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In this thesis, structured as a literature review, we give the reader an overview of universal

quantum gates, the basic elements of the circuit model of quantum computing. We outline the
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ing the minimum required mathematics. We conclude with an argument for the importance

of universal quantum gates for the theory and practice of quantum computing, and the need

to study an exhaustive list of non-universality criteria.
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Preface

This work is dedicated to the innocent victims of the Russian war in Ukraine.

While I was writing this thesis, the world fell apart for me and millions of people in February

2022. It is my deep conviction that humanity’s destiny is to explore outer space, learn to live

with viruses, build quantum computers, cure cancer, expand the horizons of knowledge, and

pursue the ideals of humanism. There is no place in the 21st century for killing children and

causing suffering to countless numbers of people on far-fetched grounds. I will make every

effort to help the victims and stop the bloodshed as soon as possible.

Jyväskylä, May 25, 2022

Konstantin Sakharovskiy
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1 Introduction

We virtually ignore the astonishing range of scientific and practical

applications that quantum mechanics undergirds: today an estimated 30

percent of the U.S. gross national product is based on inventions made

possible by quantum mechanics, from semiconductors in computer chips to

lasers in compact-disc players, magnetic resonance imaging in hospitals, and

much more.
(Tegmark and Wheeler 2001)

Successful development of modern technology industries is impossible without detailed cal-

culations of quantum systems, such as nanostructures, complex chemical and biological

molecules, new drugs, etc. However, despite impressive progress in the study of the fun-

damental laws of Nature, full-scale modelling of complex quantum systems is still an im-

practical task. Quantum problems are computationally intractable for conventional comput-

ers. Following this pessimistic observation Feynman (1982) managed to draw a positive

conclusion, stating that as nature has successfully solved these problems, we (humans) can

to employ quantum systems as a new foundation for computation. Feynman concludes that

devices based on quantum principles could be much more powerful than their conventional

counterparts. Two years prior to that Manin (1980) expressed similar ideas. The formal

description of quantum computing began with the work of Benioff (1980) and D. Deutsch

(1985), who studied quantum Turing machines and the concept of universal quantum com-

puting.

Quantum computing started attract public attention when Shor (1999) introduced a fast quan-

tum algorithm for integer factorization, for which there is not known an efficient algorithm

in classical computing. Most of this emphasis comes from the fact that many modern cryp-

tographic systems are built on the presumption of the nonexistence of a classical algorithm.

(Rivest, Shamir, and Adleman 1978). Since then, significant advances have been made,

both in terms of quantum information theory and building quantum devices. We would like

to point out recent successes in practical implementation: achieving quantum supremacy

(Arute et al. 2019) and 127 qubit processor creation (Chow, Dial, and Gambetta 2021).
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Despite the advances made in this field, the task of creating a large-scale fault-tolerant quan-

tum machine seems extraordinarily difficult. One of the main problem is that quantum sys-

tems implementation must comply with two contradictory principles - isolation from external

environment and possibility to manipulate the system, send and receive information. This

leads to the phenomenon of Quantum errors. Another fundamental problem arise in one of

the most promising model, Quantum Gate Model or Quantum Circuit Model: how to build

relevant set of gates, by which we can implement universal quantum computer? To address

these problems we could use Universal quantum gates. With some assumptions, the analogy

with classical computation is appropriate here, when we can use NAND alone to implement

any classical computation. The following two theoretical studies may be considered the most

important for universal quantum gates:

• Proof of the effectiveness of approximating quantum gates by the Solovay-Kitaev the-

orem (Dawson and Nielsen 2005). A consequence of this theorem is that an arbitrary

quantum circuit can be efficiently approximated to a small error by another circuit built

from a desired finite universal gate set.

• According to DiVincenzo (2000) criteria, to build a quantum computer, a quantum

machine must meet five compulsory conditions: controllability, measurability, initial-

izability, enough decoherence times and availability of universal quantum gates.

Quantum universal gates have been an active research topic since the landmark Solovay-

Kitaev theorem. Numerous studies have been conducted on how to use universal sets to

implement various quantum gates with arbitrary precision (see for instance Kliuchnikov,

Maslov, and Mosca 2012; Ross and Selinger 2014; Selinger 2015; Maslov et al. 2008;

Amy et al. 2013; Nam et al. 2018), or on how to implement circuits onto hardware with

restricted connection (see for instance Maslov et al. 2008; Bhattacharjee and Chattopadhyay

2017; Oddi and Rasconi 2018; Booth et al. 2018; Zulehner and Wille 2019; Bhattacharjee

et al. 2019; Zulehner, Paler, and Wille 2018; Cowtan et al. 2019; Itoko et al. 2020; Tan and

Cong 2020; Murali et al. 2019).

The primary methodology used in this thesis is a literature review. The aim of the review

is to examine a collection of studies on the universal quantum gates and on related areas of

this phenomenon. In this review, literature based on classical and quantum gate models is
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identified. The role of universal gate sets is explored. The primary goal of this work is to

introduce different universal quantum gate sets to the reader and specify directions for future

research.

This thesis is structured as follows:

Section 2 gives necessary preliminary information for better understanding the circuit model

of quantum computing, including the minimum required mathematics and physics.

Section 3 introduces the reader to the most notable quantum gates. We decided to visualize

some gates as a rotation of the Bloch Sphere for clarity.

Section 4 clarifies the notion of universality in quantum computing and gives the most sig-

nificant examples. In view of the importance of universal gates for the building of quantum

computers, we will provide a brief overview of the present state of the art in this field.

Section 5 provides an overall conclusion to this thesis project.
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2 Preliminaries

This section provides the foundational information needed to understand quantum computing

in the context of universality. Due to the scope of this thesis we will not elaborate much

in important topics closely related to the universal quantum gates, such as computational

complexity and quantum error correction. For interested readers, we can recommend the

classical textbook of Papadimitriou (2003) and the modern approach by Arora and Barak

(2009) as comprehensive sources on complexity. Nielsen and I. Chuang (2002) and Williams,

Clearwater, et al. (1998) serve as an informative introduction to quantum error correction.

To understand how quantum computing works, one needs maturity in mathematics that de-

scribes its formalism. In this chapter we introduce the key aspects of its associated mathe-

matics and provide references for more details. This chapter is structured as follows: first

we discuss essential mathematical formalism in complex numbers and linear algebra, sec-

ond, we introduce the core idea of quantum computing and the base element of computation,

quantum bit or qubit and thirdly, we introduce the concept of quantum gates and quantum

circuits.

