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The Higgs mode in superconducting materials describes slowly decaying oscillations of the order parameter
amplitude. We demonstrate that in superconductors with a built-in spin-splitting field the Higgs mode is strongly
coupled to the spin degrees of freedom, allowing for the generation of time-dependent spin currents. Converting
such spin currents to electric signals by spin-filtering elements provides a tool for the second-harmonic genera-
tion and the electrical detection of the Higgs mode generated by the external irradiation. The nonadiabatic spin
torques generated by these spin currents allow for the magnetic detection of the Higgs mode by measuring the
precession of the magnetic moment in the adjacent ferromagnet. We discuss also the reciprocal effect, which is
the generation of the Higgs mode by the magnetic precession. Coupling the collective modes in superconductors
to light and magnetic dynamics provides an opportunity for the study of superconducting optospintronics.
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I. INTRODUCTION

Oscillations of the order parameter amplitude in
condensed-matter systems are often called Higgs modes
(HMs) [1–5], in analogy with the Higgs boson in particle
physics [6]. These collective excitations are generic for
ordered states such as antiferromagnets, charge density
waves [7], superfluids [8–10], cold atomic gases [11,12] and
superconductors [2,13–27]. In general, one can call HMs all
the possible collective modes of the order parameter, other
than the Nambu-Goldstone modes [4].

Higgs modes have been observed by Raman scattering in
superconductors with charge density wave order [14,15,17,28]
and by the nuclear magnetic resonance in superfluid 3He
[8–10]. In usual superconductors the HMs are charge neutral
and thus decoupled from charge current. In such systems the
observation of HMs has been facilitated by the development
of low-temperature terahertz spectroscopy [18,19,24,29–32].
With this technique, HMs have been observed in NbTiN and
NbN compounds [18,19]. Higgs modes have been observed
indirectly as the AC linear conductance peak in current-
carrying films of NbN [24] and Al [33].

Here we suggest a different mechanism allowing electrical
detection of HMs due to their coupling with spin and charge
degrees of freedom in high-field superconductor/ferromagnet
junctions. Unusual transport properties of such systems have
attracted intense attention [34–37], stimulating both experi-
mental [38–47] and theoretical efforts [34,48–57].

The underlying physical mechanism behind the suggested
electrical measurement of the HM is rooted in the strong cou-
pling between the superconducting order parameter dynamics
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and electron spins. The possibility to transmit spin signals
by the order parameter excitations has been elucidated using
the example of mobile topological defects, i.e., Abrikosov
vortices [55,56]. Here we demonstrate that time-dependent
spin currents can be generated by the collective amplitude
modes in superconductors.

The structure of this paper is as follows. In Sec. II we
introduce the setup and model. Section III shows the effect of
the HM on AC spin and charge currents. Their use in access-
ing the HM either in second-harmonic generation or via the
measurement of an avoided crossing between ferromagnetic
resonance and HMs is discussed in Sec. IV. We conclude in
Sec. V with an outlook to the range of phenomena affected by
the HM.

II. SETUP AND MODEL

The generic setup that we study is shown in Fig. 1(a). Its
basic element is a superconducting film placed in contact with
a ferromagnetic (FM) material. An effective spin-splitting
field h entering as the Zeeman term in the Hamiltonian of
the superconductor (SC) is induced by an external in-plane
magnetic field. Alternatively, h could be induced by the prox-
imity to a ferromagnetic insulator [58–62]. The system is
exposed to an external irradiation E�ei�t which generates a
time-dependent perturbation of the order parameter ampli-
tude δ�(t ) = �2�e2i�t through the second-order nonlinearity
�2� ∝ E2

� [63,64].
We model the SC/FM junction using the tunneling Hamil-

tonian approach [65,66], which has been used extensively to
study both AC and DC tunnel currents [65,67–69],

HT =
∑
kk′α

A†
kα (�̂B̂k′ )α + H.c., (1)

�̂ = T τ̂3 + U (m · σ̂). (2)

Here Akα (Bkα) annihilates an electron with momentum k
and spin α in the SC (ferromagnet), the unit vector m
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(a) (b)

