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Abstract: Assuming that there exists a translating soliton u.. with speed C in a domain Q and with prescribed
contact angle on 00, we prove that a graphical solution to the mean curvature flow with the same prescribed
contact angle converges to u. + Ct as t — oo. We also generalize the recent existence result of Gao, Ma, Wang
and Weng to non-Euclidean settings under suitable bounds on convexity of Q and Ricci curvature in Q.
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1 Introduction

We study a non-parametric mean curvature flow in a Riemannian product N x R represented by graphs
M; = {(x,ux,): x € Q} 1.1

with prescribed contact angle with the cylinder 0Q x R.

We assume that N is a Riemannian manifold and Q &€ N is a relatively compact domain with smooth
boundary 0Q. We denote by ~ the inward pointing unit normal vector field to 0Q. The boundary condition is
determined by a given smooth function ¢p € C*=(0Q), with || < ¢ < 1, and the initial condition by a smooth
function uy € C=(Q).

The function u above in (1.1) is a solution to the following evolution equation

ou . Vu :

E_Wdlvw in Q x [0, o),

oyu  (Vu,v) _ (1.2)
W =¢ onoQx[o,0),

u(-,0) = u in Q,

where W = /1 +|Vu|? and Vu denotes the gradient of u with respect to the Riemannian metric on N at
x € Q. The boundary condition above can be written as

(v,7) =9, (1.3)
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where v is the downward pointing unit normal to the graph of u, i.e.
Vu(x, ) - o¢ xed
Vv 1+ |Vulx, )2

The longtime existence of the solution u; := u(-, t) to (1.2) and convergence as t — oo have been studied
under various conditions on Q and ¢. Huisken [5] proved the existence of a smooth solution in a C**%-smooth
bounded domain Q ¢ R" for uy € C>%(Q) and ¢ = 0. Moreover, he showed that u; converges to a constant
function as t — oo. In [1] Altschuler and Wu complemented Huisken’s results for prescribed contact angle in
case Q is a smooth bounded strictly convex domain in R?. Guan [4] proved a priori gradient estimates and
established longtime existence of solutions in case Q C R" is a smooth bounded domain. Recently, Zhou [8]
studied mean curvature type flows in a Riemannian product M x R and proved the longtime existence of the
solution for relatively compact smooth domains Q C M. Furthermore, he extended the convergence result of
Altschuler and Wu to the case M is a Riemannian surface with nonnegative curvature and Q c M is a smooth
bounded strictly convex domain; see [8, Theorem 1.4].

The key ingredient, and at the same time the main obstacle, for proving the uniform convergence of u; has
been a difficulty to obtain a time-independent gradient estimate. We circumvent this obstacle by modifying
the method of Korevaar [6], Guan [4] and Zhou [8] and obtain a uniform gradient estimate in an arbitrary
relatively compact smooth domain Q C N provided there exists a translating soliton with speed C and with
the prescribed contact angle condition (1.3).

Towards this end, let d be a smooth bounded function defined in some neighborhood of Q such that
d(x) = miny¢,q dist(x, y), the distance to the boundary 00, for points x € Q sufficiently close to 0Q. Thus
~v=Vdon o0Q. Weassume that 0 < d < 1, |Vd| < 1 and | Hess d| < C,4 in Q. We also assume that the function
¢ € C~(0Q) is extended as a smooth function to the whole Q, satisfying the condition |¢| < ¢ < 1.

Our main theorem is the following:

v(x) =

Theorem 1.1. Suppose that there exists a solution u.. to the translating soliton equation
Vieo C

div = = ,

V1t Vs /1+|Vie|? (14)
A = (i) on a_Q’
V1+ | Vieo|?

where Cw is given by
- do
Coo = Joo ® VI (1.5)
Jo (1+|Vus|?) dx

Then the equation (1.2) has a smooth solutionu € C>(Q, [0, o0)) with W < C1, where C is a constant depending
on ¢, uog, C4, and the Ricci curvature of Q. Moreover, u(x, t) converges uniformly to Uss(x) + Coot as t — oo.

Notice that the existence of a solution u € C* (Q x [0, oo)) to (1.2) is given by [8, Corollary 4.2].