2.1 Complex numbers

Parameters of a quantum system are described by complex numbers. We will see further

(and this is very intriguing discovery) that universal set gates, which work with real part

only, may be enough to employ all the power of quantum computation. There is a fairly

debated question as to whether the use of complex numbers is a convenience or the only

possible way to describe quantum mechanical systems. The imaginary unit is part of the

Schrödinger’s equation, which we will introduce later (2.7). But could we get by same

description with real numbers or quanterions? We will give Aaronson (2004) arguments

against it: since the field of complex numbers is algebraically closed, this makes a natural

quantum operation, such as taking the square root of the unitary, elementary.

Comprehension of complex numbers can be a significant threshold for those wishing to ex-

plore quantum computing. Nevertheless, we decided to include an introduction to complex
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numbers in view of the fact that many notable quantum gates work with the imaginary part.

A complex numbers1 c ∈ C represented as c = a+ bi, with a,b ∈ R, and imaginary unit i,

with condition i2 =−1. One can rewrite c as c = reiϕ with r = |c|=
√

a2 +b2 as c norm, the

angel ϕ ∈ [0,2π) that c creates with y-axis if we consider point (a,b) in the plane. Norm 1

complex numbers form a unit circle. We can represent it as Euler’s formula:

eiϕ = cosϕ + isinϕ (2.1)

The complex conjugate c∗ is a− ib, or c∗ = re−iϕ .

2.2 Essential linear algebra

It is a good idea to brush up on the basics of linear algebra, including concepts like vectors,

matrices, and linear subspaces. It is quite difficult to fit such a vast area in the introduc-

tion and we use the following sources for inspiration (De Wolf 2019; Barak 2017). Linear

functions over complex numbers can be used to model quantum mechanical operations. The

most common concepts we employ for quantum are:

• We call U :CN →CN a linear function if U(αu+βv) = αU(u)+βU(v), for u,v ∈CN

and α,β ∈ C .

• We define ⟨u,v⟩= ∑i∈[N] uivi as the inner product of vectors u,v ∈CN . We also define

∥u∥=
√
⟨u,u⟩=

√
∑i∈[N] u2

i as the norm of u ∈ CN . If ∥u∥= 1 it is a unit vector.

• For ⟨u,v⟩ = 0 condition of orthogonality of vectors u,v ∈ CN . A set of N vectors

v0,v1, . . . ,vN−1 subject to ∥vi∥ = 1 for i ∈ [N] and ⟨vi,v j⟩ = 0 for i ̸= j forms an or-

thonormal basis for CN .

• If l is a vector in Cn and v0, . . . ,vN−1 is an orthonormal basis for CN , then there are co-

efficients α0, . . . ,αN−1 such that l = α0v0 + · · ·+αN−1vN−1. Consequently, the value

U(l) is determined by the values U(v0), . . ., U(vN−1). Moreover, ∥l∥=
√

∑i∈[N]α2
i .

• We define N ×N matrix M(U) as a linear function U : CN → CN with the coordinate

in the i-th row and j-th column of M(U) (that is M(U)i, j) is equal to ⟨ei,F(e j)⟩.

1. The mathematical abstraction of complex numbers can be very difficult to grasp. Some visualization

helps to understand: we warmly recommend the series of video explanations at the 3Blue1Brown YouTube

channel by Grant Sanderson https://www.youtube.com/c/3blue1brown/featured
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• We call a linear function U : CN → CN unitary if such that ∥U(l)∥ = ∥l∥ for every l.

Important properties of unitary functions:

– function U is unitary iff UU∗ = I where ∗ (or physicists use the notation †) is the

conjugate transpose operator and I is the N ×N identity matrix.

– U∗ =U−1

– both the rows and columns of A(U) form an orthonormal basis.

• We denote by A⊗B the tensor product of linear spaces A and B. For all a ∈ A and

b ∈ B the following condition is true a⊗b is in the space A⊗B.

Let A =


a11 · · · a1n

... . . . ...

am1 · · · amn

, B =


b11 · · · b1q

... . . . ...

bp1 · · · bpq


then their tensor product matrix will be written in the basis formed by the tensor prod-

uct of the bases:

A⊗B =


a11B · · · a1nB

... . . . ...

am1B · · · amnB


Notable properties:

– (A⊗B)(C⊗D) = (AC)⊗ (BD)

– dim(A⊗B) = dim(A) ·dim(B).

– A⊗ (B⊗C) = (A⊗B)⊗C

– c(A⊗B) = (cA)⊗B = A⊗ (cB) , c ∈ C

– (A⊗B)∗ = A∗⊗B∗.

– A⊗ (B+C) = (A⊗B)+(A⊗C)

Tensor products can also be used to combine different vector spaces. Consider vector

spaces V and V ′ with dimension d and d′ and {v1, . . . ,vd} and {v′1, . . . ,v
′
d′} as bases,

the tensor product of that space is the d ·d′-dimensional space W =V ⊗V ′ spanned by

{vi ⊗ v′j | 1 ≤ i ≤ d,1 ≤ j ≤ d′}.

• Pauli matrices, a set of 2× 2 when performing quantum computation, it is necessary
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to use both Hermitian and unitary complex matrices:

I =

1 0

0 1

X =

0 1

1 0

 ,Y =

0 −i

i 0

 ,Z =

1 0

0 −1

 , (2.2)

Notable properties of Pauli matrices: eigenvalue λ ∈{1,−1}. If A,B∈{X ,Y,Z}, then AB=

−BA. A set of {X ,Y,Z, I} form an orthonormal base for M2×2(C).

• Dirac notation to denote quantum states. bra defines ⟨ϕ | = ϕ and ket defines |ϕ⟩ =

ϕ †, so bra and ket are conjugate transposes of each other. For |ϕ⟩ , |ψ⟩ ∈ Cn and

A ∈ Mn.n(C):

– for inner products products we use ⟨v|w⟩.

– orthonormal set of eigenvectors {vi} and unitarily diagonalizable matrix A equal

A = ∑i λi |vi⟩⟨vi|

– some abbreviations that are easy to read but could cause ambiguity |v⟩⟨v| ⊗

|w⟩⟨w|= (|v⟩⊗|w⟩)(⟨v|⊗⟨w|), the latter is often abbreviated to |v⟩⊗|w⟩⟨v|⊗⟨w|

– (U |v⟩)† = ⟨v|U† and (|u⟩⊗ |v⟩)† = ⟨u|⊗ ⟨v|

2.3 Quantum computing

Models of quantum computation By quantum computing and quantum computer we re-

fer to the Quantum Circuit Model. There are several models of quantum computation which

differ in terms of the quantum effects and resources they employ to implement quantum

computation, as well as their simplicity (and even the possibility in principle 2 ) of imple-

mentation in hardware. The polynomial equivalence of these models has been established:

one paradigm of quantum computation can be used to execute quantum computation in an-

other model with a polynomial increase in resources at the most. Thus, from a theoretical

point of view, it does not matter which model to use. For the sake of completeness, we refer

to the most significant works in this area:

• Yao (1993) proved that Quantum Circuit Model can efficiently simulate the Quantum

Turing Machine.

