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Abstract
Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring 
could also be expanded to commercial and research-focused microalgae cultivation. Currently, the distinctive optical proper-
ties of different microalgae groups are targeted for monitoring. Since different microalgae can grow together, their spectral 
signals are mixed with ambient properties, making estimations of species biomasses a challenging task. In this study, we 
cultured five different microalgae and monitored their growth with a mobile spectral imager in three separate experiments. 
We trained and validated a one-dimensional convolution neural network by introducing absorbance spectra of the cultured 
microalgae and simulated pairwise mixtures of them. We then tested the model with samples of microalgae (monocultures 
and their pairwise mixtures) that were not part of the training or validation data. The convolution neural network classified 
microalgae accurately in the monocultures (test accuracy = 95%, SD = 4) and in the pairwise mixtures (test accuracy = 100%, 
SD = 0). Median prediction errors for biomasses were 17% (mean = 22%, SD = 18) for the monocultures and 17% (mean 
24%, SD = 28) for the pairwise mixtures. As the spectral camera produced spatial information of the imaged target, we also 
demonstrated here the spatial distribution of microalgae biomass by applying the model across 5 × 5 pixel areas of the spec-
tral images. The results of this study encourage the application of a one-dimensional convolution neural network to solve 
classification, regression, and distribution problems related to microalgae observation, simultaneously.

Keywords  Microalgae monitoring · Hyperspectral imaging · Machine learning

Introduction

Microalgae are a cornerstone of the global carbon cycle 
(Thornton 2012), yet they may also form harmful algal 
blooms in natural waters (Sellner et al. 2003). In addition to 
their ecological importance, microalgae are the subject of 
active research in the production of bio-based compounds, 
food, clean water, and energy (Devadas et al. 2021; Kus-
mayadi et al. 2021; Yadav et al. 2021). For these reasons, 
accurate assessment of microalgae growth is of interest 
for microalgae biotechnology as well as for environmental 
monitoring. Microalgae are appealing targets for observation 
by optical techniques due to their inherent optical features, 

especially their photosynthetic pigments. Spectroscopic 
methods are used in remote sensing and in many ways also 
in laboratory applications to monitor microalgae (e.g. Havlik 
et al. 2013, 2022; Murphy et al. 2014).

In addition to spectroscopy-based approaches, other 
high-throughput methods have also been developed to 
assess and monitor microalgae. Traditionally, carotenoid 
pigment composition of microalgae together with Chemtax 
software (Mackey et al. 1996) and more recently fatty acids 
composition together with Bayesian modelling (Strandberg 
et al. 2015) have been used to identify different microalgae 
at the class level. Moreover, molecular biology tools, such 
as primer-independent metatranscriptomic analysis, have 
been used to identify microalgae from freshwaters (Vuorio 
et al. 2020). However, biochemical methods require time 
and expensive equipment, meaning their availabilities are 
limited. Instead, spectral imagers could offer cost-efficient 
in situ monitoring in a variety of volumetric scales.

As microalgae typically grow in suspension, their opti-
cal signals are mixed with those of the growth environment 
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and possibly other microalgae and other organisms such as 
bacteria and protozoa. The sizes and structures of the micro-
algae cells and population density also affect the propagation 
of light (Bricaud et al. 1988; Bernard et al. 2009; Fujiwara 
et al. 2011). Thus, the key challenges in the use of spectro-
scopic monitoring for microalgae include the identification 
and quantification of different microalgae when one observa-
tion may contain signals from several targets. This is impor-
tant when using point sensors, such as spectroradiometers or 
spectrophotometers, or spectral imagers. A spectral imager 
produces a stack of images taken on several wavebands. In 
the case of a hyperspectral imager, images are produced on 
more than 100 wavebands. As opposed to point sensors, a 
spectral imager also yields spatial information of the imaged 
target.

