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Abstract 

Biologicalization (biological transformation) is an emerging trend in Industry 4.0 affecting digitization of manufacturing and 
related processes. It brings up the next generation of manufacturing technology and systems that extensively use biological and 
bio-inspired principles, materials, functions, structures and resources. This research is a contribution to the further convergence of 
computer and human vision for more robust and accurate automated object recognition and image generation. We present 
VOneGANs, a novel class of generative adversarial networks (GANs) with the qualitatively updated discriminative component. 
The new model incorporates a biologically constrained digital primary visual cortex V1. This earliest cortical visual area performs 
the first stage of human`s visual processing and is believed to be a reason of its robustness and accuracy. Experiments with the 
updated architectures confirm the improved stability of GANs training and the higher quality of the automatically generated visual 
content. The promising results allow considering VOneGANs as providers of high-quality training content and as enablers of future 
simulation-based decision-making and decision-support tools for condition-monitoring, supervisory control, diagnostics, predictive 
maintenance, and cybersecurity in Industry 4.0. 
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1. Introduction 

Biologicalization is an emerging trend in Industry 4.0 affecting digitization of manufacturing and connected 
processes. It brings up the next generation of manufacturing technology and systems that extensively use biological 
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and bio-inspired principles, materials, functions, structures and resources [1]. One of the frontier approaches within 
this paradigm is the neuro-inspired Cognitive Manufacturing [2] aiming at copying the perception-reasoning-learning 
processes of the human brain into advanced industrial architectures. The recent progress done by the scientific 
community working on deep learning and convolutional neural networks (CNNs) is believed to bring innovations to 
the industrial environments and optimize manufacturing processes [3]. In particular, it can essentially facilitate 
industrial computer vision used in a wide range of Cognitive Manufacturing tasks: from remote sensing and industrial 
inspection to document processing.  

However, artificial environments deployed in sandboxes of scientific labs are different from the real industrial 
environments, as well as the requirements to the neural systems trained for scientific purposes and the ones operating 
on the factory floor. The security issues of the latter are of the greatest concern, since all the vulnerabilities to 
adversarial attacks, acceptable in theory, pose a serious threat to the success of machine learning in practice [4, 5]. 
Thus, reliability of the underlying machine learning models in terms of their adversarial robustness becomes a 
cornerstone for computer vision systems in Industry 4.0 [6].  

Two common approaches increasing machine learning robustness against adversarial attacks are (i) redesigning 
the learning process, such as, enhancing it with adversarial training on adversarial examples [7], or defensive 
distillation [8], and (ii) improving network architectures adding more robust features and components to them [9, 10]. 

In this research, we demonstrate both approaches following the biologicalization trend and contributing to the 
further convergence of computer and human visual perception aiming at more robust and accurate industrial machine 
learning.  

First, we refer to a new recently appeared class of hybrid CNN image recognition architectures VOneNets 
containing a biologically constrained neural network that simulates more accurately primary visual cortex (V1) [11]. 
It was already reported that simulating a human primary visual cortex at the front of CNNs improves learning model 
robustness to adversarial image perturbations. The reason for this is the fact that the internal representation of images 
in CNNs and in the humans` visual system is still fundamentally different [12]. Humans’ classification abilities for 
image recognition hugely outperform computer models from the perspective of robustness. Computer vision systems 
fail to recognize objects correctly within intentionally corrupted adversarial images while humans have no trouble 
with these. Including new digital components inspired by human vision system is a step towards narrowing the gap 
between the two systems. 