FIG. 1. (a) Setup of the superconductor/ferromagnet structure.
The exchange field h is induced by an external magnetic field B.
The double-frequency gap modulation can be excited by the exter-
nal electromagnetic irradiation �2� ∝ E 2

� and is enhanced due to
the coupling to the HM. (b) Semiconductor model of the current
generation by a slowly varying perturbation of the order parameter
amplitude δ�(t ). Only the spin-down band is shown. The ferro-
magnet has an equilibrium distribution n0(ε), while the distribution
n(ε, t ) of the superconductor is shifted with respect to the equi-
librium distribution (dashed line) by δ�(t ) away from the Fermi
level. Due to the Zeeman shift h, the perturbation in the number of
excitations is asymmetric with respect to the Fermi level εF . This
results in net spin and charge currents flowing into the attached FM
electrode through the tunnel barrier (I).

defines the spin quantization axis of the barrier, τ̂k and
σ̂k are the Pauli matrices in Nambu and spin spaces, re-
spectively, and U and T are the spin-independent and
spin-dependent matrix elements of the tunneling Hamiltonian,
respectively [70]. The matrix tunneling current through the
spin-polarized barriers can be expressed through momentum-
averaged Green’s functions (GFs) in the superconducting and
FM electrodes νSĝS = τ̂3

∑
k〈 T Âk (τ )Â

†
k (τ

′)〉 and νF ĝF =
τ̂3

∑
k〈 T B̂k (τ )B̂

†
k (τ

′)〉, respectively. Here τ and τ ′ are imag-
inary times, T is the time-ordering operator, and νS and νF
are the normal metal densities of states on the two sides of the
junction. For simplicity, we assume momentum-independent
tunneling coefficients [70,71]. The time-dependent tunneling
current for the general nonequilibrium state in the electrodes
derived in Appendix A reads

Î (τ ) = i
νSνF

2
[ĝS ◦ (�̂ĝF �̂) − (�̂ĝF �̂) ◦ ĝS]τ ′=τ , (3)

where ◦ denotes time convolution. The overall tunnel current
amplitude is determined by κ = νSνF (T 2 + U2) and the ef-
fective spin-filtering polarization is P = 2T Um/(T 2 + U2).

Tracing the general expression with appropriate Pauli ma-
trices, we extract the charge current I = eTr(τ̂3Î ) and the spin
current Is = Tr(σ̂ Î ). The real-time response is obtained by the
method of analytic continuation, described in Appendix B.

We assume that the electrodes are in the diffusive regime
and can be described by the time-dependent Usadel equation
for quasiclassical GFs. In the imaginary-time representation it
has the form (we set h̄ = 1 here and below)

−i{τ̂3∂τ , ĝ}τ = D∂̂r(ĝ ◦ ∂̂rĝ) − i[τ̂3Ĥ , ĝ]τ , (4)

where D is the diffusion constant, Ĥ = �τ̂1 + h · σ̂, and h
is the exchange field. The quasiclassical GFs also satisfy
the normalization condition (ĝ ◦ ĝ)τ,τ ′ = δ(τ − τ ′). The time

derivative, convolution product, and differential superoperator
in Eq. (4) are

{τ̂3∂τ , ĝ}τ = τ̂3∂τ1 ĝ(τ1, τ2) + ∂τ2 ĝ(τ1, τ2)τ̂3, (5)

( f ◦ g)(τ1, τ2) =
∫ β

0
dτ3 f (τ1, τ3)g(τ3, τ2), (6)

∂̂r = ∂r − ie

c
[τ̂3A(τ ), ·], (7)

respectively, where e is the elementary charge and c is the
speed of light.

III. RESULTS

A. Qualitative description

In Fig. 1(b) we adapt the usual semiconductor picture of
the tunnel current in superconductor junctions [72] to show
how the time-dependent gap function creates a nonequilib-
rium state n(ε, t ) in the superconducting electrode. Due to the
Zeeman shift h, this state is nonsymmetric with respect to the
Fermi level εF and therefore produces spin current through
the tunnel barrier between the SC and the adjacent normal
metal. This qualitative picture is based on the time-dependent
energy spectrum Eσ =

√
ξ 2
p + �(t )2 + σh, with σ = ±1 for

spin-up/down Bogoliubov quasiparticles, respectively, where
ξp is the kinetic energy counted from the Fermi level εF .

