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Abstract: Obfuscation aims to transform source code into an illegible format while pre-

serving its semantics. This thesis explores the different obfuscation techniques used in the

JavaScript programming language. An experiment is conducted to measure the impacts of

several different techniques on the performance of three example programs. The findings

suggest that code obfuscation can incur severe performance drawbacks, although the extent

to which this would hinder real production programs remains unclear.
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Suomenkielinen tiivistelmä: Obfuskaatiolla pyritään muuntamaan lähdekoodi lukukelvot-

tomaan muotoon siten, että sen semantiikka säilyy muuttumattomana. Tämä tutkielma kar-

toittaa erilaisia JavaScript-ohjelmointikielessä käytettyjä obfuskaatiomenetelmiä. Käytän-

nön tutkimuksessa menetelmiä vertaillaan keskenään mittaamalla niiden vaikutuksia kol-

men esimerkkiohjelman suorituskykyyn. Tulokset osoittavat, että obfuskaatio voi heikentää

suorituskykyä merkittävästi, mutta eivät välttämättä yleisty todellisiin tuotanto-ohjelmiin.

Avainsanat: obfuskaatio, web, javascript, suorituskyky

i



Glossary

Obfuscation The transformation of source code into an illegible format while

preserving its semantics.

Deobfuscation The reverse operation of obfuscation, aims to recover the orig-

inal source code from obfuscated code.

Minification The transformation of source code by removing unnecessary

characters to make files as small as possible.

Whitespace Characters which occupy space in text, but are not visible.

Benchmark Running a program in order to evaluate its performance.

API Application programming interface, a connection between com-

puter programs or the constituents of a program.

AST Abstract syntax tree, a representation of program structure.

DOM Document Object Model, an interface which represents an XML

or HTML document as a tree structure.

LT Literal transformations, a data obfuscation technique where the

value contents of variables are obfuscated.

CFF Control flow flattening, a structural obfuscation technique where

control structures are obfuscated.

DCI Dead code injection, a structural obfuscation technique where

unnecessary code is added to complicate analysis.
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1 Introduction

JavaScript is the dominant client-side programming language in web development, used by

over 97% of all websites (W3Techs 2022). It is currently supported by all major browsers,

and can also be used to program server-side applications using runtime systems such as

Node.js (OpenJS Foundation 2009). Both client and server-side implementations of the lan-

guage conform to the ECMAScript specification, which has been published since 1997 and

is currently on its thirteenth iteration, called ECMAScript 2022 (Ecma International 2022).

The reader is expected to be generally familiar with the JavaScript language.

Obfuscation is defined as transforming source code into an illegible format (Rajba and

Mazurczyk 2021), while preserving its semantics (Roeder and Schneider 2010). Obfuscation

is widely applied in modern web development to support both benign and malicious goals

(Skolka, Staicu, and Pradel 2019). Malicious uses center around hiding attacks in obfuscated

code (Xu, Zhang, and Zhu 2012), whereas benign application mainly aims to protect dis-

tributable code from theft (Collberg, Thomborson, and Low 1997). Obfuscation techniques

have also been shown to have an effect on the performance of programs (Skolka, Staicu, and

Pradel 2019), but research focusing on obfuscated JavaScript code performance is lacking.

The aim of this thesis is to explore the numerous different obfuscation methods available and

compare a subset of them between each other in terms of performance impacts. Because the

performance and responsiveness of a website directly affect user experience (Selakovic and

Pradel 2016), results on the impacts of source code obfuscation can offer meaningful insight

into web design as a whole.

The research experiment is conducted by developing multiple example programs which uti-

lize commonly used third party libraries as dependencies. The code of the example programs

is then obfuscated, and benchmarking tools are used to measure the impacts of obfuscation

on the performance of the programs when compared to their baseline implementation. Sev-

eral different obfuscation methods are applied independently and in tandem to measure the

impact of each method and their combined effect on different kinds of programs.

While obfuscation methods in web development mainly target JavaScript code, they can also
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perform transformations between JavaScript and HTML, or obfuscate CSS definitions. Al-

though these languages are often closely intertwined, this thesis will limit its scope to analyze

the effects of pure JavaScript transformations from a performance-centric perspective.

The rest of this thesis is organized as follows. Chapter 2 explores the current body of work

surrounding obfuscation techniques in web development and presents motivations for the

experimental study. Chapter 3 describes the research method of the experimental study and

the programs developed for it. Chapter 4 presents the results of the study. Chapter 5 discusses

the results and their implications, as well as threats to validity. Chapter 6 collects the main

contributions of the thesis and discusses motivations for future work.
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2 Obfuscation

2.1 Defining obfuscation

The term obfuscation is generally used to denote methods whose main purpose is to hinder

code analysis (Moog et al. 2021), by performing transformations that preserve the functional

semantics of the original code (Hammad, Garcia, and Malek 2018). In other words, a pro-

gram is equivalent with its obfuscated counterpart if they have the same observed behavior

Collberg, Thomborson, and Low (1997). Yet another definition would be to say obfuscation

means the behavior of a script cannot be fully reasoned about until its execution (Sarker,

Jueckstock, and Kapravelos 2020). The reverse operation of obfuscation is called deobfus-

cation, and it covers methods which attempt to recover the original source code from an

obfuscated script. Obfuscation is used for both benign and malignant purposes, the most

common of which are discussed in the following sections. Several different techniques to

achieve obfuscation are also presented.

The theoretical basis of obfuscation has been studied by Collberg, Thomborson, and Low

(1997), who propose obfuscation as an effective approach to combat reverse engineering of

code. In this context, obfuscation is defined as the transformation of a program into a form

where anything one can compute from it could also be computed from the input and output

behavior of the program (Barak et al. 2001). By defining a family of unobfuscatable pro-

grams, Barak et al. (2001) have shown that obfuscators in this strict sense are impossible

to develop. An approach based on relaxed requirements, called best-possible obfuscation,

has since been proposed by Goldwasser and Rothblum (2007). Using the relaxed approach,

obfuscation is shown to be achievable. This thesis is not concerned with formalized obfus-

cation in the context of information theory, but rather focuses on the practical applications

and implications of obfuscation in software development. Theoretical results based on rep-

resenting programs as Boolean circuits are far distanced from real-life scenarios in modern

web development, where obfuscation is widely applied.
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2.2 Benign motives

The JavaScript code of a website is distributed to any visitor of the website, which makes

it susceptible to intellectual property theft. On major websites, obfuscation is mainly used

to combat such theft, and to protect the company’s copyrighted code and trade secrets. Al-

though intellectual property is generally protected under copyright law, and theft can be

addressed through litigation, developers fear the reverse engineering and plagiarism of pro-

prietary algorithms and data structures (Collberg, Thomborson, and Low 1997). Some com-

panies also obfuscate the source code of their websites to prevent ad-blocking extensions

from working properly, in order to increase advertisement revenue (Hieu, Athina, and Zubair

2021). A less creditable, yet arguably still benign motive would be to obscure potential se-

curity vulnerabilities in the application from attackers using obfuscation. Paid programs can

also be watermarked in a way that uniquely identifies the person the program is sold to, and

obfuscation makes the difficult to remove such watermarks (Barak et al. 2001).

