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Abstract: Hyperspectral imaging (HSI) applications for biomedical imaging and dermatological
applications have been recently under research interest. Medical HSI applications are non-invasive
methods with high spatial and spectral resolution. HS imaging can be used to delineate malignant
tumours, detect invasions, and classify lesion types. Typical challenges of these applications relate
to complex skin surfaces, leaving some skin areas unreachable. In this study, we introduce a novel
spectral imaging concept and conduct a clinical pre-test, the findings of which can be used to develop
the concept towards a clinical application. The SICSURFIS spectral imager concept combines a piezo-
actuated Fabry–Pérot interferometer (FPI) based hyperspectral imager, a specially designed LED
module and several sizes of stray light protection cones for reaching and adapting to the complex skin
surfaces. The imager is designed for the needs of photometric stereo imaging for providing the skin
surface models (3D) for each captured wavelength. The captured HS images contained 33 selected
wavelengths (ranging from 477 nm to 891 nm), which were captured simultaneously with accordingly
selected LEDs and three specific angles of light. The pre-test results show that the data collected with
the new SICSURFIS imager enable the use of the spectral and spatial domains with surface model
information. The imager can reach complex skin surfaces. Healthy skin, basal cell carcinomas and
intradermal nevi lesions were classified and delineated pixel-wise with promising results, but further
studies are needed. The results were obtained with a convolutional neural network.

Keywords: hyperspectral; FPI; calibration; interferometry; optical modelling; convolutional neural
network; LED illumination; photometric stereo; skin surface model; biomedical imaging;
dermatological application; optical biopsy

1. Introduction

Hyperspectral imaging (HSI) systems can be utilized in various sensing applications.
The highly dimensional hyperspectral (HS) data offers high accuracy and robustness for
identification and characterisation tasks [1,2]. A HS image can be considered a stack of
frames, each representing the intensity of a different wavelength of light. Since each spatial
pixel has a spectrum, the HS image contains spatial and spectral domains, which enables
the accurate pixel-wise classification [3].

Spectral imaging systems were originally applied in remote sensing applications,
where systems are robust to rough or irregular topographies, because imaging is performed
from the satellites or airplanes. When imaging is performed from a closer range, surface
topography and tomography start to affect the image’s spectral quality and homogeneity.
Recent advance in hyperspectral sensor imaging has made sensors smaller [4]. Using the
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Fabry–Pérot interferometer (FPI) as a spectral separator, the imager size can be reduced
without bargaining from spatial or spectral resolution.

HS imaging is proven to be a powerful tool for detecting and identifying diseases
in medical research [5–7]. In biomedical imaging, one potential area is dermatological
applications. With hyperspectral imaging systems it is possible to delineate malignant
tumors [8–10], detect invasions [11–14] and even classify lesion types [15]. These studies
pointed out that complex surface topography and tomography is one major challenge when
shoulders, nose, chin or other facial skin areas are imaged with hyperspectral cameras.
Hyperspectral imaging of such complex areas requires a small-sized hand-held spectral
imager. Additionally, the illumination needs to be handled similarly, as the illumination of
the hyperspectral images needs to be stable and constant in order to the captured data to
be easily analysed and processed.

This article is the first stage of a pilot study completed in three stages from 2020 to 2022.
The aim is to introduce the working principles and clinically pre-test the concept of the new,
compact hand-held SICSURFIS Piezo-actuated metallic mirror FPI hyperspectral imager
(SICSURFIS HSI) for complex skin surfaces. This pre-test enables the system engineering,
imaging, and analysis aspects of further system development toward a clinical application.

The SICSURFIS HSI is designed to face the mentioned challenges of the previous
studies. For illumination and challenging skin surfaces, there is a controllable built-in
light-emitting diode (LED) based illumination module, which is designed for photometric
stereo imaging. The special stray light protection cones will block the unwanted light
and enable the imager to reach and adapt to complex skin surfaces. The imager produces
spectral, spatial and surface topography information.

In the data processing, the raw measurement data were processed into the surface
albedo, normals and surface model. The processing was performed with common hyper-
spectral reflectance calculations and a photometric stereo method for the surface model
calculation [16]. Training and testing data sets were composed of windowed pixels (HS-
sub-cubes) from the lesions that were histologically confirmed by an experienced der-
matopathologist. This pixel-wise classification approach provides large training data
(31,168 HS-sub-cubes after augmentation) for the machine learning model.

Our hypothesis is that these surface models can improve the hyperspectral imaging
machine learning model’s performance in clinical decision making and the new imaging
concept can adapt to the complex skin surfaces. The skin surface models combined with
the spectral and spatial domains will benefit the classification and delineation results of the
convolutional neural network (CNN). In this first-stage pilot study, the aim is to compare the
capacity of the HS in differentiating malignant basal cell carcinomas (BCCs) from clinically
similar-appearing but benign intradermal nevi (ID) by comparing the surface models and
albedo maps of the measured BCCs and IDs with CNN. So far, this is the pre-study for
testing the concept, and evaluating the technical and instrumental aspects from the analysis
point of views. The prototype imager with its application is not ready for a clinical use,
but the first results and future potential can be evaluated. The mentioned second and
third study stages will be independent continuation clinical pre-studies, with more lesions
and lesion types. The imaging procedure, methods, and machine learning models will be
improved based on these first steps.

The paper is organised as follows. Section 2 describes the overall and mechanical
design and system validation of a novel skin cancer HS imager. Section 3 describes the steps
of a clinical pre-test from instrumentation (Section 3.2), materials and methods (Section 3.3)
to the results (Section 3.4) of the photometric stereo and the spectral 3D classification. The
discussion (Section 4) and conclusions (Section 5) finalise the study.

2. The Sicsurfis Hyperspectral Imager Concept

This section introduces the SICSURFIS HSI’s concept in six subsections; the design
and operating principles, spectral responses and imaging calibration are presented in
Sections 2.1 and 2.2. The following topics are LED illumination module (Section 2.3),
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optical design (Section 2.4) and system validation (Section 2.5). The photometric stereo
imaging methods (Section 2.6) will finalise the concept presentation.

2.1. The Design and Operating Principles of the Spectral Imager

The SICSURFIS Spectral Imager (SICSURFIS HSI) was designed to provide spectral
images enlightened from different angles of light for the photometric stereo algorithm.
The stray light protection cones (Figure 1) block the unwanted background light and ensure
the correct distance for focusing the images. The soft silicone collars adapt the stray light
protection cones softly to complex skin surfaces and provide comfort for the patient, since
the imager must be held relatively tightly against the skin. The silicone collar is resistant to
strong surgical disinfectants. The diameters of the light protection cones are 2.0, 3.6, 4.9
and 8.5 cm.

Figure 1. SICSURFIS spectral imager with integrated LED module and stray light protection cones.

SICSURFIS HSI’s modules, sensor, spectral separator and LEDs are independently
controllable, which enables effective configuration via software. Imagers spectral range
is 475–975 nm and the spectral resolution (full-width at half maximum, FWHM) 8–18 nm.
The average FWHM in selected spectral channels in this study was ∼10 nm. In this study,
we utilised 33 selected spectral channels, but the imager is, depending on the calibration,
capable of capturing hundreds or even thousands of spectral channels. The imager’s pixel
resolution is approximately 24µm × 24µm. In spectral imaging, the tissue penetration
depth depends on the wavelength. In this study, the used wavelengths had penetration
depth from 0 to 6 mm [17].

The SICSURFIS HSI with its LED module and stray light protection cones is a small-
sized hand-held device, the overall weight of the imager is 880 g. The imager is easy to
apply to patients’ skin and it reaches the challenging places. The patient does not have to
move, so imaging is also possible in patients with reduced mobility. The imager is a spectral
scanner, but it is almost as fast as a snapshot. Nor does it describe hundreds of wavelength
ranges and thus add extra dimensions to the data. The number of wavelengths and the
wavelengths of interest can be selected on a case-by-case basis, just as the LEDs can be
individually controlled to match the current wavelength. This study used the wavelengths
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that had spectral absorption peaks in tissue chromophores such as melanin, haemoglobin,
water, beta-carotene, collagen, and bilirubin [18].