2. it seems very unlikely that a Quantum Turing Machine could be built, since a sequential model is funda-

mentally incapable of operating fault tolerantly in the presence of noise. (Aharonov and Ben-Or 1996)
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• Aharonov et al. (2008), Kempe, Kitaev, and Regev (2006) and Siu (2005) showed that

Quantum Adiabatic Model can efficiently simulate Quantum Circuit Model and vice

versa.

• Raussendorf and Briegel (2001) demonstrated Quantum Circuit Model and One-Way

model equivalence.

• Non-Abelian anyons can simulate efficiently Quantum Circuit Model and could also

be efficiently simulated by Quantum Circuit Model (Kitaev 2003; Freedman, Kitaev,

and Wang 2002)

Key differences between classical deterministic and quantum computing Quantum

machines approach to solve computational problems is different to conventional comput-

ers. Quantum devices can be in a large number of states simultaneously, while conventional

devices can only be in one state at a time. Before we move on to a more in-depth presentation

of the theory, let us highlight four things, to which we refer more than once in this thesis:

superposition, entanglement, uncertainty and interference.

• Superposition. A fundamental principle of quantum mechanics, according to which if

states |0⟩ and |1⟩ are possible for some quantum system, then any linear combination

of them |ϕ⟩ = c0 |0⟩+ c1 |1⟩ with complex coefficients c0,c1 is also possible, which

is called a superposition of states |0⟩ and |1⟩. Considering universal sets of quan-

tum gates we will see that possibility to put a quantum system into superposition is a

necessary condition of universality.

• Entanglement. Quantum entanglement is a phenomenon in which quantum states of

several particles turn out to be interrelated regardless of distance between them and

the state of each quantum entangled particle cannot be described independently of the

states of others. Quantum entanglement is the fundamental distinction between the

classical and quantum worlds (Bell 1964): entanglement is a fundamental property of

quantum mechanics that does not exist in classical mechanics. Just as in the case of

superposition, the possibility of bringing a quantum system into an entangled state is

an essential condition for universal sets,

• Uncertainty. The information limitation of quantum systems leads to the necessity of
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their statistical description. According to quantum mechanics, the state of a physical

system is specified by means of such objects as the wave function and the density

matrix, which allow one to correctly calculate the probabilities of outcomes of any

future measurements. Thus, one of the most important characteristics of quantum

computing turns out to be the probabilistic aspect.

• Interference. One very important difference from the classical world is the effect of

quantum interference. We encounter it always when there is more than one path to

get a result. As a consequence of this phenomenon, each of the paths simultaneously

interacts with others, increasing the probability of the outcome by constructive inter-

action or decreasing the probability by destructive interaction, like ripples on water,

when waves add up or amplify or absorb each other.

Qubit We use an arbitrary two-level quantum system for implementation of qubit (quan-

tum bit), the base element of quantum computers 3. Qubits can be ions, atoms, electrons,

photons, atomic nuclei spins, superconductor structures and many other physical systems.

The coding of a state |0⟩ or |1⟩ can be done e.g. with spin (spin up and spin down) or the

polarization of a photon (vertical polarization and horizontal polarization).

Bloch sphere representation of a qubit Consider the action of a single quantum gate on a

single qubit. A classical bit can be in either the zero or one state. In comparison, a quantum

bit may exist in a quantum superposition of |0⟩ and |1⟩. We can represent this state as a point

on the surface of the Bloch sphere (Bloch October 1946). Applying a quantum gate could be

generalized as a rotation of this sphere around some axis.

For qubit |ψ⟩ and c0,c1 ∈ C, s.t. |c0|2 + |c1|2 = 1 we could represent the state as:

|ψ⟩= c0 |0⟩+ c1 |1⟩ (2.3)

and rewrite this using 2.1 with α,θ ,ϕ ∈ R:

3. in this review we are limited to a two-level system. Qudit, a d-level computational unit requires a spe-

cial study. Nevertheless, we do not expect any dramatic changes here in terms of quantum computational

universality
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Figure 1. Bloch Sphere represents a state of a single qubit.

|ψ⟩= eiα
(

cos
(1

2θ
)
|0⟩+ eiϕ sin

(1
2θ

)
|1⟩

)
(2.4)

We could omit the global phase eiα and rewrite using ≃ to point the equivalence up to a

global phase.

|ψ⟩ ≃ cos
(1

2θ
)
|0⟩+ eiϕ sin

(1
2θ

)
|1⟩ (2.5)

One can note θ and ϕ as coordinates on the Bloch sphere, with the corresponding angles

relative to x̂ and ẑ axes, in addition 0 ≤ ϕ < 2π and 0 ≤ θ ≤ π .

The vector can be used to find the point on the three-dimensional unit sphere.

ψ̂ = (sinθ cosϕ , sinθ sinϕ , cosθ) (2.6)

On the top of the Bloch sphere’s is |0⟩ state and |1⟩ state is at the bottom by convention.

Note that the orthogonal states (the basis for representing a qubit) are on opposite sides of

the Bloch sphere.
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2.4 Quantum logic gates

Quantum gates are much more diverse than their classical counterparts. With a sequence

of quantum logic gates we can implement any quantum computation. Quantum gates can

control arbitrary multiqubit states in superposition which can be entangled, while classical

gates control classical bit values only 0 or 1.

Some essential physics Different physical phenomena are used to create quantum gates,

which are related to qubit embodiment technology among other things.

For instance, if qubits are implemented by ion trap technology, the logic is based on the

application of laser pulses with different parameters that manipulate the atomic state. Or, if a

quantum system is represented by photons, quantum gates can be implemented by different

beam splitters and phase shifters.

Due to the fact that quantum gates realize the evolution of a quantum mechanical system, we

can describe the transformation they perform by Schrödinger’s4 equation with Hamiltonian

H which is describing physical forces.

iℏ∂ |ψ⟩/∂ t = H |ψ⟩ (2.7)

Equations for quantum gates describe the physical processes by which they are realized, and

hence unitary matrices describe quantum gates.

U = e−iH t/ℏ. (2.8)

Due to unitarity of quantum evolution (in absence of disturbances) we observe the following

evolution of quantum system from state |ψ(0)⟩ to state |ψ(t)⟩ in time t

|ψ(t)⟩= e−iH t/ℏ|ψ(0)⟩=U |ψ(0)⟩ (2.9)

Here we see such a remarkable property of quantum computation as reversibility. It is a

consequence of the fact that quantum logic gates are always described by a unitary matrix. Of

4. perhaps the most famous physicist since Einstein in pop culture thanks to the famous |cat⟩= c1 |dead⟩+

c2 |alive⟩ paradox (which in our opinion is often misinterpreted)
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course, this is true until interference with the system: a measurement or unplanned influence

with the environment, causing an error. Note how much importance such phenomena as

measurement or error has in the quantum world compared to classical computation, where

measurements (bit-reading) can be made whenever needed without consequences and error

correction is an unnoticeable chore.