Whether the benign uses of obfuscation are applied to enhance secrecy or security, they are

essentially an instance of security through obscurity – a notion which has been discussed and

rejected by many (Swire 2004). Some also argue that revealing implementation details will

increase security and software quality, as it will expose the code to peer review, and hence

let the developers know about potential vulnerabilities. Regardless, many companies still

choose to obfuscate their code and increasingly advanced obfuscation techniques continue

to be developed, which are then met with increasingly advanced detection methods.

The ever-increasing popularity of the JavaScript language has generated a desire for per-

formance optimizations. Such optimizations have been studied in depth by (Selakovic and

Pradel 2016), who found that simple changes in the program structure can incur significant

changes in performance. Some of the code transformations discussed in their research, such

as inefficient reimplementation of standard API functionality or inefficient iteration, can also

also used as obfuscation techniques. This implies that certain obfuscation techniques are

likely to have some performance drawbacks. Obfuscation can also complicate development

processes and cause additional workload for developers, as supplemental steps need to be

taken to obfuscate any produced source code. Furthermore, abandoned projects will be ex-

tremely hard for future developers to reason about, if the original untransformed source code
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is not available. End users will also have difficulties understanding obfuscated code, although

this can often be an intended effect, if obfuscation is applied to protect said code.

Obfuscation may also have an unintended effect on the functionality of the code. Skolka,

Staicu, and Pradel (2019) tested the correctness of obfuscated libraries using the original test

suites of the libraries, and found that less than half of the obfuscated scripts preserved their

original semantics. This is mainly due to implementation-level bugs in the obfuscation tools

used, as well as oversights of certain corner-cases in the JavaScript language. Issues could

be guarded against using automated tools, such as running a test suite for obfuscated code in

a deployment pipeline to verify it still retains the original functionality.

2.3 Malignant motives

Common attack vectors in browsers include cross-site scripting (XSS) (Lekies, Stock, and

Johns 2013), cross-site request forgery (CSRF) (Jovanovic, Kirda, and Kruegel 2006) and

drive-by downloads to install and run malware on the user’s machine (Provos et al. 2008).

Several vulnerable web APIs, such as postMessage (Son and Shmatikov 2013), WebRTC

(Reiter and Marsalek 2017) or even the canvas element (Mowery and Shacham 2012)

can also be utilized for browser based attacks. Attacks based on fingerprinting are often

accomplished through vulnerable APIs, but even simple functions can be used, such as

performance.now() to deliver timing attacks (Skolka, Staicu, and Pradel 2019). All

of these examples benefit from obfuscation, as their underlying attack vectors can be ob-

scured by transforming the source code, and this transformation will complicate both manual

and automatic analysis when the code is analyzed for malware (Skolka, Staicu, and Pradel

2019). Obfuscation is particularly effective against simplistic detection methods, such as

regex-based text analysis on a script (Likarish, Jung, and Jo 2009).

A study on Android applications by Hammad, Garcia, and Malek (2018) found that even triv-

ial obfuscation methods can have a severe impact on the detection accuracy of anti-malware

products. They also note that combined transformations do not provide significant benefit

over the application of a singular obfuscation method. However, these findings do not neces-

sarily apply to JavaScript obfuscation and should be taken in their own context. Regardless,
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obfuscation methods are generally found to decrease the detection rate of antivirus software,

and the topic is an area of active research. The techniques used in malicious scripts tend to

be more complex than those used in benign ones, and are discussed in more depth in Sec-

tion 2.5. Furthermore, methods which are generally considered bad programming practice,

such as dynamic code generation, are often associated with malicious obfuscation (Skolka,

Staicu, and Pradel 2019).

Xu, Zhang, and Zhu (2012) found that 71% of malicious JavaScript files utilize some ob-

fuscation techniques, and even trivial methods, such as string concatenation, can fool more

than half of the top antivirus software. More advanced methods, such as encoding obfus-

cation, avoided detection from all of the 20 tested state-of-the-art antivirus software. They

argue that this is due to a static signature-based detection approach used in the antivirus soft-

ware, which is not effective in analyzing obfuscated code. These findings, however, may be

outdated by now and should be interpreted with that caveat in mind.

According to Feinstein and Peck (2007), most security devices have set upper bounds for the

time and space complexity of analysis. These can be abused by repeated applications of ob-

fuscation techniques, which will limit the software’s ability to find any hidden attack vectors.

Conversely, as obfuscation methods are often used to hide malicious code, certain antivirus

programs may trigger false positive warnings when a website with obfuscated source code

is visited. False positives are particularly prominent when analysis is conducted using sim-

plistic and heuristic detection methods (Murad et al. 2010). Browser manufacturers have

also taken action against hidden attacks by disallowing extensions which contain obfuscated

code. Google Chrome has instituted such a ban in recent years, supported by their statement

that 70% of malicious extensions are obfuscated (Claburn 2018). Mozilla Firefox followed

suit soon after with a similar ban (Cimpanu 2019), but neither manufacturer has extended

the restriction to minified scripts.

2.4 Obfuscation versus minification

Another means of transformation adjacent to obfuscation is minification, which is purely

concerned with reducing code size, and by extension its transmission time. The two trans-
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formation methods should not be confused, since minification is nearly always benign and

used in pursuit of performance improvements, unlike obfuscation. This is supported by the

research of Skolka, Staicu, and Pradel 2019, who showed that minified code generally im-

proves the performance of a website, whereas obfuscation reduces it. However, a study by

Król and Zdonek (2020) has shown that the performance improvements of minification are

not necessarily significant, and additional techniques, such as image compression should also

be applied. Minification can even be seen as a useful, simplified, systematic and automated

form of code golf, a recreational activity in which the aim is to compress source code into as

few characters as possible, while preserving its original semantics.