For a slow time-dependent order parameter the spin-
resolved perturbation of the quasiparticle distribution function
can be written as (�̇/�) d

d�
Nσ , where the number of thermally

excited states in equilibrium is Nσ = ∫
dξpn(Eσ (ξp,�)), with

n(E ) = tanh(E/2T ). The inelastic scattering relaxation rate �

is given by the Dynes parameter [73].
The spin-dependent perturbation of the distribution func-

tion results in the spin current

Is(t ) = κ

�
�̇

d

d�
(N+ − N−), (8)

where κ is the effective barrier transparency. As shown below,
Eq. (8) is obtained in the low-frequency limit � � � from
the general result (21). The advantage of Eq. (8) is that it
allows for the cartoon interpretation in terms of the semicon-
ductor model in Fig. 1(b). However, for the most interesting
case when the frequency of the �(t ) ∝ e2i�t oscillation is
comparable to the gap � ∼ � and hence is coupled to the
HM [13,16,74,75], the picture becomes more complicated and
requires calculations using Eqs. (3) and (4) as described in
Sec. III C.

B. Second-harmonic generation due to the broken
particle-hole symmetry

Spin current generated by the HM can be converted to
charge current using spin-filtering FM electrodes. In the
setup shown in Fig. 1(a) the spin current is effectively
converted to the charge current while passing through the
spin-filtering barrier characterized by the polarization vec-
tor P. The time-dependent charge current induced in this
way by the order parameter amplitude oscillation is therefore
qualitatively given by I (t ) ∝ P · Is(t ), which results in the
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estimate I (t ) ∝ (P · h)∂t�. Modulation of the order param-
eter amplitude can be induced, for example, by an external
irradiation [63,64] �(t ) ∝ A2(t ), where A(t ) is the vector
potential of the external field. Hence this charge current I (t ) ∝
(P · h)∂tA2, being quadratic in the vector potential, demon-
strates the second-harmonic generation (SHG) controlled by
the superconducting order parameter.

Despite the large amount of attention to the nonlinear ef-
fects in superconductors, SHG has not been obtained before.1

Hence only third-harmonic generation has been studied in
superconductors [19,32,63,64,76]. We show below that such
a kind of SHG is not prohibited by the generic symmetries of
the problem, but is eliminated by the approximate symmetry
of Fermi surface systems, made exact in the widely used
quasiclassical approximation [77].2 This additional symmetry
of the GF satisfying the Usadel equation (4) is

ĝ(A, h,�) = −τ̂1ĝ(−A, h,�∗)τ̂1. (9)

The off-diagonal Nambu space Pauli matrix τ̂1 interchanges
the particle and hole blocks in the Hamiltonian [77], so the
physical interpretation of Eq. (9) is a particle-hole symmetry.
For the nonstationary charge current generated by the time-
dependent vector potential this symmetry yields I (A,�) =
−I (−A,�∗). Further, in the absence of supercurrent or ex-
ternal orbital fields we can assume the order parameter to be
real � = �∗. Then even the broken inversion symmetry near
surfaces does not help to produce SHG in superconducting
systems in contrast to the normal metal counterpart of this
effect. Because of this symmetry, the direct coupling between
the HM and the charge current is prohibited. However, as we
see below, it allows for the spin currents driven by the HM and
external field even with a nonferromagnetic barrier, that is, at
P = 0.

The particle-hole symmetry is broken in superconducting/
FM systems leading to large thermoelectric [34,78,79] and
anomalous Josephson effects [77]. For real � the transforma-
tion (9) applied to the general tunnel current yields

I (A, h, P) = −I (−A, h,−P). (10)

This relation allows for SHG. Because the sign of P is inverted
there is no longer a symmetry with respect to the mere flipping
of the vector potential, I(A) �= −I(−A). Hence, for the AC
external field A�ei�t , Eq. (10) allows for the double-frequency
charge current component I2�ei�t with the amplitude I2� ∝
|�|2A2

�(P · h) as well as the DC tunnel current [51] IDC ∝
|�|2A�A−�(P · h). The resonant SHG of spin and charge
currents through the excitation of HM by electromagnetic
irradiation is discussed below in Sec. III C.

