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Abstract: There exists extensive research for text classification, but only a handful of it is put

into practice by deep neural networks that use semi-supervised learning – especially when

semi-supervised deep neural networks are not trained in English, or other majorly studied

languages. In this thesis we go through previous literature regarding semi-supervised deep

learning methods for text classification, and then build a hands-on solution for three semi-

supervised text classification methods. These methods are trained and tested on a small

dataset, that is in Finnish. The results suggest that regularization methods should be taken

into consideration when using semi-supervised methods for training – particularly when us-

ing smaller datasets that easily leads to overfitting. More research on regularization and

Finnish deep learning models should be conducted to have a more comprehensive view on

the applicability and reliability of text classification in natural language processing.

Keywords: classification, sentiment analysis, semi-supervised learning, deep learning, BERT

Suomenkielinen tiivistelmä: Tekstin luokitteluun on olemassa laaja tutkimuksen kirjo,

mutta vain osa siitä on puoliohjattujen syvien neuroverkkojen pohjalta tehtyä – etenkin, kun

opetusaineisto on ollut englannin kielellä, tai muulla huomattavan paljon tutkitulla kielellä.

Tässä pro gradussa käymme läpi puoliohjattujen syväoppimismenetelmien kirjallisuutta tek-

stin luokittelussa, ja luomme käytännön toteutuksen kolmelle puoliohjatulle tekstin luokit-
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telumenetelmälle. Nämä menetelmät opetetaan ja testataan pienenpuoleisella, suomenkielisellä

aineistolla. Tulosten perusteella voitaisiin sanoa, että puoliohjattujen menetelmien yhtey-

dessä on kannattavaa käyttää regularisointimenetelmiä ylisovittumisen ehkäisemiseksi, varsinkin

kun opetusaineisto on pieni. Jotta voitaisiin saada kokonaisvaltaisempi kuva eri puolioh-

jattujen menetelmien kannattavuudesta ja luotettavuudesta luonnollisen kielen luokittelute-

htävässä, olisi suomenkielisistä syväoppimismalleista ja regularisoinnista hyvä tehdä lisää

tutkimusta.

Avainsanat: luokittelu, sävyanalyysi, puoliohjattu oppiminen, syväoppiminen, BERT
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Glossary

ML Machine Learning

NLP Natural Language Processing

DL Deep Learning

DNN Deep Neural Network

SSL Semi-Supervised Learning

GAN Generative Adversarial Network

BERT Bidirectional Encoder Representations From Transformers

UPT Unsupervised Pretraining

MLM Masked Language Model

VAT Virtual Adversarial Training

PL Pseudo Labeling
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1 Introduction

At the moment, in machine learning and natural language processing there is a prevalence

in the research of languages with larger count of speakers (e.g. English). Due to there being

fewer resources on languages that have smaller audience, the amount of research done for

these languages is also something few and far between. One of these languages is Finnish.

The aim of this thesis is to conduct a text classification task, or more specifically a senti-

ment analysis task (for three classes: positive, negative and neutral), on a Finnish dataset

concerning the opinions and sentiments that are evoken in careworkers of elderly people

when they use technology in their work. This is encapsulated in the research question that

goes as follows: "What deep neural networks give the best performance for semi-supervised

classification of eldercare workers’ sentiments?".

This thesis focuses on semi-supervised learning methods that are implemented for textual

data. Semi-supervised learning refers to the model being developed to utilize data that is

partially annotated – thus, falling in between supervised (all annotated) and unsupervised

(no annotations) learning. Through semi-supervised learning we are able to use the few

labels we have, and include more data to better the performance, even when there is no

labels available for it, or when preparing them would take too much time or resources.

When talking about sentiment analysis particularly for Finnish, there are a few papers that

have developed methods for the task (e.g. a study by Vankka et al. 2019). Most recent

Finnish sentiment analysis research, that is relevant to our work, seems to be the making

of a social media corpus that is annotated with sentiment polarity (Lindén, Jauhiainen, and

Hardwick 2020), and supervised FinBERT-finnsentiment model1 built on it by finetuning

FinBERT (Virtanen et al. 2019).

This thesis can generally be divided into two parts: the first part consisting of literature

related to our topic (chapters 2–3), and the second part being predominantly about the con-

structive part, that contains information about the implementation work (chapters 4–7). In

chapter 2 we introduce concepts that are necessary to understand when developing machine

1. https://huggingface.co/fergusq/finbert-finnsentiment
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learning models and discussing what lays in the analysis of natural language processing with

deep learning methods. These concepts are the foundation for the scientific work presented

in chapter 3 that contains a literature review of semi-supervised deep learning for text classi-

fication. The constructive, more hands-on, part of this thesis is described in chapters 4–7. In

these chapters we describe the data used in our thesis (chapter 4), give an overview of used

methods to classify this data (chapter 5), report the concise results that are born from using

these methods (chapter 6), and finally, we go through these results in a more detailed manner

in discussion (chapter 7). In chapter 8 we offer conclusions, and give an ending statement

about the successfulness of our implementations.
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2 Theoretical background

In this chapter we go through theoretical background that is necessary for understanding

where the work in chapter 3 is based on. First we explain the common concepts behind

machine learning (2.1). After that, we introduce concepts behind deep learning for natural

language processing (2.2), that include deep architectures developed for text data processing.

2.1 Machine learning

Machine learning (ML) is the field of computer science where the model is excepted to

learn based on the data that is input in the model. ML algorithms gather observations from

the information without explicitly assigning rules that would lead the model to produce the

results (Minaee et al. 2021).

ML methods can generally be placed under one of three subcategories: supervised, unsu-

pervised or semi-supervised learning (Goodfellow, Bengio, and Courville 2016), based on

whether the implementation task involves annotated data (supervised learning), such as hav-

ing labels of species for plants on a classification task, whether the task is not explored via

explicit annotations affiliated with data samples (unsupervised learning), or whether the task

at hand is approached by using both labeled data and unlabeled data (semi-supervised learn-

ing). To name a few representative examples of these ML methods, support vector machines

and gradient boosters are cases of supervised, and K-means clustering and autoencoders of

unsupervised methods. Semi-supervised learning (SSL) is usually implemented with both

supervised and unsupervised approaches, and thus it falls somewhere between the two. In

SSL, unlabeled data samples U from P(x) and labeled data samples L from P(x,y) are used

for the estimation of P(y|x), where x is input vector and y is label corresponding to x (Good-

fellow, Bengio, and Courville 2016).

In addition to choosing the type of learning for a task, another crucial point is to decide

where the focus of the study will be and what is the essential topic of the study. For ex-

ample, in natural language processing (NLP), a subfield of ML that deals with the analysis

natural languages (like English), these ML tasks can be one of the following: classification,

3



sentiment analysis, machine translation, question answering, language modeling, text aug-

mentation, text generation, part-of-speech tagging or named entity recognition. For example,

in a classification task data sample is supposed to be put into one of k categories which can

be described by a function f : Rn →{1, ...,k} that is to be produced by a learning algorithm

(Goodfellow, Bengio, and Courville 2016). When a data sample x is input into the learning

algorithm, it should give out a category yout as an output, where yout = f (x) (Goodfellow,

Bengio, and Courville 2016).

In order to design a model, learning algorithm is applied to data. Data is divided into training

data samples and testing data samples, out of which training data is used to choose the model

best in performance out of many candidate models (Haykin 2010). From the training data

a subset for validation of the model is drawn for model validation. Because the model may

overfit to the validation data, the testing data is used to test the generalization ability of the

model (Haykin 2010). In order for the model to be able to generalize well to unseen data, the

model should learn to fit the training data appropriately. Overfitting occurs when the model

learns the training samples too well – in other words, the model fails to map the underlying

function due to learning irrelevant data features (Haykin 2010). Underfitting is the opposite

type of error that can be committed by the model. In this case the model is usually too simple

for the data and not being able to map the underlying function correctly.

Certain steps are to be performed in order to use a model properly for the task it is intended

to carry out. This usually means that in the model construction process data preprocessing is

required at first so that the data at hand is in a form that is possible to utilize by the model.

Then after choosing a model its performance is optimized with hyperparameter optimization.

Preprocessing

The most basic preprocessing includes the removing of duplicate or empty values, if they do

not bring any important information to the model. For text data, implemented preprocess-

ing methods may also include word embeddings, tokenization, and/or handling stop words,

capitalization, punctuation and special characters (like emojis) (Kowsari et al. 2019).

Word embedding can be denoted as e ∈ Rd , where d is the dimension of the vector to which

each word from vocabulary is mapped to (Kowsari et al. 2019). Traditional word embedding

4



methods include Word2Vec (Mikolov et al. 2013), GloVe (Pennington, Socher, and Manning

2014) and fastText (Bojanowski et al. 2017). All of these approaches have more to do with

n-grams, bag-of-words and other unsupervised methods for dealing with text data.

