1
  #!/usr/local/bin/tcsh
\mathbf{2}
   cp ./ws112cd.f03 ./fort.2
3
   cp ./qrpat112cd.out ./fort.3
4
   cp ./int112.f09 ./fort.4
5
6
      7
                                                             #
8
     #
9
     #
              Neutron states of 112Cd
                                                             #
10
                                                             #
     *****
11
12
13
  ./pqstate.exe << loppu > ./levels.log
14
15
                   # IT=1 <=> neutron IT=2 <=> proton
  1
                   # J and parity of odd proton nucleus, number of states
16 1,1,10
17 .TRUE.
                  # .TRUE.=don't use lowest 0+ state
18
   . TRUE.
                  # .TRUE.=don't use lowest 1- state
                  # .TRUE.=print configurations
  . TRUE.
19
20 .TRUE., .TRUE.
                  # .TRUE.=print wavefunction coeffs.
   .FALSE., .FALSE. # TRUE.=use approximate matrix elements
21
                   # .TRUE.=tabulate matrices
22 .FALSE.
23 0.05
                   # criterion for zero eigenvalues
24
  1.0, 1.0
                   # 3qp and 3qp-1qp int. scaling parameter
25 22
                   # number of multipoles (J,parity) used
26 0, -1, 0
27 0, 1, 0
28 1, -1, 1
29 1, 1, 0
30 2, -1, 0
31 2, 1, 4
32 3, -1, 1
33 3, 1, 0
34 4, -1, 0
```

35	4, 1,	2	
36	5, -1,	2	
37	5, 1,	0	
38	6, -1,	0	
39	6, 1,	2	
40	7, -1,	1	
41	7, 1,	0	
42	8, -1,	0	
43	8, 1,	0	
44	9, -1,	0	
45	9, 1,	0	
46	10,-1,	0	
47	10, 1,	0	
48	loppu		
49	mv -f	./fort.7	./levels113cd.out
50	#rm ./:	fort.*	

-						levels.lo	og						
1							0						
2	Phonon plus quasiparticle calculation for odd nuclei												
3													
4	Single	e-part	ticle	and E	CS data								
5 6	Protor	ıs											
7	110001												
8	I	N(I)	L(I)	J(I)	SPE(I)	U(I)	V(I)	QPE(I)					
9	4			4	0 574074	0 204211	0 002004	1 060754					
10	1	1	1	2	-9.574274	0.304311	0.923204	1.003/34					
19	2	1	3	5	11 850700	0.314409	0.949200	2.10/0/3					
12	ے ا	0	3	7	15 916161	0.1795507	0.903732	7 743615					
14	т Б	0 0	0	1	0 800444	0.000385	0.035060	7.460073					
14	5		0	3	-0.009444	0.999303	0.050654	9 030507					
16	7	1	2	5	-0.209747	0.990710	0.030034	5 030053					
17	, 0	1	2	7	-3.004330	0.997333	0.072900	6 015330					
10	0	0	4	, 0	-2.371140	0.354774	0.102102	1 513754					
10	10	0	4 c	9	-9.400000	0.351653	0.930035	1.010704					
19	11	0	5	11	0 765070	0.999543	0.050237	7 53/286					
20	11	U	5	11	-0.703079	0.990120	0.050425	7.554200					
21	Noutro	na											
22	Neutro	115											
23	т	N(Т)	т(т)	т(т)	SPF(T)	Ш(Т)	V(T)	OPF(T)					
25	-	11(1)	ц(т)	5(1)	511(1)	0(1)	•(1)	QID(I)					
26	1	1	1	1	-16 057518	0 090475	0 995899	7 856665					
27	2	1	1	3	-17 392754	0 076930	0 997036	9 171837					
28	3	0	3	5	-17 899273	0 069414	0 997588	9 662911					
29	4	0	3	7	-21,299343	0.053083	0.998590	13.043372					
30	5	2	0	1	-7.585040	0.883991	0.467504	1.322555					
31	6	1	2	- 3	-7.041274	0.932631	0.360831	1.741757					
32	7	1	2	5	-9.441696	0.390238	0.920714	1.599326					