Remark 1.2. Very recently, Gao, Ma, Wang, and Weng [3] proved the existence of such u. and obtained
Theorem 1.1 for smooth, bounded, strictly convex domains Q c R" for sufficiently small |¢|; see [3, Theorem
1.1, Theorem 3.1]. It turns out that their proof can be generalized beyond the Euclidean setting under suitable
bounds on the convexity of Q and the Ricci curvature in Q.

More precisely, let Q € N be a relatively compact, strictly convex domain with smooth boundary admit-
ting a smooth defining function h such that h < 0in Q, h = 0 on 00,

(hi;p) = ka (63) (1.6)

for some constant k; > 0 and supg, |[Vh| <1, hy = -1 and |Vh| = 1 on 0Q. Furthermore, by strict convexity of
0, the second fundamental form of 0Q satisfies

(Kij) 1<i,jsn-1 2 Ko <6if) 1<i,jsn-1" (1'7)
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where ko > 0 is the minimal principal curvature of Q. In the Euclidean case, N = R", such functions h are
constructed in [2]. We give some simple examples at the end of Section 3.

Theorem 1.3. Let Q &€ N be a smooth, strictly convex, relatively compact domain associated with constants
ki > 0 and ko > 0 as in (1.6) and (1.7). Let a < min{ko, k1(n — 1)/2} and assume that the Ricci curvature in
Q satisfies | Ric| < a(k1(n - 1) — a)/(n + 1). Then there exists €, > 0 such that if ¢ =: cos @ € C>(Q) satisfies
|cosO| < & < 1/4 and ||VO|cq) < €0 in Q, there exist a unique constant Co. and a solution ue to (1.4).
Furthermore, U~ is unique up to an additive constant.

We will sketch the proof of Theorem 1.3 in Section 3.

2 Proof of Theorem 1.1

Let u be a solution to (1.2) in Q x R. Given a constant Co € R we define, following the ideas of Korevaar [6],
Guan [4] and Zhou [8], a function : Q x R — (0, o) by setting

n = eKuC=0 (Sd +1- % (Vu, Vd)) , .1)
where K and S are positive constants to be determined later. We start with a gradient estimate.

Proposition 2.1. Let u be a solution to (1.2) and define n as in (2.1). Then, for a fixed T > 0, letting

(Wn)(xo, to) = max (Wn)x, 1),
xeQ, telo,T)

there exists a constant Cqy only depending on C4, ¢, C-, and the lower bound for the Ricci curvature in Q such
that W(Xo, to) < Co.

Proof. Let g = g;dx'dx’ be the Riemannian metric of N. We denote by (g”) the inverse of (g;), uj = ou/ox/,
and Ujj = Ujj — Fll‘]-uk. We set

u'v’

w2

and define an operator L by Lu = a¥ u;,;—0¢u. Observe that (1.2) can be rewritten as Lu = 0. In all the following,
computations will be done at the maximum point (xo, to) of nW. We first consider the case where xo € 0Q.
We choose normal coordinates at xo such that g;; = g7 = 67 at xo, on =7,

al = gu _

u; 20, u;=0 for2s<is<n-1.

This implies that
di=0forl<i<n-1, dy=1, and d;,, =0 forl<is<n.

We have
0= (Wn)p = Wyn + Wy
= efWC=0 (SWnd + Wy~ L#gffuidj + SWdn - %%g"fu,-d,-
- 88 Windy + widy) + W b uidy
+ KWun(Sd +1 - %gijuidj))
_ eK(u—C.x.t)<Wn + SW = (it — Ptinin + KWutn(1 - ¢2)). 2.2)
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Using our coordinate system, we get

w

Wn | o_ ¢Pntin _ PUnin _ 2
0> pF+S- W + Kun(1 - ¢°)
2 2
_ o uidin | wigy 207 \  duy
=S w2 YW (1+1_¢2) Kuy
- L"“" + Kun(1 - ¢?)
>S-C- K¢u1 + Kun(1 - ¢?)