The remarkable consequences of unitarity Let us also specify the properties of quantum

gates in consequence of their unitarity in accordance with these definitions 2.2

• U† =U−1 and both are also unitary.

• U†U = 1.

• |det(U)|= |det(U†)|= |det(U−1)|= 1.

• both the rows and columns of U form an orthonormal basis.

2.5 General quantum circuits and unitary purification

Quantum circuit could be represented as a graph, where gates encoded by nodes and qubits,

on which the gates act, encoded by edges.

Let us take look at an example of a famous scheme, which is entangling two qubits by

evolving them from the state |00⟩ to the Bell state.

|0⟩A

|0⟩B

H

Figure 2. Bell state preparation and measurement

We will go into more detail later on about the gates’ action on the qubits, now we briefly

describe how to read the circuit example given in figure 2. We should read from left to right

- this is evolution of the quantum system by convention. At the beginning of each qubit

wire (line), the starting state of the qubit is shown. In this example we have 2 qubits in

state |00⟩ = |0⟩A ⊗ |0⟩B. Then the gate H acts on the qubit A and no action on the qubit B

12



(it also equals the action of I - identity or "no-action" gate, which is not usually displayed).

This can be written as H ⊗ I gate action on two qubits. Then we apply CNOT gate on two

qubits where • on the qubit A means "control" and ⊕ on the qubit B means "target". Finally

measurement gates applied on both qubits.

Quantum circuit purification As we have already seen that quantum operations are uni-

tary. In General quantum circuits a number of non-unitary operations should be performed

to get a result or to implement some algorithms. Given in Fig. 3 examples of non-unitary

gates.

measurement gate

erasing gate

|0⟩ ancillary gate

Figure 3. Gates representing non-unitary operations

The unitary purification can be used to explain the link between general and unitary quantum

circuits. Stinespring Dilation (Stinespring 1955), states that larger systems of unitary opera-

tions could realize general quantum operations. In this study we do not include non-unitary

gates in the set of universal gates, undoubtedly aware of their need for practical implemen-

tation.
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3 Quantum gates

A neutral term notable is a good fit in describing quantum gates most commonly used in

the theory and practice of quantum computing. Here we will consequently present notable

quantum gates acting on 1 qubit, 2 qubits, and 3 qubits 1. Relevant comments concerning

the inclusion of presented quantum gates into universal sets will be given in the course of

the presentation. This is the most extensive and difficult chapter to comprehend, but we

have tried to simplify by visualizing the action of the single-qubit gate on the Bloch sphere.

We use not yet finished material by Crooks (2020) as an excellent source of data and aid to

visualize the Bloch sphere rotation with three axes.

3.1 Notable 1-qubit gates

In classical computation only two 1-bit gates are available to us: {NOT, IDENT ITY} if we

do not take into account constant functions, which are ancillary in some sense. Quantum

computation gives us an incredibly vast picture. Let us focus on the most important gates.

3.1.1 Pauli

Pauli operators, which we introduced earlier 2.2 could be implemented by four 1-qubit gates

I, X, Y, and Z. Physicists use the following notation: I = σ0, X = σ1, Y = σ2, Z = σ3.

I gate I The identity matrix represents the gate on a single qubit which means no

action. When a gate is applied to any state, it is not changed: I |ψ⟩= |ψ⟩.

X gate X The X could be seen as a half-turn around the x̂ axis in the Bloch sphere.

In the basis |0⟩ , |1⟩ it is the same as NOT in classical computation. With respect to basis, X

1. Here we should immediately note that the number of quantum gates even just for one qubit is uncountable.

Furthermore, as we should see below there exist uncountably many universal sets of quantum gates! Trying to

cover everything would make the work incredibly boring, therefore, we will limit ourselves to the most notable

gates which will be useful for building up the most notable universal sets.
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1    0
0    1

Apply I gate

I =

Figure 4. Identity gate on the Bloch Sphere.

gate interchanges the state, so that X |0⟩= |1⟩ and X |1⟩= |0⟩.

Despite the similar behaviour in the computational basis with the classical computation, it

is wrong to consider X-gate as quantum NOT gate. A general quantum NOT gate does not

exist.

0    1
1    0

Apply X gate

X =

Figure 5. X gate on the Bloch Sphere.

Y gate Y

The Y could be seen as a half-turn around the ŷ axis in the Bloch sphere. In the basis it

change zero to one and make a phase flip Y |0⟩=+i |1⟩ and Y |1⟩=−i |0⟩.

0   -i
i     0

Apply Y gate

Y =

Figure 6. Y gate on the Bloch Sphere.
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Z gate Z The Z could be seen as a half-turn around the ẑ axis in the Bloch sphere.

In the basis it make a phase flip Z |0⟩=+i |0⟩ and Z |1⟩=−i |1⟩

1    0
0   -1

Apply Z gate

Z =

Figure 7. Z gate on the Bloch Sphere.

3.1.2 Rotations

One can rotate vector by any angle around the Bloch sphere’s corresponding axis with rota-

tion operator gates Rx, Ry, and Rz. They are formed by taking a power of the Pauli operators.

Rz(φ)

Rx(φ)

Ry(φ)

Figure 8. Rotation gates on the Bloch Sphere.

If A2 = I then eiϕA = cos(ϕ) I + isin(ϕ) A. We can use Euler formula 2.1:

eiϕA = I + iϕA− ϕ 2

2! I − iϕ 3

3! A− ϕ 4

4! I − iϕ 5

5! A++ · · ·

=
(

1− ϕ 2

2! +
ϕ 4

4! −·· ·
)

I +
(

ϕ − ϕ 3

3! +
ϕ 5

5! −·· ·
)

A

= cos(ϕ) I + isin(ϕ) A

(3.1)

Gate Rx Rx(ϕ) angle ϕ rotation around x̂.
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Rx(ϕ) =

 cos
(1

2ϕ
)

−isin
(1

2ϕ
)

−isin
(1

2ϕ
)

cos
(1

2ϕ
)
 (3.2)

Gate Ry Ry(ϕ) angle ϕ rotation around ŷ.

Ry(ϕ) =

cos
(1

2ϕ
)

−sin
(1

2ϕ
)

sin
(1

2ϕ
)

cos
(1

2ϕ
)
 (3.3)

Gate Rz Rz(ϕ) angle ϕ rotation around ẑ.

Rz(ϕ) =

e−i 1
2 ϕ 0

0 e+i 1
2 ϕ

 (3.4)

Gate R⃗n R⃗n(ϕ) angle ϕ rotation around an arbitrary axis represented by vector n⃗,

where n2
x +n2

y +n2
z = 1.