33	8	0	4	7	-9.500000	0.402866	0.915259	1.733082					
34	9	0	4	9	-13.867603	0.112233	0.993682	5.681250					
35	10	0	5	9	1.051305	0.998249	0.059150	9.446887					
36	11	0	5	11	-7.100000	0.938245	0.345972	1.616446					
37													
38	NEUTRO)N-ODI) NUCI	LEUS									
39													
40	Angula	ar mor	nentur	n J= 1	/2 Paritv= 1								
41	0				5 -								
42	Number	of	config	gurati	ons= 21								
43			,	-									

44	Neutro	on conf:	igura	tions:							
45											
46	1	2	0	1				1.322555			
47	2	1	1	1	1	-1	1	10.393509			
48	3	1	1	3	1	-1	1	11.708681			
49	4	1	2	3	2	1	1	2.346464			
50	5	1	2	3	2	1	2	4.258930			
51	6	1	2	3	2	1	3	4.577337			
52	7	1	2	3	2	1	4	4.650671			
53	8	1	2	5	2	1	1	2.204033			
54	9	1	2	5	2	1	2	4.116500			
55	10	1	2	5	2	1	3	4.434907			
56	11	1	2	5	2	1	4	4.508241			
57	12	0	3	5	3	-1	1	11.676414			
58	13	0	3	7	3	-1	1	15.056874			
59	14	0	4	7	4	1	1	3.605223			
60	15	0	4	1	4	1	2	4.581941			
61	10	0	4	9	4	1	1	7.553391			
62	10	0	4 5	9	4	1	2	0.000109			
64	10	0	5	9	5	-1	2 1	10 333080			
65	20	0	5	11	5	-1	1	3 002/02			
66	20	0	5	11	5	-1	2	4 502641			
67	21	v	0	11	5	-1	2	4.002041			
68	Hamilt	onian 1	natri	x dime	ensid	on after	r d	orthogonalis	ation= 21		
69	mamiri	, on ran 1	navri	in uime		on aroo.		, i uno gonar i b	401011 21		
70	Energy	, eigen	value	sofr	ent	ron-odd	nu	cleus:			
71	6)										
72	1.2	264669	1.9	11583	2	.699606		3.671805	4.007005	4.189292	4.454059
73	4.5	554671	4.5	89053	4	.643201					
74											
75	One qu	asipar	ticle	proba	bil:	ities of	fr	neutron-odd	nucleus:		
76	_	-		-							
77	0.9	971467	0.0	13330	0	.005490		0.000173	0.000108	0.000025	0.000190
78	0.0	00028	0.0	00003	0	.000014					
79											
80	Wavefu	nction	coei	ficier	its:						
81											
82	State	number	= 1	Energ	;y=	1.264	466	9			
83	1	2	0	1				-0.985630			
84	2	1	1	1	1	-1	1	0.007089	0.0086	34	
85	3	1	1	3	1	-1	1	-0.007241	-0.0082	28	
86	4	1	2	3	2	1	1	-0.057316	-0.0042	00 02	
87	5	1	2	3	2	1	2	0.041122	-0.0132	∠ə 1 /	
88	0	1	2	3	2	1	ა ⊿	0.059031	0.0107	14	
00 99	/ 2	1	∠ ?	5	2	1 1	+ 1	0.00082	0 1411	26	
90	0	1	2	5	2	1	2	0.130131	0.1411	20	
02	10	1	2	5	2	1	2 3	-0.035175	-0.0035	75	
93	11	1	2	5	2	1	4	0.087064	0.0042	77	
94	12	0	3	5	3	-1	1	-0 001591	-0 0011	71	
95	13	0	3	7	3	-1	1	-0.005431	0.0043	85	
96	14	õ	4	7	4	1	1	-0.029610	-0.0592	77	
97	15	0 0	4	7	4	1	2	0.005664	0.0223	21	
98	16	0	4	9	4	1	1	-0.018542	-0.0206	74	
99	17	0	4	9	4	1	2	0.003401	0.0033	84	
100	18	0	5	9	5	-1	1	-0.008598	-0.0069	73	
101	19	0	5	9	5	-1	2	-0.000751	-0.0003	33	
102	20	0	5	11	5	-1	1	0.004202	-0.0099	03	
103	21	0	5	11	5	-1	2	-0.006583	-0.0153	93	
104											

MQPM-laskujen tuloksista laskettiin β^- -siirtymätiheydet käyttäen ohjelmaa trd.exe, joka jatkokäsittelyä varten kirjoitti ko. siirtymätiheydet tiedostoon trd.out. Näistä laskettiin edelleen matriisielementit ohjelman matel.exe avulla. Alla on listattu esimerkki käytetystä ajotiedostosta matel.com ja lokitiedostosta matel.log. Lokitiedostossa on luettavissa myös ohjelmalle syötetyt siirtymätiheydet.