=S—C—%25—C——
for some constant C depending only on C,; and ¢. So choosing S = C + 1, we get that

W(Xo, to) <K. (23)
Next we assume that xo € Q and that S > C+ 1, where C is as above. Let us recall from [8, Lemma 3.5] that

2 .
LW = = a Wi, + Ric(vy, vi)W + AW,

where vy = Vu/W and |A|? = aV a”‘ul;kuj;g /W? is the squared norm of the second fundamental form of the
graph M;. Since 0 = W;n + Wn;, foreveryi =1,..., n, we deduce that
W;W;
0=L(Wn)=WLn+ n(LW 2a7 =17 W ) WLn +nWw (|A\ + Ric(vy, vN))
This yields to

%Ln +|A|? + Ric(vy, vy) < 0.
To simplify the notation, we set

(2.4)
h=Sd+1-¢uld /W =Sd+1-¢vid,.
So we have 2K
ELq = K*a"ujuj + KL(u - Coot) + —a”u h; + Lh (2.5)
We can compute Lh as
Lh = a” (Sdy; ~ ($d)iv" - (pdi)iVs — (pdv’s - diLv) = ~C - 2a"(pdi)iv’ - pdiLv
Since, by [8, Lemma 3.5],
LvK = Ric(a¥a,, vy) - |42V
and, by Young’s inequality for matrices
ij AP
a’(pdy)v = (¢dk)ta a%uy; < < 0
we get the estimate
Lh>-C-|A]*/3 + ¢pdv¥A)? (2.6)
by using the assumption that Ric is bounded

Next we turn our attention to the other terms in (2.5). We have

uj

i 1
Uiy, — =
W and a’ujuj=1 W

a”ui =

Then we note that by the assumptions, we clearly have

2.7)

KL(u - Coot) = KCoo = —KC, (2.8)
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and we are left to consider

aluihi = Y = =
qbdku"v’j
2-C- W2
Lk
=-C+ K(Pa% + %aékdkhg
_ K(l)aékdkllg
=-C+ —w
. Spa’*did,  pa’*di(pds)v®  p?a™*didsa T umy
hW hW hW?2
CK |A]?

Plugging the estimates (2.6), (2.7), (2.8), and (2.9) into (2.5) and using (2.4) with the Ricci lower bound we
obtain

2
02k (1= 405 ) ok =55 (00 G 5+ ) - H (4 1P/ - pasHia) + 147 -

w2 h w S w? 3K
(1. L €\ 1\ _ AP, AP _C 4o

Then collecting the terms including |A|> and noticing that

k
L QA" _Sd

1
T

we have

2 1 C 1
0=K (1_W_W)_CK<1+E)_C'

Now choosing K large enough, we obtain W(xo, ty) < Co, where Co depends only on Ce., d, ¢, the lower
bound of the Ricci curvature in Q, and the dimension of N. We notice that the constant Cy is independent of
T. O

Since
eK(“("t)‘C""[)(l —po)<n< eK(u(.,t)—Cmt) (S+2),

we have
(er)(XO, tO)
n(x, t)
Con(xo, to)
< 207020y 07 2.10
nx, o (2:10)
< Co(S+2) eK(u(xo,to)—tho—u(x,t)Jert)

T 1-¢o

W(x,t) <

for every (x, t) € Q x [0, T].

We observe that the function u..(x) + Ct solves the equation (1.2) with the initial condition ug = s if Uco
is a solution to the elliptic equation (1.4) and C is given by (1.5). As in [1, Corollary 2.7], applying a parabolic
maximum principle ([7]) we obtain:

Lemma 2.2. Suppose that (1.4) admits a solution u.. with the unique constant C given by (1.5). Let u be a
solution to (1.2). Then, we have
lu(x, t) - Ct| < ¢y,

for some constant c, only depending on ug, ¢, and Q.



36 —— Jean-Baptiste Casteras, Esko Heinonen, Ilkka Holopainen, and Jorge H. De Lira DE GRUYTER

Proof. Let V(x, t) = u(x, t) — us(x), where u is a solution to (1.4). We see that V satisfies

?T‘t/ =aVij+b'V;+C inQx[0,T)

where @Y, ¢V are positive definite matrices and b’ € R. Then the proof of the lemma follows by applying the
maximum principle. O

In view of Lemma 2.2, taking C-. = C, and observing that the constant Cy is independent of T, we get
from (2.10) a uniform gradient bound.