C. Calculation of spin and charge currents

We assume that the superconducting electrode is driven
out of equilibrium by the electromagnetic field described
by the time-dependent vector potential A�ei�t . It produces

1Here we exclude the trivial SHGwhich results from the third-order
nonlinearity when both the oscillating and constant fields are applied.

2The Fermi surface symmetry present in the quasiclassical approx-
imation is broken here by the spin polarization of tunneling.

the second-harmonic perturbation of the GF and tunnel
current (3)

ĝS (τ, τ
′) = T

∑
ω

ĝS (ω+, ω−)eiω+τ−iω−τ ′
, (11)

Î2� = i
νSνF

2
T

∑
ω

[�̂ĝS�̂ĝ0(ω−) − ĝ0(ω+)�̂ĝS�̂], (12)

where ω± = ω ± � are the fermionic Matsubara frequencies
shifted by the frequency � of the external field. We define
ĝS = ĝS (ω+, ω−) and assume that the ferromagnet is in the
equilibrium state determined by the GF ĝF (ω) = ĝ0(ω) ≡
sgn(ω)τ̂3.

There are two qualitatively different terms in the nonequi-
librium GF ĝS = ĝAA + ĝ�. The first one is generated by
the direct coupling to the external electromagnetic field. The
second term is generated by the order parameter oscillations,
which can be induced by either the electromagnetic field or
other sources, for example, the spin current. Direct coupling to
the electromagnetic field is described by the GF perturbations
of second order by the vector potential.

From the Usadel equation (4) we find that the perturbation
ĝAA(ω+, ω−) satisfies the equation

s+ĝ0(ω+)ĝAA − s−ĝAAĝ0(ω−)

= D

(
eA�

c

)2

[ĝ0(ω+)τ̂3ĝ0(ω)τ̂3 − τ̂3ĝ0(ω)τ̂3ĝ0(ω−)].

(13)

Expanding the normalization condition in perturbation series
provides an anticommutation rule ĝAAĝ0(ω−) = −ĝ0(ω+)ĝAA,
which can be used to solve Eq. (13),

ĝAA = D

(
eA�

c

)2
τ̂3ĝ0(ω)τ̂3 − ĝ0(ω+)τ̂3ĝ0(ω)τ̂3ĝ0(ω−)

s+ + s−
,

(14)

where s± = ŝ(ω±) and ŝ(ω) =
√

�2 − (iω − h · σ̂ )2. Above,
we abuse the notation slightly by writing the matrix inverse
[s+ + s−]−1 as a scalar division. No ambiguity is introduced
as ŝ(ω)’s commute with the terms in the numerator. Further-
more, in the final expression for the spin current (21) we shift
the energy integration and remove the exchange field from the
ŝ(ω)’s, making their spin structure trivial.

Corrections to the GF induced by the time-dependent or-
der parameter amplitude �2�e2i�t can be found in the form
ĝ�(τ, τ ′) = T

∑
ω ei(ω+τ−ω−τ ′ )ĝ�(ω+, ω−). From the Usadel

equation (4) that ĝ�(ω+, ω−) satisfies the equation

s+ĝ0(ω+)ĝ� − s−ĝ�ĝ0(ω−) = �2�[τ̂2ĝ0(ω−) − ĝ0(ω+)τ̂2].

(15)

Again using the normalization condition, the solution of this
equation is given by

ĝ� = �2�
ĝ0(ω+)τ̂2ĝ0(ω−) − τ̂2

s+ + s−
. (16)

The amplitude �2� can be found from the self-consistency
equation

�2� = −λT
∑

ω

Tr[τ̂2(ĝAA + ĝ�)], (17)
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where we introduce the dimensionless pairing constant λ and
the Pauli matrix τ̂2 corresponds to the superconducting ampli-
tude vertex.