The size and adaptivity are advances compared to devices used in previous studies. Ex-
ample images of previous and current HSI systems can be seen in these articles [13,14,19–22],
(Figure 1 in all of them). The SICSURFIS HSI’s imaging setup can be seen in Section 3.2,
Figure 11a.

The imager consists of a Piezo-actuated metallic mirror Fabry–Pérot Interferometer
(FPI), an RGB sensor and an LED light source. The FPI controls the light’s transmission to
the RGB sensor, and the role of the separate long and short pass filters, shown in Figure 2,
is to cut the unwanted transmission at not selected orders of the FPI. The sensor’s basic
principle is to provide different spectral layers by changing the FPI air gap [4]. Typically
the FPI air gap can be changed to a new value in less than 15 ms, i.e., the settling time of
the air gap is 15 ms.

Laptop computer 

USB3 

Short pass
filter 975 nm 

F25 mm S-
Mount lens 

USB2 

F16 mm S-
Mount lens 

C-Mount
adapter 

C-Mount Lens 

Long pass 475
nm filter 

FPI
Control

Unit 

Basler acA3088-57uc
USB3 camera 
(Sony IMX178 

color image sensor, 2.4 µm
x 2.4 µm pixel, 3080 x 2064

pixels) 

Piezo-actuated
Fabry-Perot
Interferometer 

Led driver electronics PCB for
27 LEDs with 9 different 5
mm leds. White, 680, 720,
750, 780, 810, 850, 880 and
940 nm  

USB2 

Figure 2. Block diagram of the SICSURFIS spectral imager.

Those FPI orders are matched with different sensitivities of the image sensor channels.
There are three wavelength channels with different pixels in the RGB sensor’s Bayer
pattern. If we carefully select the FPI air gap range, the RGB sensor will receive one to
three transmission peaks. After recording the transmission peaks, the different spectral
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responses of the red, green and blue pixels can be seen throughout the selected spectral
range [4,23].

2.2. Pixel Spectral Response and Imager Calibration

Before spectral calibration, we demosaic each Bayer pattern frame using bilinear
interpolation, so that response in each pixel is now vector s ∈ R3. We can now arrange
these pixels to a response matrix S, which is [3× n] matrix, where n is the number of
pixels. We are interested in reconstructing radiance R which is [n× 3] matrix. Described
FPI system makes it possible to have one to three wavebands with one FPI gap. We need
to determine the function between these two values to achieve this. The separate spectral
calibration process in Section 2.5.1 will give use FPI gap wise coefficient matrix C([3× 3]
matrix) using radiance Rλ information from the reference spectrometer so that

S = CRλ. (1)

From Equation (1) we solve coefficient matrix C. Now, the radiance is:

R = C−1S. (2)

2.3. Led Illumination System

The LED illumination system of the SICSURFIS HSI is designed for the photometric
stereo imaging setting. The LED light source module is a driver electronics PCB with 27
LEDs. The inner radius of the ring is 33 mm. The LED light source module has 27 pieces of
intentionally selected 5 mm LEDs: white, 680, 720, 750, 780, 810, 850, 880 and 940 nm. Three
series of these 9 LEDs are tilted by an angle of 30 degrees relative to the system optical
axis. LEDs and FPI positions are individually controllable. The captured wavelengths,
selected with FPI, can be combined with according LED illumination via software. Figure 3
visualizes the LED light source module’s technical details. The temporal stability of the
LED light source is taken into account by keeping the system on for several minutes before
the recording of spectra. The other way to control the intensity stability is to record white
reference images frequently.

Figure 3. Three sets of nine LEDs are at a 30-degree angle relative to the system’s optical axis. These
three same wavelength LEDs sets are located at 120-degree intervals on the Led PCB.
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2.4. Optical Design

The optics of the SICSURFIS HSI is designed with commercial S-mount and C-mount
lenses, which provide collimated light beam through the Piezo-actuated FPI tunable filter.
The selected optical design is described in Figure 4. The Lensagon CMFA0420ND C-Mount
lens (F-number 2.0, focal length = 4.16 mm) forms an intermediate image at the focal plane
of the Lensagon B5M16020V2 5 Megapixel S-Mount lens (F-number = 2.0, focal length = 16
mm). This lens collimates the light coming from the intermediate image. The collimated
light goes through the Piezo-actuated FPI tunable filter to the Lensagon B5M25024V2 5
Megapixel S-Mount lens (F-number = 2.4, focal length = 25mm), which focuses the image
of the target on the image sensor.

Figure 4. Optical concept of the imaging system of the SICSURFIS Spectral Imager.

2.5. System Validation
2.5.1. The Monochromator Calibration Setup

Before the monochromator calibration, the transmission spectra characterization of
the selected FPI module was carried out. The spectra were measured with the Ocean
Optics HR4000 spectrometer at the center of the FPI. The monochromator calibration of the
SICSURFIS HSI camera was performed using the setup shown in Figure 5.

The combined sensitivities of the FPI and red, green and blue pixels were determined
for over 200 FPI air gaps. In the calibration data analysis, the coefficients for the combined
sensitivities of the FPI and red, green and blue pixels are retrieved in such a way that the
linear combination of the R-, G- and B-pixel sensitivity signals contains none zero signal
only at one spectral band.

In the monochromator calibration, the signals of the calibrated optical power meter
(Thorlabs PM16-120 USB Power meter) and the SICSURFIS HSI were recorded for the
wavelength range 475–975 nm at 2 nm intervals and the Full-Width Half Maximum (FWHM)
resolution of 5 nm.

The results of the system calibration for SICSURFIS HSI are the raw measurement data
of the monochromator calibration, the spectral response functions of R-, G- and B pixels
for Piezo-actuated FPI (PFPI) setpoint voltages used in the calibration, and the system
calibration matrices that can be used to calculate the spectral radiance or photons at the
input aperture of the hyperspectral camera optics from the raw pixel signals. The exposure
time and the camera gain for pixels must be known relative to the exposure time and pixel
gains used in the monochromator calibration in order for absolute calibration to be valid.
Examples of the measured combined sensitivities of the FPI and red, green and blue pixels
and linear combinations of these sensitivities are presented in the next section.
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Halogen Lamp 
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57uc USB3

camera 

Figure 5. The SICSURFIS hyperspectral imager calibration measurement setup.

2.5.2. Led Illumination System

The LED light source module’s spectral radiances were measured using calibrated
fiber, HR4000 spectrometer and white balance reflectance target, using the setup shown in
Figure 6. The LEDs were selected to cover the wavelength range of the used FPI. The results
of the single LED spectral radiance measurements can be seen in Figure 7.
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Figure 6. The setup was used in the spectral radiance measurements of LEDs and LED groups using
the Ocean Optics Calibrated Fiber QP600-1-SR EOS-43525-6 and HR4000 spectrometer. Edmund
Optics 4 inch white balance reflectance target (#58-610) was used in the measurements.
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Figure 7. Results of the single LED spectral radiance measurements with the setup shown in Figure 6.
The ma38 mA DC LED current was used for each LED. The distance of the target in this measurement
was 50 mm.

2.5.3. Sicsurfis Hsi Camera Monochromator Calibration Pixel Sensitivity Function Results

The purpose of the monochromator calibration is to determine the combined sensitivi-
ties of the FPI and red, green and blue pixels (see Figure 8). The peak wavelengths 1, 2 and
3 are the determined by the spectral transmission spectrum of the FPI (lower left part of
Figure 8). When the FPI transmission curve and R-pixel quantum efficiency are multiplied,
we get the Red curve in the center right part of Figure 8. Similarly, we get the Green
curve for G-pixels and the Blue curve for the B-pixels in the center right part of Figure 8.
An example of the results of the SICSURFIS HSI camera monochromator calibration are
shown in Figures 8–10.
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Figure 8. Quantum efficiencies of RGB CMOS image sensor (upper left) red, green and blue pixels,
Transmission of metallic mirror FPI (lower left) and combined sensitivities of the FPI and red, green
and blue pixels (upper right).

