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show that the initial-value problem is ill-posed in the periodic Sobolev spaces
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H,#(0,2m) x H,*(0,2m) for all s > 0. Our proof is constructive, in the sense
that we provide smooth initial data that generates solutions arbitrarily large in
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Boussinesq system H,#(0,27) x H,*(0,2m)-norm for arbitrarily short time. This result is sharp since
Benjamin-Bona Mahony equation in [13] the well-posedness is proved to holding for all positive periodic Sobolev
Spectral analysis indexes of the form Hj(0,27) x Hy(0,2n), including s = 0.

Fourier series © 2022 The Author(s). Published by Elsevier Inc. This is an open access article
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Picard’s iteration

1. Introduction

The physical phenomena are usually modeled by equations involving differential operators. In the study
of partial differential equations (PDEs), it is crucial to know if the equation or system are well-posed in the
Hadamard’s sense: existence, uniqueness, and continuous dependence of the solutions with respect to the
initial data. The lack of the latter condition represents one of the main obstacles to tackle any further analysis
for the underlying PDE. In particular, it would cause incorrect solutions or non meaningful solutions at all.
As consequence one can not address, for instance, the numerical implementation of the solutions [8-10] or
controllability properties of the PDE [3]. One way to prove ill-posedness is to evidence the lack of continuous
dependence with respect to the initial data by showing that small initial data could generate arbitrarily large
solutions. This phenomena is so-called norm-inflation phenomena by obvious reasons. The main purpose of
this article is to study ill-posedness for a family of Boussinesq systems proposed by J. L. Bona, M. Chen
and J.-C. Saut in [5,6]:
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N+ we + (NMW)z + QWere — Wzar = 0. (1)
Wi + Mg + WWy + CNgzz — AWyt = 0.

We prove that the system satisfies the norm-inflation phenomena for certain constant parameters a, b, ¢, d €
R. Thus, the third Hadarmard’s condition is violated. Here  and w are real-valued functions whose physical
interpretation will be described in next lines. System (1) approximates the motion of small amplitude long
waves on the surface of an ideal fluid under the force of gravity in situations where the motion is sensibly
two-dimensional. In (1), the variable x is proportional to the distance in the direction of propagation, while ¢
is proportional to elapsed time. The quantity n(z, t) 4+ hg corresponds to the liquid’s total depth at the point
x and at time ¢, where hg is the undisturbed water depth. The variable w(z,t) represents the horizontal
velocity at the point (x,y) = (x,0hg), at time ¢, where y is the vertical coordinate, with y = 0 corresponding
to the channel bottom or sea bed. Thus, w is the horizontal velocity field at the height 6hg, where 0 is a fixed
constant in the interval [0, 1]. According to the choice of the constants a, b, ¢ and d, we can distinguish several
Boussinesq systems. In all these cases, the parameters must satisfy the following consistency conditions

1,, 1 1 )
= — — = = — — > 0.
a+b 2(9 3), c+d 2(1 0°) >0 (2)
In particular, one always has

a+b+c+d=1/3.

A detailed study on local well-posedness of system (1) on the real line was initially addressed in [5,6]. For
results on ill/well-posedness in periodic domains, depending on the sign of the abcd-parameters, we refer
the reader to [1] and [13].
In contrast with other classical wave models like Korteweg-de Vries (KdV) systems [11], Boussinesq system
(1) does not assume the uni-directional propagation of shallow water waves but describing the bi-directional
propagation of such waves. Its two-way propagation feature seems to have a wide range of applications in
different physical and mathematical branches. Indeed, among other studies, system (1) has recently been
addressed from the control theory point of view, see for example [2-4,12—-14], and the references contained
therein. In the articles above, the well-posedness property is necessary to prove their controllability and
stability results by introducing appropriate dissipative mechanisms into the system.

In this work we focus on studying ill-posedness of the system (1)-(2) posed in a periodic domain. It will
follows by showing that the system posses the norm-inflation phenomena. We restrict the abcd-parameters
to the cases

a=0, ¢=0, b>0 and d>0. (3)

The underlying system with such those restrictions is called purely BBM-type Boussinesq system, which in
turn is an instance of weakly dispersive systems, see e.g. [6, Sections 2.1 and 2.2]. To be more precise, the
system (1)—(3) becomes

N+ Wy — OMpzw + (M), =0 for x € (0,27), ¢ >0,
wy + Ny — AWy + ww, =0 for x € (0,27), ¢ >0,
_ .0 (4)
n(0,2) = n°(z) for x € (0, 27),
w(0,z) = w' () for = € (0,27),

with periodic boundary conditions

n(t,0) = n(t,27); n.(t,0) = n.(t,2m) for ¢ >0,
w(t,0) = w(t, 2m); wy(t,0) = wy(¢,2m) for ¢t > 0.
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The main result of this work reads as follows.