The part which is directly produced by the irradiation pro-
vides a source of the Higgs mode

F�(2�) = −λT
∑

ω

Tr[τ̂2ĝAA]. (18)

The other part determines the self-induced corrections to the
order parameter �̃2� = �(2�)�2� described by the polariza-
tion operator

�(2�) = 1 + πλT
∑

ω

Tr

[
�2 + �2

s−s+(s− + s+)

]
, (19)

where the trace is taken over the spin degree of freedom. Col-
lecting all the contributions to the self-consistency equation
(17), we get

�2� = F�/[1 − �(2�)]. (20)

This expression describes the HM excitation in the super-
conductor driven out of equilibrium by a continuous-wave
irradiation as shown schematically in Fig. 1(a). The resonance
condition corresponding to the HM is satisfied for � = �∗
when 1 − �(2�∗) = 0 + o(

√
�). Hence the maximal ampli-

tude of the order parameter oscillations is determined by
the broadening parameter �, leading to a sharp peak in
�2�(�,T ) for � ≈ �∗(T ). In the absence of spin relaxation
processes �∗ = �(T ).

Using the found GF corrections (14) and (16), we calcu-
late the spin and charge components of the tunneling current
(12). The HM contribution is determined by the term ĝ�.
Using the procedure of analytical continuation described in
Appendix B, we obtain the amplitude of real-frequency spin
current Is(�)e2i�t driven by the HM,

Is(�) = iκh�2��
∑

σ

σ

h

∫
dε

4π

ε[n(ε+) − n(ε−)]

sR+sA−(sR+ + sA−)
, (21)

where n(ε) is the equilibrium distribution function. Here the
spin splitting has been shifted from the spectral functions to
the distribution functions, so ε± = ε ± � + σh and sR,A =
−i

√
(ε ± i�)2 − �2. In the low-frequency limit � � � we

obtain Eq. (8) when the spin current is driven by the adiabatic
time dependence of � in accordance with the qualitative pic-
ture shown schematically in Fig. 1(b).

In the presence of the HM, which is the slowly decaying os-
cillations of the order parameter �(t ) [13,16], the spin current
is given by the sum of the corresponding Fourier components
with the amplitudes given by (21). As a result of Eq. (21) we
get slowly decaying oscillations of the spin current Is(t ) which
can be measured using electrical probes after the supercon-
ductor is initially driven into a nonequilibrium state by a field
pulse.

Taking into account the relation (20), we obtain the SHG
spin and charge currents induced by the external irradiation in
accordance with the qualitative discussion in Sec. III B. The
resonant behavior of the double-frequency spin current Is(�)
resulting from the HM mode excitation is shown in Fig. 2.

FIG. 2. Amplitude of double-frequency spin current Is(�)e2i�t

driven through the SC/ferromagnet tunnel junction by an exter-
nal field A�ei�t . The current is normalized to I0 = κD(eA�/c)2;
Tc is the critical temperature. The sharp maximum at frequencies
�(2�) ≈ 1 corresponds to the resonant excitation of the Higgs
mode. (a) Is(�, T ) and (b) Is(T ) at different frequencies �/�0 =
0.4, 0.8, 0.95, 1.2. The exchange field is h = 0.2�0 and the Dynes
parameter � = 0.005�0. The peaks are at temperatures determined
by �(2�) ≈ 1.

IV. DISCUSSION

A. Electrical detection of the Higgs mode

The suggested effect of SHG charge current coupled to the
HM can be measured, for example, in thin films of Al super-
conductor placed in a tunnel contact with FM iron electrodes
similar to the setups used in the measurement of the non-
local spin signals [38–40,43–47]. With Tc = 1.6 K and gap
�0 = 2 × 10−4 eV, the spin-splitting field h = 0.2�0 can be
obtained with an external in-plane magnetic field B ≈ 0.5 T,
and the polarization of this type of FM contact [44] is P = 0.2.
With large enough area, the normal-state tunnel conductance
can be eκ = 10−2 S. The electromagnetic part of the setup can
be similar to the experiments on stimulated superconductivity
[80,81]. The electromagnetic power is characterized by the pa-
rameter α = D(eA�/c)2, which can be made as large as α =
0.1Tc without destroying the superconductivity [82]. For Al it
yields α ≈ 10−5 eV. With such parameters the charge current
amplitude corresponding to Fig. 2 is ePI0 = 20 nA, which is
two orders of magnitude larger than the nonlocal thermoelec-
tric current measured recently in a similar setup [47]. The
maximal HM resonance frequency in Al is 2� = 100 GHz,
which is within the capability of modern spectrum analysers.
A 10-nA current across 50� corresponds to the signal ampli-
tude −113 dBm, which means that the signal-to-noise level
exceeding unity can be obtained within a 1-s measurement
time with state-of-the-art high-frequency microwave spectrum
analysers with a noise floor about −120 dBm/Hz.