Tokenization is the act of separating the sentences into separate parts, "tokens", that may be

words, punctuation or other distinctive stand-alone parts used in sentences (especially vector

parts) (Kowsari et al. 2019). In addition to simple tokenization, pretrained tokenizers can

have additional features which can be used to e.g. add special tokens (e.g. "[CLS]" token for

indicating the beginning of a data sample, or "[SEP]" token for indicating the ending), or to

pad tokenized data samples to make them of the same size. During tokenization, it is also

possible to set a maximum value of the amount of tokens that is allowed for a data sample.

This limit for data sample size is called maximum sequence length.

Depending on the model type, the type of preprocessing steps that are needed may vary.

For example, for neural networks based on BERT (Devlin et al. 2018), the deletion of stop

words (i.e. words deemed irrelevant, such as "be" or "also") may be more detrimental than

helpful for the model for learning a task as the sentence is being taken into account as whole.

The same untouching of words goes to capitalization, punctuation and special characters

for BERT modeling (of cased models that are sensitive to uppercase and lowercase letters;

uncased models do not share this quality). Capitalization refers to having words written

with capitalized letters (uppercase "M" instead of lowercase "m"). Usually for punctuation

characters like dots and question marks are included. Special characters can be emojis,

for example. In BERT these special characters are tokenized with UNK so the model can

ignore them if they are unknown to the model 1, or if the meanings of the characters have

been separately specialized to the model, they will have those specialized tokens assigned to

them.

While these preprocessing steps are applicable to English among other languages, besides

English there are languages that have other properties to be possibly taken into account. For

example, accented letters can be transformed into their unaccented "counterparts", as was

done when training FinBERT – a Finnish BERT based model – and letters "ä" and "ö" were

1. https://huggingface.co/docs/transformers/internal/tokenization_utils#transformers.

PreTrainedTokenizerBase.encode_plus
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switched into "a" and "o", respectively (Virtanen et al. 2019).

One data preparation stage may also be data augmentation, or the addition of synthetic data,

which is useful especially if data is scarce. For language processing tasks, back translation

is another method to add data. By using language translation applications, translating a

sentence in language A to a new language B, and using that translation to get the same

sentence in language A again, a new paraphrasing is obtained that can be used along with the

original data (Xie et al. 2020). Naturally, if you are dealing with sensitive data and its use

is restricted contractually, back translation might not be the most ideal data augmentation

method.

Hyperparameter optimization

Substantial part of model training process is hyperparameter optimization. For example, gra-

dient based deep neural networks are optimized by making changes in their hyperparameters.

Gradient based calculation is based on an algorithm that uses derivatives of the function,

and it is called gradient descent (Goodfellow, Bengio, and Courville 2016). There is many

variations to optimization algorithms, or optimizers, that encompass the way gradients are

calculated (Bengio 2012), and they can also affect majorly the way a model converges. For

example Adam (Kingma and Ba 2014), AdamW (Loshchilov and Hutter 2017), and LAMB

(You et al. 2019) are optimizers.

Hyperparameters related to gradient based modeling include hyperparameters for neural net-

work (like initial learning rate, learning rate scheduler, mini-batch size, and number of train-

ing iterations) and the model and training criterion hyperparameters (like number of hidden

units, weight decay, and random seeds) (Bengio 2012).

Initial learning rate is the starting point for the model training, usually set to below 1 (e.g. 0.1

or 0.005) (Bengio 2012). Learning rate is a hyperparameter used when calculating gradient

in gradient based optimization tasks. Too large of a learning rate may negatively contribute

to leading the model to a global minimum and make the average loss increase (Bengio 2012),

but too small of a learning rate might prove to be a unnecessarily slow wait on the model con-

verging, on the other hand. The use of learning rate schedulers, like adaptive learning rates,

help set the learning rate throughout the whole training process. That is, in each iteration the

6



learning rate is adjusted in some preset way – such as linearly decreasing. Other schedulers

include constant, cosine, cosine annealing, and cosine with warmups, for example.

To ease the training process and handling of gradients, the training dataset is usually divided

into several batches or mini-batches (Bengio 2012). Batch size (of 8, 16, 32, 64 for example)

describes the amount of data samples included in one batch, a larger batch size resulting to

faster performance (at the expense of GPU memory).

Usually models are attempted to run through multiple iterations, or epochs, until the end but

sometimes having many number of training iterations may be counterproductive to the model

performance. The model training can be brought to a halt based on a set condition, such as

after ten iterations in training when the model loss metric stops decreasing or accuracy metric

is not improved on. This is called early stopping (Bengio 2012).

Deep neural networks (DNNs) usually have hidden layers which consist of hidden units.

Extensive research has been conducted on how to decide the number of hidden units (Good-

fellow, Bengio, and Courville 2016), but there is no definitive paradigm or consensus on the

amount for one hidden layer, yet alone for the number of units for combinations of different

hidden layers. One deciding factor in the matter may be the properties of the data (Bengio

2012). The visualization of hidden units on hidden layers can be seen in figure 1. This figure

depicts the most basic type of DNN, multilayer perceptron, or feedforward network in other

words, and it typically consists of an input, an output and hidden layer(s). When it is used

for a classification task, a mapping y can be defined as follows:

y = f (x;θ), (2.1)

where x is input vector, and θ is parameters to some function f (Goodfellow, Bengio, and

Courville 2016).

Random seeds are used to bring randomness in to the model training process. This random-

ness can be seen in initialization point of the model training, or when sampling the training

data (Bengio 2012). Random seeds can be used to better reproducibility of model making by

using the same seed for the initialization2.

2. https://pytorch.org/docs/stable/notes/randomness.html
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Figure 1. Multilayer perceptron, or feedforward neural network architecture with two hidden

layers (figure adapted from Haykin 2010).

When updating the gradients each epoch, weight decay is another term that is added for

regularization, preventing overfitting from happening (Bengio 2012).

In the model architecture several different activation functions can be utilized. Activation

function is used at the final layer for calculating values in the preceding hidden layer (Good-

fellow, Bengio, and Courville 2016). Depending on the type of problem and neural net-

work, the following activation functions are probable choices: ReLU (rectified linear unit),

leaky ReLU, and softmax. For example ReLU can be defined as (Goodfellow, Bengio, and

Courville 2016):

gr(x)i = max(0,xi), (2.2)

where x is the input vector. This means that there are potentially values of zero for gradients

present during optimization. Leaky ReLU is a variant of ReLU, where zero gradients are

replaced with non-zero gradients, and it can be defined as (Maas, Hannun, Ng, et al. 2013,

and B. Xu et al. 2015):

gl(x)i = max(
xi

a
,xi), (2.3)

where x is the input vector, and a is some constant value, e.g. 100. Softmax function, that is

usually used in classification tasks at the final layer, can be defined as (Goodfellow, Bengio,

and Courville 2016):

softmax(x)i =
exp(xi)

∑
n
j=1 exp(x j)

, (2.4)

where x is the input vector, and n is the size of the sum of exponentials of x.
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2.2 Deep learning for natural language processing

Deep learning (DL), or synonymously used deep neural networks (DNNs), is the subfield of

ML where representation learning does not take form only in the visible layers, but in hidden

layers as well (Goodfellow, Bengio, and Courville 2016). These hidden layers are the pillars

of more abstract feature learning, extracting features that the model deems important for the

task at hand. In order to apply DNNs to the field of NLP, certain type of network architectures

need to be used. In this section we go through several DNN architectures that are relevant to

the NLP field and our research. These architectures include generative adversarial network,

transformers, and BERT.

Figure 2. GAN architecture, where G is generator, F is fake data samples, D is discrimi-

nator and R is real data samples (figure adapted from Vlachostergiou et al. 2018 and Croce,

Castellucci, and Basili 2020).

Generative adversarial network

Generative adversarial network (GAN) consists of a generator G and a discriminator D, that

work together by having opposing functions. While the generator produces fake data samples

F from noise, to "deceive" the discriminator, the discriminator is trying to classify the fake

data samples and real data samples R to their corresponding classes of "fake" and "real" (see

figure 2). Introduced by Goodfellow et al. 2014, the researchers suggest that the joint training

of discriminator D and generator G can be thought as a minimax game for two, and define it

9



as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))], (2.5)

where V (D,G) is value function, x real data samples, G(z) fake data samples, and pz(z) is

prior on input noise variable to learn the distribution pg of generator G over data x. If both

G and D are differentiable functions represented by multilayer perceptrons with parameters

θg and θd , respectively, the learning of the distribution pg may be represented as a mapping

to data space as G(z;θg), and the learning of the distribution pd may be represented as

a mapping to data space as D(x;θd). In the function the probability of right assignment

of labels ("fake" and "real") is maximized for D, and the probability of having difference

between the fake data samples and real data samples is minimized (Goodfellow et al. 2014).

Transformer

Transformer models abandon the use of traditional DNNs (e.g. recurrent neural network)

altogether, and instead utilize attention mechanisms for NLP tasks (Vaswani et al. 2017).