R⃗n(ϕ) = e−i 1
2 ϕ(nxX+nyY+nzZ)

= cos
(1

2ϕ
)
I − isin

(1
2ϕ

)
(nxX +nyY +nzZ)

=

 cos
(1

2ϕ
)
− inz sin

(1
2ϕ

)
−ny sin

(1
2ϕ

)
− inx sin

(1
2ϕ

)
ny sin

(1
2ϕ

)
− inx sin

(1
2ϕ

)
cos

(1
2ϕ

)
+ inz sin

(1
2ϕ

)


This is, in a sense, a generalization of the one-qubit quantum gate because one could im-

plement any gate as a rotation of some angle around some axis. This gate, although not

universal itself, can form universal sets with any entangling two-qubit quantum gate.

P gate P The gate map the basis states |1⟩ to eiθ |1⟩ and |0⟩ to |0⟩ state.
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P(θ) =

1 0

0 eiθ



Important P gate fractions The Z gate has its own notations for discrete fractional pow-

ers. We meet them in quantum Fourier transform as controlled operations.

Pk =

1 0

0 ei2π/2k


= P(2π/2k) = Z21−k

P1 = Z (half turn around the z axis)

P2 = S (quarter turn around the z axis)

P3 = T (eighth turn around the z axis)

T gate T Let us take a closer look at the very important 4-th root of the Z gate:

T 4 = Z.

T = Z
1
4

=

1 0

0 ei π
4


An eight turn around the ẑ axis.

The critical insight is that T gate, in combination with H gate introduced below, produces

two distinct rotations on the Bloch sphere with irrational π angles. This enables for dense

filling of the Bloch sphere’s surface by combinations of {T,H} gates only, approximating

any one-qubit unitary operator with the desired error.
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Apply T gate

Figure 9. Bloch Sphere represents the acting of T gate.

H, Hadamard gate H This gate is consider to be the most important of all 1-qubit

gates. It could be seen as a π rotation around the axis 1√
2
(x̂+ ẑ). This axis lies between the

Z and X. H matrix is both Hermitian and unitary, hence the inverse of itself and the square

is the identity HH = I

H = 1√
2

1 1

1 −1


≃ R⃗n(π), n⃗ = 1√

2
(1,0,1)

Bloch axes: H gate exchanging x and z, inverting y: HXH = Z, HZH = X , HY H =−Y .

Apply H gate

Figure 10. H gate on the Bloch Sphere (note the rotation axe lies between x̂ and ẑ axes) .

H |0⟩= 1√
2
(|0⟩+ |1⟩) = |+⟩ (3.5)

H |1⟩= 1√
2
(|0⟩− |1⟩) = |−⟩ (3.6)
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It is conventional to use a proprietary notation for these states, |+⟩ and |−⟩. Moreover, it can

be used as a basis for measurements instead of |0⟩ and |1⟩

The Hadamard gate is important because we can use it to convert the qubit from basis state

to uniform superposed state. This is likewise true for the state of many qubits. For n qubits

in the basic |0⟩ state after applying H to each one, we get superposition with an exponential

increase in the variables required to describe:

H|0⟩⊗H|0⟩⊗ · · ·⊗H|0⟩= 1√
2n

2n−1

∑
j=0

| j⟩ (3.7)

3.2 Pauli generalization and Clifford gates

We could generalize Pauli gates for multiqubits operations. The Clifford group is defined as

the group of unitaries that normalise the Pauli group, which is defined as follows:

Pn =
{

eiθπ/2σ j1 ⊗·· ·⊗σ jn | θ = 0,1,2,3, jk = 0,1,2,3
}
.

Elements in the Clifford group are Clifford gates: Pauli gates themselves, quarter turns

(square roots) of Pauli gates (S for instance), Hadamard are examples of Clifford gates.

What is important for our study is that Clifford gates are not universal. It is impossible to

implement an arbitrary qubit only by Clifford gates: x̂, ŷ, ẑ axes maps back to the group. We

could obtain a universal set if we add one non-Clifford gate. T -gate for instance forms the

well-known Cli f f ord +T universal set.

3.3 Notable 2-qubit gates

Due to the exponential growth of the parameters it is impossible to visualize quantum gates

with 2 or more qubits (except parallel gates), we will basically give a representation in the

form of matrices. Let us briefly outline the formalism of the matrix action on a system

of 2 qubits. For a 2-qubit system of qubit |ψ⟩ and qubit |ϕ⟩ and c00,c01,c10,c11 ∈ C, s.t.
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|c00|2 + |c01|2 + |c10|2 + |c11|2 = 1, we could represent the state as a vector:

|ψϕ⟩= c00 |00⟩+ c01 |01⟩+ c10 |10⟩+ c11 |11⟩ →


c00

c01

c10

c11

 (3.8)

Consider the action of H ⊗H two-qubit gate (applying two Hadamard gates in parallel) on a

two-qubit system in the state |00⟩ which can be described by the vector
[1

0
0
0

]
. Using tensor

product and matrix multiplication we can write it:

H ⊗H|00⟩= 1√
2

1 1

1 −1

⊗ 1√
2

1 1

1 −1

 |00⟩

=
1
2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




1

0

0

0



=
1
2


1

1

1

1


=

1
2
|00⟩+ 1

2
|01⟩+ 1

2
|10⟩+ 1

2
|11⟩

Hence the qubits have been changed from the basic state using a gate to the superposition

state with an equal probability (1
2)

2 = 25% of observing any of 4 possible states. This gen-

eralization of the Hadamard gate we have discussed in 1-qubit gates introduction. (3.7).

3.3.1 Non-entangling gates

Identity gate (Clifford gate) The same as 1-qubit identity gate it has no action.
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I2 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 = =
I

I

Separable gates (parallel gates) U ⊗V any two-qubit gate which can be represented as a

tensor product of two one-qubit gates (I ⊗ I in case of 2-qubit identity gate)

U ⊗V =

u11V u12V

u21V u22V

 =
U

V

SWAP gate (Clifford group) This gate exchanges two qubits, defined by the matrix:

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 =

Let us look how SWAP acts on the four basic states of a two-qubit system:

SWAP|00⟩= |00⟩

SWAP|01⟩= |10⟩

SWAP|10⟩= |01⟩

SWAP|11⟩= |11⟩

We can use SWAP gate to move qubits close to each other on the real quantum machine. The

SWAP gate can be decomposed into summation form:
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SWAP =
I ⊗ I +X ⊗X +Y ⊗Y +Z ⊗Z

2
The SWAP gate is Hermitian and unitary; Therefore we have

SWAP = ei π
2 (I−SWAP) = ei π

4 Rxx(π/2)Ryy(π/2)Rzz(π/2)

.