The techniques used in minification are fairly simple, and usually include the omission of

comments, redundant whitespace and indentation in the script. These features were origi-

nally implemented by the JSMin tool (Crockford 2001) and complemented further with the

abbreviation of local variable names by the YUI compressor (Yahoo! 2007). More advanced

methods can perform logical optimization on the code, such as omitting redundant variable

declarations or unreachable code. Minified JavaScript files are often combined with a source

map (Lenz and Fitzgerald 2011) to associate their definitions with the original untransformed

source code, which is essentially a form of deobfuscation. A study by Sakamoto et al. (2015)

found that 87% of Alexa Top 500 websites could gain further benefit from minification, and

the total file sizes of those sites could be reduced by 39% using the authors’ techniques.

According to Skolka, Staicu, and Pradel (2019), minification affects more than a third of all

scripts on the web, and is commonly included as a step in deployment pipelines.

2.5 Classifying obfuscation techniques

Obfuscation techniques can be categorized based on the transformations they perform on the

code. Numerous techniques have been identified by previous research, and more advanced

methods continue to be developed to combat increasingly efficient detection systems.

This section presents the most prominent JavaScript obsfuscation methods in current use,

and builds on the work of Feinstein and Peck (2007), Jscrambler (2017), Xu, Zhang, and

Zhu (2012), Skolka, Staicu, and Pradel (2019) and Moog et al. (2021).
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• Randomization operates by inserting random segments into a script, such as redun-

dant comments or whitespace. It also encompasses identifier obfuscation, which is the

garbling of variable or function names to make them illegible.

• Data obfuscation refers to transformations on literal values, such as strings or num-

bers. Methods include string splitting and concatenation, string replacements based

on regular expressions, relocating literal values into a global array, changes to string

encoding, and using arithmetic operators or bit shifting to obscure numerical values.

• Structural modification can insert dead code in the form of redundant conditional

branches or loops, which have no effect on the functionality of the code. A method

called control flow flattening can also be applied to transform nested control structures

into switch statements, which are placed inside a single infinite loop to make the

program flow significantly harder to follow, while preserving its semantics.

• Definition overwriting can replace existing properties in the global object, such as

function definitions or global variables. This makes it extremely challenging to deter-

mine if any definition conforms to the assumed JavaScript language specification, as

references can be swapped around or altered to point elsewhere.

• Dynamic code generation creates new JavaScript segments during runtime, using

global functions such as eval(), the function constructor Function(), or inserting

new script tags into the HTML using document.createElement(’script’).

Scripts can also be partitioned to be defined over multiple locations in the code, in

order to make them harder to piece together.

• Encoding or encryption can transform a code block into a string which is no longer

valid JavaScript. The original code can then be recovered from the transformed string

via decoding or decryption, and evaluated using dynamic code generation methods.

Obfuscation tools often combine several of the methods above in order to maximize obscu-

rity. Some tools, such as the JavaScript Obfuscator by Serafim (2016), also support extensive

customization of the transformation options, allowing the user to pick how heavily obfus-

cated they want the end product to be. They may also offer features that hinder the use of

inspection tools, such as overwriting methods of the console object made for logging pur-

poses, or limiting use of the debugger statement. Some malicious scripts have also been

found to have applied obfuscation methods recursively, which each iteration adding another
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layer of obfuscation using the same method (AbdelKhalek and Shosha 2017).

2.6 Related research and previously developed tools

The detection, analysis and deobfuscation of transformed code has been studied extensively

in the last decade. The solutions developed for obfuscation detection utilize static source

code analysis, as well as dynamic approaches, which analyze code generation and execution

during runtime. Modern tools also include machine learning algorithms for scalable analysis

(Fang et al. 2022).

Xu, Zhang, and Zhu (2012) have performed a comparison of obfuscation methods to reveal

malicious code by categorizing and scanning them using antivirus software. Encoding-based

approaches were found to be more effective for malicious purposes than data obfuscation

or randomization. The authors remark on the benefits and drawbacks of both static and dy-

namic approaches for obfuscation detection, observing that static analysis suffers from poor

detection rate, while dynamic methods can incur a performance penalty. They note that a

hybrid approach could be used to improve accuracy and performance. Xu, Zhang, and Zhu

(2013) have also developed a mostly static detection solution based on function call invoca-

tion, called JSTill. According to their test results, this solution incurs negligible performance

overhead, but produces good detection accuracy and low numbers of false positives.

Kim, Im, and Jung (2011) have developed their own detection system and second the pre-

vious notion about the effectiveness of hybrid approaches. Their hybrid platform produced

better results than previously developed alternatives in terms of both detection rate and anal-

ysis time. Al-Taharwa et al. (2014) propose an alternative, completely static solution that

focuses specifically on readably obfuscated scripts and has demonstrably superior perfor-

mance. Their solution is agnostic to the malignancy of the script, and works by constructing

an AST of the program code. Sarker, Jueckstock, and Kapravelos (2020) have compared

static and dynamic approaches and combined them into a hybrid analysis platform to detect

obfuscation based on browser API usage patterns. Their approach is based on the observa-

tion that if the results of a script’s static and dynamic analysis differ in terms of browser API

usage, the script contains obfuscated behavior. They also note that even though the eval()
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function is infamous for dynamic code generation (Richards et al. 2011), it is no longer a

prevalent obfuscation method, and has given way to more novel approaches.

A massive study conducted by Skolka, Staicu, and Pradel (2019) analyzed nearly a million

scripts from Alexa Top 100 000 websites using a neural network based classifier and found

transformations affecting 38% of all scripts. However, a vast majority of these transforma-

tions were mere minification, with more advanced obfuscation methods present in less than

1% of the scripts. It was also found that nearly 90% of all obfuscated scripts were the result

of a single obfuscation tool, called DaftLogic Obfuscator (Daft Logic 2008). Third party

scripts were nearly twice as likely to be transformed than scripts from the visited website

itself, and obfuscation was also found more prevalent on certain types of websites, such as

those serving adult content. For identification, the authors created a novel approach using

enriched AST representations, which incorporate information about whitespace and variable

name length into the standard JavaScript AST.

A recent study by Moog et al. (2021) propose yet another AST-based static solution extended

with control and data flow analysis, which also detects other code transformations such as

minification. The approach is based on the premise that the AST of a transformed script will

have a different structure than the original script. Their research found that 90% of Alexa

Top 10k websites contain script transformations, which indicates that transformations do not

imply maliciousness. It was also found that the more popular a website is, the more likely it

is to use advanced transformation methods in addition to simple ones.