Transformer is built upon an encoder and a decoder which both consist of a stack of layers

(see figure 3). Let us define an input sequence of symbol representations x = (x1, ...,xn), that

is mapped by the encoder to a sequence of continuous representations z = (z1, ...,zn). Given

this output z of encoder, the decoder generates an output sequence (x1, ...,xm) that consists

of symbols one element at a time. One of the base structures used in transformers is scaled

dot product attention. Scaled dot product attention can be defined as follows (Vaswani et

al. 2017):

Attention(Q,K,V) = softmax(
QKT
√

dk
)V, (2.6)

where Q is matrix of queries, K matrix of keys, V matrix of values, and dk the dimension of

keys and queries, and dv is the dimension of values. After performing matrix multiplication

for Q and K, a series of operations are to be performed for them (including scaling with factor
1√
dk

, possible masking and softmax) after which another matrix multiplication is performed

together with V, producing an output (see figure 4). Compatibility function of the query

(with corresponding keys) is used for calculating weights assigned to each of the values of

the output, which is a weighted sum of the values (Vaswani et al. 2017).

To make efficient use of attention, multiple attention heads are concatenated to create multi-
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Figure 3. Transformer architecture (adapted in a simplified form from Vaswani et al. 2017).

head self-attention (see figure 5). Multi-head attention can be defined as follows (Vaswani

et al. 2017):

MultiHead(Q,K,V) = Concat(head1, ...,headh)WO, (2.7)

where a head can be defined as (Vaswani et al. 2017):

headi = Attention(QWQ
i ,KWK

i ,VWV
i ), (2.8)

11



Figure 4. Scaled Dot Product Attention architecture (adapted from Vaswani et al. 2017).

Figure 5. Multi-Head Attention architecture (adapted from Vaswani et al. 2017).
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where parameter matrices WO ∈ Rhdv×dmodel , WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk and WV
i ∈

Rdmodel×dv are projections. Unlike the scaled dot product attention, with multi-head attention

linear projections are performed h times for Q, K and V to dimensions dk, dk and dv, in the

corresponding order. After the projections, we end up with output values of dimension dv,

that are concatenated and projected again to produce final values of the output of multi-head

attention (Vaswani et al. 2017).

In addition to attentional structures, the transformer makes use of position-wise feed-forward

network, layer normalization, positional encoding, embeddings and softmax. Position-wise

feed forward networks refer to a fully connected feed forward network, that is applied iden-

tically and separately to every position, and which is incorporated in every layer of the de-

coder and the encoder. In this context, feed forward network can be defined as (Vaswani

et al. 2017):

FFN(x) = max(0,xW1 +b1)W2 +b2, (2.9)

where x is input vector, W1 and W2 weight matrices, and b1 and b2 bias values. Layer

normalization is applied to every feedforward network and multi-head attention in the trans-

former network (see figure 3). Layer normalization refers to the type of normalization where

variance and mean values are calculated as summed inputs of all neural units in a layer (Ba,

Kiros, and Hinton 2016). The mean can be defined as follows:

µ
l =

1
H

H

∑
i=1

al
i, (2.10)

and the variance as follows:

σ
l =

√
1
H

H

∑
i=1

(al
i −µ l)2, (2.11)

where al
i represents the summed inputs to the neurons in a layer l, and H is the number of

hidden units in a layer (Ba, Kiros, and Hinton 2016). Positional encoding refers to a value

that is concatenated to input embeddings, providing location information about the tokens

in the sequence to the model. Embeddings are utilized to present input and output tokens in

vectoral form in the same dimension as positional encodings, in dimension dmodel (Vaswani

et al. 2017). Softmax (see equation 2.4) is also used for the conversion of the outputs of the

decoder into next-token probabilities that are predicted (Vaswani et al. 2017).
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There are multiple transformers variations, ELECTRA (Clark et al. 2020) and XLNet (Z.

Yang et al. 2019) being a few of the more recent ones. One extensively studied variation is

called BERT.

BERT

Based off of the architecture of Transformers, BERT (Bidirectional Encoder Representa-

tions From Transformers) is a type of framework that was designed to extend to several

different NLP tasks, referred to as transfer learning, without the aid of task-specific archi-

tecture changes. Instead, this generalizing power of BERT was achieved with masked lan-

guage model (MLM) – masking of random input tokens that are to be predicted – while

the context is being taken into account bidirectionally (Devlin et al. 2018). Let us de-

note a token as st, that we replace with [MASK]. MLM can then be described with S\t :=

(s1, ...,st−1,st+1, ...,s|S|), where S\t refers to all the future and past tokens that are used for

the prediction of the token st (Salazar et al. 2019). Besides MLM, next sentence prediction

is used to give additional information to the model about sentence relationships, to extend

BERT to tasks like natural language inference. In next sentence prediction, the model is

given two sentences that either are related (so the second sentence logically follows the first

sentence), which is labelled as IsNext, or are not related (the second sentence is not con-

tinuation of the first sentence), which is labelled as NotNext (Devlin et al. 2018). Training

process terms related to BERT include pretraining and finetuning. BERT can be thought as a

pretrained model body, that is ready for use only after feeding it your own data. Usually this

feeding of data is done via pretraining and/or finetuning. For pretraining MLM is used to

allow unsupervised training of the model, and it is usually done for general improvement of

the model. Finetuning can be done after or without previous pretraining, and it refers to su-

pervised training of the model to specify the model to a downstream task. There exists many

variations to BERT – RoBERTa (Liu et al. 2019), ALBERT (Lan et al. 2019), DistilBERT

(Sanh et al. 2019) and DeBERTa (He et al. 2020) being some of the other BERT models.
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3 Semi-supervised deep learning for text classification

To have an encompassing view of the semi-supervised field in ML, one should take a look at

the review done by X. Yang et al. 2021, in which the authors suggest that the taxonomy of

deep SSL should be consisting of generative methods, consistency regularization methods,

graph based methods, pseudo labeling methods and hybrid methods. This division was done

by having evidence mainly for image classification studies. To have narrow enough focus

on semi-supervised NLP for text classification, we choose to follow the taxonomy presented

in Van Engelen and Hoos 2020 instead. In this chapter, following the taxonomy in Van

Engelen and Hoos 2020 that was created to describe SSL methods that were extended from

supervised framework ("inductive methods"), we decide to divide SSL methods for DNNs

into three separate groups: including unlabeled data via unsupervised pretraining (section

3.1), pseudo labeling (section 3.2), or generative models (section 3.3). This taxonomy, that

we use, can be seen from figure 6.

Figure 6. Taxonomy of SSL text classification research that is used as the guideline of

literature review and implementation part of this thesis (adapted in a simplified form from

Van Engelen and Hoos 2020).

In this literature review we focus on methods that are built on transformers, leaving out

studies that cover more traditional DNNs (e.g. LSTMs) for text classification. These type of

studies are very briefly discussed in section 3.4.
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3.1 Unsupervised pretraining

When there is a lack of annotations for the data when working with DNNs, that usually

require massive amounts of data, one way to approach the harnessing of unlabeled data

is to utilize unsupervised pretraining. Unsupervised pretraining has proven to be useful in

advancing the generalization ability of the model that is later trained with supervised learning

(Dai and Le 2015). Using the pretrained model with unsupervised means enables the use

of all available information (unlabeled data) without needing to apply hands-on annotation

work, that usually take much time and resources.

Figure 7. The usual model construction scheme for BERT modeling that involves pretraining

and finetuning. Here L is labeled data, and U is unlabeled data.

When comparing the performances of BERT based models (Devlin et al. 2018), unusuper-

vised pretraining can be understood via MLM pretraining objective. MLM essentially is a

way to pretrain a model with unlabeled data by having tokens randomly masked and their cor-

responding vocabulary identifiers predicted. BERT based modeling can generally be thought

to be consisting of pretraining (unsupervised learning) and finetuning (supervised learning).

During pretraining, unlabeled data U is used to train BERT model for MLM, "BertFor-

MaskedMLM". After that, the finetuning is done by using the weights from the pretrained

BertForMaskedMLM model for constructing supervised BERT based model, "BertModel",

and it is in turn trained with labeled data L. Then this BERT model is used to classify new
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data samples. This modeling process, that involves first pretraining and then finetuning, is

visualized in figure 7. The difference in the performance of a finetuned model compared to

a pretrained and finetuned model, is described later on in the section 3.2, where we describe

a study that also involves pseudo labeling (Sun et al. 2020).

In a study by Gururangan et al. 2019, a traditional neural network, namely variational au-

toencoder based model, fails in performance of text classification tasks when put next to a

finetuned BERT, and is unsuccessful in almost all cases when compared to a finetuned ELMo

(Peters et al. 2018). Both BERT and ELMo were pretrained with unlabeled data before fine-

tuning them with labeled data – both unlabeled and labeled data being the same in-domain

data. Labeled dataset sizes being 200, 500, 2500, 10 000, BERT accuracy (%) results for

different datasets were the following: for IMDB 88.1, 89.4, 91.4, 93.1; for AG 87.1, 88.0,

90.1, 91.9; for Yahoo 45.3 (one ELMo model being exceptionally at 60.9), 69.2, 76.9, 81.0,

and for Hatespeech 76.2, 78.3, 79.8, 80.2.