Different approaches to unmix the mixed algal signals 
have been used in previous studies. For example, Hunter 
et  al. (2008) experimented with pseudo-communities 
consisting of different microalgae colour groups. They 
used derivative transformations of the reflectance spectra 
recorded with a spectroradiometer to accentuate the dif-
ferences in spectral signal caused by the different colour 
groups. They also used spectral reflectance and deriva-
tive reflectance indices to resolve pigment concentrations. 
Mehrubeoglu et al. (2014) used non-negative linear least 
squares (NNLS) for unmixing of absorbance spectra to solve 
proportions of microalgae from pairwise mixtures imaged 
with a spectral imager. The model was able to solve per-
centages of the original samples in the mixtures, but algal 
biomass was not directly determined. As emphasized in 
previous studies (Bricaud et al. 2007; Mehrubeoglu et al. 
2014), the unmixing of spectral signals of microalgae can 
be a complex task because the properties of microalgae cells 
— their structures, size, and shapes — and the concentration 
and arrangement of their pigments introduce nonlinearity 
to the propagation of light in the microalgae suspension. 
However, in addition to physics-based modelling of opti-
cal properties of microalgae, machine learning models that 
solve non-linear problems with high efficiency have recently 
attracted researchers’ attention.

Artificial neural networks are machine learning algo-
rithms that predict parameters from a given input based on 
the data that they have been trained with. Convolution neural 
networks (CNN) are a versatile tool due to the algorithm’s 
capability to extract features from the training data. The 
principle of CNN is that a given dataset is treated with con-
volution kernels, that is, with filters that remove irrelevant 
features. The convoluted data then act as the input to a neural 
network. Conceptually, a neural network consists of nodes 
organized in layers, and outputs computed in the nodes of 
previous layer propagate to the next layer, and finally to the 
output of the model. Pant et al. (2020), Yadav et al. (2020), 
and Otálora et al. (2021) reported promising results from 

the identification of microalgae species from photomicro-
graphs using a CNN. Bricaud et al. (2007) used a multi-
layer perceptron (MLP), that is, a neural network without the 
convolution treatment, to resolve chlorophyll concentrations 
and microalgae size classes from satellite images. Medina 
et al. (2017) compared CNN and a MLP classifier in the 
detection of algae in videoframes recorded for underwater 
pipeline inspection. They found that a CNN performed better 
than a MLP in the task, although both methods yielded high 
(> 95%) test classification accuracies. A CNN is generally a 
popular model to apply on image data, but it can also be used 
for spectral data, in which case a one-dimensional convolu-
tion neural network (1D CNN) is used. In addition to clas-
sification as tested in the previous studies, CNN could also 
be used to solve regression problems, such as microalgae 
biomasses from absorbance spectra. Recently, Maier et al. 
(2021) applied a 1D CNN to resolve chlorophyll concentra-
tion in satellite images.

In this study, we tested a 1D CNN to assess the biomass 
of microalgae belonging to different colour groups (blue-
green, i.e. cyanobacteria, brown, and green algae). We tested 
unmixing of the species from samples of monocultures and 
pairwise mixtures imaged with a hyperspectral imager. We 
hypothesized that the trained and validated 1D CNN resolves 
microalgae species and biomass from monocultures and 
pairwise mixtures with good test accuracies and low test 
errors. We also aimed to demonstrate the spatial distribution 
of biomass by applying the 1D CNN across a spectral image.

Materials and methods

Algae cultures

This study consisted of three separate culturings of micro-
algae purchased from the Culture Collection of Algae at the 
University of Cologne (CCAC), Germany. In the first two 
culturings (hereafter Culturing I and Culturing II), the fol-
lowing strains were used: CCAC 3504 B Microcystis sp., 
CCAC 2944 B Synechococcus sp., CCAC 0064 Crypto-
monas ovata, CCAC 0102 B Peridinium cinctum, and CCAC 
3524 B Desmodesmus maximus. In the third separate cultur-
ing (Culturing III), the same cyanobacteria and green algae 
strains were used (CCAC 3504 B Microcystis sp., CCAC 
2944 B Synechococcus sp., and CCAC 3524 B Desmodes-
mus maximus), but the Cryptomonas and Peridinium strains 
were not included.

In culturings I and II, three replicate cultures of each 
alga were grown in 250-mL cell culture flasks using Waris-
H medium (McFadden and Melkonian 1986), a 14:10 
light:dark cycle and 70–104 µmol photons m−2 s−1 irradi-
ance measured by a quantum sensor (HiPoint, Taiwan) at 
the level of culture flask caps using fluorescent lamps. The 
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datasets of spectral images of monocultures generated from 
culturings I and II were also used in our previous study 
(Salmi et al. 2021), which describes a vegetation index-
based arrangement to monitor the growth of microalgae 
during their exponential phase. The duration of culturings I 
and II were 35 to 49 days.