Theorem 1.1. Let s > 0 be given. There exist two sequences, one consisting of periodic initial data

770 2
( 5 > € [C’go([(), 27r])] satisfying
“ veN

v

—0 as v— 4
H, % (0,27) x Hp °(0,27)

and another one (Ty,),eN of positive times, tending to zero as v — oo, such that if ( v ) is the solution
wy

0
of (4)-(5) coming up from the initial data <Z’6 ) , then

()

Here H;S(O, 2m) stands for the homogeneous version of H,*(0,27), whose definition can be found in Sec-

— +00 as v — 4o0.
H; ®(0,2m) x Hp *(0,27)

tion 2. The precise definition of the periodic Sobolev spaces we shall use throughout this article is given
in Section 2. Furthermore, unless otherwise stated, we reserve the letter s to indicate a non-negative real
number standing for the periodic Sobolev index in H?®(0,27). We remark that Theorem 1.1 is sharp since
the system (3)-(5) is well-posed in H?(0,27) x H?(0,27) for 8 > 0 as showed in [13, Theorem 3.2]. The
analogous of the latest result in the real line was proved in [6, Theorem 2.1]. Moreover, Theorem 1.1 adds
one extra family to the ill-posedness result in [1, Theorem 5.2].

The scalar version of Theorem 1.1, in a periodic domain, was obtained by Bona and Dai in [7]. A
similar result for the scalar case in the whole real line R was proved by Phantee in [15]. The proof of
Theorem 1.1 closely follows the ideas from [7]. Bona and Dai constructed initial periodic data and proved
that the corresponding solution blows up in H, (0, 27)-norm when time is sufficiently short. One of the
main ingredients in their proof relies on the solutions’ knowledge of the forward linear problem. In our case,
thanks to the periodic framework and the spectral analysis carried out in [2] —to study controllability and
stability issues— we also have the explicit expressions for the solutions to the linear counterpart of (4)-(5).
This was done in [2] by combining tools from Fourier analysis with the well known Duhamel’s principle.
See Section 2 for details. In fact, the authors in [2] made a more refined spectral analysis to deduce the
asymptotic behavior of the eigenvalues associated with (4)-(5), which is essential for proving their exact
and approximate controllability results. On the other hand, apart from mentioned above, we show that a
sequence of initial periodic data (constructed by hand) generates another sequence of solutions to (4)-(5),
which in turn can be decomposed as the sum of three terms. The decomposition is closely linked to a
Picard’s iteration of second order applied to sequence of solutions to (4)-(5). The result then follows by
showing that the first and third terms of the expansion remain bounded in H, *(0,27) x H,*(0, 27)-norm
while the second one can be arbitrarily large and eventually goes to infinity when times goes to zero.

This paper is structured as follows. In Section 2, we state the well-posedness property of the linear version
of (4)-(5). We also collect some useful results from the spectral analysis made in [2]. In Section 3, we analyze
the Picard’s iteration method to solutions to (4)-(5). As a consequence, we prove Theorem 1.1, the main
result of this work. Finally, the Appendix is dedicated to describing computations needed for intermediate
steps in proving Theorem 1.1.
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2. Preliminaries

In this section we state some well-posedness results for both linear and nonlinear Boussinesq systems. A
remarkable fact is the knowledge of the solution associated with the linear case, see Theorem 2.2.

2.1. Linear systems
We first analyze the linearized version of (4)-(5), that is, we consider the following linear system

Nt + Wy — UMtz = 0 for x € (0,27), t >0,
Wy + Ny — dwyge =0 for x € (0,27), t >0,
n(t,0) = n(t,27); n.(t,0) = n(t,2m) for t > 0,

w(t,0) = w(t,2m); wy(t,0) = wy(¢,27)  for ¢t > 0,

n(0,z) = n°(x) for z € (0,27),
w(0,z) = w'(z) for x € (0,27),

where b > 0 and d > 0 as in (3). Its well-posedness was derived from the spectral analysis done in [13]
by using a Fourier approach. For the sake of completeness, we include such those results here. Firstly, we
introduce a few notations.