In the study of Li and Qiu 2020, BERT was again used as the backbone for a model, and

conjoined with virtual adversarial training (VAT). This regularization method embodies the

supplementing of small perturbations to normalized word embeddings throughout training,

and was first introduced by Miyato, Dai, and Goodfellow 2016. Instead of just implementing

VAT, Li and Qiu 2020 extend the framework and work towards Token-Aware VAT ("TAVAT")

to prevent initialization and constraint problems. This was done by implementing global

perturbation vocabulary to prevent accumulation of noise, that perturbations with random

initialization could cause in text data, so that similar perturbation initialization is done for

same tokens that exist in different sequences. Additionally, in order to use perturbation on

token-level instead of sentence-level, TAVAT differentiates between tokens that are packed

with more information and tokens that are irrelevant in terms of the task at hand. This is

reflected in having larger perturbation for more crucial tokens, and having more constraining

on unimportant tokens. The model developed in the study was tested against many tasks on

GLUE benchmark, of which only SST-2 is a text classification task. Using GLUE datasets,

for evaluation on development set BERT base with TAVAT scored 93.7% in accuracy (vs.

92.7% obtained with BERT base by Devlin et al. 2018), and for evaluation on test set BERT

base with TAVAT scored 94.5% in accuracy (vs. 93.5% obtained with BERT base). When
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compared to other current state-of-the-art methods, 3.3% improvement (accuracy of 97%)

for the development set was obtained with the use of backbone ALBERT (xxlarge v2) along

with FreeLB (Zhu et al. 2019), that is another framework for using BERT models enhanced

with adversarial training. The developers of TAVAT had also incorporated FreeLB in the

TAVAT architecture.

FreeLB (or Free Large-Batch) refers to the diversifying of training data by adding adversarial

perturbations that are under different norm constraints (Zhu et al. 2019). To do this and to

boost invariance in embedding space, multiple PGD (projected gradient descent; see study

by Madry et al. 2017) iterations are carried out in FreeLB. In the study, BERT, ALBERT

and RoBERTa were used as backbones and tested on GLUE benchmark. For SST-2 (having

a training set size of 67K) one of the FreeLB implementations, "FreeLB-RoB", showed

96.8% accuracy – as did XLNet-Large (Z. Yang et al. 2019), too. One should notice that

FreeLB-RoB is actually an ensemble model that contains seven large RoBERTa models that

are averaged out and put together. This is to have a better regularized outcome for modeling

(Goodfellow, Bengio, and Courville 2016), and it is also known as bootstrap aggregating, or

bagging (Breiman 1996). In the study, a single model using FreeLB, "FreeLB-BERT", was

also implemented, reaching the accuracy of 93.6% for the SST-2 task. The result (of 97%)

obtained with ALBERT (xxlarge v2), that was mentioned in the previous paragraph, remains

as the best accuracy obtained for SST-2 when utilizing FreeLB as a regularization method.

Unsupervised data augmentation (UDA) was suggested by Xie et al. 2020, which is a SSL

method that links two UDA methods, back translation and TF-IDF word replacement, to text

classification. Back translation is elaborated in section 2.1. TF-IDF (term frequency - in-

verse document frequency) word replacement is yet another method invented to emphasize

the keywords present in sequence and modify words that do not bring out useful informa-

tion. This way additional data can be generated – by focusing on replacing trivial words,

so that the meaning the sequence is supposed to convey, does not change. Following re-

sults for several datasets were obtained, when using finetuned BERT (a large BERT that was

fine-tuned on in-domain unlabeled data) with UDA: error rate of 4.20 for IMDB (with 20

supervised examples), 2.05 for Yelp-2 (20 examples), 32.08 for Yelp-5 (2.5K samples), 3.50

for Amazon-2 (20 samples) and 37.12 for Amazon-5 (2.5K samples).
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3.2 Pseudo labeling

The idea behind pseudo labeling is to first teach a neural network, or "teacher" model, with

labeled data L in order to attribute labels to a set of unlabeled data U . After this pseudo

labeling, these pseudo labeled data samples PL can be in turn used along with the labeled data

L for constructing a "student" model (Lee 2013). This process of two phases, for constructing

a teacher model and a student model, is visualized in figure 8. Pseudo labels were inspired

by entropy regularization, that was described in the paper of Grandvalet, Bengio, et al. 2005.

Figure 8. Idea behind pseudo labeling described in two phases (following the idea presented

in Lee 2013). Here L is labeled data, U is unlabeled data, and PL is pseudo labeled data.

Pseudo labeling can be defined through the following formulaic expressions (from Arazo

et al. 2020). Let us define a SSL model hθ (x) and training dataset D of size n, that is divided

into labeled dataset Dl = {(xi,yi)}nl
i=1 and unlabeled dataset Du = {xi}nu

i=1, where n = nl +nu

and yi ∈{0,1}k is one-hot encoding label for k classes that corresponds to xi. We then assume

that for nu unlabeled data samples there is a pseudo label ỹ available. The training of the SSL

model can then be re-defined as using D̃ = {(xi, ỹi)}n
i=1, where ỹ = y for the nl labeled data

samples.

There exists several studies, that involve the use of low-entropy labeling or pseudo labeling.
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MixText is a model that makes use of interpolation based regularizer, "Mixup", that is used

for labeled and unlabeled data after pseudo labels, or "low-entropy labels" as is described in

the paper, are formed for unlabeled data samples (Chen, Yang, and Yang 2020). In addition

to labeled and unlabeled data augmented data is added via back translation (from English to

German and back to English), that allows the paraphrasing for unlabeled data, after which

consistency regularization is applied (which entails the use of perturbations, similarly to

VAT). The model is constructed by using BERT uncased model. With 10, 200, 2500 labeled

data samples, accuracies obtained for IMDB (2 classes) are 78.7%, 89.4%, 91.3%, for DB-

pedia (14 classes) 98.5%, 98.9%, 99.2%, and for Yahoo (4 classes) 200 and 2500 labeled

data samples 71.3% and 74.1%, in the respective order.

Most of the same authors from the previously introduced study made the same type of use

of low-entropy labeling in another study, but without applying interpolation for the text data

(Chen, Wu, and Yang 2020). Similar to the previous study, augmented data was obtained by

back translation and consistency regularization was also applied. The model, SMDA (from

Semi-supervised Models via Data Augmentation), consists of a transformer based XLNet

backbone (Z. Yang et al. 2019). In the study of Chen, Wu, and Yang 2020, used data included

comments extracted from Reddit posts, and data was divided into subsets as follows: labeled

data train set of size 8000, development set of 2000, test set of 2860 and unlabeled train set

of 420k samples. Albeit dividing the labeled data into six groups (emotional disclosure, in-

formation disclosure, support, general support, information support and emotional support),

it is not regarded as a multilabel classification task but rather it is divided into six sepa-

rate binary classification tasks to assess whether a certain data sample belongs to a certain

group or not. When compared to BERT baseline and XLNet baseline models, most accurate

results were generally acquired with SMDA. For classification tasks for emotional disclo-

sure, information disclosure, support, general support, infomartion support and emotional

support, with SMDA the following accuracy/F1 scores were obtained: 75.2/68.5, 74.3/71.0,

83.5/77.7, 91.7/63.7 (for XLNet base 92.7/65.0), 89.9/70.5 and 93.6/76.2, respectively.

A study focusing on pseudo labeling and MLM, or "LM pretraining" as it was referred in the

study, for in-domain data had made primary use of BERT based modeling and had used small

RoBERTa as the backbone of all implemented models (Sun et al. 2020). For the data, IMDB
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was used with an additional IMDB data crawl of 3.4 million movie reviews. Pseudo labeling

was done via training a teacher model in a supervised way with labeled movie reviews,

then the teacher model was used to give labels to the unlabeled reviews of the data crawl

which were in return used along with the labeled data to train a student model. The effect

of differently sized labeled dataset was under scrutiny, and the study showed that the most

promising results were extracted from two different settings: only including pretraining or

including both pretraining and finetuning when constructing a model. The first setting proved

to be successful with the most amount of labeled data (labeled/unlabeled division implicated

in parentheses): accuracies (in %) being 93.79 (5K/1M) and 95.80 (25K/1M), while the

second setting was especially useful when less labeled data was used: 55.47 (10/100K),

58.77 (20/100K), 85.86 (50/100K), 87.27 (100/100K) and 91.32 (1K/1M). Thus out of all

the configurations, the best accuracy was obtained with 25K labeled and 1M unlabeled data.

Iterative pseudo labeling was also applied, not showing as much of an effect when using

more labeled data (1K, 5K or 25K) when compared to the use of less labeled data (10, 20,

50 or 100). In this case, iterative pseudo labeling refers to the way of the student model

being used for re-labeling all of the unlabeled data. For the new student model formed in the

next iteration, only a subset of these pseudo labeled data samples are picked – samples with

higher confidence ("top-K instances"). In another study (Q. Xu et al. 2020), iterative pseudo

labeling was conducted by drawing a subset of unlabeled data at each iteration, so the pseudo

labeling was not directed at data samples that had previously been pseudo labeled.