B. Spin torques generated be the Higgs mode

If the exchange field h in the SC is noncollinear with the
magnetization m in the ferromagnet, the HM generates a spin
torque acting on m. The generic system which can realize this
configuration is shown in Fig. 3(a). Here the exchange field
h ‖ m0 is created by the ferromagnetic insulator layer with a
fixed magnetic moment m0 [34].

The spin-transfer torque (STT) generated by the HM is
shown schematically in Fig. 3(a). The polarization of the
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FIG. 3. Setups for studying transverse spin currents coupled to
the HM in the superconductor (S). The exchange field in S is gener-
ated by the adjacent ferromagnetic insulator (FI) with magnetization
m0. (a) The spin torque τ is generated in an adjacent ferromagnet
(F) with noncollinear magnetization m ∦ m0. (b) Magnetization pre-
cession m(t ) induces the spin current Is and the spin battery effect
leading to a perturbation of the order parameter amplitude δ�.

nonequilibrium spin current Is is determined by the direc-
tion of the exchange field h. Assuming that the transverse
component of the spin current is absorbed in the ferromag-
net [83–87], we obtain the STT τ = Ish⊥/h, where h⊥ =
h − m(m · h) is the perpendicular component of the exchange
field.

The reciprocal effect shown in Fig. 3(b) is the perturbation
of the gap δ� by the magnetic precession. The pumped spin
current [83] Is ∝ m × ṁ has a longitudinal component Is ‖ h
which generates a time-dependent spin accumulation μs in the
SC. In combination with the spin-splitting field h, this results
in [51,88]

δ� = λ�

1 − �
μs∂�(N+ − N−), (22)

where 1 − � ∝ λ is the low-frequency asymptotic of the
polarization operator. This expression demonstrates the pos-
sibility to couple the order parameter amplitude with the
magnetization dynamics. Thus the higher-frequency magne-
tization precession with � ∼ � generates the HM in the
superconductor with a spin-splitting field.

This effect can be viewed as the HM-mediated transfer of
the spin angular momentum from the ferromagnetic insulator
to the metallic ferromagnet shown in Fig. 3(a). Oscillating
STT generated by the order parameter amplitude mode can
excite the ferromagnetic resonance (FMR) in the attached
ferromagnet. Hybridization of the FMR and Higgs resonance
should show up as the avoided crossing of the peaks in
the second-harmonic response of the systems. Such an ex-
periment will directly demonstrate the dynamical coupling
of the magnetic and superconducting orders. Modification
of the FMR linewidth by superconducting correlations in
ferromagnet/SC structures has been observed [89–91]. In
permalloy films the FMR has been measured in fields up to
0.3 T corresponding to a frequency of 20 GHz. For such a
frequency the Higgs resonance in Al is expected to occur
at T ≈ 0.92Tc. Thus varying the field, one can measure the
temperature-controlled hybridization of the HM and FMR
mode in Al/permalloy structures within the currently acces-
sible range of parameters.

V. CONCLUSION

We have demonstrated that spin and charge currents can
be effectively generated by the collective amplitude modes of

the superconducting order parameter. Owing to the fact that
the HM can be generated by external irradiation [27,92], our
result paves the way for a conceptually different direction of
superconducting optospintronics: the study of spin currents
and spin torques generated by light interacting with supercon-
ducting materials.

We have suggested a detection scheme for the HM based on
measuring resonant electric signals, either the charge current
or voltage generated across the spin-polarized tunnel junction
by the external field. Because these signals appear at the
doubled frequency of the external field, our setup introduces
a system featuring second-harmonic generation controlled by
superconductivity. The suggested SHG can be studied using
optical or microwave detectors [93] and the tunneling current
I2� can be detected using electrical probes. This feature of the
SHG as compared to the previously known nonlinear response
techniques allows for an electrical detection of the HM in
superconductors.