Figure 9. Results of the SICSURFIS HSI monochromator calibration. The scaled R-, G- and B-pixel
sensitivity signals are plotted in units DN/(W/nm). There are two peak wavelengths for the selected
PFPI drive voltage, 548.2 nm (on the left) and 812.2 nm (on the right).
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In Figure 9, the scaled R-, G- and B-pixel sensitivity signals are plotted in units
DN/(W/nm). The linear combination of the scaled pixel sensitivity functions for the peak
wavelengths 1, 2 and 3 can be seen in Figure 10. There are two peak wavelengths for the
selected PFPI drive voltage; 548.2 nm (on the left) and 812.2 nm (at the center).

Figure 10. Results of the SICSURFIS HSI monochromator calibration. The linear combination of the
scaled pixel sensitivity functions for the peak wavelengths 1, 2 and 3. For the selected PFPI drive
voltage, there are two peak wavelengths, 548.2 nm (on the left) and 812.2 nm (at the center).

2.6. Photometric Stereo Imaging

Photometric stereo is an imaging setting where the imaged object is illuminated from
multiple angles, and corresponding images are captured with a stationary camera. When
the angles of the lights are known compared to the imaged object, one can calculate the
surface normals of the imaged object based on the intensity of gathered light in different
imaging angles [24]. From the surface normals, one can calculate a three-dimensional
surface model with the Frankot–Chellappa algorithm [16].

The normal maps for each wavelength are calculated by multiplying the inverse matrix
of the light direction matrix by the three reflectance values for each pixel, corresponding to
each light direction. The light directions are defined by the length from the imaged object to
the center of the LED-module, 65± 5 mm, the diameter of the LED-module, 33 mm, and the
placement of the LEDs on the module, as described in Figure 3. Same LEDs are separated
by 120 degrees, i.e., 2π

3 , on the edge of the module, and the angle between the object layer
and the arriving light vector is 60 degrees, π

3 . This gives us the normalized light direction
matrix for the center of the imaging field:

L =
1
2

 0 1
√

3√
3

2 − 1
2

√
3

−
√

3
2 − 1

2

√
3

. (3)



Sensors 2022, 22, 3420 12 of 38

Now the normal N and albedo a matrices for each wavelength band are calculated as

aN = L−1 ·


r000 r001 r002
r010 r011 r012

...
...

...
rkm0 rkm1 rkm2

, (4)

where each subscript for reflectance r mean its x-coordinate, y-coordinate, and the
used light direction, respectively. The resulting matrix, which is of shape k ·m rows and
three columns, is then reorganized into the normal map by transforming it into the original
image shape:

aNmap =

a00(n000, n001, n002) a01(n010, n011, n012) . . . a0m(n0m0, n0m1, n0m2)
...

...
. . .

...
ak0(nk00, nk01, nk02) ak1(nk10, nk11, nk12) . . . akm(nkm0, nkm1, nkm2)

, (5)

where albedo aij are the lengths of the vectors:

aij = |(aNij0, aNij1, aNij2)|. (6)

From this, we can calculate the partial derivatives of the depth in x- and y-direction in
every point (a,b) and denote them by p and q:

pab =
∂z
∂x

=
nab0
nab2

, (7)

qab =
∂z
∂y

=
nab1
nab2

. (8)

Now we calculate the Fourier transform F for each p and q map:

P = F (p), (9)

Q = F (q). (10)

Now the estimated surface map is:

Z = R
(
F−1

(
−iωx · P− iωy ·Q

ω2
x + ω2

y + ε

))
, (11)

whereR represents the real part of the value, F−1 the inverse Fourier transform and ω the
frequencies in the Fourier transform. ε is added to avoid division by zero. The details of
the method can be found in [16].

3. Clinical Pre-Test: Surface Model Classification of Basal Cell Carcinomas and
Intradermal Nevi

The clinical pre-test section is divided into four sections. The background (Section 3.1)
and instrumentation (Section 3.2) leads to the material and methods (Section 3.3), which
carefully explain the steps from spectral data and pre-processing (Section 3.3.1) to ma-
chine learning pre-processing (Section 3.3.2), method validation (Section 3.3.3) and lesion
classification (Section 3.3.4). After the methods, we will present the results in Section 3.4;
the photometric stereo and albedo spectra (Section 3.4.1) and pixel-wise classification
(Section 3.4.2) with the slice half model and the leave-one-out validation (Section 3.4.3).

3.1. Background

The clinical data gathering was performed in two phases during the spring and
autumn of 2020. For the demonstrative pilot-test in this study, we examined two types
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of skin lesions, malignant basal cell carcinomas (BCC) and benign intradermal nevi (ID),
with a clinically similar appearance.

The HS images were captured in the first phase, and the lesions were clinically di-
agnosed and annotated by dermatologists at Helsinki University Hospital. In the second
phase, we calculated the surface models of the skin surfaces using the methods of photo-
metric stereo imaging. The aim was to classify the pixel spectra of BCCs, IDs, and healthy
skin. We used a convolutional neural network and pixels selected from the albedo images
and the lesions’ depth data.

We captured images of 14 BCCs and 8 IDs on 21 volunteering patients with HS, digital
and dermoscopic imaging and subsequently removed the lesions for dermatohistopatho-
logical analyses to confirm their diagnoses. All volunteering patients provided their written
informed consent. The study protocol followed the Declaration of Helsinki and was ap-
proved by the Ethics Committee of Helsinki University Hospital.

One of the typical challenges related to CNN classification and HS imaging is the
limited availability of the labelled training data, which can lead the models to overfit [3].
Thus we selected a pixel-wise classification approach. The training data set consisted of
6160 windowed HS-sub-cubes collected from the HS images of histologically confirmed
skin lesions. After data augmentation training set contained 31,168 HS-sub-cubes.

3.2. Clinical Pre-Test Instrumentation

The HS images were captured by dermatologists and nurses (users). The SICSURFIS
HSI was combined with a specially designed hospital version of the CubeView software [25].
CubeView is a spectral imaging and analysis software developed by the spectral imag-
ing laboratory of the University of Jyväskylä, Finland [26]. It controls the SICSURFIS
HSI’s machine vision sensor, PFPI and LED modules by using the Camazing [27] and the
Spectracular [28] Python libraries.

The data capturing setup was designed for effortless workflow. All of the device
and setup settings (e.g. exposure time, LEDs, wavebands) were pre-assigned via soft-
ware, and the imager was ready to work without any adjustments so that the user could
concentrate on the patient.

After the patient number and lesion number was given to the system, the user interface
guided the user to capture the dark and white references. The dark acquisition was
performed by manually placing the imager to a light-blocking holder, seen in Figure 11.
The imager was set to capture 40 frames, and the mean was used as a dark reference.
The white reference procedure was similar—the imager was placed on a holder against
white Teflon. The imager was set to capture with matching LED and wavelength settings,
as it captures the HS images.

The user interface provided a preview video to target the image while the HS imager
was placed on the patient’s skin. Three different LED light and waveband combinations
were captured with a single process and one click to the capture button. With one click,
the system captured six HS images. After capturing the HS image, the software calculated
reflectance frames automatically for each wavelength and visualized those frame by frame
in an animation view. The quality of the HS images was ensured visually from the animation
by the users. At the end of the effortless workflow, the user could save or dismiss captured
HS images with one click.

The user interface, the HS imager, and the chosen test setup (LEDs and correct wave-
bands) were pre-tested at the hospital with the users before the imaging for the clinical
pre-test was started. The users were educated on the software and HS imager. The imager,
dark and white reference targets and a computer with capturing software were mounted
into a trolley so it could be stored in a secure place while unused (Figure 11a).
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(a)

(b)

Figure 11. SICSURFIS imaging system. A handheld image sensor and a small computer for data col-
lection are attached to a trolley that can be moved around hospital wards. Subfigure (a): SICSURFIS
imaging system. Subfigure (b): SICSURFIS HSI in clinical use.
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3.3. Materials and Methods
3.3.1. Spectral Data and Pre-Processing

One HS image consists of three sets of frames, captured with thirty-three selected
wavebands. The visible light (VIS) had two LEDs on, and the visible and near-infrared
(VNIR) bands had seven LED lights on during the capturing process. The selected wave-
lengths and corresponding led lights are shown in Table 1. Each set of the thirty-three
wavebands was captured three times, each time with one of the three different angles
of light.

Table 1. Selected wavelengths and corresponding LED light wavelengths.