Inspired by the success of VOneNets in discriminative tasks, we have developed the VOneGANs – a new class of 
generative adversarial networks (GANs) [13] containing digital version of primary visual cortex V1 simulating human 
schema of neural processing of generated samples. In this paper, we report the first promising results of VOneGANs 
training. They support our hypothesis that digital primary visual cortex V1 not only improves robustness of the 
discriminative models but also it can be used for essential improvement of generative neural models. This fact opens 
good industrial perspectives for already existing VOneNets and for the new VOneGANs architectures suggested in 
this paper. The first potential contribution of VOneGANs to Industry 4.0 is generation of good quality synthetic 
content. Finding or collecting an appropriate dataset is a highly demanding task, especially considering specific 
settings of each new industrial environment. Datasets augmentation with synthetic (artificially produced) samples has 
become an acknowledged solution to various problems related to intelligent models learning [14, 15].  Another 
advantage is that improved discriminator capability will also improve the quality of classification models used in 
Industry 4.0. Moreover, we foresee the VOneGANs to be stronger providers of not only clean highly realistic samples, 
but also new challenging adversarial training content or training infrastructure for other classifiers. In this case, 
VOneGAN plays a role of a generative adversarial trainer protecting other classifiers against adversarial attacks and 
improving their prediction accuracy [16]. 

The rest of the paper is organized as follows: in Section 2, we report on related work in the field of biologically-
inspired architectures for computer vision, particularly, neural networks containing simulation of the human primary 
visual cortex; Section 3 describes the methodology of our research; in Section 4, we introduce a new class of GANs 
VOneGANs containing a primary visual cortex V1 neural network and demonstrate our experiments with different 
VOneGANs; and we, finally, conclude in Section 5. 

The source code, datasets and additional information are available online at: https://github.com/Adversarial-
Intelligence-Group/vone-gan. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2022.01.240&domain=pdf


 Vladyslav Branytskyi  et al. / Procedia Computer Science 200 (2022) 418–427 419

 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Computer Science 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

1877-0509 © 2022 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Industry 4.0 and Smart Manufacturing 

International Conference on Industry 4.0 and Smart Manufacturing 

Generative adversarial networks with bio-inspired primary visual 
cortex for Industry 4.0 

Vladyslav Branytskyi a, Mariia Golovianko a*, Diana Malyk a, Vagan Terziyan b 
aDepatment of Artificial Intelligence, Kharkiv National University of Radio Electronics, 61166, Kharkiv, Ukraine 

bFaculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland 

Abstract 

Biologicalization (biological transformation) is an emerging trend in Industry 4.0 affecting digitization of manufacturing and 
related processes. It brings up the next generation of manufacturing technology and systems that extensively use biological and 
bio-inspired principles, materials, functions, structures and resources. This research is a contribution to the further convergence of 
computer and human vision for more robust and accurate automated object recognition and image generation. We present 
VOneGANs, a novel class of generative adversarial networks (GANs) with the qualitatively updated discriminative component. 
The new model incorporates a biologically constrained digital primary visual cortex V1. This earliest cortical visual area performs 
the first stage of human`s visual processing and is believed to be a reason of its robustness and accuracy. Experiments with the 
updated architectures confirm the improved stability of GANs training and the higher quality of the automatically generated visual 
content. The promising results allow considering VOneGANs as providers of high-quality training content and as enablers of future 
simulation-based decision-making and decision-support tools for condition-monitoring, supervisory control, diagnostics, predictive 
maintenance, and cybersecurity in Industry 4.0. 
© 2022 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Industry 4.0 and Smart 
Manufacturing 
Keywords: Biologicalization; Industry 4.0; GAN; VOneGAN; primary visual cortex V1; hybrid CNN 

1. Introduction 

Biologicalization is an emerging trend in Industry 4.0 affecting digitization of manufacturing and connected 
processes. It brings up the next generation of manufacturing technology and systems that extensively use biological 

 

 
* Corresponding author. Tel.: +38-057-702-13-37; fax: +38-057-702-13-37. 