Recently, machine learning methods have also been applied to improve obfuscation detection

accuracy. Research by Ndichu, Kim, and Ozawa (2020) performs deobfuscation, unpacking

and decoding (DUD) in order to train a classifier model, which determines whether or not

a script is malign or benign. The model training works by applying a natural language

processing (NLP) algorithm using the vector representations of words found in a script. Such

vector representations have previously been used by the authors to detect maliciousness in

a script, but the models perform suboptimally when analyzing obfuscated scripts (Ndichu

et al. 2018; Ndichu et al. 2019). Using a sample of over 200 000 scripts preprocessed using

the DUD technique, the model was trained and tested, and found to show improvements in

both accuracy and performance when compared to previous approaches.
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2.7 Deobfuscation techniques and tools

Deobfuscation is the reverse operation of obfuscation, and its aim is to recover the origi-

nal source code by performing reversed transformations. Automated deobfuscation systems

have also been developed to aid in the prevention of malicious code. Early solutions include

The Ultimate Deobfuscator by Chenette (2008) and jsunpack by Harstein (2009), which im-

plement simple deobfuscation techniques. Caffeine Monkey by Feinstein and Peck (2007) is

a detection framework, which builds on top of the SpiderMonkey JavaScript implementation

and includes a deobfuscator as a part of the system. However, the approaches used in these

tools mostly center on preventing the execution of malicious scripts, instead of restoring the

original semantics of the code. A commonly applied prevention method is to replace invoca-

tions of potentially malicious functions with alert(), which can be used to halt execution

and simultaneously output the code to the user. These tools are also dated, and may not

account for many recent developments in the field of obfuscation.

Research on an automated deobfuscation system called JSDES has been conducted by Ab-

delKhalek and Shosha (2017). Their system includes a runtime analysis component, which

will capture dynamically generated JavaScript code and sequence it to restore the original

code. This is done by identifying all the different methods used in dynamic code generation,

and necessitates the execution of said code in a protected environment. The code execution

is then tracked by the system to reconstruct the original code in correct order. Although the

system exhibits a high success rate for deobfuscation, its main goal is to reveal maliciousness

in a script, rather than fully restore the human-readable semantics of the original script.

Numerous modern and actively maintained web-based solutions exist to aid in making JavaScript

code more easily legible, such as Dirty Markup (10 Best Design 2009) and Online JavaScript

Beautifier (Lielmanis and Newman 2013). However, such tools perform mostly simple trans-

formations such as whitespace formatting, and do not even claim to achieve extensive deob-

fuscation. More thorough approaches exist in the form of JS NICE (Langdon 2014) and

JavaScript Deobfuscator (ben-sb 2021), which are able to revert some of the more advanced

techniques, such as the use of proxy functions, global string arrays and encoded identifiers.

Still, it is trivial to see that certain obfuscation methods can never be fully reverted, and fea-

tures such as meaningful variable names can be irreversibly wiped out during obfuscation.
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2.8 Motivations for the study

JavaScript performance has become an increasingly interesting subject as the popularity of

the language has increased, especially since it can be now used to develop server-side appli-

cations which might serve thousands of requests per second. Performance on the client-side

is equally important, as unresponsive websites can cause users to prefer a solution from a

competitor instead. These observations are noted by Selakovic and Pradel (2016), who have

studied the performance pitfalls of the language in depth. They have found that JavaScript

offers several APIs to perform a single task, and these are often used in suboptimal ways by

developers. This observation is significant, since obfuscation methods can perform transfor-

mations between different APIs. However, the authors also note that most of the optimization

methods do not provide consistently improved performance across multiple JavaScript en-

gines. Their findings support the previously studied notion that most optimizations can be

achieved with relatively simple changes, which conversely supports the presentiment that

simple obfuscation methods may have significant performance impacts.

The performance of both obfuscated and minified code has been studied previously by

Skolka, Staicu, and Pradel (2019). Their research on several minification and obfuscation

tools showed that runtime performance can be slightly improved with minification, but ob-

fuscation generally increases execution time by 16% to 37%. However, Selakovic and Pradel

(2016) have noted that the performance impact of different optimization methods can vary

significantly between browsers, depending on the underlying JavaScript engine used. They

note that less than half of the tested optimization methods consistently improve performance

in different versions of V8 and SpiderMonkey, which are the JavaScript engines of Google

Chrome and Mozilla Firefox, respectively.

It is therefore clear that obfuscation is likely to incur losses in performance, but the extent

to which each individual obfuscation method contributes to this is unknown. This thesis

will make its contribution here, by measuring, analyzing and comparing the effects of sev-

eral distinct obfuscation techniques. Furthermore, as most of the related research focuses

on malicious code detection and attack prevention, the study conducted in this thesis will

concentrate on the more benign aspects of obfuscation and its unintended side effects.
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3 Performance analysis experiment

3.1 Research questions

The study aims to answer the following research questions:

RQ1 What are the measurable impacts of different obfuscation

techniques in terms of performance?

RQ1.1 How does code obfuscation affect file size?

RQ1.2 How does code obfuscation affect execution time?

Table 1: Research questions.

3.2 Experimental setup

As noted by Selakovic and Pradel (2016), it is challenging to reliably measure JavaScript

performance, mainly due to JIT compilation, garbage collection, and differences between

operating systems and browsers. This experiment will therefore follow an approach similar

to theirs, where the code examples are executed repeatedly, this time using an automated

JavaScript benchmarking library, in order to minimize the effect of these challenging factors.

The code will be executed in two popular JavaScript engines, V8 and SpiderMonkey, in order

to observe their potential differences.

The data set selection proved to be challenging. An ideal setup would consist of a large body

of real world scripts, scraped from some of the most widely used websites or open source

repositories. Although these kinds of data sets already exist, such as the 150k JavaScript

Dataset provided by the research of Raychev et al. (2016), this approach poses several prob-

lems. A large portion of scripts gathered using automated methods are likely to have already

been transformed, as shown by Skolka, Staicu, and Pradel (2019). In order to alleviate the ef-

fects of previously transformed scripts on the results of this study, such scripts would have to

be identified and omitted, likely using a machine learning based approach, which is beyond
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the scope of this study. Additionally, most real world scripts include dynamically invoked

portions, such as event listeners. Such code makes it challenging to judge whether or not

the execution of an automatically invoked script corresponds to its real world usage. If not,

the analysis of such a script would not provide meaningful results. Furthermore, external

dependencies and the platform-agnostic nature JavaScript makes the correct execution of ar-

bitrary scripts in a controlled environment near impossible. The data set selection is therefore

conducted manually, and will comprise of several original example programs.