Finally, a qualitatively similar effect should occur provided
the ferromagnet is replaced by another spin-filtering element
such as a semiconductor nanowire in proposed Majorana-
based qubits [94–97]. The charge noise which is important in
such devices [97] can cause the order parameter oscillations
coupled to the splitting of Majorana zero modes. This cou-
pling opens possibilities for many interesting effects to study.
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APPENDIX A: TUNNEL CURRENT

We model the spin-dependent tunneling through the
SC/ferromagnet interface by the tunneling Hamiltonian (1).
We calculate the tunneling current as a function of the time
on the contour running along the imaginary axis from 0 to
β = 1/T .

The matrix tunneling current in terms of the imaginary time
functions reads

Î (τ ) = i

2

∑
k

[∂τ ĜS (τ, τ
′, k, k) + ∂τ ′ĜS (τ, τ

′, k, k)]τ=τ ′ .

(A1)

To find the perturbation we consider the contour-ordered GF

ĜS (τ1, τ2, k, k
′) = 〈 T ŜÂk (τ1)Â

†
k′ (τ2)〉, (A2)

where T is the contour-ordering operator and

Ŝ ≈ 1 −
∫ β

0
dτ3HT (τ3). (A3)
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In the interaction representation with respect to the tunneling Hamiltonian the equation of motion is

∂τ Âk = [Âk,HT ] =
∑
k′

(�̂kk′ B̂k′ ). (A4)

Using the equation of motion we get

−∂τ1ĜS (τ1, τ2, k, k) = −
∑
q

〈T Ŝ[�̂kqB̂q(τ1)]Â
†
k (τ2)〉

≈
∑
q

〈
T

∫ β

0
dτ3HT (τ3)�̂kqB̂q(τ1)Â

†
k (τ2)

〉

=
∑
k1,k′

1,q

〈
T

∫ β

0
dτ3B̂

†
k′
1
(τ3)�̂

†
k1k′

1
Âk1 (τ3)�̂kqB̂q(τ1)Â

†
k (τ2)

〉

=
∑
k1,k′

1,q

∫ β

0
dτ3�̂kq

〈
T B̂q(τ1)B̂

†
k′
1
(τ3)

〉
�̂k′

1k1

〈
T Âk1 (τ3)Â

†
k (τ2)

〉

=
∑
k1,k′

1,q

∫ β

0
dτ3�̂kqĜF (τ1, τ3, q, k′

1)�̂k′
1k1ĜS (τ3, τ2, k1, k) (A5)

and

−∂τ2ĜS (τ1, τ2, k, k) = −
∑
q

〈T ŜÂk (τ )[�̂kqB̂q(t
′)]†〉

≈
∑
q

〈
T

∫ β

0
dτ3HT (τ3)Âk (τ1)[�̂kqB̂q(τ2)]

†

〉

=
∑
k1,k′

1,q

〈
T

∫ β

0
dτ3�̂k1k′

1
B̂k′

1
(τ3)Â

†
k1
(τ3)Âk (τ1)B̂

†
q(τ2)�̂

†
qk

〉

= −
∑
k1,k′

1,q

∫ β

0
dτ3

〈
T Âk (τ1)Â

†
k1
(τ3)

〉
�̂k1k′

1

〈
T B̂k′

1
(τ3)B̂

†
q(τ2)

〉
�̂qk

= −
∑
k1,k′

1,q

∫ β

0
dτ3ĜS (τ1, τ3, k, k1)�̂k1k′

1
ĜF (τ3, τ2, k′

1, q)�̂qk. (A6)

Hence the matrix current is given by

Î (τ ) = i

2

∑
k,k1,k′

1,q

∫ β

0
dτ ′[ĜS (τ, τ

′, k, k1)�̂k1k′
1
ĜF (τ

′, τ, k′
1, q)�̂qk

− �̂kqĜF (τ, τ
′, q, k1)�̂k1k′

1
ĜS (τ

′, τ, k′
1, k)

]
. (A7)

We assume that GFs are spatially homogeneous, so ĜF (τ, τ ′, q, k1) = δq,k1ĜF (τ, τ ′, q) and the matrix element is momentum
independent �̂kk′ = �̂. Then we can introduce the quasiclassical functions

∑
q ĜF,S (τ, τ ′, q) = νF,S τ̂3ĝF,S (τ, τ ′) to write the

current as

Î (τ ) = i
νSνF

2
[ĝS ◦ (τ̂3�̂ĝF �̂τ̂3) − (τ̂3�̂ĝF �̂τ̂3) ◦ ĝS]τ ′=τ . (A8)

Taking into account that the normal metal GF ĝF commutes
with τ̂3, Eq. (A8) can be reduced to Eq. (3).