3.3.2 Entangling gates and controlled operations

We have already discussed entanglement as a key difference between the quantum world

and the classical world. We are now taking a closer look at the arguments why creating

entanglement is an essential part of universality. Any pure (unentangled) state of n qubits

could be represented as:

(α1 |0⟩+β1 |1⟩)⊗ (α2 |0⟩+β2 |1⟩)⊗·· ·⊗ (αn |0⟩+βn |1⟩)

the resources needed to describe such a state are linear to n, i.e. can easily be implemented

on a classical computer. On the other hand for entangled states we need 2n, an exponential

amount of resources:

∑
x∈{0,1}n

αx |x⟩

Controlled-Not gate, CNOT (Clifford group) 2.

CNOT=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =

Action of the CNOT gate on the four basic states of a two-qubit system, where we can see

the effect of the gate on the second qubit only if the first qubit is in state 1:

2. In quantum computing control operations are significantly different from classical in that there are no

operations of reading the controlling qubit as such (otherwise, according to the laws of quantum mechanics,

which preserve linearity, the qubit would collapse into one of the ground states with a certain probability)

instead, both qubits go into some, usually entangled, state
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CNOT |00⟩= |00⟩

CNOT |01⟩= |01⟩

CNOT |10⟩= |11⟩

CNOT |11⟩= |10⟩

Remember that the first qubit can be in a superposition state. The 2-qubit system then

changes to a state of entanglement. We will give examples of action of the CNOT gate

if the first control qubit is in |+⟩ or |−⟩ states, resulting in generation of Bell states, one of

which we have previously introduced (see 2):

CNOT |+0⟩= 1√
2
(|00⟩+ |11⟩) = |Φ+⟩

CNOT |+1⟩= 1√
2
(|01⟩+ |10⟩) = |Ψ+⟩

CNOT |−0⟩= 1√
2
(|00⟩− |11⟩) = |Φ−⟩

CNOT |−1⟩= 1√
2
(|00⟩+ |11⟩) = |Ψ−⟩

These states are extremely important in quantum information theory because they represent

maximum entanglement on minimum number of qubits.

With CNOT the control could be inverted using Hadamard "sandwich".

=
H H

H H

=


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



CZ gate (Clifford group) This gate is often used in decomposition of circuits. We should

also note the natural implementation in linear optical.
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CZ=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 =

Z
=

Z
=

Controlled-Y, CY gate

CY =


1 0 0 0

0 1 0 0

0 0 0 −i

0 0 +i 0

 =

Y

Barenco gate A 2-qubit which was first proved by Barenco (1995) to be universal.

Barenco(ϕ ,α,θ) =


1 0 0 0

0 1 0 0

0 0 eiα cos(θ) −iei(α−ϕ) sin(θ)

0 0 −iei(α+ϕ) sin(θ) eiα cos(θ)

 (3.9)

Controlled-U gates The controlled 2-qubit gates can be generalized with the CU gate,

where U =

 U11 U12

U21 U11

 is an arbitrary single qubit gate.

CU =


1 0 0 0

0 1 0 0

0 0 U11 U12

0 0 U21 U22

 =

U

Given that we have already introduced a SWAP quantum gate, we can always do this trick if

we need to interchange controlling and controlled qubits.
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U
≃

U

3.4 Notable 3-qubit gates

Despite the fact that 2-qubit gates are sufficient to build a universal quantum gate set, we

include 3-qubit gates in this review for the three reasons. Firstly, because of the historical

context: {DEUT SCH} was the first universal set proved by D. E. Deutsch (1989) (this set

contains only one gate). Secondly, TOFFOLI and FREDKIN have connections to universal

sets in classical computation. Thirdly, 3-qubit gates direct implementation can simplify com-

plicated quantum circuits and improve the fidelity of large-scale quantum computers (Müller

et al. 2011).

Toffoli gate (controlled-controlled-not, CCNOT) Introduced by Toffoli (1980). In con-

trast to CNOT this gate has 1 target and 2 control qubits. It is universal for classical reversible

computation. One of the remarkable discoveries is that the set {TOFFOLI,H} is universal

for quantum computation (Aharonov 2003). This is particularly striking taking into account

that both gates have only the real part, i.e. we can not implement for instance
[

1 0
0 ei π

4

]
or any

other gate, acting on imaginary part, with this set of gates.

TOFFOLI =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 =

Let us look how TOFFOLI acts on the eight basic states of a three-qubit system:
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TOFFOLI|000⟩= |000⟩

TOFFOLI|001⟩= |001⟩

TOFFOLI|010⟩= |010⟩

TOFFOLI|011⟩= |011⟩

TOFFOLI|100⟩= |100⟩

TOFFOLI|101⟩= |101⟩

TOFFOLI|110⟩= |111⟩

TOFFOLI|111⟩= |110⟩

One can see that TOFFOLI apply X − gate to the rightmost qubit if first two qubits are in

|11⟩ state. Just as in the case of CNOT , control qubits and target qubit could be in super-

position. We emphasise once again that there is no physical equivalency between control

operation in classical and quantum world, since control qubits are not reading.

Using the set of quantum gates {CNOT,T,H} we could implement TOFFOLI (Nielsen and

I. Chuang 2002).

≃

⊤

⊤ ⊤†

H ⊤† ⊤ ⊤† ⊤ H

And since this set contains H, it is also universal for quantum computing. Furthermore,

because of the T gate in this set, all quantum states are available to us.

Fredkin gate (controlled-swap, CSWAP) Introduced by Fredkin and Toffoli (1982). This

gate swaps two qubits with a third qubit as a control. It has conservative universality in clas-

sical reversible computation (preserving Hamming weight) (Aaronson, Grier, and Schaeffer
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2015).

CSWAP =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

 =

DEUTSCH gate A universal quantum gate of historical significance implements double

controlled operation on the target gate iRx
2(θ).

DEUTSCH(θ) =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 icos(θ) sin(θ)
0 0 0 0 0 0 sin(θ) icos(θ)

 =

iR2
x(θ)

Double controlled-U, CCU gates double controlled gates generalization is the CCU gate.

This includes I3,TOFFOLI,FREDKIN,DEUTSCH gates, and all three qubits controlled gates

for an arbitrary 1-qubit gate U =

 U11 U12

U21 U22



CCU =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 U11 U12
0 0 0 0 0 0 U21 U22

 =

U

CCU gates decomposition Barenco et al. (1995) showed an explicit sequence of two bit

gates which constructs any matrix on three qubits for U =V 2.