In culturing III, algae were cultured in 250-mL cell cul-
ture flasks with a modified WC medium (Guillard and Lor-
enzen 1972, Online Resource 1). The culture medium was 
prepared with a phosphate concentration of either 20 µg 
L−1 or 80 µg L−1 to induce variation into growth due to 
the phosphorus availability. Culturing III was performed in 
cell culturing cabins, using 18 °C and 23 °C temperatures 
and a 12:12 light:dark cycle with fluorescent lamps with 
91–132 µmol photons m−2 s−1 irradiance measured by a 
quantum sensor (HiPoint, Taiwan) at the level of the bot-
toms of the culture flasks. Three replicates of each alga were 
cultured in each temperature and phosphate concentrations. 
The duration of culturing III was 18 days.

Spectral imaging and biomass assessment

Algae growth in culturings I and II was monitored with a 
spectral imager by sampling each replicate at least once a 
week prior to the stationary phase of their growth. In cul-
turing III, one replicate of each phosphate treatment in both 
temperatures was sampled for spectral imaging at least once 
before the stationary phase of the growth. In culturing III, 
the growth of each replicate was also monitored with a flow 
cytometer (Guava easyCyte, Merck Millipore, USA) two 
times a week to observe when the cultures reached the sta-
tionary phase.

For the spectral imaging, a sample (volume 2 mL) was 
pipetted on a 24-well plate and imaged in transmission light 
with a Specim IQ spectral imager (Specim, Finland). The 
well plate was placed on a diffusor (Dolan-Jenner, USA) 
illuminated by a broadband halogen (Fiber-Lite, DC-950, 
Dolan-Jenner, Boxborough, MA, USA). The illuminated 
diffusor plate was used as a white reference. Specim IQ 
used its internal dark reference in producing transmittance 
images. Specim IQ records 204 wavebands between 400 
and 1000 nm with 7 nm FWHM. However, 150 wavebands 
between 420 and 850 nm were included in this study because 
the edges of the recorded waveband range contained more 
noise. The imaging arrangement was described in more 
detail in Salmi et al. (2021). In this study, transmittance (T) 
images were converted to absorbance (A) images according 
to Eq. (1):

After imaging the monocultures, mixed algal communi-
ties were formed by mixing two different strains belonging 

(1)A = −logT

to the same or different microalgae groups. The total volume 
of a mixed sample was 2 mL, and the mixtures were imaged 
on the 24-well plates similarly to the monocultures.

Immediately after imaging, biomass of the monocultures 
was assessed from the samples that were left after the for-
mation of the mixtures. Biomasses were assessed using an 
electronic cell counter (Casy, Omni Life Sciences, Germany) 
that yields cell biovolumes based on pulse areal modulation 
that a passing particle causes to a detector. Biovolumes were 
converted to wet biomasses by expecting the cells to be isop-
ycnal with water. The expected biomass of each strain in a 
pairwise mixture was calculated by multiplying the biomass 
measured from the original monoculture sample by the frac-
tion that those were mixed in a sample.

Training and validation data augmentation

A region of interests (ROI) was extracted from the spectral 
images of each sample by cropping 50 × 50 pixel areas of 
the sample wells. The ground truth was one biomass value 
for each sample well. To efficiently train and validate the 
machine learning models, the ROIs were first chopped into 
smaller 10 × 10 pixel subsamples. This led to 25 spectral 
images originating from the 50 × 50 spectral images. The 
mean spectra of these subsamples were used to augment the 
dataset further by simulating combinations of microalgae 
spectra in mixtures. Before the simulation, mean spectra that 
had 751 nm/676 nm < 1.04 were omitted because they were 
too dilute for the camera system to detect. NIR/Red index 
was chosen here because it turned out to be a good biomass 
estimator for different species in our earlier study with the 
same camera system (Salmi et al. 2021) as well as in other 
studies (Xue and Su 2017). Figure 1 shows the number of 
original spectral images of each alga that were used for sub-
sampling, and data augmentation after the too dilute samples 
were omitted.