E-mail address: mariia.golovianko@nure.ua 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Computer Science 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

1877-0509 © 2022 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Industry 4.0 and Smart Manufacturing 

International Conference on Industry 4.0 and Smart Manufacturing 

Generative adversarial networks with bio-inspired primary visual 
cortex for Industry 4.0 

Vladyslav Branytskyi a, Mariia Golovianko a*, Diana Malyk a, Vagan Terziyan b 
aDepatment of Artificial Intelligence, Kharkiv National University of Radio Electronics, 61166, Kharkiv, Ukraine 

bFaculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland 

Abstract 

Biologicalization (biological transformation) is an emerging trend in Industry 4.0 affecting digitization of manufacturing and 
related processes. It brings up the next generation of manufacturing technology and systems that extensively use biological and 
bio-inspired principles, materials, functions, structures and resources. This research is a contribution to the further convergence of 
computer and human vision for more robust and accurate automated object recognition and image generation. We present 
VOneGANs, a novel class of generative adversarial networks (GANs) with the qualitatively updated discriminative component. 
The new model incorporates a biologically constrained digital primary visual cortex V1. This earliest cortical visual area performs 
the first stage of human`s visual processing and is believed to be a reason of its robustness and accuracy. Experiments with the 
updated architectures confirm the improved stability of GANs training and the higher quality of the automatically generated visual 
content. The promising results allow considering VOneGANs as providers of high-quality training content and as enablers of future 
simulation-based decision-making and decision-support tools for condition-monitoring, supervisory control, diagnostics, predictive 
maintenance, and cybersecurity in Industry 4.0. 
© 2022 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 3rd International Conference on Industry 4.0 and Smart 
Manufacturing 
Keywords: Biologicalization; Industry 4.0; GAN; VOneGAN; primary visual cortex V1; hybrid CNN 

1. Introduction 

Biologicalization is an emerging trend in Industry 4.0 affecting digitization of manufacturing and connected 
processes. It brings up the next generation of manufacturing technology and systems that extensively use biological 

 

 
* Corresponding author. Tel.: +38-057-702-13-37; fax: +38-057-702-13-37. 

E-mail address: mariia.golovianko@nure.ua 

2 Author name / Procedia Computer Science 00 (2019) 000–000 

and bio-inspired principles, materials, functions, structures and resources [1]. One of the frontier approaches within 
this paradigm is the neuro-inspired Cognitive Manufacturing [2] aiming at copying the perception-reasoning-learning 
processes of the human brain into advanced industrial architectures. The recent progress done by the scientific 
community working on deep learning and convolutional neural networks (CNNs) is believed to bring innovations to 
the industrial environments and optimize manufacturing processes [3]. In particular, it can essentially facilitate 
industrial computer vision used in a wide range of Cognitive Manufacturing tasks: from remote sensing and industrial 
inspection to document processing.  

However, artificial environments deployed in sandboxes of scientific labs are different from the real industrial 
environments, as well as the requirements to the neural systems trained for scientific purposes and the ones operating 
on the factory floor. The security issues of the latter are of the greatest concern, since all the vulnerabilities to 
adversarial attacks, acceptable in theory, pose a serious threat to the success of machine learning in practice [4, 5]. 
Thus, reliability of the underlying machine learning models in terms of their adversarial robustness becomes a 
cornerstone for computer vision systems in Industry 4.0 [6].  

Two common approaches increasing machine learning robustness against adversarial attacks are (i) redesigning 
the learning process, such as, enhancing it with adversarial training on adversarial examples [7], or defensive 
distillation [8], and (ii) improving network architectures adding more robust features and components to them [9, 10]. 

In this research, we demonstrate both approaches following the biologicalization trend and contributing to the 
further convergence of computer and human visual perception aiming at more robust and accurate industrial machine 
learning.  

First, we refer to a new recently appeared class of hybrid CNN image recognition architectures VOneNets 
containing a biologically constrained neural network that simulates more accurately primary visual cortex (V1) [11]. 
It was already reported that simulating a human primary visual cortex at the front of CNNs improves learning model 
robustness to adversarial image perturbations. The reason for this is the fact that the internal representation of images 
in CNNs and in the humans` visual system is still fundamentally different [12]. Humans’ classification abilities for 
image recognition hugely outperform computer models from the perspective of robustness. Computer vision systems 
fail to recognize objects correctly within intentionally corrupted adversarial images while humans have no trouble 
with these. Including new digital components inspired by human vision system is a step towards narrowing the gap 
between the two systems. 