Given any v € L?(0,27) and k € Z, we denote by ¥}, the k-Fourier coefficient of v, defined by

27
~ 1 —ikx
_ v d
Uk 27T/v(33)e x,
0

and, for any m € N, we define the space

m o 2
H,"(0,27) = {v € L*(0,2m)

U—Zuke Z|Uk\ (1+ k5™ }»

keZ keZ

which is a Hilbert space with respect to the inner product

(0, W)y = Z D (1 + k%)™, (7)
keZ

The norm associated with (7) is denoted by || || It can be seen that

d"v 0"v
= — <r< —
&ET(O) 6$7_(27r), 0<r<m 1},

H(0,27) = {v € H™(0,2r) ’

where H™(0,27) stands for the classical Sobolev space of index m in the interval (0,27). We can extend
the definition of H,"(0,27) to the case m = s > 0, a non-negative real number, by setting

H;(0,2m) {v = Z ore'™™ € H*(0,2n)

kEZ

> loRP(1+ £ < oo}.

kEZ

For any nonnegative real number s, H, (0,27) can also be seen as a Hilbert space with respect to the inner
product defined by (7) with m replaced by s. In particular, for any v € H,(0, 27),

oll2 = [0l (1 + £%)°

kEZ
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For s > 0, we define the space H, *(0,27) as the topological dual of H(0,27):
—S S !
H,*(0,2m) = (H;(0,2m))" .

Similarly, and for a given § € R, one can define the homogeneous version of Hf (0,27) as

HP(0,27) = {v - Z ore’t® e HP(0,2n)
kEZ

> [P < oo}

kEZ
with norm
loliZe = 3 1[5l
keZ

On the other hand, for a > 0, let 1 (D,) be the Fourier multiplier operator given in terms of the Fourier
transform by

— k

Given g € R, let us introduce the Hilbert space
VP = HE(0,2m) x HJ(0,2n),

endowed with the inner product defined by

<<£> ’ <z;>> =b(f1,91)5 +d(f2,92)5

where (-,-)s denotes the inner product given in (7) with m replaced by 8. One can see that system (6) can
be rewritten in the following vectorial form

" n 0 7 n°
i (t)+ A (t) = ; (0) = ,
w . w 0 w w?

where A is a linear and compact operator in V7, see for instance [13], defined by

A= . (8)

1/1d(Dac) 0

Thus, if we assume that the initial data in (6) are given by

770 _ Z % ik
w’ | @ | ¢
kEZ k

then the solution of (6) can be formally written as

(2o
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where the pair (7 (¢), @ (t)) fulfill the following initial-value ODE with T > 0

(14 bk?) (M )s + ik =0,  t e (0,T),
(1 + dk?)(@y)¢ +ikiy =0,  t € (0,T), (9)
M(0) =13, W(0) =@y

Then, we have the following result:

Lemma 2.1. (see [13]) Let

+_ . _ 1
A, = xiko(k); o(k) = NCET BTk (ke Z\ {0}). (10)

The solution (M (t), Wk (t)) of (9) is given by

~ 1 T+ dk2 ) L+ dk? o\ )
W= (’7“* 1+bk2’“2>eA“*(““l?‘\/mwg“”’

(11)
R U O S =D R T30k o\ st
wi(t) = B ( 1+dk277k+wlc e - T e~ Wk e
if k #0 and
ho(t) = g, (12)
by _ 20
wo(t) = wp.

Thanks to Lemma 2.1, one can prove that the operator A generates an analytic group in V7.

Theorem 2.1. (see [15]) The family of linear operators (S(t))i>o0 defined by

0 P~ 0
so(h)- (&)= ((5)),
keZ

(¢
where the coefficients <T€((t))> are given by (11)-(12), is a group of isometries in V?, for each 3 € R.
Wy,

Moreover, its infinitesimal generator is the operator (D(A), A), where D(A) = V? and A is given by (8).

From Theorem 2.1 and standard techniques from semigroup theory, we also have the following global
well-posedness result:

0
Theorem 2.2. (see [15]) Let T > 0 and 8 € R. For each 7]0> € VP and <f> € L' (0,T;VP), there
w )

exists a unique solution (n,w) € W ([0,T]; VF) of the system

(2) eea(t)o= (1) (2)o=(5),

which verifies the constant variation formula
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g = n | — s ! s)ds
<w><t>—s<t><wo>+0/5<t ><g><>d.

Moreover, if (g) = (8) it follows that <Z)> € C¥(R, VP, the class of analytic functions int € R with

values in V5.
2.2. Nonlinear systems

Consider now the nonlinear Boussinesq system

N+ We — DMz + (MW = f for x € (0,27), t >0,
Wi + Nz — dWigr + WW, = g for z € (0,27), t >0,
n(t,0) = n(t, 2m); n.(t,0) = n(t,2m) for ¢ > 0,

w(t,0) = w(t,2m); we(t,0) = w,(¢,2m) for ¢ > 0,

n(0,z) = n°(x) for x € (0,27),
w(0,7) = w'(x) for « € (0, 2m).