VIS 477, 500, 524, 540, 550, 575, 578, 582, 600, 626, 630, 639, 651, 669, 677, 681, 686

VIS LED white, 680

VNIR 700, 725, 735, 750, 760, 765, 775, 783, 790, 801, 812, 825, 834, 851, 878, 891

VNIR LEDS 720, 750, 780, 810, 850, 880, 940

The HS images of the lesions had identification numbers. The dermatologist made the
clinical diagnosis for each lesion before imaging, and the final diagnosis was confirmed
with histopathological analysis of each lesion. The dermatologists hand-drew the ground
truth images based on the histologically confirmed diagnoses.

The images were saved as raw images and pre-processed twice. We call these stages
raw image pre-processing and machine learning pre-processing. The raw image processing
pipeline is described in Table 2. First, the radiance images are processed into combined
reflectance images. After that, the photometric stereo, described in detail in the next section,
is calculated based on the hyperspectral reflectance images. The resulting dataset contains
an albedo image and depth map for each measurement.

Table 2. The image processing pipeline.

Phase Description Amount of HS Images

Radiance
The raw data are processed to ra-
diance (R) and its white reference
(W).

12

Six hyperspectral images, corresponding to combina-
tions of three different light directions and two light
wavelength ranges (visible light (VIS) and very near-
infrared (VNIR)), and their white references.

Reflectance
From radiance image and its white
reference, the reflectance (Rre f l) is
calculated as Rre f l =

R
W .

6
Six hyperspectral images, corresponding to combina-
tions of three different light directions and two light
wavelength ranges (VIS and VNIR).

Combine The VIS and VNIR images are com-
bined. 3 Three hyperspectral images corresponding to three dif-

ferent light directions.

Albedo and normal The albedo (a) and normal N are
calculated by Equations (3)–(6). 2 One hyperspectral image of the albedo and normal map

for the same area.

Depth and albedo Depth is calculated from N by
Equations (7)–(11). 2 One hyperspectral image of the albedo and the depth

map for the same area.

Smoothening

Bregman total variation denois-
ing [29] is applied to the albedo
data in the spectral direction.
The algorithm is used as imple-
mented in scikit-image version
0.17.2 [30].

2 One hyperspectral image of the albedo and the depth
map for the same area.
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3.3.2. Machine Learning Pre-Processing

Image quality reasons limited the number of the HS images from 14 BCCs to 10 and 8
IDs to 7. After the raw image pre-processing, each of the 17 selected HS image consisted of
33 albedo and 33 depth frames from the originally selected 33 wavebands.

In the first phase, we selected the most significant depth frame, which was the frame
representing the wavelength of 575 nm in this test setup. The wavelength channel was
selected based on the measured data’s robustness while ensuring that the channel is
well within the range of visible light. Using only one depth frame, we could reduce the
unnecessary depth dimensions from the data. After reducing the dimensions, the data
were normalised between 0 and 1, and the possible infinity and non-numeral (NaN) values
on the areas outside the imagers field of view were set to 0.

Images were vertically sliced from the middle of each lesion. The training pixels
from the histologically confirmed lesions (250) and the healthy skin (100) were randomly
selected from the left side of the HS image. The testing data were selected similarly from
the right side of the image. The healthy skin pixels were selected by using a healthy skin
mask, which was hand-drawn based on the ground truth images and ’RGB’ visualisations.
The pixel selection is visualised in Figure 12. The ground truth labels of the selected pixels
were selected accordingly.

Figure 12. (A) The ground truth image, left side: training data, right side: test data. (B) The healthy
skin mask is visualised with pink colour. (C) The visualisation of the selected training and testing
data points. The selected lesion pixels are visualised in red, and blue represents the selected healthy
skin pixels. The size of the HS image (A,B) was 1605 × 1640 px; the size of the divided training and
testing portions (C) varies, depending on the lesion’s location.

The training and testing subsets from the HS image were rolling window views of the
selected pixels. The size of one window was 30 times 30 pixels with 34 channels, and the
step was set to 5. The training subset with its 6160 windowed HS-sub-cubes were balanced
with Imbalanced learn library’s random over-sampling method [31]. After balancing,
the data were augmented with vertical and horizontal flipping. The final size of the training
data was 31,168. The validation data size was 1190. The test data had 5950 similarly
windowed pixel HS-sub-cubes and their ground truth. The pixel-wise classification was
performed using these randomly selected samples.

The classification maps shown in Section 3.4, were produced only for visualising
the pixel-wise model’s potential and challenges of classifying and delineating whole HS
images. For those classification maps, the whole HS images were pre-processed and
windowed as described above. The accuracy metrics presented in this study (Table 3) are
based on tests conducted with the pixel-wise analysis, using the above mentioned test data
pixel-wise HS-sub-cubes.

3.3.3. Method Validation

We validated the results by a leave-one-out approach to see if the pixel-wise slice half
method causes biasing. The approach was conducted so that convolutional neural network
(CNN) models were trained 17 times, omitting one lesion’s HS-sub-cubes (250 windowed
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lesion and 100 windowed healthy skin pixel HS-sub-cubes, size of 30× 30× 34) from the
training material. Each model was tested separately. The test data were randomly selected
from the pixels on the right side of the omitted image (250 windowed lesion HS-sub-cubes
and 100 healthy skin windowed HS-sub-cubes).

As a control for this setup, each of the 17 lesions were classified with the original
slice half model, trained with the 31,168 left-side HS-sub-cubes. Each of the image-specific
pixel-wise HS-sub-cube results were calculated similarly to the leave-one-out approach by
selecting similar windowed 250 lesion HS-sub-cubes and 100 healthy skin cubes from the
right side of the lesion HS images.

The study was implemented with Scikit-Learn [32], Scikit-Image [31], SciPy [33] and
Tensorflow [34] Python libraries. The computing was performed with a Linux GPU server,
1 × Tesla P100, ×86_64.

3.3.4. Cnn Pixel-Wise Classifier

As the used data contain spatial and spectral domains and one depth map from
the maps constructed from visible light for the classification, the natural choice for the
classification is CNN [35]. With the convolutional neural network’s 3D and 2D layers,
characterization of the data prior to the classifier is not needed, and the neural network is
free to find connections invisible to human eye. In prior studies, the CNN has been deemed
appropriate for tasks similar to the task in this study [3,11,15,36].

The limited availability of the labelled training data is one of the noted challenges
related to the CNN classifier. Without a considerably large amount of training data,
the models have a tendency to overfit [3]. Therefore, the selected classification approach
was pixel-wise. The original 17 HS cubes were transformed into training data for the pixel-
wise slice half model, consisting of 31,168 windowed 30× 30× 34 HS-sub-cubes after data
augmentation, validation 1190 HS-sub-cubes. The test data were, respectively, a set of
5950 HS-sub-cubes.

We used a convolutional neural network (CNN) for the classification. Figure 13
visualises the structure of the network. The 3D convolutional layers were used to extract
features from the windowed 30× 30× 33 HS albedo-sub-cubes. The construction of the 3D
convolutional layers included the LeakyReLu activation function and max-pooling layers.

The 2D convolutional layers extracted the features from the windowed 30× 30× 1 HS
depth map sub-cube. The 2D layers were constructed with LeakyReLu and max-pooling
layers. The results were flattened, concatenated and used as an input for the hidden
layers. As a result, the model provided the pixel-wise output classification and prediction
confidences for three classes: healthy skin, intradermal nevus, and basal cell carcinoma.

The model was trained using Adam optimizer with default parameters and the cate-
gorical cross-entropy loss function.
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Figure 13. The visualisation of the used convolutional neural network. We used 3D layers with
spectral data and 2D layers with depth data. The outputs were concatenated, flattened and used
as an input for the hidden layers. The result was a three-class classifier for spectral data with
depth information.