Inspired by the success of VOneNets in discriminative tasks, we have developed the VOneGANs – a new class of 
generative adversarial networks (GANs) [13] containing digital version of primary visual cortex V1 simulating human 
schema of neural processing of generated samples. In this paper, we report the first promising results of VOneGANs 
training. They support our hypothesis that digital primary visual cortex V1 not only improves robustness of the 
discriminative models but also it can be used for essential improvement of generative neural models. This fact opens 
good industrial perspectives for already existing VOneNets and for the new VOneGANs architectures suggested in 
this paper. The first potential contribution of VOneGANs to Industry 4.0 is generation of good quality synthetic 
content. Finding or collecting an appropriate dataset is a highly demanding task, especially considering specific 
settings of each new industrial environment. Datasets augmentation with synthetic (artificially produced) samples has 
become an acknowledged solution to various problems related to intelligent models learning [14, 15].  Another 
advantage is that improved discriminator capability will also improve the quality of classification models used in 
Industry 4.0. Moreover, we foresee the VOneGANs to be stronger providers of not only clean highly realistic samples, 
but also new challenging adversarial training content or training infrastructure for other classifiers. In this case, 
VOneGAN plays a role of a generative adversarial trainer protecting other classifiers against adversarial attacks and 
improving their prediction accuracy [16]. 

The rest of the paper is organized as follows: in Section 2, we report on related work in the field of biologically-
inspired architectures for computer vision, particularly, neural networks containing simulation of the human primary 
visual cortex; Section 3 describes the methodology of our research; in Section 4, we introduce a new class of GANs 
VOneGANs containing a primary visual cortex V1 neural network and demonstrate our experiments with different 
VOneGANs; and we, finally, conclude in Section 5. 

The source code, datasets and additional information are available online at: https://github.com/Adversarial-
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2. Methodology 

Our research hypothesis is that GANs, enhanced by simulation of primary visual cortex image processing, can be 
successfully used in Industry 4.0 and are more effective than existing pure GAN architectures in performing generation 
and classification tasks.  

To confirm this hypothesis, we design and implement a new architecture of GANs with a discriminative component 
imitating image processing in human primary visual cortex more precisely than previously existing convolutional 
architectures. Empirical evidence in favor of our hypothesis is collected by running the newly developed architectures 
on three different datasets: MNIST [17], CIFAR-10 [18], and our own dataset Conveyor-V3 (see Fig.1.) containing 
4400 images of the industrial inter-roll conveyor system used for transportation and sorting of plastic cassettes with 
heterogeneous loads at the experimental facility within the NATO SPS project “Cyber-Defense for Intelligent 
Systems” (http://recode.bg/natog5511).  

 

Fig. 1. Image samples from dataset Conveyor-V3 containing 4400 images of the industrial inter-roll conveyor system. 

The performance of the newly suggested models is evaluated based on traditional machine learning metrics 
demonstrating accuracy of the model on both clean and adversarial inputs, including: 

• Classification accuracy – describes the discriminator`s ability to predict the correct image class. Calculated as the 
number of correct predictions in the class divided by the total number of predictions. 

• Binary accuracy – describes the discriminator`s ability to distinguish between original and generated examples.  
Calculated as the percentage of correct predictions (generated and original images) between all predictions. 
 
The analysis of the models` effectiveness in industrial context is made based on the measured performance of the 

model in application to two tasks: realistic clean images generation and challenging adversarial images` generation.   

3. Related work 

Modelling cognitive processes by mimicking those of human brain or other natural systems is not new for the 
computer science community: artificial intelligence systems have often been developed guided by neural science 
discoveries. Current state-of-the-art object recognition is mainly based on CNNs, which are believed to be built from 
the knowledge of the functional organization of the natural ventral visual pathway, a hierarchical brain structure 
consisting of the areas V1-V2-V4-IT [19]. However, CNNs, accurate on clean input data and even in some cases 
superior to humans in performance [20], can be relatively easily fooled by imperceptibly small, crafted perturbations 
and struggle to recognize objects in corrupted images, while those are easily recognized by humans [21, 22, 23]. This 
shows that the organization of human visual cortex is not well understood by now and the digital models are still 
significantly different from the natural ones. 