```
_ matel.com .
1 #!/usr/local/bin/tcsh
2
  cp ../116sn/ws116sn.f03 ./fort.3
                                                  # single-particle basis
3
4
  cp ./trd.out ./fort.10
                                                   # transition densities
\mathbf{5}
  ./matel.exe << loppu > matel.log
6
7
8
  115,50
               # A,Z of the initial nucleus (probably)
9 4.5,1,0.5,1 # spin and parity of the initial and final nucleus
10 4
                # forbiddeness of the transition
11 1
                # IO
               # NINT,XMAX,IOINT
12 50,10,0
13
14 loppu
```

				m	atel.log	
1					-	
2	NEUTRO	DN SINGLE	PARTICLE	E BASIS		
3						
4	1	1	1	1	-16.70953	
5	2	1	1	3	-18.01063	
6	3	0	3	5	-18.60633	
7	4	0	3	7	-21.89684	
8	5	2	0	1	-8.21894	
9	6	1	2	3	-7.40000	
10	7	1	2	5	-10.10818	
11	8	0	4	7	-9.49872	
12	9	0	4	9	-14.56003	
13	10	0	5	9	-0.00011	
14	11	0	5	11	-7.20000	
15						
16	PRO TO I	N SINGLE	PARTICLE	BASIS		
17						
18	1	1	1	1	-8.90000	
19	2	1	1	3	-9.30000	
20	3	0	3	5	-9.80000	
21	4	0	3	7	-15.84635	
22	5	2	0	1	-4.80000	
23	6	1	2	3	-4.75000	
24	7	1	2	5	-4.90000	
25	8	0	4	7	-5.00000	
26	9	0	4	9	-8.63054	
27	10	0	5	9	7.32163	
28	11	0	5	11	-0.94392	
29						
30						
31	INITIAL STATE	: JI,PI=	4.5 1	FINAL	STATE: JF,PF= 0.5 1	
32						
33						

```
FOR THE TRANSITIONS OF FORBIDDENESS 4
34
35
       THE NEEDED TRANSITION MULTIPOLES ARE:
36
           L= 4
37
           L= 5
   NDENS, KDs
                                           5
38
                     2
                                4
39
    FOR MULTIPOLARITY 4 NPN= 17
40
    PROTON INDICES:
41
     9789
                       8
                          9
                              5
                                 6
                                     7
                                         8
                                            9
                                                7
                                                   8
                                                       2
                                                          3
                   7
                                                              4
42
    NEUTRON INDICES:
43
     5 6 6 6
                   7
44
                      7
                           7
                              8
                                  8
                                     8
                                         8
                                             8
                                                9
                                                    9 11 11 11
    TRANSITION DENSITIES:
45
     1 -1.921 2 -0.001 3 -0.006 4 -0.043 5 -0.004 6 0.006 7 0.020 8 0.01¢
46
     9 -0.013 10 -0.017 11 0.003 12 -0.005 13 0.001 14 -0.001 15 0.002 16 0.002
47
    17 -0.003
48
49
    FOR MULTIPOLARITY 5 NPN= 21
50
51
    PROTON INDICES:
                   7
                      8
52
     2
        989
                           9
                             6
                                 7
                                     8
                                         9
                                             5
                                                6
                                                    7
                                                       8
                                                           9
                                                              1
                                                                  2
                                                                      3