3.4. Results
3.4.1. Photometric Stereo and Albedo Spectra

To assess the quality of the photometric stereo transformation of the reflectance images,
we take a look at three surface models: Surface model of a ball (Figure 14a), a Lego-brick
(Figure 14b), and skin (Figure 14c,d). From them, we can see that the shape’s of the objects
are visible from the surface models. In these cases, the interesting part is in the middle of
the imaged area, and therefore there is very little error in the images. However, as the light
direction matrix is defined for the image area’s centre, the error increases as the distance
from the centre increases. Figure 14a–d are examples of cropped images, from the area that
has a good quality. Outside the selected areas shown in the Figure 14a–d, the quality of the
surface model was significantly weaker. These photometric stereo results were taken into
account on selecting the training and test data by limiting the healthy skin area from the
image border areas.
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(a) (b)

(c) (d)

Figure 14. Surface models of (a) Small styrofoam ball, (b) Two times two yellow Lego-brick, (c)
Intradermal nevus on human skin and (d) Human skin with nodular basal cell carcinoma.

An example of albedo spectra with their deviation can be seen in Figure 15.
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(a) Healthy skin

(b) Bacall cell carcinoma

(c) Intradermal nevus

Figure 15. Sub figures (a–c) represent the albedo spectra of healthy skin (a), BCC (b) and ID (c).
The minimum and maximum standard deviations are marked with coloured areas, and the mean
albedo spectra are drawn with a black line.
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3.4.2. Pixel-Wise Classification with Slice Half Model

The pixel-wise classification results of the slice half model in Table 3 show the precision,
sensitivity and accuracy scores of the windowed HS-sub-cubes. The sensitivity is 0.81 with
healthy skin and intradermal nevi and 0.76 with basal cell carcinomas. The average
weighted precision was 0.81 and the accuracy over the whole testing dataset was 0.79.
The results confirm that the model can distinguish the malignant and benign lesions at a
pixel level. Since SICSURFIS HSI’s pixel resolution is approximately 24µm × 24µm, one
classified pixel is smaller than one cell.

Table 3. Classification report of the pixel classification, slice half model.

Precision Recall/Sensitivity F1-Score Support

Healthy skin 0.63 0.81 0.71 1776
Benign intradermal nevi 0.87 0.81 0.84 1697
Basal cell carsinomas 0.89 0.76 0.82 2477

Macro avg. 0.80 0.79 0.79 5950
Weighted avg. 0.81 0.79 0.79 5950

Confusion matrices (Figure 16) visualizes the pixel-wise classification results of the
test data, shown in Table 3.

Figure 16. Confusion matrices. Left: Normalised predictions, Right: predictions.

Figures 17–19 are visualisations of the classified HS images. The images were con-
ducted using the slice half approach model trained with 31,168 HS-sub-cubes. The classifica-
tion method was pixel-wise, and these collages were conducted only for visual evaluations
of the model’s capabilities and challenges. The HS images were pre-processed to HS-sub-
cubes similarly to the training and test data. The classification prediction confidences and
classification maps can be seen on these collages.
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Figure 17. Nodular BCC visual pixel spectra classification example. First row: Healthy skin prediction
confidence, prediction confidence of the ID and the prediction confidence of the BCC. Second row: The
ground truth. The white line in the ground truth image shows the slicing position. The training data were
collected as windowed (30× 30× 34) HS-sub-cubes. The middle pixels of those HS-sub-cubes (250 lesion
and 100 healthy skin pixels) were randomly selected from the left sides of the lesions. We can see from the
classification map (middle) that the nodular lesion is delineated relatively well, but some miss-classified
pixels can be seen above the right upper corner of the lesion. The “RGB” illustration of the lesion is on
the right. The lesion was captured from the left corner of the eye. The unit of measures is smaller with
prediction maps since the HS images were windowed with 5 pixels step.
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Figure 18. Nodular and superficial BCC visual pixel spectra classification example. First row: Healthy
skin prediction confidence, prediction confidence of the ID and the prediction confidence of the BCC.
Second row: The ground truth. The white line in the ground truth image shows the slicing position.
The training data were collected as windowed (30× 30× 34) HS-sub-cubes. The middle pixels of
those HS-sub-cubes (250 lesion and 100 healthy skin pixels) were randomly selected from the left sides
of the lesions. The middle image is the classification map of this BCC HS image. “RGB” illustration
of the lesion is on the right. The lesion was captured from the left upper arm. The unit of measures is
smaller with prediction maps since the HS images were windowed with 5 pixels step.
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Figure 19. IN visual classification example shows that benign ID lesion pixels can be classified and
the lesions can delineate efficiently. The classification map and ID prediction conference visualization
show that some of the reflections or different shades of redness on the healthy skin might have
confused the classification result. The lesion was captured from the right side of the patient’s back.
The unit of measures is smaller with prediction maps since the HS images were windowed with 5
pixels step.

3.4.3. Leave-One-Out Validation

This subsection compares the results obtained with a pixel-wise slice half model
and 17 leave-one-out models. The results were obtained using subsets of the windowed
(30× 30× 34) HS-sub-cube training data. For each lesion, the test data were selected from
the right side of the lesions, which was not used to train any of the models. With leave-one-
out validation, the test lesion pixel HS-sub-cubes were left out from the training subset
cubes, and for the slice half model, the model was trained only using the HS-sub-cubes of
pixels selected from the left side of the lesion.

Figure 20 visualises the pixel-wise classification accuracy comparison results for each
lesion, which is the approach validation mentioned in Section 3.3.2. Y-axis represents the
sliced data results, which model trained with 31,168 windowed HS-sub-cubes. The x-axis
represents the results obtained with 17 leave-one-out models. The figure show which lesions
pixel-wise classification accuracies correlate, and indicates which lesions had unique features.

The leave-one-out validation results show how the leave-one-out models were sensi-
tive towards special features in the training data. Some of the individual lesion’s features
and skin sub-types were unique. It affected the leave-one-out results decreasing it signifi-
cantly. We can see from Table 4 that when the model is trained by leaving out windowed
pixel HS-sub-cubes of a unique lesion, the model is unable to classify it correctly. It natu-
rally has a strong descending effect on the leave-one-out average accuracy of all 17 models.
For example, ID 17 (Table 4, ‘RGB’ image in Appendix A) was the only lesion covered with
hair. The model with no hairy pixels in the test data could reach 0.26 accuracy, while a slice
half model with hairy pixels in the training data could reach 0.94 accuracy.

Eight lesions can be considered typical without any special features. When the training
data contained pixel-wise HS-sub-cubes collected from those lesions, leaving one lesion
out, the leave-one-out average accuracy those eight models was 0.72. The corresponding
average accuracy of the pixel-wise slice half approach with the same lesions was 0.89.
Nine lesions had unique features, of which two lesions were unique and difficult for both
approaches. When leaving the pixel-wise HS-sub-cubes of one of these unique lesions out
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of the training data, the classification accuracy of these special lesions’ windowed pixel
HS-sub-cubes decreased significantly. The average accuracy of those nine models was 0.28
in the leave-one-out approach. Therefore, the average accuracy of all of the 17 leave-one-out
models is affected by the unique features explained in Table 4.

Figure 20. Comparison of pixel-wise accuracy results. Y-axis represents the results obtained with
model trained and tested with sliced data. X-axis visualises the classification accuracy of leave-one-
out models. The details of every HS image with RGB reconstructions can be seen in Appendix A.
Grey, red and purple colours indicate the special features and the models’ capability of classifying
typical (grey), unique (red), difficult and unique (purple) lesions in this test set.

Table 4. Leave-one-out (L-O-O) and slice half pixel classification accuracy’s.

Special Feature Lesion ID L-O-O Slice Half Unique Features

Typical 1 0.79 0.94
Typical 9 0.68 0.96
Typical 8 0.62 0.84
Typical 7 0.83 0.90
Typical 10 0.77 0.85
Typical 4 0.70 0.81
Typical 15 0.69 0.79
Typical 14 0.64 0.85

Average (typical) 0.72 0.89

Unique 5 0.23 0.92 Broken skin, dark skin tone, convex surface
Unique 3 0.56 0.76 Broken skin, dark skin tone
Unique 2 0.25 0.68 Wound or scab on top of lesion
Unique 17 0.26 0.94 The lesion and the healthy skin is covered by hair
Unique 12 0.003 0.85 Dark skin tone and red-brown lesion tone
Unique 11 0.49 0.71 Clear pigment, small lesion
Unique 13 0.19 0.81 Two types of lesions: naevus pigmentosus junctionalis

on right side of the ID
Unique & difficult 16 0.16 0.47 Overall fair skin tone, small lesion (2mm), fair toned and

uneven delineation
Unique & difficult 6 0.38 0.45 Lesion is pigmented, uneven skin tone around lesion

Average (unique & difficult) 0.28 0.73
Average (all samples) 0.47 0.81

Table 4 and Figure 20 confirm that the results obtained with training data containing
typical pixel window HS-sub-cubes from lesions with typical features among the training
and test set, performed with significantly higher accuracy in the leave-one-out approach
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than the results obtained with unique test data. The average performance of the leave-
one-out approach with typical data (0.72) validates the results of the slice half pixel-wise
approach (0.89), indicating correlation and the model’s possibilities of generalization.