Two absorbance spectra xi and xj at a time were randomly 
selected from the dataset of mean spectra of 2,564 subsam-
ples to form 100,000 simulated microalgae mixtures (Fig. 1). 
As a result of the simulation, we had a set Xsim of linear 
mixtures of augmented spectra (2):

where i, j ∈ [0, 2563] and xsim ⊂ Xsim . The corresponding 
simulated biomass vector msim ∈ ℝ

6 for all species and 
media was treated similarly (3):

to form the simulated ground truths Msim for the simu-
lated mixtures. From the 2,564 subsamples, 600 samples 

(2)xsim =
1

2
(xi + xj),

(3)msim =
1

2
(mi +mj)
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contained only the culture medium from different imaging 
days. This meant that some of the simulated mixtures con-
sisted of culture medium.

Training and validation

All the data management and modelling were done with 
Python using Jupyter notebooks, Keras library, and Tensor-
flow backend. Computing was done using a Nvidia Tesla 
V100-SXM2 16 GB GPU unit.

For training and validation of the 1D CNN, the aug-
mented dataset Xsim was divided so that 80% was used for 
training and 20% for model validation. Different topologies 
for the model were tested: two or three convolution layers 
were tested, with the first layer containing 128 convolu-
tion filters, the second 64 or 32, and the third 32 (Table 1). 

The convolution kernel size was 3, and after each convo-
lution layer, the maximum pooling layer with pool size 2 
was applied. The neural network had one or two dense lay-
ers, in addition to the output layer, which had 6 nodes. The 
dense layers had either 256, 128 or 64 nodes as presented 
in Table 1. Before the output layer, a dropout layer with 0.5 
weight was applied to prevent overfitting of the model (Ben-
gio et al. 2017). The activation function for each convolution 
and dense layer was a rectified linear unit (ReLu), and the 
model optimiser was a gradient-based stochastic optimizer 
(Adam) with a learning rate of 0.001, �1 = 0.9 , �2 = 0.999 
and � = 1e−7 . Models were trained for 100 epochs using a 
sample batch size of 512. Training was performed against 
biomass set Msim. Activation of the output layer was also 
ReLu because we wanted to form a regression model from 
spectra to species-wise biomasses. Loss was calculated as 

Fig. 1   Schematic diagram of the training and validating the 1D CNN. The table shows the number of images used in the training and validation 
data augmentation

Table 1   Training and validation losses, root mean squared errors, and 
standard deviations (SD) of three replicate runs of 1D CNN using 
different model topologies. The numbers for convolution layers refer 
to the number of convolution filters in each layer. The numbers for 

dense layers refer to the number of nodes in each hidden layer. The 
last layer always had six nodes, because the model had outputs for the 
five microalgae strains and an empty sample

Model topology Loss, mean squared error, × 10−3 
(SD × 10−3)

Root mean squared error, g L−1 (SD)

Convolution layers Dense layers Training Validation Training Validation

1 128/32 128/6 0.27 (0.02) 0.13 (0.02) 0.016 (0.001) 0.012 (0.001)
2 128/32 256/6 0.16 (0.01) 0.08 (0.00) 0.013 (0.000) 0.009 (0.000)
3 128/64 128/6 0.29 (0.01) 0.12 (0.01) 0.017 (0.000) 0.011 (0.000)
4 128/64 256/6 0.17 (0.01) 0.08 (0.01) 0.013 (0.001) 0.009 (0.001)
5 128/64 256/128/6 0.12 (0.00) 0.08 (0.04) 0.011 (0.000) 0.009 (0.002)
6 128/64/32 256/6 0.17 (0.01) 0.09 (0.01) 0.013 (0.000) 0.010 (0.000)
7 128/64/32 256/128/64/6 0.23 (0.01) 0.11 (0.02) 0.015 (0.000) 0.011 (0.001)
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mean squared error. The performance of different model 
topologies (Table 1) was evaluated by calculating the root 
mean squared error between the expected and predicted 
biomasses.

The lowest training and validation losses and root mean 
squared errors were observed in models 2, 4, and 5 (Table 1), 
which had two convolution layers with 128 and 32 or 128 
and 64, convolution filters. These topologies had 256 nodes 
in the first dense layer (Table 1). Models with 128 in the first 
dense layer (models 1 and 3) had higher validation and train-
ing losses and root mean squared errors than did models 2,4, 
and 5 (Table 1). Models with three convolution layers (6 and 
7) had higher losses and root mean squared errors than did 
models 2, 4, and 5 with two convolution layers.