The downside to pseudo labeling is the possible incorrect classifying of new data samples

and its effect on model performance when training a new model with this pseudo labeled

data. This can be referred as confirmation bias (Arazo et al. 2020). In a study by Kim and

Kim 2020, confirmation bias was counterbalanced via adding negative feedback (antonym

examples as additional data) to their framework. They implemented a domain classification

task, but instead of giving only pseudo labels, self-distillation was used for bringing out

confidence scores for each class and to see how probable it was that a data sample belonged

to a certain class. These type of confidence scores can be used to determine how confident

pseudo labeled data samples should be included and considered acceptable before the model

performance starts to decline due to confirmation bias.
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Another way to diminish confirmation bias is to train teacher and student models concur-

rently. The main idea behind meta pseudo labeling is similar to pseudo labeling, with the

slight difference of teacher model having a feedback system that is backed up by the student

model (Pham et al. 2021). After teaching a student model with a batch of pseudo labeled

data (pseudo labels that the teacher model generated), the loss of student model is used for

the teacher model to make it adjust its gradients for the next batch and training iteration.

In a study conducted by Hatefi et al. 2021, two models, Cformer and Distill-Cformer, were

implemented that combined the use of BERT or DistilBERT and meta pseudo labels. For

10, 200 and 2500 examples, the following results were obtained (in accuracy, %): 88.7

(Cformer), 90.0 (Distill-Cformer) and 91.9 (Distill-Cformer) for AG News data, and 66.8,

72.0 and 74.5 (all Cformer) for Yahoo! data. Compared to UDA (by Xie et al. 2020, men-

tioned in section 3.1) and MixText (by Chen, Yang, and Yang 2020, mentioned above),

Cformer surpassed them in all, and Distill-Cformer in most, cases – except in one, where

Yahoo! data was used with only ten examples, MixText overpassed other models by a small

margin (resulting to accuracy of 67.6%).

3.3 Generative models

Out of the existing generative models, that include a data producing structure, generative

adversarial networks (GANs) have paved the way for generative work in ML. Substantial

research on GANs have been made for computer vision tasks, and in the field a growing

number of studies also focus on SSL (see the review by Sajun and Zualkernan 2022). One

study conducted by Vlachostergiou et al. 2018 utilized the fact that unlabeled data can be

processed with GANs and used them with bag-of-words in a unsupervised way for represen-

tation learning. In the NLP field, a number of GAN variations have been invented for text

generation (Rosa and Papa 2021). However, there seems to be less research currently for

GANs for semi-supervised text classification (or at least for sentiment analysis (Habimana

et al. 2020)), especially when utilizing transformers modeling.

GAN-BERT (Croce, Castellucci, and Basili 2020) is a GAN based model, that was built

with BERT model integrated into it. The real data samples, both labeled data samples L
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and unlabeled data samples U , are fed into BERT that produces vector representations for

them. These representations along with fake data samples F , that are generated from noise

by the generator G, are then fed into the discriminator D that classifies them (see figure

9). The discriminator gives a class to a data sample out of a number of classes assigned to

it, one additional class being "fake sample", that indicates if the data sample at hand is a

fake data sample instead of a real one. GAN-BERT was trained with 20 News group (20

classes; 11314 samples in training dataset and 7531 in testing data), UIUC (6/50 classes;

5400 training samples) and SST-5 (5 classes; 11855 samples in total) for topic, question and

sentiment classification tasks (in the corresponding order). With annotated (labeled) data of

1, 2, 5, 10, 20, 30, 40, 50% of the samples, the following results were obtained: for 20N

data F1-scores 45, 60, 70, 75, 78, 81, 83, 85, and for SST-5 accuracies 30, 37, 41, 46, 47,

49, 50, 51 were obtained. For UIUC data two settings were prepared: "coarse grained" with

data divided into 6 classes and "fine grained" with data in 50 classes. These settings were

the base of accuracy results of 63, 80, 90, 93, 94, 94.5, 95, 95.5 for coarse grained version

and 27, 48, 66, 70, 76, 74, 77, 79 for fine grained. The results are approximate due to being

checked from a picture (tables of results were not provided in the study).

Figure 9. GAN-BERT architecture, where G is generator, F is fake data samples, D is

discriminator, L is labeled data samples, and U is unlabeled data samples (figure adapted

from Croce, Castellucci, and Basili 2020).

In addition to GANs, a transformer based model GPT has been invented to aid in several

text generation tasks, e.g. in code generation. Few-shot learning was used for training GPT-

3 (Generative Pretrained Transformer 3), a language model of 175 billion parameters, and
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tested for a natural language inference (NLI) task among others (Brown et al. 2020). NLI

can be constructed as a classification task of two or three classes, while ANLI (adversarial

NLI) is an adversarially mined version of the same task that is performed in three rounds.

For few-shot learning using the 175B model, 40% accuracy was obtained for the 3rd round

(compared to 36% or lower accuracy scores obtained with smaller, 13B parameters or fewer,

models).

There exists previous versions of GPT, most notably GPT-2 (Radford et al. 2019), that has

also gained substantial research in the NLP field. Below there is two examples about how

text generation with GPT-2 was harnessed for classification tasks.

In the study conducted by Puri and Catanzaro 2019, the main objective was to built a model

for task adaptation, that entails the making of a model usable for several NLP tasks without

using multiple heads (which is usually the convention). Puri and Catanzaro 2019 used text

generation for creating an answer (out of a handful of choices) to task descriptor questions

that were chained together with the text sample. These chains of task descriptors and text

were input to the GPT-2 model, and the answer was obtained as the output. For this fine-

tuning, OpenWebText dataset was used. When 355M model was used, the following results

(in accuracy) for several evaluation datasets were obtained: for AGNews 68.3%, DBpedia

52.5% and Yahoo 52.2% when pretrained using 1/4 of data, and for SST-2 62.5%, Amazon-2

80.2% and Yelp-2 74.7% when pretrained using all of the data.

In another study (Edwards et al. 2021) the performance of models amped with text generation

based data augmentation was compared to word and sentence replacement methods, where

words are replaced, or sentences switched by performing back translation, for instance. The

best performing model for all 20 Newsgroup (6 classes and 20 subclasses), Toxic comments

(2 and 5), and Safeguarding (5 and 34) datasets was proven to be text generation based data

augmentation model that was finetuned per label. This refers to the few-shot setting where

the amount of data samples was 5 and 10 at the beginning, and then artificial data sam-

ples were added later on. For the text generation (GPT-2) model, the outcomes using four

different seed selection strategies were also compared: random, maximum nouns-guided,

subclass-guided, and expert-guided seed selection. In most of the cases random seed selec-

tion provided sufficient results, especially when using a modest number of seeds. FastText
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classifier (merged together with FastText word embeddings) was used as the classifier along

with the text generation model. In the end, the classification results of the best performing

model (text generation per label) were shown with a t-test (pvalue < 0.05) to be statistically

significant over classification with no augmentation.

3.4 Other semi-supervised methods

There exists yet many other research methods, that are used for SSL. One of them is low-shot

learning, that combines the methods that are referred to as zero-shot learning or few-shot

learning methods. Low-shot learning could loosely be included or at least linked to SSL

methodology. Due to their property of having either only a handful of annotations (few-shot

learning) or none at all (zero-shot learning), they are promising alternatives to be considered

for all types of tasks. For low-shot learning in NLP (and text classification) see the review

by Xia et al. 2020, for example.

In addition to SSL methods used in transformer based modeling, there exists many studies

that use traditional DNNs with SSL methods for text classification. We left them out from

earlier sections due to them not being the most relevant to our research. For unsupervised

pretraining methods used in conjunction with traditional DNNs, like LSTMs, see the studies

by Dai and Le 2015; W. Xu et al. 2017; Miyato, Dai, and Goodfellow 2016; Sachan, Zaheer,

and Salakhutdinov 2019; as well as Li and Ye 2018. In one study (Y. Zhang et al. 2017) unsu-

pervised training was conducted simultaneously with supervised training. LSTMs have also

been used for pseudo labeling (see the study by Li, Ko, and Choi 2019, for instance). Fur-

thermore, generative models for text classification have utilized e.g. LSTMs (Li et al. 2018)

and RNNs (Stanton and Irissappane 2019) in the model architecture.
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4 Data

The data, that were used in this thesis, were collected in 2019 and 2021 from surveys that

were part of two studies conducted by the Department of Social Sciences and Philosophy

of University of Jyväskylä. The studies (see the papers Karhinen et al. 2019 and Karhinen

et al. 2021) were carried out by Centre of Excellence in Research on Ageing and Care1,

or CoE AgeCare in short, which is a flagship research programme funded by the Academy

of Finland for 2018–2025. The goal of these studies was to get information about the em-

ployees working in eldercare, the working environment and conditions the employees face,

technology used in care work (such as devices and services), and the effects of digitalization

in the workfield.