There have been numerous attempts to bring architectures of NN more in line with biology [24, 25, 26], including 
those focused on extending and modifying CNNs` traditional architecture and training techniques with elements 
believed to resemble those from human or animal brain [27, 28, 29, 30]. Much effort has been made to digitize more 
precisely the earliest cortical visual area which performs the first stage of visual processing – primary visual 
cortex (V1) [31, 32, 33]. In [11] it is argued that accuracy of the learnt model under adversarial attacks is strongly 
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correlated to the V1 explained variance, i.e. the ability of the model to explain the responses of single V1 neurons, 
which act as local features and edge detectors. 

Recent studies also confirm that there is a direct positive impact of the adoption of the V1 mechanisms inherent to 
natural vision on the improved adversarial robustness of CNN [34]. 

Among new architectures, VOneNets [11] show the most promising results in terms of robustness – hybrid CNNs 
with a more neuro-biologically precise V1 Neural Network (VOneBlock) in front of a classic CNN. VOneBlock is a 
specific mathematically parametrized model based on biological convolutions simulated by Gabor filters (GBF) [35].  

In contrast to classical computer vision approaches, parameters in VOneBlock first layers are not learned: they are 
fixed to approximate the empirical data of evolution-optimized actual primate V1 neural response [36]. That approach 
supports the idea that human cognitive possibilities rely on the combination of both learned and innate mechanisms 
emergent under the influence of natural evolution [37]. By deploying such an architectural change, VOneNets improve 
their robustness to various types of adversarial attacks and common image corruptions, as well as results 
interpretability allowing their decision processes to be better understood, refined, and overridden when necessary [38].  

Deep convolutional architectures success leads naturally to the further active development of neural generative 
architectures, i.e., GANs [13], and further introduction of CNN and GAN-supported innovations in Industry 4.0 [39, 
40, 41, 42]. In the first place, GANs enable development of novel simulation-based decision-making and decision-
support industrial tools, such as, digital twins [43, 44], and maintain their robustness and accuracy by means of 
adversarial training [45, 46]. 

4. VOneGAN: a GAN with a V1 neural network front-end in the discriminator 

4.1. VOneGANs architecture 

GANs traditional architecture implies a contest between a generative deep neural network (generator) learning to 
create synthetic content with the same joint probability distribution as a given dataset of real samples; and a 
discriminative deep neural network (discriminator) predicting boundaries of the reality and classifying samples as 
either original or generated (synthetic). Putting two learning models in confrontation solves a problem of a strong 
teacher, since both networks act as constantly developing challengers for the opponent, thus, synchronously co-
evolving during the training. Some architectures rely on the idea of reaching better generation quality by primarily 
enhancing the discriminative component [46, 47].  

Designing VOneGANs we also pursue this vision and presume the higher quality of image generation due to a 
more robust discriminator. We increase the robustness by simulating human neural processing of images in the earliest 
cortical area of the brain – primary visual cortex V1. As it is suggested in [11], V1 is based on the classical linear-
nonlinear-Poisson (LNP) model (see Fig.2.) consisting of:  

• A convolutional layer – a Gabor Filter Bank (GFB) Gabor filters with fixed weights constrained by empirical 
data [36]. It convolves the RGB input images with Gabor filters considerably more heterogeneous than those 
found in standard CNNs.    

• A nonlinear layer (applying rectified linear transformation for simple cells, and spectral power of a quadrature 
phase-pair for complex cells).  

• A stochastic layer (a “stochasticity” generator with variance equal to mean). 
 