It should be noted that some additional preliminary experiments were also conducted by

obfuscating some commonly used open source libraries with extensive test coverage, and

executing the code via the test suites of the libraries. This approach was inspired by the

previous work of Skolka, Staicu, and Pradel (2019). It was quickly apparent that the testing

frameworks themselves added enough overheard for the performance effects of obfuscation

to be completely insignificant, and thus these experiments were not found to produce mean-

ingful results, nor are they discussed further.

The obfuscation techniques chosen for the analysis are the following:

• Literal transformations (LT): multiple data obfuscation methods are applied on lit-

eral values in the code. String literals are split into small portions and moved into a

separate array. Calls to this array are obfuscated, and the values within are shuffled

and encoded using the RC4 stream cipher. An arbitrary static seed is provided for the

random number generator used in the obfuscation process to ensure consistent repro-

duction of results. The indices of the global string array are also obfuscated, shifted

and rotated. Numerical literals are also transformed into computable expressions. The

settings applied in this setup are presented in Section B.

• Control flow flattening (CFF): structural transformation is applied to flatten the con-

ditional branching into a singular centralized control structure. The technique is ap-

plied at the highest available threshold, which will apply flattening to every node of

the parsed program. The settings applied in this setup are presented in Section C.

• Dead code injection (DCI): sections of random unnecessary code are inserted into

the program as a structural transformation. The technique is applied at the highest

available threshold, which will insert a block of dead code within every node of the
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parsed program. The settings applied in this setup are presented in Section D.

These techniques were selected for their ability to affect the program structure significantly.

Trivial obfuscation techniques have no effect on program execution (Hammad, Garcia, and

Malek 2018), and as such are of no interest for this study. For the sake of brevity, in the

following sections the selected obfuscation techniques are referred to by their abbreviated

identifiers. Each technique will be applied separately and the resulting performance be com-

pared to that of the baseline program. Finally, the techniques will all be applied in tandem to

measure their combined impact.

The entire experiment will be conducted in a JavaScript environment, utilizing open source

libraries. Obfuscation techniques will be applied using the widely used JavaScript Obfusca-

tor library by Kachalov (2016), which has an online version available, developed by Serafim

(2016). The performance of the obfuscated scripts will be measured using the Benchmark.js

library (Vukušić 2011), which also has an online version available (Vukušić 2017). These

tools were selected based on their popularity and the availability of a wide array of config-

urable options, which will aid in isolating the effects of different obfuscation methods. It

should be noted that the obfuscation techniques will not the applied to the obfuscation or

benchmarking libraries themselves, or to the third party libraries which the tools depend on.

The obfuscation library used in the experiment forcibly applies some obfuscation techniques,

such as the abbreviation of variable names and the removal of code comments. The issue is

alleviated by selecting a baseline set of options presented in Section A, which minimize the

impact of any techniques not selected for the study. Furthermore, performance is measured

after applying the baseline set of options to show that the forcibly applied obfuscation tech-

niques generally have a negligible impact on performance. Common minification techniques,

such as compacting the source code by omitting whitespace, are not applied. The settings for

the studied obfuscation techniques replace any conflicting baseline settings when applied.

3.3 Experimental programs

Three original browser-based JavaScript programs are constructed to carry out the perfor-

mance analysis. Each programs utilizes a major third party library as a dependency to better

15



mimic the implementation of real world web applications. The external dependencies and

their versions used are listed in Table 2, and each library is also obfuscated along with the

proprietary program code prior to running the benchmark. The external libraries are sourced

without any transformations, as the commonly used minified versions would be counterpro-

ductively more heavily affected by the application of the baseline obfuscation settings.

Program Dependency Version

P1 Vue.js 3.2.33

P2 jQuery 3.6.0

P3 Babylon.js 5.4.0

Table 2: External dependencies used in the example programs.

The programs are designed to have a higher focus on pure JavaScript execution than most

contemporary real world web applications, in order to better isolate the effects of JavaScript

code obfuscation. Furthermore, in order to facilitate the performance measurements and

limit the effect of outside factors, the programs are designed to execute fully autonomously

from start to finish, without the need for any intermediate user inputs. All of the programs

also work entirely within the web browser, without the need for any backend services or other

such external environments. This is a conscious choice, as the execution of an asynchronous

HTTP request or any similar network-based query is orders of magnitude slower than locally

executable JavaScript code, which would obscure the performance impacts of the applied

obfuscation techniques.

When executed using the benchmarking library, the programs will be altered to contain in-

trinsic iteration, i.e. the programs will perform their work multiple times. This is done to

limit the effect of environmental interference on the results, as well as to scale the execu-

tion times to a more readily perceivable interval. A single execution is thus expected to take

approximately one to ten seconds, and a single benchmark one to ten minutes.
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3.3.1 Calculator (P1)

The first program is a simple mock-up of a pocket calculator, which can perform basic arith-

metic operations (addition, subtraction, multiplication and division) on numerical literals.

The program’s template is rendered dynamically using the Vue.js framework (You 2014).

Native DOM API methods are used to simulate usage of the calculator by selecting elements

and invoking their event listeners. Each iteration of the benchmark performs a hundred cal-

culations, each operating on a thousand random numbers and operators. An image of the

calculator can be seen in Figure 1.

The main objective of this program is to mimic the operation of the front end of a common

web application, where event listeners are invoked and computations are performed as a user

clicks elements on the interface.

Figure 1: Calculator program.

3.3.2 Wordle solver (P2)

The second program implements a solver for the popular web-based guessing game Wordle,

originally developed by Josh Wardle and released in 2021 (New York Times 2022c). The

game has since been acquired by The New York Times (New York Times 2022a, 2022b).

The objective of the game is to guess a random five-letter word using a maximum of six
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guesses. Each guess will reveal information about the correct answer by coloring letters in

the guessed word; green letters are in the correct position, yellow letters appear in the answer

in a different position, and grey letters do not appear in the answer. Wordle’s popularity has

grown rapidly since its release, and academic authors have also taken an interest in the game,

as studies on optimal strategies have recently started appearing (Anderson and Meyer 2022).

The program implemented in this study utilizes the same word lists for allowed guesses and

potential answers as the actual Wordle game. Each iteration of the program picks a random

word as an answer, after which a maximum of six random guesses are made while elimi-

nating all inapplicable words from future guesses based on the game mechanics. Without

applying any statistics on the incidence of letters, this simple approach produces a win rate

of approximately 67%. An image of the program completing a game can be seen in Figure 2.