The questionnaire used in the studies consists of 62 questions, out of which two are open-

ended. These two open-ended interview questions are:

1. What kind of emotions related to the use of technology have been present in your work

during the last week? ("Millaisia tunteita teknologian käyttämiseen on liittynyt työssä

viimeisen viikon aikana?")

2. What do you think about the following claim: "Technology improves the quality of

eldercare work and decreases the pressure of employees." ("Mitä ajattelet väitteestä:

Teknologia parantaa vanhustyön laatua ja vähentää työntekijöiden kuormitusta.")

The other sixty interview questions are e.g. about age, gender, marital status, job title, work

union, educational level, type of employer, place of working in Finland (e.g. capital area),

work experience (in years), working hours, and structured questions (with a few options for

answering) about how the workers experience stress or pressure, and also about the use of

technology at work – how much it is used, what type of devices, how much time the using

takes, and estimation about employees’ own digital skills.

All in all, 6903 filled out the questionnaire for the data collected in 2019. For the two open-

ended questions 3652 answers were obtained (for both of the questions, so no empty values

are present). 65 of them are in Swedish, the rest in Finnish. There are 367 duplicates for the

1. https://www.jyu.fi/hytk/fi/laitokset/yfi/en/research/projects/agecare
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answers of the first question, and 494 duplicates for the answers of the second question. All

in all, 1679 filled out the questionnaire for the data collected in 2021. For the first question

1000 answers were obtained, and for the second 1099 answers. All of them were in Finnish.

There are 57 duplicates for the answers of the first question, and 93 duplicates for the answers

of the second question. When the 2019 and 2021 datasets are combined without removing

the aforementioned duplicates, there are 485 duplicates for the answers of the first question,

and 649 duplicates for the answers of the second question.

When processing the data, we transform the data samples into vectoral form, "tokens". In the

combined dataset, the minimum length of one data sample is 3 tokens, median length is 13

tokens, mean length is 19.5 tokens, and maximum length is 429 tokens. When using maxi-

mum sequence length of 100, there is no splitting (but all tokens are included) for 98.98% of

the data samples. When using 272 for maximum sequence length, only one data sample (of

the length 429) is cut to fit the size limit of 272.

For this thesis we use the answers obtained for the first open-ended question as the training,

validation and testing data to conduct sentiment analysis. Sentiment analysis refers to a

classification problem that focuses on sentimental content of the data samples, and usually

relates to classifying data samples into three classes: negative, positive and neutral. In our

data every answer, or data sample, consists of a sentence or several in natural language.

These data samples are divided into these three classes later on, during the preprocessing

phase described in section 5.1. The amount of data samples belonging to each class can be

seen in table 1).

Table 1. The amount of data samples belonging to each class.

sentiment # of samples % of samples

neutral 1222 30.8

negative 2224 56.0

positive 525 13.2

all 3971 100
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Figure 10. Creating datasets involved two steps: 1) dividing data into labeled, unlabeled

and testing datasets, and 2) dividing labeled and unlabeled datasets further into training and

validation datasets. Here UPT model is unsupervised pretraining model (presented in section

5.2.2), PL model is pseudo labeling model (5.2.3) and GAN model is generative adversarial

network model (5.2.4).
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5 Methods

Due to our data being on the small size we discard the use of non-transformer based DNNs,

that are traditionally used in text classification and need lots of data, and compare SSL meth-

ods that are only implemented on FinBERT (Virtanen et al. 2019) backbone, which is based

on transformer modeling.

First, we go through data preprocessing steps in section 5.1. Training DNNs with SSL meth-

ods suggests that not all data is annotated. The original data did not include any annotations,

so we also introduce the annotative measures used to determine classes for data samples.

Then we also go through steps that involve making of different datasets (can be seen in fig-

ure 10). After data related processing, we describe in section 5.2 the architectures of models

that utilize SSL methods that we implement to perform text classification (or sentiment anal-

ysis) on our data. Finally, in section 5.3 we elaborate on evaluation that is used for the SSL

models we build.

5.1 Data preprocessing

First for data privacy reasons, the most essential columns (column of identifiers and a column

for answers to the first open-ended question) from the original data are chosen and the rest

of the data is discarded during the model implementation process. At first, we concatenate

the two datasets of 2019 and 2021. Then we check whether there are empty or duplicate

values and remove them. We then remove non-text values (data samples with only emojis,

punctuation and digits) to perform language detection with a library (langdetect1, version

1.0.9) to remove Swedish answers from the dataset, as the sentiment analysis is intended to be

monolingual. After detecting Swedish data samples, we remove them from the concatenated

dataset along with data samples that have only punctuation in them. Finally, we end up with

3971 data samples.

After these preprocessing steps, manual annotation is done by hand by a native Finnish

person, that has no professional background in Finnish language nor literature. Manual an-

1. https://pypi.org/project/langdetect/
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notation means that the whole of data was read through data sample by data sample, during

which every data sample was classified to one of the following classes: positive ("0"), neg-

ative ("1"), or neutral ("2"). Only after annotation the splitting of data into unlabeled and

labeled datasets is carried out to have an even distribution of classes in each of the dataset.

This even split is aimed to be achieved with stratified K-fold.

We use stratified K-fold to have a 60%/40% split to the data (unlabeled/labeled), having an

even distribution of all three classes for both of the datasets. For stratified K-fold we use

the parameter Shuffle=True to shuffle the data randomly before it is being split2. This split

is achieved by having five folds, out of which we are randomly choosing two folds for the

labeled dataset (2/5=0.4) and other three folds for the unlabeled dataset (3/5=0.6). We split

the unlabeled data even further (with stratified K-fold to ten folds) to construct a testing

dataset that can be used for evaluating all of the models after training. This is how we now

have three different datasets drawn from the same in-domain data: unlabeled dataset (54%

of data or 2144 samples), labeled dataset (40% of data or 1588 samples) and testing dataset

(6% of data or 239 samples). This process of dividing data is visualized (in step one) in

figure 10.

Before feeding the data into the model we use pretrained FinBERT cased tokenizer (Vir-

tanen et al. 2019) for conducting a series of changes for every data sample (see appendix

A for configuration information). These changes include tokenization, assigning maximum

sequence length, adding [CLS] and [SEP] tokens to indicate the beginning and ending of

a data sample (parameter add_special_tokens is set to True), padding to maximum length

(so that every data sample is of the same size) and returning an attention mask that tells the

model what are the tokens that should be taken into account (indicated by "1") and which are

paddings (indicated by "0") 3.

Finally, before we load the data into a data loader4, that is used for iterating through the data

in batches during training, we assign a specific type of sampler5 to the data loader according

to which the data is sampled during training process. In the training process we use training

2. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
3. https://huggingface.co/docs/transformers/v4.18.0/en/glossary#attention-mask
4. https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
5. https://pytorch.org/docs/stable/data.html#torch.utils.data.Sampler
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and validation datasets, for both of which we create their own data loaders. The training data

is randomly sampled, so the order in which samples are iterated cannot be predicted. This is

to increase randomness in the model training process. The validation dataset is sequentially

sampled, which means that the data samples are iterated through without changing the order.

After training process the model is tested with the testing dataset, so when a data loader is

created for it, we assign a sequential sampler for it.

5.2 Models

In this thesis, in order to utilize unlabeled and labeled data three different SSL methods were

implemented. Along with the baseline (presented in section 5.2.1), we make three models: a

model that utilizes unsupervised pretraining (in section 5.2.2), a model that utilizes pseudo

labeling (in section 5.2.3), and a model that utilizes generative adversarial network (in section

5.2.4). This loosely follows the taxonomy set in Van Engelen and Hoos 2020.

For all of the models, cased FinBERT base (Virtanen et al. 2019) is used as the backbone (see

appendix A for more information about the configuration of FinBERT). There are a few other

BERT models that have been trained to work with Finnish data, that include multilingual

BERT (Devlin et al. 2018), XLM-RoBERTa (Conneau et al. 2019), and FinEst BERT (Ulčar

and Robnik-Šikonja 2020). While for FinBERT the size of training corpus was 13.5B tokens,

the training corpus size for Finnish was 6730M tokens for XLM-RoBERTa (Conneau et

al. 2019), and 925M tokens for FinEst BERT (Ulčar and Robnik-Šikonja 2020). The training

corpus size of multilingual BERT is not reported for different languages, but the training

corpora are mentioned to be based off of Wikipedia articles6. There are 530 668 Wikipedia

articles in Finnish at the moment 7. For reference, the authors of FinBERT report the training

corpora to be of 98M documents in total in their study. FinBERT is chosen as it outperforms

multilingual BERT (Virtanen et al. 2019) and shows the strongest training corpus size out of

all the BERT models pretrained for Finnish.