As in the linear case, we can write it as

(n _ . U [ () U] _
(D)oo (o (3) Qo-(2) o
where N : V® — V* is the nonlinear operator defined by

0\ (D))
(1) -(mai®))

We have the well-posedness result for the nonlinear system for s > 0:

Theorem 2.3. (see [13]) Assume that b > 0 and d > 0. Let T > 0 and s > 0 be given. Then, there exists a
0
constant M > 0, depending on T, such that for any (Z)()) e V?® and any (;) € LY(0,T;V*=2) satisfying

()l = e 1)

the system (13)-(14) admits a unique mild solution < K ) € C([0,T]; V*®).
w

<M,
L1(0,T;Vs=2)

The next section is then dedicated to proving ill-posedness for the nonlinear system in case of negative
Sobolev indexes.

3. Picard’s iteration method and norm-inflation result

Picard’s iteration method is a useful tool to prove, for instance, existence of solutions for differential
equations. The method requires a starting point and later one makes an iterative procedure. It generates a
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sequence of elements whose convergence (in a suitable Hilbert space) is the primary purpose of the method. If
the sequence converges, then the limit is usually the desired solution to the underlying differential equation.
We use a truncated version of this method up to second order.

One can easily prove that the solution of (13)-(14), with the homogeneous source <f> = (8), can be
g

written in (0,7) x (0,27) with T' > 0, as follows

n(t,z) \ _ [ v(t,z) £(tx) y(t, x)
(w(t,m)) N (u(t,x)) * ((p(t,a:)) + (z(t,x)) ’ (15)

where

§ = t -7 T n” T
<*”>(t)_o/s(t >N<s< ><wo>>d7 (16)

and

The operator N is defined as

() = (90 0 +2) (e )+ (o4 2)(E 1)
z Ya(Dy) (% (cp2 + 22 4+ 2(up + uz + goz))) '

As in [7], the functions sine and cosine will be involved in our construction. The explicit computations
below shall be useful in our analysis.

Remark 3.1. For k € N, we have

. cos(kx) \ ([ cos(kx + ko(k)t) + cos(kx — ko(k
0 B 0
. sin(kz) \  ( sin(kx + ko(k)t) + sin(kz — ko (k
0 B 0
. o\ 0
cos(kx) |\ cos(kx + ko(k)t) + cos(kx — ko(k
. 0o\ 0
sin(kx) |\ sin(kzx + ko(k)t) + sin(kx — ko(k

where (S(¢))¢>0 is the group defined in Theorem 2.1, and o(k) is given by (10).

Remark 3.2. A straightforward computation combined with Remark 3.1 yield

/ sin(kz — 1)\, ( Mi(t,z) + Ma(t, )
/S’ t—rT ( 0 ) dr = ( 0 > ,
0
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/S(t—T) (sin(kxo-i-lT)) dr — (Mg(t,x)?)—Mél(t,x)) ’
0

for all k € N and [ € R, where

M (t,x) = m (cos(kx — It) — cos(kx + ko(k)t)),
Ma(t, ) = % (cos(ka — It) — cos(ka — ko (k)1)) |
My(t,z) = % (cos(kz + ko (k)t) — cos(ka + 1t)),
Ma(t,z) = m (cos(kx — ko (k)t) — cos(ka + 1t)) .

Remark 3.3. Let k£ € N. For « > 0, the Fourier multiplier operator ), (D,,) satisfy

e o (D,)(sin(kz)) = —iﬁ cos(kx),

e Vo (Dy)(cos(kx)) = im sin(kx),
o Yo (D;)(C)=0, forall C € C.

Taking into account these remarks, we can now pass to prove the main result of this work.
8.1. Proof of Theorem 1.1

Let s > 0. The proof consists of verifying that the first and third terms in (15) are bounded in V' ~* while
the second one is arbitrarily large by considering suitable initial value data. To do that, we take k; € N
large enough and set ko := k1 + 1. Let

7%\ [ sin(kix) + sin(kez)
wO |\ sin(kyz) + sin(koz) |
Throughout this proof, we consider the following family of 2w-periodic initial data

0 0
n |

where v > 0 will be determined later on. Note that those values depend on k;. To abbreviate the notation,
we just write 79, w9, n° and w® instead of 7721’ wgl, 7]21 and wgl. On the other hand, observe that

27 27
O(x)de = [ w®(z)dz =
O/n()d / (2)dz = 0
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is closed in V*®. Then, Theorem 2.1 ensures that (S(¢))scr is a group of isometries in V~°. It immediately

so()), -] ()

Hence the first term in Picard’s iteration, see (15), is uniformly bounded in V' ~%, whenever v — s < 0. To
bound the second term, we require a more delicate analysis. For the reader’s convenience, we leave the proof

yields

~ K70 (18)
V—s

of the following estimate in the Appendix, see (25):

).
J(5)es

To analyze the last term, see (17), we shall need the next result whose proof can be found in [7].