The main objective of this program is to perform extensive operations on a large assortment

of strings, and it is hypothesized to be heavily affected by the obfuscation of literal values.

It also performs extensive DOM manipulation, which is common in dynamic web applica-

tions. When run in the benchmark, each iteration of the program will guess a thousand words.

Figure 2: Wordle solver program.
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3.3.3 Graphical demo (P3)

The third and final program composes a graphical demo in a three dimensional space. The

demo is drawn using the notion of turtle graphics, in which a cursor is moved on a plane using

simple walk and turn commands. As the cursor moves, it draws a line behind itself. Turtle

graphics were notably implemented into the Logo programming language by Seymour Papert

in the 1960s, and have been used to study teaching programming to children and students

(Solomon and Papert 1976; Caspersen and Christensen 2000). Since then, the idea has

also been implemented in many modern programming languages, such as Python (Python

Software Foundation 2022). This demo program includes an original implementation of

turtle graphics in a three dimensional space, using the theoretical foundations presented by

Verhoeff (2010). Rendering in the browser is implemented using the open source WebGL-

based library Babylon.js (Catuhe 2013).

The program draws a three dimensional interpretation of a space filling curve, first described

by Hilbert (1891). As an instance of a self-similar fractal, the Hilbert curve can be con-

structed in two dimensions using an L-system based on rewrite rules as described by Lin-

denmayer (1968). Extension into the third dimension is implemented using a simplified

version of the L-system proposed by Prusinkiewicz and Lindenmayer (1990). The motion of

the turtle is represented in real time as the cursor draws, and some superfluous visual effects

are added to entertain the author. An image of the curve in progress can be seen in Figure 3.

This program is designed to be computationally expensive, as it performs extensive computer

graphics calculations to achieve real-time rendering in a three dimensional space.
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Figure 3: Turtle graphics program.
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4 Performing analysis

4.1 File size measurements

Each of the example programs and dependency libraries were obfuscated using all of the

selected settings. The resulting raw file sizes for each of the example programs and their

corresponding dependency libraries are presented in Table 3. For the sake of clarity, file

sizes are also presented as multipliers when compared to the size of the unaltered files in

Table 4. Since all of the obfuscation setups used in this study are completely deterministic,

these results are reproducible using the same settings.

P1 Vue.js P2 jQuery P3 Babylon.js

Unaltered 1.387 KB 636.0 KB 119.5 KB 288.6 KB 7.231 KB 13.19 MB

Base 1.769 KB 570.5 KB 172.1 KB 297.3 KB 9.204 KB 12.75 MB

LT 15.43 KB 1059 KB 643.0 KB 559.1 KB 33.19 KB 38.22 MB

CFF 3.579 KB 997.3 KB 175.2 KB 592.5 KB 18.86 KB 25.59 MB

DCI 3.297 KB 1601 KB 416.2 KB 861.1 KB 26.59 KB 30.33 MB

All 21.30 KB 4899 KB 664.0 KB 2626 KB 104.7 KB 119.5 MB

Table 3: File size measurement results for all programs and dependencies.

P1 Vue.js P2 jQuery P3 Babylon.js

Unaltered – – – – – –

Base 1.28 0.90 1.44 1.03 1.27 0.97

LT 11.1 1.66 5.38 1.94 4.59 2.90

CFF 2.58 1.57 1.47 2.05 2.61 1.94

DCI 2.38 2.52 3.48 2.98 3.68 2.30

All 15.4 7.70 5.56 9.10 14.5 9.06

Table 4: File size multipliers as compared to the size of the unaltered files.
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4.2 Performance measurements

The code was run in Google Chrome version 101.0.4951 and Mozilla Firefox version 100.0,

both of which are the latest available at the time of writing. The underlying hardware con-

sisted of an AMD Ryzen 1700 processor running at 3.85 GHz, 16 GB of RAM and an

NVIDIA GeForce GTX 1070 GPU. Hardware acceleration was enabled in both browsers.

Each benchmark was executed a minimum of 50 times to ensure statistically significant

results. The benchmarking library would occasionally perform some additional iterations,

likely due to the timeout limit not having passed since the last iteration. These were included

as part of the sample. Performance measurements for all transformed program variants are

presented in Table 5, Table 6 and Table 7.

All of the values are presented as reported by the Benckmark.js library, with the exception

of measurements for the LT, CFF, DCI and All transformations for P3 in the Google Chrome

browser. These transformations were found to produce significantly higher execution times

during the initial few iterations of the benchmark, which were removed from the sample as

outliers. It is nevertheless worth a mention that such a browser-specific initiation overhead

was observed, and it was consistently produced multiple times.

P1 in Google Chrome P1 in Mozilla Firefox

n Mean (sec) SD n Mean (sec) SD

Unaltered 52 1.689 0.041 53 1.638 0.020

Base 52 1.980 0.034 52 1.652 0.025

LT 52 2.183 0.054 53 1.652 0.016

CFF 52 2.216 0.034 51 1.727 0.013

DCI 52 2.186 0.079 52 1.806 0.028

All 51 3.199 0.032 52 2.078 0.023

Table 5: Performance measurements for P1. Reported are the number of iterations run (n),

average execution time per iteration and standard deviation.
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P2 in Google Chrome P2 in Mozilla Firefox

n Mean (sec) SD n Mean (sec) SD

Unaltered 51 4.146 0.030 51 4.075 0.040

Base 51 4.216 0.033 51 4.098 0.033

LT 51 4.637 0.032 51 4.013 0.039

CFF 51 4.431 0.032 51 4.205 0.049

DCI 51 4.426 0.037 51 4.670 0.053

All 50 5.549 0.045 51 4.151 0.047

Table 6: Performance measurements for P2. Reported are the number of iterations run (n),

average execution time per iteration and standard deviation.

P3 in Google Chrome P3 in Mozilla Firefox

n Mean (sec) SD n Mean (sec) SD

Unaltered 51 2.888 0.020 50 8.885 0.015

Base 51 2.875 0.015 50 8.875 0.060

LT 49 3.168 0.014 50 8.885 0.015

CFF 47 4.146 0.059 51 9.327 0.244

DCI 49 2.892 0.016 51 8.888 0.042

All 45 9.892 0.078 51 9.294 0.558

Table 7: Performance measurements for P3. Reported are the number of iterations run (n),

average execution time per iteration and standard deviation.
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5 Discussion

5.1 File size impacts

File sizes were found to drastically increase when any obfuscation method was applied. The

only exception to this was applying the baseline settings to the Vue.js and Babylon.js de-

pendency libraries, which slightly reduced the size of the libraries. This likely stems from

the removal of comments and changes to whitespace, as non-minified versions of all depen-

dencies were used. Since the minified versions are significantly smaller yet semantically

identical to the originals, obfuscating them with the baseline settings would likely produce

the same results and thus lead to even larger increases in file size.