Testing

Test data consisted of samples of monocultures (see Online 
Resource 2 for the absorbance spectra) that were not 
included in the training and validation data and their pair-
wise mixtures. These samples were not subsampled; instead, 
mean absorbance spectra from the 50 × 50 pixel ROIs were 
used for testing. These samples were from the later phase of 
exponential growth, when the microalgae biomasses were 
higher, so that mixing them would not dilute them below 
detection limit. Altogether 26 samples of monocultures and 
13 pairwise mixtures were used for tests (Fig. 2). We also 
applied the 1D CNN for larger images of the samples to 
visualize the distribution of microalgae biomasses. These 
images contained also structures and edges of the well 
plates. The spatial visualization was done by applying the 
1D CNN to 5 × 5 pixel regions of an image.

Test classification accuracy was calculated to test the per-
formance of each model topology in resolving the micro-
algae species. Test classification accuracy was calculated 
as the percentage proportion of the correctly assigned algal 
label of the total number of labels. Root mean squared error 
as was calculated to evaluate the capability of each model 
in predicting the microalgae biomass. Percentage predic-
tion errors were calculated to facilitate interpretability and 
comparability of the modelling results. The prediction errors 
were calculated as

where Bexp is the expected biomass and Bpred the biomass 
predicted by the model.

All the tested model topologies yielded high test classifi-
cation accuracies for monocultures (≥ 95%, Table 2). Models 
1, 3, 4, and 5 yielded 100% test classification accuracies for 
pairwise mixtures. The root mean squared errors were rather 
similar for models 1, 3, 4, and 5 when tested for monocul-
tures (0.026–0.028 g L−1, SD = 0.001–0.004) and pairwise 
mixtures (0.021–0.022 g L−1, SD = 0.001–0.004). Generally, 
the differences in the test classification accuracies and root 
mean squared errors were small between the topologies. 
However, increase in the number of convolution and dense 
layers deteriorated rather than improved these metrics, and 
the most complex tested model (Model 8) had the lowest test 
classification accuracy for mixtures (87%, SD = 12, Table 1).

The selection of the model for presenting the results below 
was based on both training and validation metrics (Table 1) 
and test metrics (Table 2). The complexity of model topol-
ogy increased from model 1 to model 7 (Tables 1–2). The 

(4)Prediction error (%) =
Bexp − B

pred

Bexp

× 100,Bexp > 0

Fig. 2   Schematic diagram of the testing of the 1D CNN. The mon-
ocultures and mixtures listed here were not included in the training 
and validation data. Input to the model was either a mean absorbance 

spectrum of a 50 × 50 pixel region, which yielded a biomass esti-
mate for that sample, or a 5 × 5 pixel region, whose estimates can be 
mapped for spatial distribution of biomass in the sample
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simpler models (models 1 and 2) performed slightly better 
than the other for tests but produced higher error during 
training and validation. Model 5 produced best training and 
validation metrics (Table 1); however, when the model was 
made more complex than topology of model 4, the test accu-
racy did not improve or error decrease (Table 2). Therefore, 
model 4 being the simpler than model 5, we chose model 4 
to present the results below. Figure 3 shows the construction 
of model 4. Model 4 summary from Keras library is shown 
in the supplementary material (Online Resource 3).

Results

The mean classification accuracy for the three separately 
trained replicates of model 4 was high for both test mono-
cultures (test accuracy = 95%, SD = 4) and pairwise mixtures 
(test accuracy = 100%, SD = 0). Root mean squared error for 
the topology was 0.026 g L−1 (SD = 0.001) for monocultures 
and 0.022 g L−1 (SD = 0.002) for pairwise mixtures. For 
monocultures, the weighted average of classification preci-
sion was 0.95 (SD = 0.04), sensitivity was 0.95 (SD = 0.04), 

Table 2   Classification accuracies, root mean squared errors, and 
standard deviations (SD) of three replicate tests of the 1D CNN using 
different model topologies and test data consisting of monocultures 
or pairwise mixtures. The numbers for convolution layers refer to the 

number of convolution filters in each layer. The numbers for dense 
layers refer to the number of nodes in each hidden layer. The last 
layer always had six nodes, because the model had outputs for the five 
microalgae strains and an empty sample