During the implementation of the models, one random seed is also picked to be used con-

6. https://github.com/google-research/bert/blob/master/multilingual.md
7. https://meta.wikimedia.org/wiki/List_of_Wikipedias
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sistently to make comparisons between different model variations. The classification task is

directed at three classes, so the final layer in each model has output of three (0 for indicating

positive, 1 for negative and 2 for neutral class) – except for GAN model, for which we have

different amounts of outputs (see section 5.2.4). For all model training, we use the following

libraries and versions: Python 3.7, Pytorch 0.8.1, Transformers 4.16.2, and CUDA 11.6. All

of the work is done with one GPU (NVIDIA Tesla P100 with 16GB RAM).

5.2.1 Baseline

To compare the performance of models belonging to the SSL framework to a simple super-

vised model, we choose to train (or finetune) a model using only the labeled dataset and use

it as the baseline. To the labeled dataset a split of 90%/10% is done to create training and

validation datasets for finetuning. This process of dividing data is visualized (in step two) in

figure 10.

Figure 11. Baseline model architecture in a simplified form.

For the model hyperparameters we have learning rate of 1e-5, weight decay 0, epsilon 1e-8,

cosine scheduler with warmup (number of warmup steps is the default of 0), and AdamW as

optimizer (Loshchilov and Hutter 2017). Architecture of the model is the following (see the

figure 11): linear layer (hidden size of BERT is 768, hidden size of our model 50), dropout
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(with probability of 0.5), ReLU, and linear layer (hidden size of our model 50, output of 3).

With the use of dropout layers, where units and their connections are randomly dropped in

the middle of training (see figure 12), regularization can be adapted to the model architecture

(Srivastava et al. 2014). We use BertModel as backbone and retrieve cased FinBERT from

pretrained models ("TurkuNLP/bert-base-finnish-cased-v1"). Gradient clipping (to 1.0) is

included to prevent exploding gradient problem, which refers to gradients getting too large

in gradient based modeling (Goodfellow, Bengio, and Courville 2016). Maximum sequence

length is 100 and batch size is 128. We use early stopping to stop the model from running if

no apparent improvement happens for 10 epochs.

Figure 12. Neural network without and with dropouts, where red units represent the units

that are dropped out (figure adapted from Srivastava et al. 2014).
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5.2.2 Unsupervised pretraining

A model that makes use of unlabeled data via unsupervised pretraining in this study is a

FinBERT that is pretrained with the unlabeled data and then finetuned with labeled data. We

refer to this model as UPT model.

For pretraining, we use model for masked language modeling (BertForMaskedLM) and re-

trieve cased FinBERT from pretrained models ("TurkuNLP/bert-base-finnish-cased-v1") for

it. Before running the model, we make a split of 90%/10% to the unlabeled data to create

training and validation datasets. This process of dividing data is visualized (in step two) in

figure 10. Then we run the model for 35 epochs with batch size 16 for both training and val-

idation. We use optimizer AdamW (with learning rate 1e-6, epsilon 1e-8 and weight decay

0.01) and use cosine scheduler with warmups (number of warmups is at default, 0). Maxi-

mum sequence length is set to 275, and padding to maximum length is set to True. This does

not cut down any data samples of the unlabeled data used for pretraining. MLM probability

is set to 0.15.

To the labeled dataset a split of 90%/10% is done to create training and validation datasets

for finetuning. This process of dividing data is visualized (in step two) in figure 10. For

finetuning, the same hyperparameters and architecture are used as for the baseline.

5.2.3 Pseudo labeling

For training the pseudo labeling models, or PL models, the same model hyperparameters

and architecture are used as for the baseline. When using the trained PL models for pseudo

labeling, in all cases maximum sequence length is set to 200.

For pseudo labeling, we try two different versions (see figure 13) for training to see whether

iterative pseudo labeling will make an effect on the results. In the first version, labeled

dataset L is used to train PL model 1. PL model 1 is then used to pseudo label unlabeled

dataset UAll , that includes all of the unlabeled data samples. Finally, PL model 2 is trained

with labeled dataset L and unlabeled dataset UAll , that now has been pseudo labeled by PL

model 1. We use PL model 2 when testing the first version of PL modeling.
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Figure 13. Two versions for pseudo labeling: training a model with pseudo labeling (version

1) and with iterative pseudo labeling (version 2), where L is labeled dataset, UAll is unlabeled

dataset including all samples, UHal f1 is unlabeled dataset including first half of the samples,

UHal f2 is unlabeled dataset including second half of the samples, PL model 1 is pseudo

labeling model 1, PL model 2 is pseudo labeling model 2 and PL model 3 is pseudo labeling

model 3.

Iterative pseudo labeling is attempted in the second version. In the second version, labeled

dataset L is used to train PL model 1. PL model 1 is then used to pseudo label unlabeled

dataset UHal f1 , that includes half of the unlabeled data samples. Next, PL model 2 is trained

with labeled dataset L and unlabeled dataset UHal f1 (that now has pseudo labels). PL model

2 is then used to pseudo label unlabeled dataset UHal f2 , that includes the other half of the

unlabeled data samples. Finally, model 3 is trained with labeled dataset L, and unlabeled

35



datasets UHal f1 and UHal f2 , that now have been pseudo labeled by PL model 1 and PL model

2, respectively. We use PL model 3 when testing the second version of PL modeling.

During the training process of each PL model, we thus use either only labeled dataset L,

or concatenated dataset consisting of labeled data L and pseudo labeled data (based on un-

labeled dataset UAll , UHal f1 , or both UHal f1 and UHal f2). This concatenated dataset is split

90%/10% to training and validation datasets for every PL model before training. This pro-

cess of dividing data is visualized (in step two) in figure 10.

5.2.4 Generative adversarial network

Generative adversarial network model, or GAN model, is implemented by using generator-

discriminator structure with FinBERT as classifier. We follow the architecture used in the

study by Croce, Castellucci, and Basili 2020, that is visualized in the figure 9. For con-

structing FinBERT, we use BertModel and retrieve cased FinBERT from pretrained models

("TurkuNLP/bert-base-finnish-cased-v1") for it. We train the model for 50 epochs.

In the GAN model the generator produces fake samples, that are input into the discriminator

along with BERT outputs. BERT outputs are vector representations of real data samples,

that consist of labeled and unlabeled data. The labeled dataset is split into 90%/10% to form

training and validation datasets. Unlabeled data is concatenated with the training data, and

a mask is set for the data samples in this concatenated dataset (True for indicating a labeled

data sample, False for indicating an unlabeled data sample). This process of dividing data is

visualized (in step two) in figure 10.

Model hyperparameters for both the generator and the discriminator include optimizer AdamW,

constant schedulers with warmup of 0.1, learning rate 1e-6 and epsilon 1e-8. We use maxi-

mum sequence length of 100 and batch size 128. The noise size of generator is set to 100.

The discriminator has the following architecture: dropout layer (p=0.5), linear layer (input

size 768, hidden size of 768), LeakyReLU (0.2), dropout (p=0.5), linear layer (input size 768,

hidden size of 768), LeakyReLU (a=0.2), dropout (p=0.5), and final layer softmax, where

number of labels is 5 – out of which four are for positive, negative, neutral and "UNK" for

unlabeled data, and one for the probability of the sample being fake or real. The architecture
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of the generator is the same as with discriminator – with the exception of the final layer

output size being 768, instead of 5.

5.3 Evaluation

To estimate the performance abilities of the model, certain evaluation metrics can be used.

For our classification task we use accuracy to determine the model performance and cross-

entropy loss8 for the loss function. Accuracy is the percentage of having all correctly pre-

dicted data samples out of all predictions (Minaee et al. 2021).

Accuracy =
m
n
, (5.1)

where m is the amount of all correctly predicted data samples, and n is the amount of all

data samples. Cross-entropy loss is used for classification tasks, and it can be defined as

(Martinez and Stiefelhagen 2018):

H(p,q) =−
n

∑
i=1

pi log(qi), (5.2)

when discrete distributions p ∈ [0,1]n and q ∈ (0,1]n are the size of n. Cross-entropy loss is

calculated between these two distributions: p, that represents the target of classification, and

q, which is the output of the softmax layer (see equation 2.4) – that is, the likelihood that is

predicted per class (Martinez and Stiefelhagen 2018).

8. https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#crossentropyloss
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6 Results

The performance of each model was evaluated with cross entropy loss and accuracy. These

metrics were calculated to have the model performance evaluated twice: first, during model

training with validation dataset, and second, after training with testing dataset. We used

validation dataset to choose the best performing model variation for each SSL model, and

testing dataset to test if the model generalizes well to unseen data. We use the model name

abbreviations as follows: UPT model for unsupervised pretraining model, PL model for

pseudo labeling model, and GAN model for generative adversarial network model.

The results for validation dataset can be seen from table 2. We can see from the table that

the PL model seems to give the best performance out of all the models. Up next would be

the baseline, and UPT model and GAN model after that. The results for testing dataset can

be seen from table 3, that suggest that instead of the PL model the baseline seems to give the

best performance out of all the models. The performance of the UPT model, along with the

PL model and GAN model, is not far off from the performance of the baseline.