A neural network simulating V1 with biologically constrained parameters is incorporated before an updated 

traditional deep CNN. A symbiosis of a deep CNN and the digital V1 creates a hybrid V1+CNN model. Our test runs 
in the industrial settings of the abovementioned experimental facility equipped with the inter-roll conveyor confirm 
the higher accuracy of the hybrid V1+CNN on clean input and its robustness under adversarial attacks. The 
performance comparison of V1+ResNet-50 network and pure ResNet-50 trained on Conveyor-V3 dataset (see Fig. 3.) 
is shown on Figure 3. 
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those focused on extending and modifying CNNs` traditional architecture and training techniques with elements 
believed to resemble those from human or animal brain [27, 28, 29, 30]. Much effort has been made to digitize more 
precisely the earliest cortical visual area which performs the first stage of visual processing – primary visual 
cortex (V1) [31, 32, 33]. In [11] it is argued that accuracy of the learnt model under adversarial attacks is strongly 
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correlated to the V1 explained variance, i.e. the ability of the model to explain the responses of single V1 neurons, 
which act as local features and edge detectors. 

Recent studies also confirm that there is a direct positive impact of the adoption of the V1 mechanisms inherent to 
natural vision on the improved adversarial robustness of CNN [34]. 

Among new architectures, VOneNets [11] show the most promising results in terms of robustness – hybrid CNNs 
with a more neuro-biologically precise V1 Neural Network (VOneBlock) in front of a classic CNN. VOneBlock is a 
specific mathematically parametrized model based on biological convolutions simulated by Gabor filters (GBF) [35].  

In contrast to classical computer vision approaches, parameters in VOneBlock first layers are not learned: they are 
fixed to approximate the empirical data of evolution-optimized actual primate V1 neural response [36]. That approach 
supports the idea that human cognitive possibilities rely on the combination of both learned and innate mechanisms 
emergent under the influence of natural evolution [37]. By deploying such an architectural change, VOneNets improve 
their robustness to various types of adversarial attacks and common image corruptions, as well as results 
interpretability allowing their decision processes to be better understood, refined, and overridden when necessary [38].  

Deep convolutional architectures success leads naturally to the further active development of neural generative 
architectures, i.e., GANs [13], and further introduction of CNN and GAN-supported innovations in Industry 4.0 [39, 
40, 41, 42]. In the first place, GANs enable development of novel simulation-based decision-making and decision-
support industrial tools, such as, digital twins [43, 44], and maintain their robustness and accuracy by means of 
adversarial training [45, 46]. 

4. VOneGAN: a GAN with a V1 neural network front-end in the discriminator 

4.1. VOneGANs architecture 

GANs traditional architecture implies a contest between a generative deep neural network (generator) learning to 
create synthetic content with the same joint probability distribution as a given dataset of real samples; and a 
discriminative deep neural network (discriminator) predicting boundaries of the reality and classifying samples as 
either original or generated (synthetic). Putting two learning models in confrontation solves a problem of a strong 
teacher, since both networks act as constantly developing challengers for the opponent, thus, synchronously co-
evolving during the training. Some architectures rely on the idea of reaching better generation quality by primarily 
enhancing the discriminative component [46, 47].  

Designing VOneGANs we also pursue this vision and presume the higher quality of image generation due to a 
more robust discriminator. We increase the robustness by simulating human neural processing of images in the earliest 
cortical area of the brain – primary visual cortex V1. As it is suggested in [11], V1 is based on the classical linear-
nonlinear-Poisson (LNP) model (see Fig.2.) consisting of:  

• A convolutional layer – a Gabor Filter Bank (GFB) Gabor filters with fixed weights constrained by empirical 
data [36]. It convolves the RGB input images with Gabor filters considerably more heterogeneous than those 
found in standard CNNs.    

• A nonlinear layer (applying rectified linear transformation for simple cells, and spectral power of a quadrature 
phase-pair for complex cells).  

• A stochastic layer (a “stochasticity” generator with variance equal to mean). 
 