4. Discussion

The aim of this study was to introduce and demonstrate with a clinical pre-test
a novel spectral imaging system designed for the complex skin surfaces. The pre-test
demonstrated and enabled the system engineering, imaging, and analysis aspects of further
system development toward a clinical application. The discussion is divided into six
subsections, from technical and user-related topics (Section 4.1) to skin surface models
(Section 4.2), annotation (Section 4.3), results (Section 4.5), approach validation (Section 4.6),
bias conversation (Section 4.7) and finally to the notes for future research and the mentioned
independent continuation studies (Section 4.8).

4.1. Technical and User-Related Issues

The SICRURFIS HSI had some issues related to the image quality or lack of healthy
skin pixels with the smallest stray light protection cones. Those observations were technical,
use-case related issues that can be solved in the future by changing the imaging strategy or
by improving the device. With those user-related issues, some system engineering related
topics were found.

The HS image capturing process was streamlined by only measuring wavebands
relevant to the biophysical qualities of the skin and the illumination profiles of the used
LEDs. However, the process still takes enough time, the minute movements of the medical
professional using the device and the patient introduce a source for noise and inaccuracy.
To solve this, image preview was implemented to the software’s graphical user interface
and by applying spectral smoothing to the data. However, some motion of the operators
hands is to be expected with the setup, and it may have contributed negatively to the
image quality. In further research, a way to lower the capturing time and reduce the
strength needed to operate the camera stable could be found by using new HSI technology.
Interferometers can be manufactured as a micro electro-mechanical system (MEMS) using
novel atomic layer decomposition techniques. One of these prototypes was presented by
Trops et al. (2091). MEMS-based HS imagers can be significantly smaller and lighter with a
faster frame rate. Besides the HS imager’s technical properties, the capturing time depends
on the amount of the selected wavebands, so it could be further narrowed based on the
suspected lesion type, making the image capturing faster.

Some of the images had quality issues which led to the decision to leave them out
of the study. One of the problems was the sharpness of the images. The device required
manual focusing, and some of the surfaces were challenging. For example, the nasal tip
could be too small to the field of view, and the camera could not be set to the skin without
passing some light from the sides of the nose. The unwanted light could be removed by
covering the side areas with a hand, but it might make the manual focusing and staying on
a place while capturing more difficult. Another focusing issue might be that the device is in
sharp focus when the target is 6–6.5 cm away from the lens. Small and complex skin areas
(e.g., nasal tip, ear) might come naturally closer than the required distance since the target
might get inside the stray light protection cone. Similar quality issues have been raised in
previous studies, e.g., in the study by Salmivuori et al. [10] uneven surfaces impaired the
quality of the images.

The size of the stray light protection cone affected the usability of the images. Some of
the images were captured with the smallest stray light protection cone. Those images had
too small areas of healthy skin around the lesions. With the surface models, the best results
were obtained with the stray light protection cone diameters of 4.9 and 5.8 cm. Additionally,
the LED setup caused some reflections on the skin surface, which was difficult for our
model to classify. For future studies, we would recommend capturing multiple pictures
from the same patient, both images of lesions and separate images of only healthy skin.
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That would enable using the smallest stray light protection cones in the study because the
healthy pixels could be selected from a different image. The reflectivity of the skin is one
issue to be assessed in future research. It could be solved with linear polarizers placed in
front of the LEDs.

According to the user feedback, the imaging system was easy to use and the technical
issues found can be improved with system engineering. As seen in the results, the SIC-
SURFIS HSI reached complex surfaces, which were mentioned to be excluded in previous
studies (e.g., [14]). Eye corners, chin, shoulders, ears, neck, arms and other challenging
skin areas were reachable, and the pixel-wise classification results were promising.

4.2. About the Skin Surface Models

In the calculated surface models, the accuracy deteriorates as a function of the distance
from the image center. In the border areas of the images, the effect is visible from the
visualisations in Figure 14. The deterioration is an inherent feature of the used Frankot–
Chellappa algorithm, as the light direction is defined only for the center of the imaging
area. The poor accuracy may negatively affect the classification results, and it would be
beneficial to study how to use individual light direction matrices for each point.

In our measurement setup, there are many moving pieces, and therefore the process
of determining the individual light direction matrices was deemed inaccurate. The surface
models are affected also by the penetration depth of the used light.

In this study, we decided to use wavelength from visible light (approx. 575 nm) as
the basis of the surface model, and used it along the 33 albedo channels. The CNN’s 2D
layer extracted the features from this wavelength. The results are promising, but there
is a need for further research on the benefits of the surface model’s usage in HS image
pixel classification. It could be beneficial to study the surface models of more penetrating
wavelengths. If the density of the skin is significantly different between cancerous and
healthy areas, the difference could be made visible with surface models formed with
infrared lights.

4.3. The Annotation and Pixel Selection

The dermatologist drew the ground truth of the lesions and healthy skin. The poor
signal-to-noise ratio of some of the RGB constructions might have affected on drawing of
the edges of the annotated lesions. Therefore the rules of how we selected the pixels could
be improved. We did not consider that there might be pixels close to the lesion edges that
are incorrectly classified as healthy skin or lesion on the ground truth.

For future machine learning preprocessing, it might be necessary to select the healthy
skin pixels as far as possible from the annotated lesion and leave some margin to the edges
of the lesion. This challenge could also benefit from the purely healthy skin HS images
captured from the same patients.

4.4. Notes from the Pixel-Wise Analysis

According to Ahmad et al., the lack of labelled HS data is a major issue since labelling
is time-consuming and expensive due to human experts and investigation. In this pre-study,
the HS images were annotated by dermatologists, and the ground truth was confirmed
with dermatohistopathological investigation, which is a strength.

Since the CNN models have a tendency to overfit when the amount of the HS training
data is too small, we selected a pixel-wise classification approach with CNN, which is a
common strategy with HS data and deep neural networks [3]. The training data of the
CNN was constructed by slicing the HS images into two images per HS image and using
the left side as a source for the selected training data pixels and the right side as a source for
the testing data pixels. Instead of training and testing the model with only 17 HS images,
we could utilise the spatial, spectral and skin surface domains pixel-wise with spectral pixel
sub-cubes. After the data augmentation, the training set consisted of 31,168 windowed
pixels (30× 30× 34). Before the augmentation, from each lesion HS image, there were 250
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lesion pixels and 100 healthy skin pixels, which were randomly selected as the middle
points of those windowed HS-sub-cubes. The test data were collected similarly from the
right sides of the lesion HS images. This way, we achieved satisfactory amount of data
points for both training and testing.

The CNN seems to perform well in classifying the malignant BCC (nodular and
superficial), benign ID and healthy skin lesion pixels. The nodular BCC’s confidence
map (Figure 17) shows that the model correctly does not find any ID pixels from the
image data pixels. It draws pixel-by-pixel quite accurately the shape of the elevated lesion.
The prediction confidence map shows some BCC pixels in the right upper corner, which
are, according to dermatologists, false classification results. Nodular small (<1 cm) BCC are
usually sharply demarcated. The width of the lesion was 5 mm. The lesion is located on
the upper eyelid. The skin around the lesion has multiple colours in the image, and there
are some wrinkles and light reflections. The model has classified some of the healthy skin
pixels with reflections and areas with healthy skin pixels containing skin colour changes
from dark to light reflection as BCC pixels.