~ K. (19)
Vs

Lemma 3.1. Let F,G € H;(O7 2m) with s > 0. There exists a constant C > 0, depending only on s, such that

[$a(De)(FG) | 150,20y < ClIF500,2m) |Gl 50,2, (20)

for any a > 0.

For T > 0 we set X7 := [C([0,T]; Lz)]Q. From (17) and estimate (20), it follows that

)

T

S / (lwllgz e + 2l 2 + llull g2 1€ + Yl + e + 2ll g2 1§ + wllL2) (7)dr
Xr 0

T
2 2
[ (103 + el + 2l ol + s Nzl + el el (e
0

(@) IO AOL) ), 6L

<or

XT‘

T <5> 4T <y> or S(t)<n2> <5>
¥ Xr & Xr w Xr ¥ Xr
n° y ¢ y
ror su)( ) ( ) ror ( ) ( )
w XT z XT ® X7 o X7

Hence, taking into account (18)-(19), we deduce

)], =2 ()

where the implicit constant is independent of k; and

2

<A4TI
Xr

+ 27T
Xr

(21)

)

Xr

)

A = AT 27359, =4 (Tky + T%f”) .
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Inequality (21) involves quadratic and linear terms, so one can see it as a polynomial inequality of order

om (1)

Since <Z> € [C([0,T]; L?)] ?_ it follows that £ is a continuous function on T, with £(0) = 0. The task now

two with variable

Xr

is optimizing v < s, and finding ko € N (large enough), Ty (small enough) so that k]~ and £(T") remain
uniformly bounded while kf”t will be arbitrarily large for all ¢ € [0, Ty] and for all ky > ko and 0 < T < Ty.
The next step consists of validating this argument.

Let Ty = k:l_p with p > 0 to be chosen later. For T' < T, we see that

A=0 (ki’”’Q” + k‘f”*gf’) and T = O (k}*ﬂ + kf”*”’) .
All the above exponents of ki are negative if, for instance, p > 3v/2. We choose p = py with p > 3/2.
Now take ky € N large enough so that II < % and both Ty and A shall be very small for all k&1 > k.
Moreover, without loss of generality, we can assume that the implicit constant in inequality (21) is just the

constant one. Otherwise, we consider another suitable kg larger than the previous one. Therefore, in this
circumstance, it follows that for all 0 < T < Ty

A A ZTZZ§TA > 0
and hence the quadratic polynomial

p(¢) =2T¢% + (T~ 1)¢ + A
has two positive roots 0 < (7 < (2, where

(1-1T)—A
= < .
C1 iT < 4A

Furthermore, p(¢) < 0, for ¢ € (¢1,(2). From inequality (21), we obtain
p(L(T)) = 0.

From the continuity of the real valued-function £ on T', we deduce that

)

By induction, we can construct sequences as below:

= E(T) — £(0> <@ < 4A, forall T € [O,TQ]
Xr

e An increasing sequence of positive numbers (k) en = (kY),en with lim &, = 4o00.
V—r00
o A decreasing sequence of positive numbers (7, ),en = (k;V(M)),,EN, representing the times, with

lim 7, = 0.

V—r00
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0
o A sequence of initial data (first terms in Picard’s iteration) ( n’() > with
w
veN

1%
7
wd

e A sequence of second terms in Picard’s iteration ( & ) with
Pv
veN

~ k;(v—S).

V-—s

~ kl{(%)t, for all t > 0.
V—S

e A sequence of third terms in Picard’s iteration (‘y” ) with
veN

(&)

In this way, according to (15), the sequence of solutions (

~ BYGT200  gor all £ € [0, kTP,
V*S

U

Wy

> to (13)-(14) associated to the initial
veN

v

0
data (Z’a ) will be arbitrarily large in V' ~*-norm if, for instance, v € (0, s) and p € (2,2). This is due
veN

&

Pv

to the second term < ) is arbitrarily large at time 7, in V ~®-norm. The proof is now completed. O

4. Appendix

This section is dedicated to proving Estimate (19) for the sequence of second terms in Picard’s iteration.
Recall by (16), the second term is given by

/ S(t— TN <S(T) (;7; ) ) dr, (22)

where the operator A is defined in (14). Using Remark 3.1, we deduce

where

0= 0 = sin(kix + k1o (k1)t) + sin(krz — k1o (k1)t)

3

+ sin(kgar + ]ng’(kig)t) + Sin(kgl“ - kgO’(k‘g)t), ko := ki + 1,k € N.