Lemma 2.3. Suppose that (1.4) admits a solution u.. with the unique constant C given by (1.5). Let u be a
solution to (1.2). Then W(x, t) < Cy for all (x, t) € Q x [0, oo) with a constant C; depending only on ¢, ug, and
Q.

Having a uniform gradient bound in our disposal, applying once more the strong maximum principle for
linear uniformly parabolic equations, we obtain:

Theorem 2.4. Suppose that (1.4) admits a solution u- with the unique constant C given by (1.5). Let u; and u;
be two solutions of (1.2) with the same prescribed contact angle as u... Let u = u; — u,. Then u converges to a
constant function as t — oo. In particular, if C is given by (1.5), then u(x, t) — u-(x) — Ct converges uniformly
to a constant as t — oo.

Proof. The proof is given in [1, p. 109]. We reproduce it for the reader’s convenience. One can check that u
satisfies

% = "ijui;}- +blu; inQx]0, o)
(”:ijuivj =0 on 00 x [0, o0),

where @, ¢V are positive definite matrices and b’ € R. By the strong maximum principle, we get that the
function Fy(t) = maxu(-, t) — minu(-, t) > O is either strictly decreasing or u is constant. Assuming on the
contrary that lim;_... u is not a constant function, setting un(-, t) = u(-, t — t,) for some sequence t, — oo, we
would get a non-constant solution, say v, defined on Q x (-oo, +o0) for which F, would be constant. We get a
contradiction with the maximum principle. O

Theorem 1.1 now follows from Lemma 2.3 and Theorem 2.4.

3 Proof of Theorem 1.3

Theorem 1.3 is essentially proven in [3, Theorem 2.1, 3.1]. The only extra ingredient we must take into account
in our non-flat case is the following Ricci identity for the Hessian ¢;;; of a smooth function ¢

Prsij = Pikj = Pijk + Rijipe. (€AY

For the convenience of the reader, we mostly use the same notations as in [3]. Thus let h be a smooth defining
function of Q such that h < 0in Q, h = 0 on 00, (h;;) > kq(6;;) for some constant k1 > 0 and supg, |[Vh| < 1,
hy = -1 and |Vh| = 1 on 0Q. Furthermore, by strict convexity of Q, the second fundamental form of 0Q
satisfies

(Kij)1<ijen-1 = K0(8ij)1<i jen-15

where kg > 0 is the minimal principal curvature of 0.Q.
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We consider the equation
Gopoowe (ol _uld o i
a’ug; = (g 1+\Vu\2) uij=¢eu inQ

04U = ¢+/1+|Vul? onoQ

for small € > 0. Writing ¢ = —cos 0, v = /1 + |Vu|? and

(3.2

@(x) = log w(x) + ah(x),

where w(x) = v - uéhg cos 0 and a > 0 is a constant to be determined, we assume that the maximum of @ is
attained in a point xo € Q. If xo € 00, we can proceed as in [3, pp. 34-36]. Thus choosing 0 < a < ko and
0 < €9 < €q < 1 such that

Ko—a > M’ (3.3)
1-¢&
where M1 = supg |V2h|, yields an upper bound
£0(M1+3) fa
1-€2 Ko
IV u(xo)|? < 0 <
Ko —a - S ko - a - B

for the tangential component of Vu on 0Q. Combining this with the boundary condition u~ = -v cos 8 gives
an upper bound for |Vu(xp)| and hence for @(xo).

The only difference to the Euclidean case occurs when x € Q, i.e. is an interior point of Q. At this point
we have, using the same notations as in [3, p. 42],

0= q’)i(XO) = % + ahi

and

) diwe ) )
02 a’@y(xo) = T” - a’a’hihj + aa’ ki =: 1+ I + 11

We choose normal coordinates at xo such that u; (xg) = |[Vu(xo)| and
(u;,(x0))24i,jen is diagonal. Then at xo, we have

I+ 2 -a?(1 + 1/v?) + aky(n - 1 + 1/v?).