Literal transformations affected the file sizes the most. This is expected, since the LT settings

contain many transformations which heavily increase the character count in the code. This is

in line with the documentation of the obfuscation library (Kachalov 2016), which explicitly

states that heavy application of some of the string obfuscation techniques can produce very

large file sizes. This is notably caused by escape sequence encoding and string splitting at a

high intensity. Another interesting observation is that literal transformations produce larger

relative increases in smaller input files than in larger ones. This implies there is some initial

overhead brought about by the application of literal transformations, the impact of which

dissipates as file sizes increase.

The CFF and DCI settings also increased file sizes significantly, generally by a factor of two

or three. For DCI, these findings are in line with the documentation (Kachalov 2016), which

warns users of the fact that large increases in file size should be expected. For CFF however,

no such caveat is issued in the documentation. Since the techniques were applied at the same

intensity for all programs, the variations in the size increase between files are likely explained

by differences in program structure, which when parsed results in a different number of nodes

to be altered by the techniques. Another interesting observation is that applying all of the

obfuscation techniques in tandem sometimes increased the file size more than the sum of the

constituents, and sometimes less. The reason for this is unclear.
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5.2 Performance impacts

Significant performance degradation was observed as a result of obfuscation. This is in line

with the findings of Skolka, Staicu, and Pradel (2019), who report that obfuscated code is

measurably slower than regular code. Skolka, Staicu, and Pradel (2019) do not perform a

separate warm-up phase prior to running their benchmarks, whereas in this study the initial

iterations were removed as outliers if their performance is significantly worse than following

iterations. The authors note that warm up affects user experience on websites and this study

acknowledges that notion, but consistent iterations with low variation in performance were

favored over single run results. Initialization overhead is reported as an additional result.

The effects of different obfuscation techniques on program performance were remarkably

inconsistent across different programs and browsers. Literal transformations decreased per-

formance on Google Chrome by 10–29%, but on Mozilla Firefox changes were negligible.

Control flow flattening decreased performance on Google Chrome by 7–44%, and on Mozilla

Firefox by 3–5%. Dead code injection decreased performance on Google Chrome by 0–29%,

and on Mozilla Firefox by 0–15%. When all settings were applied in tandem, performance

decreased on Google Chrome by 34–343%, and on Mozilla Firefox by 2–27%. The baseline

settings generally affected performance by less than 2%. The only exception to this is P1

run in Google Chrome, were performance decreased by more than 17% when the baseline

settings were applied. The reason for this is unclear, as the settings seemingly have minimal

effects on the program structure and should not impact performance significantly.

When contrasted to previous research, the results appear sensible. Skolka, Staicu, and Pradel

(2019) found an average increase of 16–37% in execution time when obfuscation was ap-

plied, but similarly to this study, the results were not consistent across all tested programs.

Unfortunately, little other academic research has been conducted on the performance of ob-

fuscated programs, as most performance-centric studies focus on the performance of obfus-

cation detection techniques.

The LT settings produced measurable losses in performance in all programs when executed

in Google Chrome, but none at all in Mozilla Firefox. According to the documentation

(Kachalov 2016), some losses in performance should be expected when certain LT tech-
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niques are applied, but these were not consistently observed in both browsers. The documen-

tation also states that heavy application of CFF can incur significant losses in performance.

This effect was observed to some degree, and it is most apparent in the computationally ex-

pensive P3. The DCI settings also produced a measurable loss in performance, particularly

for P2 in Mozilla Firefox, although the documentation makes no note of this. A strange

effect was also observed in that DCI did not affect P2 performance in Mozilla Firefox when

applied in tandem with all other techniques. However, this same result was produced multi-

ple times. Initialization overheard increased consistently as more obfuscation methods were

applied and the file sizes grew. This result is intuitive, as large obfuscated files will require

more time to parse and evaluate when they are loaded in the browser. The most significant

performance degradation was observed when all of the selected techniques were applied in

tandem. All programs exhibited worse performance in both browsers when all techniques

were applied, but the losses in performance varied substantially from 2% to 343%.

Significant differences in performance can be observed between the two browsers used.

These measurements support the findings of Selakovic and Pradel (2016), who note that

most optimizations do not consistently improve performance in both V8 and SpiderMon-

key. Although the obfuscation methods used in this study would be more appropriately

classified as deoptimization, the principle still applies. Many of the performance bottle-

necks mentioned in their work can be produced by excessive obfuscation, such as memory

bloat, redundantly repeated patterns and inefficient use of collections. Differences between

the browsers were most apparent in P3, where performance was significantly lower in the

Mozilla Firefox browser, regardless of the obfuscation methods applied or even the lack of

any obfuscation. Further investigation revealed that WebGL performance issues have pre-

viously been reported in Mozilla Firefox, although the degraded performance could also be

a result of implementational details in the application code. Furthermore, Mozilla Firefox

did not suffer significant losses in P3 performance as a result of obfuscation, although the

DCI setting slowed the application down slightly and increased variation between iteration

execution times.

The browsers also exhibited differences in CPU and RAM load, which were not explicitly

reported in the results. Mozilla Firefox struggled particularly with P1 when obfuscated using
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the DCI settings and reserved significantly more memory than Google Chrome. Conversely,

Google Chrome exhibited higher CPU load during the execution of P3. These observations

may be due to implementational differences between the V8 and SpiderMonkey JavaScript

engines, although the browsers may also contain other components which incur additional

overhead on the execution. The setup used in the study aimed to keep the environment as

free as possible from such impairments, but differences were observed nonetheless.

5.3 Threats to validity

Standard deviation was low across all measurements, with the exception of transformed P3

in the Google Chrome browser. Initial iterations which exhibited significantly slower perfor-

mance than others were considered outliers and removed from the sample. However, in a real

world scenario, the initial iterations may often be the most significant ones, as such programs

are not designed to be executed multiple times in succession. It should thus be noted that for

this particular program, heavy obfuscation may have a much larger impact than the reported

numbers suggest. It is unclear what causes the initial overhead, but as JavaScript files need

to be fully parsed before their execution can begin, it may be due to runtime optimizations

performed by the engine.