It allows us to deduce
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I 4 10
Pwd = "Ii(t,z) +2)  Iit,v),
Jj=1 j=5
where
L () = 1 — cos 2(k19€2+ k‘10(k1)t>’ Lt,z) = 1 — cos 2(k1x2 — k:la(k;l)t)7
Ly(t, ) = 1 —cos 2(k29;+ kzo‘(ka)t)7 Li(t,z) = 1 —cos 2(k2m2 - k2a(k2)t)’
Is(t,2) = cos(2k10(k1)752) — cos(2k1x)7
Io(t, ) = cos ((k1 — k2)x + (k1o (k1) — kao(ke))t) — cos ((k1 + k2)x + (k1o (k1) + koo (k2))t)
6(t,x) = . ,
Lo(t2) = cos ((k1 — ka)x + (ko (k1) + koo (ke))t) — cos ((k1 + ko)x + (k1o (k1) — koo (k2))t)
K 2 ,
I _cos((ky — k2)x — (k1o(ky) 4 koo (k2))t) — cos (k1 + ko) — (k1o(k1) — koo (k2))t)
8(15,.’[:) = 5 ,
I _cos((ky — ko)x — (k1o(k1) — koo (ka))t) — cos (k1 + ko)x — (k1o(k1) 4 koo (k2))t)
g(t,x) = 5 ,
Lo(t,z) = cos(2k20(k2)t2) — cos(ngx).
Note that

=l
N

N( ) _ (wbwm)(n‘)::w% > |
Lg(Dy) (w0 )

Using several times Remark 3.3, we obtain

. 4 10
wdD@(ﬁmﬁ):E:Lﬂam+a§:Lﬂu@,
j=1 Jj=5

where now L; are known functions given by

Li(t,x) = Yp(Dy)(I1(t, ) = sin ((2k1z + 2k10(k1)t)) ,

. 1
11 b(2k, )2

Lo(t,x) = Yp(Dy)(I2(t, z)) = sin ((2k1z — 2k10(k1)t)) ,

. 1
Tt 0(2ky )2

Ls(t,x) = ¥p(Dy)(I3(t, z)) = sin ((2kqz + 2ko0(k2)t)) ,

. 2
T 1 b(2ky)2

Ly(t,x) = Yp(Dy)(1a(t, x)) = sin ((2kox — 2kqo (k2)t)) ,

. 2
"1+ 0(2ks)2

Ls(t,z) = ¥u(Da)(I5(t,2)) = *iW;]ﬁ)Q sin (2k12) ,
%@@ydmwg@ﬁ£»_QOfﬁh?épﬁm«m@n+wmwo@d@m)

i(k1 + ko)
T 2(1+ by + k2)?)

sin ((k‘1 + k‘Q)JJ + (kla(kl) + kQO'(k‘g))t) s
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L7(t,$) = ¢b(Dz)(I7(t»x)) = 2(1 _Z’_(lztk: ﬁ2])€2)2) sin ((kl - kZ)x + (klo(kl) + ]fZO’(kQ))t)
i(k’l + ]{?2) .
S (k1 + k2)z + (k1o (k1) — k20 (k2))t) ,
Ly (t, ) = ¥u(De) (Is(t, x)) = 30 i(];k: 22)2) sin (k1 — k2)x — (k1o (k) + koo (k2))t)
i(lﬂ + ko) .
=B b + Ry o (k) (o (hn) = kao ).
Lo(t,x) = thp(D)(Io(t, x)) = 2 :L(lzzkl 62/)@)2) sin (k1 — k2)x — (k1o (k1) — koo (k2))t)
’L(kl + kg)

TS b0 1 T Sk H ) = (ko (k) + Rao(R2)t)

LlO(t7m) = 'l/}b(Dr)(Iw(tax)) =1

. ko :
1—{—[)(72]@2)2 Sin (2]{321’) .