The second example collage (Figure 18) is a 12 mm nodular and superficial BCC on
the left upper arm. According to the dermatologist, the superficial parts are usually in the
periphery of the lesion and can have indistinct borders. The CNN draws a BCC lesion
pixel-wise with indistinct edges and some satellite lesions around it. There is a possibility
that satellite lesions can occur in the periphery of a superficial BCC that are impossible to
detect by the human eye. These classified lesion pixels in this study might indicate that with
HS imaging and machine learning methods, it could be possible to provide information that
guides the dermatologists to delineate and remove a lesion more accurately. SICSURFIS
HSI’s pixel resolution is approximately 24µm × 24µm, one classified pixel is smaller than
one cell, which can be seen as an advance for applications requiring high accuracy.

Third collage (Figure 19) is an example of a benign intradermal nevus pixel classifica-
tion results. The lesion is located on the right side of the back of the patient. The lesion is
delineated and classified accurately, but there are redness and reflections in the pixels sur-
rounding of the lesion that are miss-classified as nevus pixels. Intradermal nevi are sharply
demarcated, and no satellite lesions should be seen. Some of the pixel level challenges
relate to the healthy skin pixels. In the future, larger samples of HS images of healthy skin
could improve the classification results of healthy skin.

4.5. Sensitivity and Precision

The numerical results of the pixel-wise slice half model’s test data (Table 3) show
relatively good weighted sensitivity (0.79) and precision (0.81) for the model.

In our study, the sensitivity is mainly impaired by inaccurate delineation of the lesions,
which again seem to be caused mostly by light reflections and uneven colour of the healthy
skin in the images. The sensitivity is also decreased because the sensitivity calculations
compare the diagnosis separately for each pixel of a lesion, not by a voting method with
one diagnosis per lesion only. Our test data pixels were selected randomly from the
right side of the HS images lesion and healthy skin areas, and since the CNN is a three
class pixel-classifier, the results of those pixels may contain two types of lesion or healthy
skin pixels.

These sensitivity and precision results are not directly comparable with previous
studies (e.g., [36]), which uses the majority voting method on the annotated lesion areas.
In the majority voting approach, the whole area of the annotated lesion is pixel-wise
classified based on the majority of the pixels, so there cannot be, for example, two types of
lesion pixels on the same lesion area.

As an important note, the used data contain an inherit selection bias which in some
cases increases and in some cases decreases the accuracy. The slice half method also cause
bias by increasing the the obtained accuracy. Therefore, the results are promising, but fur-
ther research is needed. In the further studies, the results could be addressed also with a
majority voting method, which would enable more discussion with previous research.
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4.6. Approach Validation

Besides the promising results, this kind of clinical pre-study has limitations and
concerns related to approaches and methods. The pixel-wise classification approach, using
only one HS cube as a source for training, validation and testing is a common approach in
HS image analysis and classification studies [3] (examples in [1,37,38]).

One of the possible downsides of the pixel-wise slice half approach is that after the
training, the neural network has been presented with data very similar to the test data,
which might bias the results. For observing the possible bias, the pixel-wise slice half
classification results were validated with a pixel-wise leave-one-out approach.

As a result, the leave-one-out validation metrics were strongly decreased with unique
lesion features (see Table 4, Figure 20 and Appendix A). Only the results obtained with
models trained with typical data should be considered a validation; the leave-one-out
models trained with data containing windowed pixels (HS-sub-cubes) from the eight
typical lesions reached 0.72 average accuracy, varying between 0.83 and 0.64. The average
accuracy of the same eight typical lesion’s pixel-wise HS-sub-cubes with the model trained
with slice-half approach and 31,168 HS-sub-cubes was 0.89, varying between 0.96 and 0.79.
This finding supports the potential results of SICSURFIS HSI’s capability to classify, differ,
and delineate the BCC, ID, and healthy skin pixels, and validates the approach.

The decreasing effect in the leave-one-out results is visible in Figure 20 and Table 4. We
can see that the accuracy of the pixel-wise test data (HS-sub-cubes) collected from lesions 1,
4, 7, 8, 9, 10, 14 and 15 were correlating, which indicates that those lesions had some typical
pixel-level features that enable both approaches models to generalise. The effect can be
seen with nine lesions; the pixel-wise test data collected from lesions 2, 3, 5, 6, 11, 12, 13, 16
and 17 had some special features, making the lesions unique in the training set. Therefore,
nine of the seventeen leave-one-out models could not generalise well. These models could
not classify a pixel that was vastly different from the training data set. For example, there
was only one hairy lesion, only one red-brown lesion or a single lesion with a scab. Those
features in the collected pixel-wise HS-cub-cubes could be a reason for a model not to be
able to classify pixels containing those features correctly. Two of the lesions, 6 and 16, were
difficult and unique, which can be seen in the pixel-wise accuracy of both approaches.

The approach validation shows that the results obtained with eight typical lesions
and both approaches are promising. The level of bias is acceptable for a study that has
the purpose of the first demonstration of a prototype imager and points out the future
improvement needs. The slice half results are higher, and the leave-one-results lower,
but the model’s capability to generalise with unbiased data can be seen, but further studies
and more data are still needed.

For closer investigation of the results and validation, the Appendix A presents the RGB-
reconstructions, histopathologically confirmed ground truth, accuracy results of both tests,
and clinical details (lesion type, size, location) and possible mentions of special features.
Based on the special features that are visible in RGB reconstructions, the lesions were
divided into three classes, grey (typical), red (unique) and purple (unique and difficult).
The colors and image IDs match with the results shown in Figure 20 and Table 4.

4.7. Selection Bias and Other Data-Based Biases and Their Effect to the Results

Selection bias is “A systematic error that results in differences between a study population
and a target population; selection bias primarily affects the external validity of the results of a study”
[39]. In this study, the selection bias concerns the study population and study lesions.
The variability of the real target population (humans all over the world) is not fully covered
and the variability of different sub-types of lesions (i.e., hairy, growth style, different
pigment variations, wounds, blood, thin or thick skin etc.) has the same low coverage.

When developing an application to clinical imaging, the selection bias is probably
the most important reason for a system with high accuracy on pre-tests to be unreliable in
clinical use [39]. This effect has been noticed for example in machine learning algorithms
utilised with radiology images. The recent study points out the selection bias as the
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possible reason, why the results at the hospital with real patients are less expressive [39].
This research, and the SICSURFIS HSI, as it is, is a long way from a clinical application.
According to Yu and Eng, the selection bias has been largely unaddressed in the medical
imaging machine learning literature. Bias in the collected data causes distortion among
the results. For example, the classification accuracy can increase or decrease, but the level
of bias can and should be examined and controlled [39–41]. Untrained unique features
decreases the accuracy and features that are covered in the training data enables higher
generalisation and accuracy.

As shown in this study, the bias is difficult to avoid. It can be caused by a method or
data. The development of a real-life medical application is expensive. There are plenty
of sources of bias that affect any results: patient skin tone (native Asian, north European,
African vs south European), clinical practices, patient age distribution, users of the imagers
and so on. If the inherent bias is not caused by a method, it is caused by a data set. The level
of bias is important to estimate, and further research should address decreasing it. Deep
learning algorithms, such as CNN, is detecting and distinguishing features automatically,
giving them weights. Basically, it is a black box, which does not explain why the diagnosis is
made [39]. In this study, the selection bias is obvious; the number of lesions were relatively
low, and the selected lesions had strong variation. Those, that had unique features failed
on the leave-one-analysis, showing, that in order to develop a more robust system and a
real application, it would require a enormous amount of data, captured in many countries,
with a wide diverse among the patients and remarkable amounts of lesions.

Traditional image classification is different than pixel-classification mainly due to
the spectral domain, and the fact that each pixel is classified one-by one. Previous image
classification studies show, that in image classification, it is possible to train the model and
classify sub-images with no sensible, visually interpret information, and depending on the
sub-images size, to obtain even good accuracy levels. The reason of this is, that the model
might be able to to detect and weight features also from the background; use other visual
aspects the human eye does not see features [40]. The size of the sub window seemed to
correlate with the accuracy. With all tested known standard data sets and regardless of
the level of bias factors, the small (20× 20) subwindows reached lower accuracy than the
larger ones (200× 200) [40].