A neural network simulating V1 with biologically constrained parameters is incorporated before an updated 

traditional deep CNN. A symbiosis of a deep CNN and the digital V1 creates a hybrid V1+CNN model. Our test runs 
in the industrial settings of the abovementioned experimental facility equipped with the inter-roll conveyor confirm 
the higher accuracy of the hybrid V1+CNN on clean input and its robustness under adversarial attacks. The 
performance comparison of V1+ResNet-50 network and pure ResNet-50 trained on Conveyor-V3 dataset (see Fig. 3.) 
is shown on Figure 3. 
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Fig. 2. Model of primary visual cortex V1 

Fig. 3. Performance evaluation of the hybrid CNN over a number of iterations based on ResNet-50 model combined with a V1 network 
recognizing objects in the industrial inter-roll conveyor system. Blue line – pure ResNet-50 model, orange line – V1+ResNet-50 model. (a) loss 

on training dataset; (b) top-1 accuracy on training dataset; (c) loss on validation set; (d) top-1 accuracy on validation dataset; (e) adversarial 
accuracy of the classifier under PGD-20 attack with different values of perturbation l∞ norm, denoted as epsilon. 

In this research, we transfer the advantages of more human-like image processing onto generative models. The 
most obvious solution is to introduce the hybrid V1+CNN model into the GAN discriminator.  

We coin VOneGANs as a novel class of GANs applying the hybrid V1+CNN model for performing discrimination 
of the generated samples, thus, simulating neural processing in natural primary visual cortex. To verify our claims, 
we collect empirical evidence for the new architecture performance based on several popular GAN architectures 
believed to have a high potential in Industry 4.0: AC-GAN [48] (see Fig. 4), and RobGAN [49] (see Fig. 5). Both 
belong to class-conditional image synthesis models with an auxiliary classifier in the discriminator that, besides 
deciding whether data is generated or original, output the class label for the training data. During the adversarial game, 
the model improves not only its generative and discriminative but also classification ability. 

To adapt the basic CNN discriminator to V1 we add a bottleneck – a transition layer that follows V1 and 
compresses 512 channels of V1 to the number of channels in the basic GAN discriminator.  
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Fig. 4. An example of the hybrid discriminator architecture based on AC-GAN. 

 

Fig. 5. An example of the hybrid discriminator architecture based on RobGAN. 

4.2. Training GANs with a V1 neural network front-end in the discriminator 

The discriminator being more robust to various noises, distortions, and adversarial attacks due to its specific 
architectural features is a challenging and an inconvenient rival for the generator from the very first epochs. The 
generator does not have the opportunity to fool the discriminator easily, and it is forced to learn faster anticipating the 
GAN convergence. 

Generative abilities of VOneGANs commonly used for realistic synthetic visual content creation are tested on 
CIFAR-10 (see Fig. 6) and MNIST (see Fig. 7.). 

      
 

Fig. 6. Newly generated images by GAN trained with a 64 channels CNN in the discriminator during 220 epochs on CIFAR-10 dataset. (a) 
Pure RobGAN; (b) V1+RobGAN. 
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Fig. 5. An example of the hybrid discriminator architecture based on RobGAN. 
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Fig. 7. Newly generated images by GAN trained with a 32 channels CNN in the discriminator during 220 epochs on MNIST dataset. (a) Pure 
RobGAN; (b) V1+RobGAN.                         

The key metrics confirm the improved stability of the training process, along with the increased perceptual realism 
of the generated images (see Fig. 8, Fig. 9). For the human eye, images generated without V1 are more distorted and 
harder to distinguish. 

 
  Fig. 8. The key training metrics of pure RobGAN (blue line) and V1+RobGAN (orange line) on CIFAR10 dataset. V1+RobGAN demonstrates 
improved classification accuracy on the original data with PGD attack, that indicates an increased robustness to the perturbation of discriminator 

over a number of training iterations. There is a small gap in the classification accuracy on the generated data due to the stronger generator. (a) 
Generator loss. (b) Discriminator loss. (c) Discriminator loss on generated images. (d) Discriminator loss on original images with PGD. (e) 

Classification accuracy on generated examples. (f) Classification accuracy on original examples with PGD. 