Due to the explicit expression of o(k), see Lemma 2.1, all the denominators involved in the following
computations are never zero. From Remark 3.2 and the previous identities, it follows that

(Nl (t,x ) /St— <L1 Tm))dT: (zH_bgkl)Q (Nll(()t,:c)Jer(t,x)))’

with
1 cos (2k1x + 2k10(2k1)t) — cos (2k1x + 2k10(k1)t)
Nl (t, .’E) = )
k:la(kl) — k10'(2]€1>
9 cos (2kyx — 2k10(2k1)t) — cos (2k1x + 2k10(kq1)t)
Nl (t, x) = )
kla(kl) + k10'(2k‘1)
<N2t$> /St— ( 2T$)>d7_<_iH[)ZCW(N21(t?x)+N22(t7x))>,
0
with
1 cos (2k1x — 2ky0(k1)t) — cos (2kix + 2k10(2k1)t)
N2 (t, LE) = )
]{?10'(]{71) + k10(2]€1)
9 cos (2k122k10(k1)t) — cos (2k1x + 2k10(2k1)t)
Nl (t, IE) = 9
kla(kl) — ]{?10’(2kl)
t
Ns(t,z) | _ /S(t I Ly(r,z) |, _ ~irrpaey (N3 (tx) + N3(t,2)) ’
0 0 0
0
with
1 [¢0)] (ngx + 2k20(2k2)t> — COS (2k2$ + 2k20(k2)t)
N3 (t, x) = )
kQU(kQ) — k20(2]€2)
N3 (t Jj) Ccos (ngx — 2]{320(2]{12) ) — COS (2k2$ + nga'(kg)t)

kQO—(kQ) + k20(21€2) ’



with

with

with

with
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Nito)\ | Lira)\ , [~ (NMt2) + N2 ()
(757 ) = [ (PG are (et O )
0

cos (2kax — 2koo(k1)t) — cos (2kex + 2koo (2k2)t)
kio(ke) + koo (2k2) ’
cos (2kox2koo (ko)t) — cos (2kax + 2koo (2k2)t)
koo (ka) — koo (2ks) ’

Ni(t,z) =

Ni(t,z) =

<N5(ga$)> _/tS(t—T) <L5(S,x)> dr — <—iﬁﬁkl)z(Ng(t,a:)))7
0

(Nﬁ
<

Né (t,x) =
Ng(t,:z:) =
Ng(t,a:) =

Né(t, x) =

2(14+b(k1—k2)?)

cos (2]4111‘ — 2]4110(2]€1)t) — COS (2]€1l‘ + 2k10(2k1)t)

Né(t7x) - 2]1710’(2]431) ’
(t,z) | / Lg(7, )
0 >—O/S(t—7')< 60 >d7’

2(1+b(k1+k2)2)
0

)

i(ky—ks) (NL(t, ) + N2(t,2)) — __i(kithka) (N3(t,z) + Né(t,x)))

CcoS ((kl — /fg).’l? + (k‘l — kJQ)U(kil — kg)t) — COS ((kl — k‘g)l‘ + (kilo'(kl) — kQU(kQ))t)
kla(kl) — kQU(kQ) — (kl — kg)O’(k’l — k‘g)
COS ((kl — kQ)l' — (k?l — kg)a(kl — kg)t) — COS ((kl — kg).’[ + (kl(f(kl) — kQO’(kQ))t)

k‘lU(kl) — kQJ(kQ) + (k‘l — kQ)J(kl — ]{72)
CcoS ((kl + /fg).’l? + (k‘l + kJQ)U(kil + kg)t) — COS ((kl + k‘g)l‘ + (kilo'(kl) + kQU(kQ))t)

kla(kl) + kQU(kQ) — (kl + kg)O’(k’l + k‘g)
COS ((kl + kQ)l' — (k‘l + kg)a(kl + kg)t) — COS ((kl —+ kg).’[ + (kl(f(kl) + kQO’(kQ))t)

kio(k1) + kzo(kz) + (k1 + k2)0(k1 + ko)
t

<N7(g’:”)> :/S(tw) <L7(8’x)> dr

y

N%(t, x) =
N72(t, x) =

N2(t,x) =

0

2(1+b(k}17k72)2) 1+b(k)1+k2)2) ,
0

St ey (N7 () + N2 (6, 2)) = s ey (NP(t2) + NA(E, ) )

[¢0)] ((kl — ]CQ)QS + (kl — k’g)(]’(k’l - kg)t) — COS ((kl - kg)fﬂ + (klcr(kl) + kzo’(kg))t)

kld(lfl) —+ kQO’(kQ) - (kl — kQ)J(kl — kg)
cos ((k1 — k2)x — (k1 — ka)o (k1 — k2)t) — cos (k1 — ka)z + (k1o (k1) + koo (k2))t)

kro(k1) + koo (k2) + (k1 — k2)o (k1 — k2)
cos ((k1 + k2)x + (k1 + k2)o (k1 + k2)t) — cos (k1 + k2)x + (kro (k1) — k2o (k2))t)

kld(lfl) — kQO’(kQ) - (kl + kQ)J(kl + kg)

)

)

)