Model topology Test classification accuracy, % (SD) Root mean squared error, g L−1 (SD)

Convolution layers Dense layers Monocultures Pairwise mixtures Monocultures Pairwise mixtures

1 128/32 128/6 96 (0) 100 (0) 0.026 (0.001) 0.021 (0.001)
2 128/32 256/6 97 (2) 97 (4) 0.026 (0.000) 0.020 (0.000)
3 128/64 128/6 95 (2) 100 (0) 0.027 (0.000) 0.022 (0.004)
4 128/64 256/6 95 (4) 100 (0) 0.026 (0.000) 0.022 (0.002)
5 128/64 256/128/6 96 (0) 100 (0) 0.028 (0.001) 0.022 (0.003)
6 128/64/32 256/6 96 (0) 95 (9) 0.024 (0.001) 0.021 (0.001)
7 128/64/32 256/128/64/6 97 (2) 87 (12) 0.026 (0.002) 0.027 (0.006)

Fig. 3   Visualization of model 4 (Tables 1–2) that was used to produce the results presented below
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specificity was 0.98 (SD = 0.02), and F1 score was 0.95 
(SD = 0.04). For microalgae mixtures, precision, sensitivity, 
specificity, and F1 score were all 1.00 (SD = 0.00). Confu-
sion matrices (Online Resource 4), species-wise classifica-
tion metrics (Online Resource 5) and roc-curves (Online 
Resource 6) are given in the supplementary material. As the 
differences between the metrics of three separately trained 
replicates of model 4 were small, we chose replicate a of 
the model 4 to display the results below (please, see Data 
availability to access the models).

The correlation between expected and predicted bio-
masses was high for monocultures (r = 0.97, p < 0.001, 
Fig. 4A) and for pairwise mixtures (r = 0.96, p < 0.001, 
Fig. 4B). These correlations also include the samples where 
an alga’s expected biomass was zero. Two false-positive 
observations with low biomasses were found in the test with 
monocultures (Microcystis and Synechococcus, Fig. 4A). If 
only expected biomasses above zero were included in the 
correlations between expected and predicted biomasses, 
those were still good for monocultures (r = 0.89, p < 0.001) 
and for pairwise mixtures (r = 0.89, p < 0.001).

The percentage prediction errors were calculated for 
microalgae whose biomasses were greater than 0. Median 
prediction error for the biomasses in the monocultures was 
17% (mean = 22%, SD = 18). Median prediction error for the 
biomasses in the pairwise mixtures was 17% (mean = 24%, 
SD = 28).

Spatial mapping visualized the distribution of biomass 
(Fig. 5). However, applying the model in each pixel of the 
spectral image resulted in a notable number of false positives 
(data not shown). Figure 4 shows the model applied to mean 
absorbances of 5 × 5 pixel areas of the spectral images. The 
edges of the wells of the well plate show some occasional 
false positives (Fig. 5).

The average biomasses calculated from the biomass maps 
of the pairwise mixtures correlated well with the expected, 

electronic cell counter-based biomass assessments (r = 0.89, 
p < 0.001). Here, 10 × 10 pixel ROI in the distribution map 
corresponded the 50 × 50 pixel ROI of the spectral images. 
Correlation between the predictions based on the mean 
absorbance spectrum and the predictions based on mean bio-
masses calculated from distribution maps was high (r = 0.98, 
p < 0.001). Median prediction error for biomasses in the 
pairwise mixtures calculated from the distribution maps 
(21%, mean = 23%, SD = 22, Table 3) was on the same level 
as the prediction error calculated from the predictions based 
on mean absorbance spectra in the samples (Table 3). These 
comparisons indicate that the 1D CNN can resolve species 
composition and biomasses, both from mean spectra of the 
sample and smaller areas visualized as a distribution map, 
with reasonable variation.