We denote J = aVwy,j = J1 + ], +J3 + J4, where J1, J5 and J, are as in [3, (2.19)]. We have, by [3, (2.22)],

n
Js +J4 2 =C(|cos 6] + V6| + |V?6])uy — C(| cos 6] + VO] > |usl,
i=2
where C depends only on n, M; and supg |V>h|. Writing S* = B2 — h, cos 0 and using the Ricci identity
aijuk;i,- = aijui;jk + Ric(9y, Vu)

(see [8, (2.28)]) and (3.2), we get

k
~ . u uy.;; e
T, =d’ ( Vk’” - uk;l-]-hk cos 9) = Ska”u,-;]-k + SKRic(9y, Vu)
- —Skaz;u,-;j + Sk(su)k + Sk Ric(9g, Vu)
=J, +eu; S + Sk Ric(0y, 01)|Vu/,
where J; is as in [3, (2.19)]. Since |S'| < 2 and |S*| < 1 for k > 2, we obtain

J2 2] - (n+1)|Ricg ||Vul, (34)
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where | Ricg | is the bound for the Ricci curvature in Q, i.e. | Ric(x)| < | Ricq | for all unit vectors x € TQ. At
this point, we can proceed as in [3] to get that

n uz
ify s S Y
Ji+]2 > 2y
i=2
So combining the previous estimates, we find

J

I=- = ~C(|cos O] + [V +|V?8)]) - (n + 1)| Ricg |.

Hence we obtain

0>I+II+1III>-C(|cosB| +|VO| +|V28]) - (n+ 1)|Ricg | - a*(1 + 1/v?) + aky(n - 1 + 1/v?)
=: Cy + Co/V?,

where
C1=-Ceo— (n+1)|Ricg | +a(ky(n-1) - a)

and C, = a(ky — a). If C; > 0and C, > 0, we get a contradiction, and therefore the maximum of @ is attained
on 00Q.If C; > 0and C, < 0, then v? < —C,/C; and again we have an upper bound for @(x,). To have C; > 0
we need

|Ricg | < (a(ki(n-1) - a) - Ceo)/(n + 1). (3.5)

Fixing a < min{xo, k;(n - 1)/2} and assuming that
|Ricg | < (a(ki(n-1)-a)/(n+1) (3.6)

and, finally, choosing O < &g < min{&q, 1/4} small enough so that (3.5) holds, we end up again with a contra-
diction, and therefore the maximum of @ is attained on 0Q. All in all, we have obtained a uniform gradient
bound for a solution u to (3.2) that is independent of €. Once the uniform gradient bound is established the
rest of the proof goes as in [1] (or [3]).

In some special cases we get sharper estimates than those above.

Example 3.1. As the first example let us consider the hyperbolic space H" and a geodesic ball Q = B(o, R).

Furthermore, we choose

rx)® R
2R 2

as a defining function for Q. Here r(-) = d(-, o) is the distance to the center o. Then k¢ = coth R and we may

choose k1 = 1/R. Since Ric(dy, 01) = —=(n — 1)6y4, (3.4) can be replaced by

h(x) =

J22]5-2(n-1)|Vu|
and consequently (3.6) can be replaced by
2(n-1)<a((n-1)/R-a),

where a < min{coth R, ”2—}}}. Hence we obtain an upper bound for the radius R. For instance, if n = 2, then

a < 5 and we need R < ﬁ For all dimensions, a = 1 and R < s+ will do.

Example3.2. Asasecond example let N be a Cartan-Hadamard manifold with sectional curvatures bounded
from below by —K?, with K > 0. Again we choose Q = B(o, R) and
r(x)? R

2R 2°

h(x) =

Now 1/R < ko < Kcoth(KR) and again we may choose k; = 1/R. This time Ric(d1, 01) = —(n - 1)K? and
Ric(dy, 91) = —1(n - 1)K? for k = 2,...., n, and therefore instead of (3.4) and (3.6) we have

Jo2Jo - K*((n+1)*/2-2)|Vy|
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and
Kz((n +1)%/2- 2) <a((n-1)/R-a),

where @ < min{1/R, "2—‘1}. Again we obtain upper bounds for the radius R. If n > 3 we need

1/2
R < n-2
(KZ((n +1)2/2-2) )

1
2v2K

whereas for n = 2 the bound
R <

is enough since now Ric(9,, 01) = 0.

Conflict of interest: Authors state no conflict of interest.
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