)

)

)

)

15
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CcoS ((lﬁ + kz)l‘ — (]{71 + /€2)U(/€1 + kz)t) — COoS ((kl + ko)x + (kld(kl) —

kQO'(kQ))t)

N?(t, x) =

t

<N%?@>-—/S@7)<Ld9@>d7

0

i(k1—k2) i(ky k)
_ (2(1“(1’“1——2@)2) (Ng (t,2) + N3(t, %)) = st 7o)

kla'(k‘1> — ]{)20'(]62) + (kl + k)g)O’(/ﬁ + k‘g)

(N3(t, ) + Ni(t,z)) )

)

0
with
Nl(t x) _ COS ((kl — k2)$ — (kla(kl) + kQU(kQ))t) — COS ((kl — k2)$ =+ (kl ) (kl — kg)t)
8" /{310'(]{71> + kza‘(kg) + (k’1 - kg) (
NQ(t x) _ COS ((/ﬂl — kg)l’ — (kla(kl) —+ kg(f(k‘g))t) — COS ((kl — kQ)Qﬁ — ]fl ) (kl — kg)t)
s\ kio(k1) + koo (ke) — (k1 —
Ng(t x) o COS ((k‘l —+ kg)l’ — (kla(kl) — kg(f(k‘g))t) — COS ((kl —+ ]{)2)93 + Ifl —+ k2) (kl + kQ)t)
ST ko (ky) — koo (ko) + (k1 + k2)o (k1 + ko
N4(t x) - COS ((kl —+ kg)l’ — (kla(kl) — kQO'(k‘Q))t) — COS ((kl —+ ]{ZQ)QC — kl —+ k2) (kl —+ kg)t)
sy kro (ki) — kao(ko) — (k1 + ko)o (k1 + ko)
(57) - [ron (7)o
_ (ﬁ (N (t,2) + N3 (1)) ~ e sy (N3 (6 ) + N (1) ) |
0
with
Ni(t,z) = cos ((ky — k2)x — (ko (k1) — koo (kz))t) — cos ((k1 — ko)o (ki — ko)t)
oib )= Fro (k1) — koo (ka) + (k1 — ka)o(kr
N (t ) COS ((k‘l — /4}2)$ — (k‘10’(k1) — k‘QO’(kz))t) — COS ((k‘l ) (]{11 — k‘g)t)
A ko (k1) — koo (k) — (k1 — ka)o(kr
N3(¢ ) __cos ((kl + k2)$ — (k‘10’(k‘1) + kiQO'(kg))t) — COS ((k‘l + ]4?2).’13 + (k1 + ]412) (]411 + k‘g)t)
9( )= klg(k1)+k20(k2)+(k1+k2) (k1+k2
Ni(t,z) = cos ((k1 + k2)x — (k1o(k1) + koo (ke))t) — cos ((k1 + k2)x — (k1 + k2)o (k1 + ko)t)
o\L L) = kld(kl) + kQU(kQ) — (]Cl + kQ) (kl + kg
(NIO t X > /St— (Ll()(T x))dT: <_11+b?#2)2 (Nllo(t,l‘))>
0 )
with

Niy(t,x) =

Thanks to the real mean value theorem applied to the cosine function, we obtain

cos(kx — wit) — cos(kx — wat)

Sta
w1 — W2

cos (2kox — 2ka0(2ka)t) — cos (2kox + 2ko0 (2k2)t)

w1 # we, t > 0.

b

)

)

)

)

)

)

)

)
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From all the above identities, we get

t = = t I
/S(t— ) <wb (77 v )) (r,z)dr = /S(t—T) Z () dr
0 =1
0 0 0
10
| YoM,
=1 ’
0
where
ik 't, 1<1<5; 1=10,
Ni(t,x) ~ i 1
mt Zkl t, 6 < [ < 9
Proceeding in a similar way, we obtain
0 0

[ (@) ) | Sonien |

where
ik, 1<1<5; =10,
THat — W L DS Es Y

Combining (22), (23) and (24), <£> can be written as
¥

¢ =k t -7 T E T
((p)(t,m)—kl O/S(t )N(S()<w0>>d

e O/tS“_T) (wb (77:; ﬁ)) (T,x)d7+0/t5(t—7) Ly, ((ﬁf) (r,x)dr

10
k%V Z Nl (ta ‘T)
=1

)

10
k%y Z R(t, x)
=1

where now
10 10
KDY Nt ) ~ ikt kYYD Rt x) ~ ikt
=1 =1

Therefore, one gets the following estimate for the second term in Picard’s iteration

).
J(5)es

~ K2t

Vs

17

(23)

(25)
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