APPENDIX B: ANALYTICAL CONTINUATION

In order to find the real-frequency response we need
to implement the analytic continuation of Eq. (12). These
second-order responses are obtained by the summation of

expressions which depend on the multiple shifted fermionic
frequencies such as g(ω1, ω2, ω3). The analytic continuation
of the sum by Matsubara frequencies is determined according
to the general rule [98]

T
∑

ω

g(ω1, ω2, ω3) →
3∑

l=1

∫
dε

4π i
n0(εl )

[
g
(
. . . ,−iεRl , . . .

)

− g
(
. . . ,−iεAl , . . .

)]
, (B1)
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where n0(ε) = tanh(ε/2T ) is the equilibrium distribution
function. On the right-hand side of (B1) we substitute in
each term ωk<l = −iεRk and ωk>l = −iεAk for k = 1, 2, 3, and
we define εk = ε + (2 − k)�, εR = ε + i�, and εA = ε − i�.
Here the term with � > 0 is added to shift the integration
contour into the corresponding half plane. At the same time, �
can be used as the Dynes parameter [73] to describe the effect
of different depairing mechanisms on spectral functions in the
superconductor.

We implement the analytical continuation in such a way
that s(−iεR,A) = −i

√
(εR,A)2 − �2, assuming that the branch

cuts run from (�,∞) and (−∞,−�). In the presence of the
spin-splitting field the energy in Eq. (B1) should be shifted to
ε + σh, where σ = ±1 is the spin subband index.

The equilibrium GF in the imaginary frequency domain is
given by ĝ0(ω) = (τ̂3ω − τ̂2�)/s(ω). The real-frequency con-
tinuation reads ĝR,A

0 (ε) = (τ̂3εR,A − iτ̂2�)/
√
(εR,A)2 − �2.

Example. To demonstrate the analytical continuation in
practice we calculate the spin current driven by the Higgs
mode. For real frequencies the spin current obtained from
(A8) can be written in terms of the Keldysh component

Is = κ

8π

∑
σ

σ

∫
dε Tr[ĝF (ε+)ĝS (ε) − ĝS (ε)ĝF (ε−)]K

= κ

8π

∑
σ

σ

∫
dε[n(ε+) − n(ε−)]Tr

[
τ̂3ĝ

a
S

]
, (B2)

where ε± = ε + σh ± ω. In deriving (B2) we used the fact
that ĝR (A)

F = ±1 do not depend on energy. The anomalous part
of the nonequilibrium GF in the superconductor is

ĝaS = �2�
ĝR(ε+)τ̂2ĝA(ε−) − τ̂2

sR+ + sA−
, (B3)

where we define sR,A
± = sR,A(ε±). Substituting the solution

(B3) and using Tr[τ3gR+τ2gA−] = 2i�0ε/sR+s
A
−, we get

Is = iκ�0�2�

∑
σ

σ

∫
dε

4π

(ε + σh)[n(ε+) − n(ε−)]

sR+sA−(sR+ + sA−)

= iκ�0�2�

(ω + i�)

∫
dε

16π

∑
σ

σ [n(ε+) − n(ε−)]

(
1

sR+
− 1

sA−

)
,

(B4)

where we use (sR+)2 − (sA−)2 = 4(ε + σh)(ω + i�). In the
low-frequency limit we can substitute n(ε+) − n(ε−) =
2ω∂εn and sR+ = −sA+ = −i

√
ε2 − �2. Then the spin current

can be written in the simple form

Is = κ

�

∑
σ

σ
d

dt

∫
dξpn(Eσ (ξp,�(t )))

= κ

�
�̇

d

d�
(N+ − N−), (B5)

where Eσ (ξp,�(t )) =
√

ξ 2
p + �2(t ) + σh is the spectrum of

Bogoliubov quasiparticles shifted by the spin-splitting field h.
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