Adding the third component, i.e., an adversarial attacker, to the single adversarial framework, we organize training 
for both generator and discriminator in the presence of adversarial attacks: the generator feeds generated images to 
the discriminator; meanwhile real images sampled from training set are pre-processed by an attacking algorithm before 
sending to the discriminator. Adversarial training is the technique commonly used to improve the robustness of the 
discriminator, as well as increase the convergence speed and lead to better generators (see Fig. 10). However, its task 
for GANs with an auxiliary classifier (such as, AC-GAN and RobGAN) is to develop increased robustness also in the 
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auxiliary classifier which can then be extracted from the discriminator to classify images independently from the GAN 
framework. 

 

Fig. 9. The comparison of binary accuracy values confirm the improved ability of V1+RobGAN (orange line) on CIFAR10 dataset to distinguish 
between original with PGD and generated samples over the pure RobGAN (blue line). Left: Binary accuracy on original images with PGD over a 

number of iterations. Right: Binary accuracy on generated images over a number of iterations. 

Fig. 10. Achieving better adversarial robustness of the V1+CNN discriminator after fine-tuning on CIFAR10 dataset. Left: Evaluation of 
Classification accuracy during the fine-tuning of V1+RobGAN (orange line) over a number of iterations and retraining pure RobGAN (blue line). 

Right: Comparison of V1+RobGAN (orange line) and pure RobGAN (blue line) under adversarial attack PGD-5 with different values of 
perturbation l∞ norm, denoted as epsilon.  

5. Conclusions 

In this research, we suggest a novel GAN architecture (VOneGAN) with the qualitatively updated discriminator. 
The new model imitates human visual processing more precisely than previously existing GANs due to the specific 
neural layers analogical to those in human primary visual cortex V1 built according to the classical linear-nonlinear-
Poisson model but instantiated with the parameters approximating the empirical data of evolution-optimized actual 
primate V1 neural response [36].  We take our inspiration in VOneNets [11] which show the improved adversarial 
robustness in object recognition tasks. However, we, in this work, are in search of a solution for industrial tasks that 
require the generative function, such as, sophisticated data augmentation with synthetic samples, image to image 
translation, and adversarial robustness training. 

Our hypothesis is that VOneGANs can be more successfully used in Industry 4.0 in comparison to existing pure 
GANs architectures. To prove the concept, we conduct a series of experiments testing the new architecture in respect 
to various tasks and datasets. We also create various settings for our experiments, engaging both experimental facilities 
equipped with industrial systems and machine learning sandboxes of research labs.   

In this paper, we report the first promising results of VOneGANs training. They support our hypothesis that digital 
primary visual cortex V1 not only improves discriminative ability but can also be successfully used for the essential 
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framework. 
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primate V1 neural response [36].  We take our inspiration in VOneNets [11] which show the improved adversarial 
robustness in object recognition tasks. However, we, in this work, are in search of a solution for industrial tasks that 
require the generative function, such as, sophisticated data augmentation with synthetic samples, image to image 
translation, and adversarial robustness training. 

Our hypothesis is that VOneGANs can be more successfully used in Industry 4.0 in comparison to existing pure 
GANs architectures. To prove the concept, we conduct a series of experiments testing the new architecture in respect 
to various tasks and datasets. We also create various settings for our experiments, engaging both experimental facilities 
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positive change of generative neural models. We foresee good industrial perspectives for VOneGANs and suggest 
them as providers of high-quality training content and as enablers of future simulation-based decision-making and 
decision-support tools for condition-monitoring, supervisory control, diagnostics, predictive maintenance, and 
cybersecurity in Industry 4.0. 
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positive change of generative neural models. We foresee good industrial perspectives for VOneGANs and suggest 
them as providers of high-quality training content and as enablers of future simulation-based decision-making and 
decision-support tools for condition-monitoring, supervisory control, diagnostics, predictive maintenance, and 
cybersecurity in Industry 4.0. 
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