Discussion

The convolution neural network tested here performed well, 
as expected. In previous studies, convolution neural net-
works have been used successfully to classify algae species 
from photomicrographs, based on their morphological traits. 
Pant et al. (2020) reported 98.45% classification accuracy 
for classification of seven species belonging to Pediastrum 
group. Similarly, Yadav et al. (2020) achieved high classi-
fication accuracy (99.97%) for sixteen different microalgae 
genera. Otálora et al. (2021) trained a convolution neural 
network to classify microalgae from photomicrographs 
taken by FlowCAM from a moving liquid. They found that 
the model predicted the proportions of Chlorella vulgaris 
and Scenedesmus almeriensis with high correlation to the 
expected proportions (R2 > 0.99). In this study, we used a 
convolution neural network as a multidimensional regres-
sion that simultaneously classified the species based on their 

Fig. 4   Relationships between 
expected biomasses and 
biomasses predicted by the 1D 
CNN for samples of monocul-
tures (A) and pairwise mixtures 
(B)
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spectral features. This approach produced similar level of 
accuracy as reported for the morphological classifications.

The prediction errors of biomasses of this study were 
in the same range as the errors reported by Bricaud et al. 
(2007), who tested a multi-layer perceptron neural network 

to retrieve microalgae pigment concentrations from absorb-
ance spectra. They observed approximately 17% error for 
chlorophyll a and 27 to 51% error for other pigments. Mur-
phy et al. (2014) developed an RGB camera-based observa-
tion system and reported 22% and 14% prediction error for 

Fig. 5   Distribution of microalgae biomass in pairwise mixtures exemplified by images from three separate days. Syn, Synechococcus; Mic, 
Microcystis; Cryp, Cryptomonas; Per, Peridinium; Des, Desmodesmus; E, empty samples. Biomasses were solved for 5 × 5 pixel areas
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Chlorella sp. and Anabaena variabilis biomasses in mono-
cultures, respectively. Broadly, the mean prediction errors 
of this study (22% and 24% for monocultures and mixtures) 
correspond to those reported in the previous studies. The 
root mean squared error observed in this study was lower 
than the lowest tested biomasses, and the classification of 
microalgae species was successful.

The construction of the best model topology needs to be 
tested case-specifically for each application. In this study, we 
observed that adding more than two convolution layers might 
have deteriorated the test classification accuracy (Table 2). 
Adding more than two dense layers did not improve the clas-
sification accuracy or decrease the root mean square error 
either (Table 2). As reported by Medina et al. (2017) in their 
study of microalgae detection on videoframes, one of the 
advantages of a convolution neural network over a multi-
layer perceptron is that the CNN performs feature extraction 
by itself. We likely had redundant wavebands without which 

the model would be faster to compute the training. However, 
as the topologies that we tested were computed in almost 
real-time using the GPU (1 to 2 min per 100 epochs), we 
did not optimize the number of wavebands. Additionally, the 
training time itself is irrelevant, as the actual prediction by 
the trained model happens practically in real time.

In this study, the lowest tested biomasses in the pairwise 
mixtures were 0.05 to 0.06 g L−1 (Table 3), which represent 
low biomasses for microalgae cultures. The biomass ratios 
in the pairwise mixtures varied between 0.3 and 1.0 in the 
pairwise mixtures of this study. In their RGB image-based 
monitoring system, Murphy et al. (2014) could detect a 
cyanobacteria contamination in a green algae culture when 
their biomass ratio was 0.08, green algae biomass being 
0.16 g L−1. In the future studies, the spectral camera system 
and the 1D CNN could also be used to test the limit of detec-
tion for contamination because they possibly allow lower 
detection limits for contamination. In this study, the neural 

Table 3   Tested pairwise mixtures of microalgae, their biomass predicted by the 1D CNN from mean absorbance spectra, mean biomasses calcu-
lated from the distribution maps (Fig. 5), and prediction errors

Mixture Alga Expected 
biomass (g 
L−1)

Predicted biomass 
from mean absorbance 
spectrum (g L−1)

Prediction error (%) 
[|(expected – pre-
dicted)| / expected]*100

Mean biomass on the 
distribution map (g 
L−1)

Prediction error (%)
[|(expected – 
predicted)| / 
expected]*100

Microcystis + Peri-
dinium

Mic 0.06 0.07 4 0.07 5
Per 0.07 0.17 151 0.15 120

Synechococcus + Peri-
dinium

Syn 0.15 0.17 14 0.16 9
Per 0.16 0.18 15 0.11 29
Syn 0.19 0.15 19 0.15 19
Per 0.19 0.16 17 0.15 23