Since the experiment was conducted on a home computer, the results may have been influ-

enced by outside factors. Although the system was set up in a manner where interference

from the passive load of other programs would be minimal, the operating system will nev-

ertheless perform system interrupts and autonomous tasks beyond our control. Setting up

a fully controlled environment was however not realistic within the scope of this study. A

somewhat comparable performance measurement was conducted by Selakovic and Pradel

(2016), where JavaScript programs were executed in a newly launched virtual machine. Fol-

lowing an approach similar to theirs may prove to be beneficial for future studies.

The programs constructed for the study focus purely on JavaScript code execution, which

makes them somewhat elementary when compared to real world production applications.

In reality, JavaScript code executed in the browser is seldom a major bottleneck, and most

issues in the responsivity of a website stem from requests performed over a network con-
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nection. Furthermore, the code in this study was stored and executed fully within the local

environment, which means none of the large obfuscated files needed to be transferred over a

network connection. Thus, the results of this study may not fully generalize to contemporary

web applications, as they embody different characteristics.

Furthermore, techniques such as control flow flattening and dead code injection can be ap-

plied at an arbitrary intensity. In this study, all of the techniques were applied at the highest

available threshold, which results in the highest level of obfuscation, but also produces larger

files and less performant code. It is easy to see that one could inject an arbitrary amount of

dead code and increase the file size infinitely, which means the results should be interpreted

with the technique application intensity in mind.

Apart from a degraded performance, no changes in the functionality of the programs were

observed. Skolka, Staicu, and Pradel (2019) observed an opposite impact, although their

experiment was concerned with programs of a heavier focus on correctness. Furthermore,

the obfuscation in this study was performed using a completely different tool than any of the

ones applied in their research, and the JavaScript Obfuscator by Kachalov (2016) may well

preserve the semantics of the original code better than other tools.

The random nature of some of the available techniques can also produce significant variation

across multiple applications of the same settings. This study provided the obfuscator with a

static seed value to combat this issue, but it should be noted that results may vary significantly

if the randomization is tweaked even slightly.
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6 Conclusions

6.1 Overview of contributions

This study offered an overview of the current body of research in the field of obfuscation,

and performed a novel experiment to measure the impacts of different obfuscation tech-

niques. The results were generally in line with those presented in previous work on which

this study expanded, but the effects of the studied techniques were too inconsistent across

different programs and browsers to draw definitive conclusions on the performance impacts

of obfuscation.

Thus, this work concludes that the studied obfuscation techniques can have a clearly mea-

surable impact on the file size and performance of programs, but further studies should be

conducted to better measure the performance impact on different types of programs and

browsers.

6.2 Future work

Future work could perform a similar experiment in a more controlled environment to limit

the effect of random variables. Furthermore, this study focused its limited contribution to

a comparison of several obfuscation techniques as implemented in a singular library. For a

more complete review of the available technology, multiple obfuscation tools should be used,

as they may contain significant differences even in the implementation of similar obfuscation

techniques. More advanced techniques were not touched upon in this study and should be

analyzed as their use becomes more prominent.

It was also noted that browsers exhibit differences in performance when obfuscated code is

executed, but this study limited its scope to Google Chrome and Mozilla Firefox. Popular

browsers not considered in this study include Safari, Opera and Microsoft Edge, between

which performance measurements may also vary significantly. Research focused on other

browsers could offer a more complete view on the effects of obfuscation. Furthermore,

as mobile devices continue to increase in popularity, studies should also be conducted on
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browsers developed for mobile platforms as their underlying architecture is different from

desktop devices and performance may vary significantly.

As obfuscation techniques and JavaScript engines continue to evolve, more studies should

be conducted to measure the effects of new techniques in addition to old ones. Furthermore,

research on performance impacts is still lacking, and should be focused on more as obfus-

cation techniques continue to be applied in web development. Thus, obfuscation remains an

important and consequential field of study for the foreseeable future.
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Appendices

A Baseline options for JavaScript Obfuscator

{

compact: false,

controlFlowFlattening: false,

controlFlowFlatteningThreshold: 0,

deadCodeInjection: false,

deadCodeInjectionThreshold: 0,

debugProtection: false,

debugProtectionInterval: 0,

disableConsoleOutput: false,

domainLock: [],

domainLockRedirectUrl: ’about:blank’,

forceTransformStrings: [],

identifierNamesCache: null,

identifierNamesGenerator: ’hexadecimal’,

identifiersDictionary: [],

identifiersPrefix: ’’,

ignoreRequireImports: false,

inputFileName: ’’,

log: false,

numbersToExpressions: false,

optionsPreset: ’default’,

renameGlobals: false,

renameProperties: false,

renamePropertiesMode: ’safe’,

reservedNames: [],

reservedStrings: [],

seed: 1,

selfDefending: false,

simplify: false,
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sourceMap: false,

sourceMapBaseUrl: ’’,

sourceMapFileName: ’’,

sourceMapMode: ’separate’,

sourceMapSourcesMode: ’sources-content’,

splitStrings: false,

splitStringsChunkLength: 0,

stringArray: false,

stringArrayCallsTransform: false,

stringArrayCallsTransformThreshold: 0,

stringArrayEncoding: [],

stringArrayIndexesType: [’hexadecimal-number’],

stringArrayIndexShift: false,

stringArrayRotate: false,

stringArrayShuffle: false,

stringArrayWrappersCount: 0,

stringArrayWrappersChainedCalls: false,

stringArrayWrappersParametersMaxCount: 2,

stringArrayWrappersType: ’variable’,

stringArrayThreshold: 0,

target: ’browser’,

transformObjectKeys: false,

unicodeEscapeSequence: false

}

B LT options for JavaScript Obfuscator

{

numbersToExpressions: true,

splitStrings: true,

splitStringsChunkLength: 1,

stringArray: true,

stringArrayCallsTransform: true,
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stringArrayCallsTransformThreshold: 1,

stringArrayEncoding: [’rc4’],

stringArrayIndexesType: [’hexadecimal-numeric-string’],

stringArrayIndexShift: true,

stringArrayRotate: true,

stringArrayShuffle: true,

stringArrayWrappersCount: 5,

stringArrayWrappersChainedCalls: true,

stringArrayWrappersParametersMaxCount: 5,

stringArrayWrappersType: ’function’,

stringArrayThreshold: 1,

transformObjectKeys: true,

unicodeEscapeSequence: true

}

C CFF options for JavaScript Obfuscator

{

controlFlowFlattening: true,

controlFlowFlatteningThreshold: 1

}

D DCI options for JavaScript Obfuscator

{

deadCodeInjection: true,

deadCodeInjectionThreshold: 1

}
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