Table 2. All the best model results for validation dataset. Here UPT refers to unsupervised

pretraining model, PL to pseudo labeling model and GAN to generative adversarial network

model.

baseline UPT PL GAN

loss 0.29206 0.35041 0.18769 0.35918

acc 0.9170 0.9013 0.9438 0.8805

Table 3. All the best model results for testing dataset. Here UPT refers to unsupervised

pretraining model, PL to pseudo labeling model and GAN to generative adversarial network

model.

baseline UPT PL GAN

loss 0.36404 0.39304 0.40214 0.42164

acc 0.88889 0.86111 0.87037 0.86192

Additionally, there results for the PL model version 1 (PL without iterative process) and

38



version 2 (PL with iterative process) are indicated in table 4. The results suggest that the

version 1 works better than the version 2 PL model, for both the validation and the testing

dataset.

Table 4. PL model results for version 1 and 2 when evaluating with validation and testing

datasets.

Version 1 (valid) Version 1 (test) Version 2 (valid) Version 2 (test)

loss 0.18769 0.40214 0.21003 0.44618

acc 0.9438 0.87037 0.9331 0.86111
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7 Discussion

Usually for DL model training as much data as possible should be used. A few thousand

data samples is generally a small dataset, so to prevent overfitting different regularization

methods can provide to be useful. When looking at our results (in tables 2 and 3), the

difference between the results for validation and testing datasets suggests that the models are

most likely not generalizing well to new data. It is likely that at least some overfitting has

happened during the SSL model training. In the final results one can see that the baseline

shows better results than all the other models, when evaluated with testing dataset. The

possible reasons why this might have happened are discussed below, SSL model by SSL

model.

In the case of UPT model, the reason why this model shows weaker results than the baseline

could be that it is more advantageous to use a large text dataset with diversity for pretraining

and to use more in-domain data for finetuning to train the model for a specific task (Radford

et al. 2018). When focusing on using only in-domain data for pretraining and finetuning,

BERT based models may fail to adopt understanding of language in all of its complexities,

which can possibly lead to weakened generalization and overfitting of the model (Jiang et

al. 2019). Preservations towards using data that is not directly related to the domain of

classification task (out-of-domain data) thus might be unwarranted. The results shown in the

study by Sun et al. 2020 suggest that this could be bypassed by using very large amounts

of in-domain data for pretraining. The initial attempts at finetuning for some UPT model

variations, where pretraining was done additionally for 20 and 50 epochs, also indicates that

with limited amount of data we come across a wall much sooner (in 50 epochs) when we add

epochs to pretrain for longer. Moreover, for 20 epochs the model had not exceeded the limit

of adopting new features from the data, and had higher loss and lower accuracy than does

the best performing UPT model, that was pretrained with 35 epochs.

In the case of the first version of PL model, where iterative process was not applied, the

model seemed to have confident results for the validation dataset (accuracy of 94.38% and

loss of 0.18769), but looking at the testing dataset results (accuracy of 87.04% and loss of

0.40214) there seems to be a drop in model performance. This suggests that overfitting
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might have occured, which could be due to confirmation bias. Pseudo labeling was not

confined in the sense that no confidence values were calculated and applied for the model

(like was done in the study of Sun et al. 2020). Another method for restricting confirmation

bias could have been the use of meta pseudo labels (Pham et al. 2021), that could help with

regularization of the model. In the case of second version of PL model, where iterative

process was applied, the iterative training of multiple models with subsets of data seems to

not bring an improvement on the PL modeling results. When looking at the testing dataset

results, there is a slight increase in loss (of 0.044) and a small decrease in accuracy (0.9%)

for the second version PL model when compared to the first version PL model results (see

table 4).

In the case of GAN model, where GAN-BERT was trained, the model architecture is decid-

edly a different one when compared to the baseline and other implemented SSL models. In

the paper where GAN was first introduced (by Goodfellow et al. 2014), the authors mention

the possibility and the need for future research for using GANs for situations where very

little data is annotated (for SSL settings). However, in the study conducted by Dai et al. 2017

the authors note that for a good discriminator a bad generator (meaning that the generator

distribution should not be aligned with the distribution of true data) should be trained, and

found out that complement generator is the type of generator that benefits the discriminator

more. Complement generator is a generator that produced samples that are complement in

feature space. We are likely to see this effect happening during our training – when the train-

ing goes on, the generator loss keeps increasing while the discriminator loss is decreasing.

For improving the results for GAN, this type of adjustment of generator could be beneficial

when implementing GAN based models. Another measure to better regularization could

have been the use of consistency regularization (H. Zhang et al. 2019). The usefulness of the

type of applied regularization method might depend on the model architecture. For example,

gradient based regularization might not be that good of a fit for the discriminator of GAN,

but consistency regularization might be better in terms of lighter computation, because it

does not increase much overhead (H. Zhang et al. 2019).

Some other decisions made during the model implementation could also be examined. Re-

garding data, hand-made annotations could act as a pitfall when not done professionally.
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One possible loophole for evading manual labor in this regard could have been using newly

released FinBERT-finnsentiment, that is a FinBERT finetuned with 27 000 sentence dataset

(Lindén, Jauhiainen, and Hardwick 2020) for sentiment analysis, for classifying unlabeled

data samples. Stratified K-fold was used to divide the data into datasets with the same distri-

bution of data samples pertaining to different classes (see section 5.1), but other data splitting

techniques could have been tried out as well. The strength of stratified K-fold is that with

additional parameter (Shuffle=True), before splitting the data it is shuffled, and thus, ran-

domness is increased in the model making process. The original data includes samples from

both 2019 and 2021. Possible temporal effects were also not taken into account – for exam-

ple, more recent data from 2021 could have COVID-19 terminology used that is not visible

in 2019 data, which could be considered as noise.

When thinking about model training decisions to improve on, hyperparameter optimization-

wise there is much left to do. For example, trying out smaller learning rates and more training

epochs would lead to slower convergence, but it could possibly be better for optimization of

the model. When running all the models, one iteration took at most a minute and a half

(with bigger batch sizes), totaling up to 35 minutes at most before the model performance

stopped to improve. More GPUs could also have been used to have bigger batch sizes without

compromising the use of larger maximum sequence lengths. Initial attempts at using smaller

maximum sequence lengths (e.g. 64), especially to enable the use of bigger batch sizes

in one GPU, and then switching to larger maximum sequence lengths (e.g. 100, or 272)

showed that accessibility to more data (more tokens) seem to lead to better results. Another

thing to note is that using a specific seed might effect the results even up to a few digits

(of accuracy, for example), so in some cases the results may not seem to be possible to be

reproduced exactly, based off of the seed behaviour alone. Different seeds were not tested

during the implementation phase, but this type of effect on modeling can be seen in the

community sites (e.g. GitHub). We also made initial research on the effect of modest use

of dropout in the case of baseline, that seems to be potential for basic regularization of the

model. However, adding dropouts might not be as efficient when training models for smaller

datasets (Goodfellow, Bengio, and Courville 2016), so more testing of such regularization

methods should be done to draw conclusive observations on the matter.
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If further research were to be conducted, more data, hyperparameter optimization, different

network structures, regularization measures and the assessment of seed behaviour could be

focused on.
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8 Conclusions

The research question presented in introduction (see chapter 1) had us looking for SSL meth-

ods that could be useful for a case where little annotated data is available for model training.

The aim of this thesis was to research SSL methods and determine how they work for our

dataset when building models for text classification. These methods are more thoroughly

described in the literature review of this thesis (see chapter 3). We tested a few of these

methods, and implemented BERT based models in the constructive part of this thesis (see

implemented methods in chapter 5) for data that was concerning on the sentiments elicited

in eldercare workers regarding the increasing use of technology in their work (in chapter 4).

Depending on the SSL method in question, there are things that should be taken into account

in order to train a model without it overfitting. These distinctive properties of each of the

methods, that call for attention when looking out for probable problems in model training,

are presented in the results (chapter 6) and discussion (chapter 7).

For more thorough optimization of the model more confined settings (i.e. regularization)

should be set up for the model during its training process. Future research is called for to

better discern the applicability of different SSL methods without overfitting interfering with

the results.
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Appendices

A FinBERT model and tokenizer configuration files

config.json

1 {

2 "architectures": [

3 "BertForMaskedLM"

4 ],

5 "attention_probs_dropout_prob": 0.1,

6 "hidden_act": "gelu",

7 "hidden_dropout_prob": 0.1,

8 "hidden_size": 768,

9 "initializer_range": 0.02,

10 "intermediate_size": 3072,

11 "layer_norm_eps": 1e-12,

12 "max_position_embeddings": 512,

13 "model_type": "bert",

14 "num_attention_heads": 12,

15 "num_hidden_layers": 12,

16 "pad_token_id": 0,

17 "type_vocab_size": 2,

18 "vocab_size": 50105

19 }

tokenizer_config.json

1 {

2 "do_lower_case": false

3 }
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These configuration files are obtained from Huggingface documentation of FinBERT1.

1. https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1
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