Microcystis + Crypto-
monas

Mic 0.15 0.10 35 0.10 35
Cryp 0.07 0.04 40 0.03 62
Mic 0.10 0.10 1 0.10 8
Cryp 0.05 0.04 14 0.03 30
Mic 0.05 0.04 30 0.03 51
Cryp 0.05 0.04 31 0.03 50

Cryptomonas + Peri-
dinium

Cryp 0.06 0.07 28 0.06 3
Per 0.20 0.25 27 0.26 30

Crypto-
monas + Desmodes-
mus

Cryp 0.06 0.06 3 0.07 16
Des 0.08 0.08 1 0.07 15

Peridin-
ium + Desmodesmus

Per 0.20 0.29 45 0.25 29
Des 0.08 0.07 12 0.05 35

Synechococ-
cus + Microcystis

Syn 0.22 0.25 11 0.25 14
Mic 0.13 0.12 9 0.11 15
Syn 0.22 0.26 20 0.25 12
Mic 0.11 0.12 15 0.11 5
Syn 0.21 0.24 17 0.27 30
Mic 0.09 0.12 29 0.12 29

Synechococ-
cus + Desmodesmus

Syn 0.13 0.16 23 0.12 9
Des 0.14 0.13 8 0.14 1
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network was capable of distinguishing between different col-
our groups (cyanobacteria, brown, and green algae) and even 
between the different species among the colour groups. The 
cell sizes of microalgae in this study varied from pico-sized 
Synechococcus to nano-sized Microcystis and to micro-sized 
Cryptomonas, Peridinium, and Desmodesmus. The package 
effect, which means that larger but sparser cells in suspen-
sion transmit more light compared to smaller but more abun-
dant cells even if their biomasses were equal, affects the 
absorbance-based biomass estimates of microalgae (Bricaud 
et al. 1988). As the 1D CNN learns the features of each 
cell type, the algorithm yields good predictions for (wet) 
biomasses despite of this variation. As the next step, more 
microalgae species could be incorporated into the model.

Maier et al. (2021) demonstrated in resolving chlorophyll 
a concentration from satellite images that the 1D CNN can 
be successfully trained with simulated data. In our study, the 
training and validation included the simulated spectra and 
the original subsampled images. This way, it was possible 
to get a large enough dataset for training the model but also 
to include real variation in the training data. Although the 
model was trained with mean absorbance spectra originating 
from subsamples of 10 × 10 pixel areas, it was successfully 
tested with absorbance spectra from the 50 × 50 pixel areas 
(Figs. 4A–B) but also with absorbance spectra from smaller, 
5 × 5 pixel areas (Fig. 5). Maier et al. (2021) noted that the 
1D CNN was insensitive for variation caused by illumination 
conditions. Similarly, our dataset contained variation from 
different imaging days, likely caused by the temperature of 
the halogen lamp included in the imaging arrangement.

The biovolume — and further biomass — estimates by 
the electronic cell counter likely contain variation that con-
tributes to the variation in predictability of the model. In the 
future studies, the target of interest could also be pigment 
composition and concentrations, instead of wet biomasses, 
as in this study. This study deviated from previous studies 
where convolution neural networks have identified micro-
algae efficiently from photographs (Pant et al. 2020; Yadav 
et al. 2020; Otálora et al. 2021) in that we used the spec-
tral data as an input for the model. However, as microalgae 
in laboratory cultures might have morphological features 
detectable by spectral imagers, including spatial data in the 
model in addition to the spectral domain to form a 3D CNN 
could be interesting and potentially useful.

Conclusions

The results of this study showed that the 1D CNN is a 
powerful algorithm to identify and quantify microalgae in 
monocultures and in mixed samples. Therefore, the combi-
nation of a spectral imager and convolution neural network 
could be an efficient monitoring approach for the growth of 

microalgae. The 1D CNN classified microalgae accurately 
on the species level, even if a sample contained two species 
belonging to the same colour group. Additionally, the errors 
of the biomass estimates were decent. Applying 1D CNN 
to spectral images visualized the distribution of microal-
gae biomass. The properties of the algorithm demonstrated 
in this study could be applied and tested broadly, such as 
monitoring of biomass, contaminations, pigments, or some 
other features of interest that could be detected by an imager.
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