U

≃

V V † V

Therefore, 2-qubit gates are universal.
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4 Universal gates

The pervasiveness of universality - that is, the likelihood that a small number

of simple operations already generate all operations in some relevant class -

is one of the central phenomena in computer science. It appears, among other

places, in the ability of simple logic gates to generate all Boolean functions

(and of simple quantum gates to generate all unitary transformations); and in

the simplicity of the rule sets that lead to Turing-universality, or to formal

systems to which Gödels theorems apply.
(Aaronson, Grier, and Schaeffer 2015)

Before we move on to the consideration of specific universal sets, let us emphasize again the

importance of universality in relation to quantum computing:

• From a theorist point of view universality gives a sufficient level of abstraction. This

allows the construction of theories and inferences to be made without regard to the

limitations of physical realization. Quantum information science is still in its infancy

and quantum machines are still imperfect, thus it would be a significant limitation

to have to wait for the results of experiments in areas such as Quantum complexity

theory.

• From a practical point of view (i.e. building quantum machines) the importance of

universal gates is that the work of quantum machine engineers becomes easier. If it

is possible to accomplish the entire potential of quantum computing with a limited

number of gates, then it is enough to focus on how to implement them to be sure of

achieving success. Additionally, it is worthwhile to design a specific universal gate

set, among the uncountable number of possibilities, that may be easier to implement

physically.

• The perspective of quantum error correction. In experimental physics it is possible

to perform any single qubit unitary, for example to produce an arbitrary rotation of

the Bloch sphere with act on an atom by setting laser parameters. For fault-tolerant

quantum computing, it is important that we consider a finite set of instructions, because

although there are countless physical unitaries that can be implemented in hardware,
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the ones we can make fault-tolerant are just a discrete set.

In previous chapters we have explored the principles of quantum computing and presented

the most notable quantum gates. A discussion has been made for the significant gates in terms

of universality. In this chapter, we will define the concept of universality more rigorously

and systematize universal sets in relation to the different types of universality.

Universal sets for irreversible classical computations and their reversible counterparts will

be presented first (we will use Boolean circuit model, which is polynomially equivalent to

other models of classical computation, e.g. Turing machine). Following this, we outline

the meaning of universality and describe a key discovery in this area - the Solovey-Kitaev

theorem. Then we systematize the most notable universal sets of quantum gates. And at the

end we will show some examples of practical implementation.

4.1 Universal gates in classical computation

We will take the first step in describing universality with classical computing. In some ways

it is more comprehensible and the area is substantially worked out. For example, we know

here not only the complete universality criteria, but also a complete description where uni-

versality fails. And this is done both for irreversible classical computations (Post 1941) and

for reversible classical computations (Aaronson, Grier, and Schaeffer 2015).

Irreversible classical computation By classical computation we mean a finite sequence of

simple operations on bits - input bits and a circuit applied to them. As in quantum computing,

the operation is referred to as a gate. Each vertex of the graph encode a gate, and edges

encode bits flow. We argue that the gate set is "universal," which means that every Boolean

function on any number of bits may be expressed using elements from this set. Some notable

examples: {AND,NOT,OR}, {NAND}, {NOR} However universality has limitations in the

classical world, here are some non universal sets {NOT,OR}, {AND,OR}, {NOT,XOR}.

Remember that in quantum computing we have agreed not to include gates such as erasure

or ancillary in a set of universal gates. True, this happens in the context of maintaining

unitarity. Here we act symmetrically, although obviously such gates are very common in the
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classical world.

Reversible classical computation The main difference between reversible and irreversible

computation is that we should be able to map output bits to input bits. Reversible gates

are universal if any reversible computation may be expressed in any number of bits. One

example of a universal reversible gate was previously discussed in quantum: TOFFOLI gate

(see Chapter 3 - Quantum gates). For instance it can simulate NAND, preserving reversibility

(we need an ancillary bit). Just as in the case of irreversible computation, universality is not

an intrinsic attribute of reversible gates. CNOT,NOT are examples of gates which are not

universal or FREDKIN which is not universal in a strong sense.

For the irreversible version of classical computation there are 2-bit universal gates. How-

ever, for reversible computation we need 3-bit gates at least to achieve universality. Another

important observation: all reversible gates in classical computation are permutation matri-

ces and are unitary by definition. This is why we can use TOFFOLI both in quantum and

classical. However, the nature of the actions is different, as there is no reading of the control

qubit - instead it is about entangling the states of all the qubits involved.

4.2 Types of universality in quantum gates

We operate with the definitions set out in the textbook by Preskill (1998)

Definition 4.1. gate set G is universal if unitary transformations that can be constructed as

quantum circuits using this gate set are dense in the unitary group U(2n), up to an overall

phase. For any V ∈ U(2n) and any σ > 0, there is a unitary Ṽ achieved by a finite circuit

such that ||V −Ṽ ||sup ≤ σ

Now we will show a distinction between different kinds of universality.

Exact universality We consider some class of quantum gates in an uncountable set. Exact

universality means that by building circuits from those gates we can implement exactly any

unitary. For example, the set of all 2-qubit gates is exactly universal. In other words if we

have any unitary that we want to reach acting on n qubits, then by putting together a suitable
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circuit of gates, where each gate just acts on a pair of qubits, we can realize that unitary

exactly. Second example: the set of all single qubit gates is exactly universal if we add one

entangling two qubit gate.

Generic universality Now we set back constraints of a finite set. In fact a single 2-qubit

gate in almost all cases is universal (except non-entangling gates and gates of measure zero

in U(4)). So universality is a very general thing.

Particular universality Here we look at particular universal gate sets. The main idea here

is to see that they are universal or try to understand why it is true that there are finite gate

sets which are universal. Here is an example: {H,T,CNOT}. If one can implement a CNOT

gate and two single qubit gates H which flips the x and z basis and T which rotates by π
4

about the z axis, that is universal.

Encoded universality Sometimes we settle for something less than universality called en-

coded universality. If we can not come arbitrarily close to all the unitaries acting on n qubits,

but some subgroups of the unitaries. But as long as that is an exponentially large subgroup

then that is good enough for accessing the power of quantum computation. We have already

given an example: {H,TOFFOLI}

What we set out earlier is mainly only concerned with the reachability of arbitrary unitaries,

next we will discuss what resources are needed to do this.

Solovay-Kitaev Theorem We give here the formulation of this important theorem accord-

ing to Nielsen and I. L. Chuang (1997).

Theorem 1. Let G be a finite set of elements in U(2) containing its own inverses (so g ∈ G >

implies g−1 ∈ G ) and such that the group ⟨G ⟩ they generate is dense in SU(2). Consider

some ε > 0. Then there is a constant c such that for any U ∈ SU(2), there is a sequence S of

gates from G of length O(logc(1/ε)) such that ∥S−U∥ ≤ ε . That is, S approximates U to

operator norm error.
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In other words, if we simulate a gate from one universal set using gates from a another

universal set, then the resources required for this are growing rather moderately logc(1/ε)

So all closed under inverse universal gate sets fill in the space of all unitaries SU(2) very

quickly.