                                                                         4
53
    11
    NEUTRON INDICES:
54
     4 5 6 6 7 7
                          7
                              8
                                  8
                                     8
                                         8
                                             9
                                                9
                                                    9
                                                       9
                                                           9 11 11 11 11
55
56
    11
    TRANSITION DENSITIES:
57
     1 -0.002 2 2.124
                        3 -0.003
                                  4 -0.035
                                            5 0.014 6 -0.011 7 -0.027
                                                                        8 -0.003
58
     9 -0.006 10 0.001 11 -0.003 12 0.003 13 -0.002 14 -0.004 15 0.002 16 0.002
59
    17 0.015 18 -0.012 19 -0.007 20 0.007 21 -0.001
60
61
62
     R= 5.8355fm Nint= 50 RANGE= 10.000
63
64
65
     b= 2.2493fm
66
67
68
          *****
69
     THE MATRIX ELEMENTS M_1 - M_6 READ:
70
71
    -2.63407E-02
                 -542.65
                              -474.00
                                            831.24
                                                       0.00000E+00 0.00000E+00
72
73
74
     THE k_e DEPENDENT MATRIX ELEMENTS READ:
75
76
                 M2(k_e) = -598.6332
                                      M3(k_e) = -523.8241
       k e = 1
77
       k_e = 2
                 M2(k_e) = -559.5917
                                      M3(k_e) = -489.8577
78
       k_e = 3
                 M2(k_e) = -538.6402
                                      M3(k_e) = -471.6189
79
                 M2(k_e) = -525.7168
       k_e = 4
                                      M3(k_e) = -460.3631
80
81
          *****
82
83
```

Viimeisenä vaiheena laskettiin itse log *ft*-arvot ja puoliintumisajat käyttäen ohjelmaa logft.exe, jonka lähdekoodi on listattu liitteessä B. Alla on jälleen listattu esimerkki ohjelman ajamiseen käytetystä ajotiedostosta logft.com ja lokitiedostosta logft.log.

```
_____ logft.com ____
1 #!/usr/local/bin/tcsh
\mathbf{2}
3 ./logft.exe << hapsiainen > logft.log
 4
5 4, 49, 113, .831
                                           # forbiddeness, Z, A, W_0 [MeV]
6 -.00681317, 596.61, 532.99, 876.49
                                            # k_e independent matrix elements
 7 655.9581
                                           # M_2(k_e)
8 612.7065
9 589.5206
10 575.2321
11 586.8804
                                           # M_3(k_e)
12 548.3613
13 527.7000
14 514.9609
15 6
                                            # highest number of points for GLQ
16
17 hapsiainen
18
19 cat ./logft.log
                                  # let's print the log file on the screen
```

_____ logft.log __

1 Z = 49 A = 1132 FORBIDDENESS: 4 3 E_0 = 0.8310 MeV 4 RADIUS = 5.80151 fm 56 THE MATRIX ELEMENTS M_1 TO M_4: 7 -0.007 596.610 532.990 876.490 8 9 10 THE MATRIX ELEMENTS M_minus AND M_plus: 11 -148.266 1341.486 12THE k_e DEPENDENT MATRIX ELEMENTS: 1314k_e $M_2(k_e) M_3(k_e) M_- (k_e)$ 15------1 655.958 586.880 -164.232 16172 612.706 548.361 -153.652 589.521 527.700 -147.963 575.232 514.961 -144.448 3 18 19 4 2021 n C-tilde f log ft 222 0.40377E-20 0.55516 23.927 23243 0.38514E-20 0.55886 23.950 254 0.39335E-20 0.55903 23.941 5 0.39412E-20 0.55905 23.940 266 0.39416E-20 0.55908 23.940 272829 HALF-LIFE 0.15595E+25 s 30= 0.49452E+17 y 31