In our case, we used hyperspectral data and a pixel-wise classification approach. Each
sub-cube contained albedo and depth channels, providing a spectrum for each pixel. Most
of the training data were augmented, e.g., flipped, which differs the selected 30× 30× 34
sub-cubes from the originally selected training pixels. The test pixels were not flipped.
The size of the original training set was 6160 samples and after the augmentation, the size
was 31,168. Therefore, we utilised a small-sized samples from each HS cube to control the
possible data-based bias levels, and we gave pixel-wise information for CNN to extract
with 3D and 2D layers. This causes bias, since the source of test and training pixels is the
same data set (HS cube from a lesion), but as shown in the above mentioned previous
studies, the small size of the used sub-cubes was chosen to keep the level low.

The sources for bias are various. For example if several data sets are collected in a
controlled environment and same session, all of these HS images might contain character-
istics that are caused by the image acquisition. So far, the machine learning model might
classify them based on the session, not by the features seen in images [40]. In our data, this
can be one of the bias reasons besides the selection bias; a subtle changes in the lighting
conditions (a stray light passes the cones) or even the temperature of the sensor at the
time of imaging might have a result in artifacts that might lead to differences that are to
be detected by machine learning models [40]. As an example, the stray light increases the
illumination when imaging a lesion, and a global feature, such as pixel intensity statistics,
can be used as a decision feature inside the CNN. This phenomena was controlled with the
protection cones, but some of the surfaces were challenging and the data might contain
individual images with features caused by the stray light. An other example is that if
the imager is in use for several hours, the sensor temperature increases, and it can cause
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some features in the collected data; the dark-correction is performed for each HS cube.
Dark reference images captured right before capturing the lesions, with similar exposure
time, so the correction includes the current effect of sensor temperature. This might cause
difference among the captured data, some of the HS images might have characteristics from
the acquiring process, which influences to the results. One of the benefits of the randomly
selected pixels and sub-cubes is, that if the sensor has dead pixels, that exists in every frame,
this kind of feature is not automatically presented to the machine learning model.

As shown by this discussion, the perceived worth of this study might be diminished
by the bias. However, the reason for this clinical pre-study was to introduce and pre-test a
new imaging system. Without the first models and results, it would have been impossible
to evaluate the technical aspects; how the imager reaches the complex surfaces, can those
images be classified by the CNN. It was important to test, how the imager’s special LED
module, stray light protection and optical components affect on the image quality and to
the results, and finally evaluate the clinical procedures. Based on this study, for example,
the smallest protection cone has been rejected from the following data gathering steps and
the stray light blocking in the challenging areas is improved with extra protection. One
could say, that the accuracy of the leave-one-out approach is the real performance, but it is
not the whole truth. Another opinion is, that due to the unseen features, the leave-one-out
results reflect the selection bias on the collected data.

The main point is not, what interpretation of the approaches and results is the right or
how much and what kind of bias the collected data contains. The outcome is more in the
potential, that the SICSURFIS HSI has, and in the results that can be obtained in the future
via improvements. The results of the both approaches indicates that the proposed models
would be practical with a larger amount of training data, which contains no unique lesions,
and so far the selection bias could be minimised. The hypothesis for future studies is that
the accuracy will increase when the collected data enables the models to generalise better.
The accuracy difference between the leave-one-out method and the slice half method is
expected to decrease as the data amount increases, and the level of selection bias should be
taken into account in the further studies.

4.8. Future Research

In the following studies, we will increase the amount and variability of the data,
improve the technical and user-related issues and capture more lesion types for developing
a more effective CNN classifier to get one step closer to an optical biopsy. Current results
are promising, but the need for further studies is obvious.

5. Conclusions

This article aimed to introduce and demonstrate a Fabry–Perot interferometer-based
hyperspectral imaging system for complex surfaces. This study was the first step in a three-
phase pilot study demonstrating the possibilities of using a new system as a first prototype
for future real-life applications. This section concludes our findings in technical aspects
(Section 5.1), methodological approaches (Section 5.2) and results, and future research
(Section 5.3).

5.1. Technical Aspects

As the described device is a prototype, there are still some issues to fix before achieving
results that promote the devices use in clinical use. There is some variation in the focus
between the spectral channels. Some of the frames might be slightly more out of focus
than others. Bigger light protection cones provided better quality data than the smaller
ones. There might not be enough healthy skin around the lesions with the small cones.
The LED setup caused some reflections to the skin areas, which were difficult to handle
for the convolutional neural network model. The depth maps were calculated for each
wavelength, and one of the noted issues was the quality of the 3D models. The best quality
was in the middle of the image. The quality deteriorated towards the edges of the frames.
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It is possible to improve the depth of the focus in the whole wavelength range by replacing
the used commercial S- and C-mount lenses with a dedicated custom-designed optical
system. The specular reflections can be reduced by using linear polarizers in front of the
LEDs and the imaging optics.

5.2. Classification Results and Method Validation

Based on the pre-test, the HS imager and machine learning system accurately differ-
entiate malignant BCC from benign ID and healthy skin, achieving a weighted sensitivity
of 0.79 and weighted precision of 0.81. The classification report reveals the results of the
entire test data pixel-by-pixel classification. The results are not directly comparable with
previous studies using voting methods for classifying pixel-wise the lesion types.

We used a pixel-wise classification approach with CNN classifier. The approach is
common with HS images, due to the lack of labelled HS data. The number of HS cubes
used in this study was 17, which is generally 16 HS images more than in a typical HS image
classification method development experiments; it is typical to use the pixels from one
standard data set, and divide them to training, validation and test portions [3]. In our
approach, we sliced each of the lesion HS images and selected the training data from the left
sides of the lesions. The training data consisted of 31,168 windowed pixels (HS-sub-cubes).
Our test data consisted of similarly collected windowed pixels (HS-sub-cubes), selected
randomly from the right side of the HS images lesion and healthy skin areas. The bright
side of the pixel-wise approach is the large amount of the training data since it consists of
sub samples. The CNN was not overfitted due to lack of training data, but the approach
might bias the results. Therefore, the results were validated with a pixel-wise leave-one-out
approach. Eight of the lesions consisted of pixel windows with typical features, providing
relatively well-generalising models and correlating accuracy results with the sliced half
approach. The rest of the leave-one-out models performed poorly due to special features in
those lesions. Therefore, the average accuracy results of all of the 17 models in the validation
were lower. For example, a model trained without hairy pixels could not accurately classify
pixels collected from a hairy lesion image. These phenomena were seen with nine lesions
and models that used the pixels collected from those lesions as test data, representing those
unique features.

For the comparison of validation to the slice half approach, only the results of the eight
typical lesions should be taken into account. The average accuracy of those results was 0.72,
whereas the similar average accuracy with the slice half approach was 0.89. These results
are shown in Table 4 and Figure 20. The validation confirms that this 3D approach has
promising results, but there is a need for further studies with a larger amount of data with
no unique images. The bias caused by the approach is seen in the slice half method, but the
capability of models to generalise was proven with the validation approach. The accuracy
results without bias might be lower than the achieved, but the results of this study might
indicate that with HS imaging and machine learning methods, it could be possible to
provide information that guides dermatologists to delineate and thereby remove a lesion
more accurately. On the other hand, the number of captured lesions was small, containing
unique lesions, impacting the results’ generalisation.

5.3. Conclusions for the Future

This was a development starting point and a demonstration of a novel SICSURFIS
HSI system, which seems to have potential, but the need for further studies is obvious.
With its results and notes, the pre-test pointed out benefits and findings for many future
improvement aspects.

COVID-19 had a decreasing effect on the data gathering phase’s patient recruitment.
As the system uses unique, specifically selected LEDs and wavelength bands, most of
the previously gathered HSI data are inappropriate for training the machine learning
algorithms used in the research. Therefore, data gathering with a similar device should
continue in the future.
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As the dataset size increases, the leave-one-out cross-validation method should be
adopted. The accuracy difference between the leave-one-out method and the slice half
method is expected to decrease as the data amount increases. There is no risk for cross-
contamination between training and testing data in the leave-one-out method.

Before the clinical use, all of these issues should be inspected. Another technical step
toward the future might be the MEMS FPI, which could reduce the size and weight of the
handheld device. There is also a need for developing the system to be a real-time solution.
It might mean the FPGA computation and a screen on top of the device for the doctors to
see the results immediately.
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