4.3 Notable universal quantum gate sets

We have seen how much universality in the world of quantum computing differs from the

classical world, which is not surprising. What is really striking here is that the number of

universal sets is uncountable. To some extent, it is more difficult to define what are criteria

for quantum gate sets for fail to be universal. From what we have observed it this paper, we

can list criteria of encoded1 non-universality:

1. There is no entangling gate in the set.

2. There is no gate in the set, which create superposition.

3. Gates in the set implement a discrete subset of unitary transformations, gates taken

only from Cli f f ord set for instance.

Meeting at least one of these criteria leads to the fact that this set is not universal. Note that

this list is about universality in a weaker sense. We are not dealing with approximation of all

unitaries, but the goal is to achieve all the power of quantum computers.

In the Table 1 we have systematized the universal sets we have reviewed.

4.4 Universal quantum gates implementation

At the end of this chapter, we will give a short overview of how universal sets are imple-

mented on the real quantum machines. These are intended to be preliminary examples, as

we acknowledge there are many variants of such practical implementations. Such impor-

tant processes as compilation and transpilation, mapping logical gates to physical gates, are

outside the scope of this review.

1. this is why we do not mention imaginary gate absence
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Universal quantum

gate set

Type of uni-

versality

Application area

All 2-qubit gates exact Uncountable set, not technically feasible, but

important for building other universal sets

All 1-qubit gates + any

entangling gate

exact Not technically feasible, using in theory

{DEUT SCH} particular First proved to be universal. Difficult to im-

plement because of the large number of pa-

rameters to be controlled

{BARENCO} particular First proved to be universal use in theory

Any 2-qubit gate, ex-

cept zero measure in

U(4)

generic Shows that universality is a very general

thing, it is even hard to avoid it.

{H,T,CNOT} particular Special important in fault-tolerant quantum

theory

{H,TOFFOLI} particular

(encoded)

Does not work with an imaginary part, but

gives all the power of quantum computing.

Implementation of TOFFOLI is not known.

Table 1. Universal gates discussed in this study

Quantum platforms use various physical gates. Although a universal set of gates such as

{H,T,CNOT} is very important in theoretical terms, the implementation on real quantum

machines is different. Also certain computations can be more efficiently implemented with

additional gates to the universal set. A Pauli rotation with an arbitrary angle and an entan-

gling gate with a variable or at maximal entangle is commonly employed in many quantum

computation at the physical level of universal gate set. Table 2 gives examples of entangling

gates implementation on the most advanced at the moment quantum platforms.
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Quantum platform Key entangling gate

Trapped ion systems Mølmer-Sørenson gate


cos

(
ϕ
2

)
0 0 −isin

(
ϕ
2

)
0 cos

(
ϕ
2

)
−isin

(
ϕ
2

)
0

0 −isin
(

ϕ
2

)
cos

(
ϕ
2

)
0

−isin
(

ϕ
2

)
0 0 cos

(
ϕ
2

)


Superconductors IBM Cross-Resonance gate

 cos( 1
2 θ) 0 −isin( 1

2 θ) 0

0 cos( 1
2 θ) 0 isin( 1

2 θ)
−isin( 1

2 θ) 0 cos( 1
2 θ) 0

0 isin( 1
2 θ) 0 cos( 1

2 θ)


Superconductors

Google Sycamore

fSim gate

1 0 0 0
0 ei(δ++δ−) cos(θ) −iei(δ+−δ−,o f f ) sin(θ) 0

0 −iei(δ++δ−,o f f ) sin(θ) ei(δ+−δ−) cos(θ) 0
0 0 0 ei(2δ+−ϕ)


Table 2. Entangling gates implementation on different quantum platforms
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5 Conclusion

This project argues in favour of the importance of universal quantum gates for both theory

and practice and highlights the key difference to the universal gates in classical computing.

In conclusion we summarise the most notable findings.

Linear Algebra, the basic language for describing quantum mechanics, is crucial for under-

standing quantum computing in general and universal quantum gates particular. In addition,

probability theory, number theory, functional analysis, group theory and many other areas

of mathematics are essential to a better understanding of quantum algorithms. Whereas in

classical computation we mostly need discrete mathematics: logic, sets, graphs.

By Quantum Computer we refer Quantum Circuit Model in this paper and argue that it does

not matter which model is taken as the basis, as polynomial equivalence between differ-

ent models of quantum computing has been proved. In favour of considering the Quantum

Circuit Model, the fact that most real quantum machines implement this model. We give

examples of the most advanced solutions.

We stress the key differences between the quantum world and the classical world, directly

affecting the computation models built on their basis. The probabilistic aspect and the inter-

ference are properties of quantum systems by default. The entanglement and superposition

must be implemented in quantum gates to achieve universality.

We outline the necessary formalism of quantum computer: qubit, quantum gate, quantum

circuit, as well as the key property of unitarity. For universal quantum gates (gate sets) we

define the following important properties:

• The number of universal gates is actually uncountable and universality is very com-

mon: for example almost any 2-qubit gate is universal.

• The presence of an entangling gate and a gate that leads to superposition is a prereq-

uisite for universality.

• One universal set can effectively (in polynomial time) implement another universal

set.
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• Complex numbers are native to describing quantum systems and quantum computing,

but to achieve the full power of quantum computing one can get away with gates that

work only with real numbers. For a broader problem to approximate a unitary, we

definitely need complex matrices.

• Sets, naturally limited in terms of universality, can become universal with some addi-

tion. For instance, if we augment Cli f f ord with T gate, that allows together to make

turns on an irrational π angle.

• The practical implementation of universal gates takes into account the specific features

of quantum mechanical systems. For example CZ gate is natural in linear optics, while

MølmerSørensen gate used in trapped ion.

• Universality is also common in the classical world. However, despite the appar-

ent similarities between classical universal set {TOFFOLI} and quantum universal

set {TOFFOLI,H}, there is an important difference, apart from the addition of a

superposition-creating H. In classical computing TOFFOLI is just a permutation ma-

trix, while in quantum it is a unitary entangling transformation.

• A research gap was found: the lack of a complete list of non-universality criteria, this

could be a quite hot research topic.

We stress again here that universality does not imply that any operation on qubits can be

performed quickly via approximation. Such a condition cannot be met since elementary gates

operate on a fixed number of qubits, making it impossible. From counting arguments one can

see that the efficient expressible operations on qubits capture just a fraction of the potential

operations. The fundamental topic of quantum complexity theory is which operation can be

described efficiently by elementary gates.

In this paper we talk about computational complexity only in the context of polynomial

resource growth as a measure of efficiency. Nevertheless, the connection between univer-

sal gates and complexity theory is much closer. The hypothesis of inequality between the

classes of efficient classical (probabilistic) computation BPP and efficient quantum compu-

tation BQP is widely accepted. If the hypothesis turns out to be wrong and problems from

the BQP class can be solved on a probabilistic classical universal machine, then {NAND} is

universal for quantum computation if we add ancillary random bits.
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